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Abstract. It is proved that near a compact, invariant, proper subset of a C 0 flow
on a locally compact, connected metric space, at least one, out of twenty eight relevant
dynamical phenomena, will necessarily occur. Theorem 1 shows that the connectedness of
the phase space implies the existence of a considerably deeper classification of topological
flow behaviour in the vicinity of compact invariant sets than that described in the classical
theorems of Ura–Kimura and Bhatia. The proposed classification brings to light, in a
systematic way, the possibility of occurrence of orbits of infinite height arbitrarily near the
compact invariant set in question, and this under relatively simple conditions. Singularities
of C∞ vector fields displaying this strange phenomenon occur in every dimension n ≥ 3 (in
this paper, a C∞ flow on S3 exhibiting such an equilibrium is constructed). Near periodic
orbits, the same phenomenon is observable in every dimension n ≥ 4. As a corollary to the
main result, an elegant characterization of the topological-dynamical Hausdorff structure
of the set of all compact minimal sets of the flow is obtained (Theorem 2).
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1. Introduction. The present work establishes a natural classification
of topological behaviour of C 0 flows near arbitrary compact invariant setsK,
on locally compact connected metric spaces M (e.g. on 2nd countable, Haus-
dorff, connected manifolds). It can be seen as a considerably deep general-
ization of a classical topological-dynamical result of Ura and Kimura [urki]
and Bhatia (see e.g. [bhsz, p. 114]), when the hypothesis of connectedness
of the phase space is added. Ura–Kimura–Bhatia’s Theorem states that if
M is a locally compact (but not necessarily connected) metric space and K
is as above, then at least one of the following four cases occurs:

I. K is an attractor (i.e. asymptotically stable).
II. K is a repeller (i.e. negatively asymptotically stable).

III. There exist x, y ∈M\K such that ∅ 6= α(x) ⊂ K and ∅ 6= ω(y) ⊂ K.
IV. Given any neighbourhood U of K, U \K contains an (entire) orbit,

i.e. K is not an isolated invariant set.

This theorem originated around 1960 [urki], achieving its present form
in Bhatia [bha1]. It was preceded by a related, though partially incorrect,
result of Zubov [zubo], which stimulated a considerable amount of research.
However, its roots are considerably older and may be traced to the first
chapter of I. Bendixson’s celebrated memoir [bend] (see also [cies]). Later,
Ura–Kimura–Bhatia’s Theorem was recognized as a fundamental tool in
persistence theory, greatly simplifying the deduction of many important
results (Hofbauer [hofb]; see also Garay and Hofbauer [gaho] for a recent
historic perspective), new applications still being found (see e.g. Freed-
man, Ruan and Tang [free], Garay and Chua [gach], [gaho]). In the past,
some effort was made to improve the classification by Bhatia [bha2], Saito
[s1–s6], Ura [ura1, ura2] and others, but although interesting, these results
seem quite fragmentary and no general dynamical picture emerges from
them.

While valid for very general flows
/

phase spaces, and despite its impor-
tance, the above result has, in our opinion, an obvious serious limitation
that hinders the possibility of a natural, substantial deepening of the classi-
fication it proposes: since the phase space is not assumed to be connected, a
(nonvoid) compact invariant set Q ( M may be open in M . This makes Q
simultaneously an attractor and a repeller, while in fact Q neither attracts
nor repels a single point outside itself. Actually as M\Q is closed, sufficiently
near but outside Q the flow is vacuous!

Adding the assumption of connectedness of the phase space dramatically
improves the possibility of partially describing the “dynamical landscape”
in the vicinity of a compact invariant set. Natural considerations lead to the
identification of twenty five possible relevant dynamical phenomena that fall
under case IV of Ura–Kimura–Bhatia’s Theorem. Moreover, all the twenty
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eight cases are distributed among five groups, two cases belonging to distinct
groups being incompatible, i.e. cannot be simultaneously satisfied. A key role
in the classification is played by compact invariant sets ∅ 6= K ( M that
are either attractors or repellers or isolated from minimal sets and stagnant.
By the latter we mean that for some neighbourhood U of K, U \K contains
no minimal set of the flow and in addition condition III above is satisfied.
Although the main result of this paper (Theorem 1, Section 4) goes much
deeper, a flavour of some of its most important conclusions is given in

Corollary 1. Let M be a locally compact, connected metric space with
a C 0 flow and K a compact, invariant, proper subset of M . Then at least
one of the following six conditions holds:

I. K is an attractor.
II. K is a repeller.

III. K is isolated from minimal sets and stagnant.
IV. There is a nonvoid, compact, connected invariant set Q ⊂ bdK

and a sequence Λn ⊂ M \ K of compact minimal sets of the flow
such that the following three conditions hold:

• (Λn) converges to Q in the Hausdorff metric,
• all Λn’s belong to the same one of the following three classes: equi-

librium orbits, periodic orbits, compact aperiodic minimal sets,
• either all Λn’s are attractors, or they are all repellers, or they are

all isolated from minimal sets and stagnant.

V. For each sufficiently small open neighborhood U of K, the compact
minimal sets contained in U \ K form a nonvoid c-dense in itself
set, i.e. any neighborhood of a compact minimal set Λ ⊂ U \ K
contains c compact minimal sets (c denotes the cardinality of the
continuum).

VI. Orbits of infinite height will necessarily occur arbitrarily near but
outside K, more precisely, given any neighborhood U of K, there is
a sequence of orbits γn ⊂ U \K such that

cl γ1 ) cl γ2 ) · · ·
and (cl γn) converges, in the Hausdorff metric, either to a compact,
connected, invariant subset of bdK (and in this case, K is isolated
from minimals) or to an isolated compact minimal set contained in
U \K.

Moreover, conditions I to V are mutually exclusive. Conditions I, II and V
each exclude VI.

Therefore, if K is neither an attractor nor a repeller and conditions III
and IV also fail, then “super-abundance” of compact minimal sets (case V)
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Fig. 1.1. Corollary 1, examples. 1: case I; 2: case II; 3: case III; 4&5: case IV; 6: case V;
7: case VI.

or an outstanding kind of limit behaviour (case VI) will emerge arbitrarily
near (but outside) K. The possible occurrence of the latter disturbing dy-
namical phenomenon is not a mere theoretical speculation: in Section 8 a
smooth (C∞) flow on S3 exhibiting it is given. This is made possible by the
existence of a smooth flow without minimal sets on a noncompact surface of
infinite genus, smoothly embeddable in R3 (see Beniere and Meigniez [beni]
and the pioneer work of Inaba [inab]). In a subsequent paper [teix], we shall
actually show that our classification is both pertinent and non-redundant:
each of the twenty eight cases it describes admits independent realizations
by C∞ flows on Rn, for all n ≥ m, where m is some integer ≤ 5 (see Sec-
tion 8). With the obvious exceptions resulting from the closedness of the
set of equilibria, the compact invariant set K ( M may be taken as an
equilibrium orbit or as a periodic orbit in all cases.

Among its many interesting consequences, the classification theorem
has remarkable, and somewhat unexpected, implications in the topological-
dynamical structure of the set CMin(M) of all compact minimal sets of the
flow, endowed with the Hausdorff metric dH . As an example, let A be the
set of compact minimal sets that are either attractors or repellers or isolated
from minimal sets and stagnant. Then:

• If a C 0 flow on a locally compact, connected metric space M has only
countably many compact minimal sets and displays no orbits of infinite
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height, then A is necessarily open dense in CMin(M) (in the Hausdorff
metric).

If the flow displays uncountably many compact minimal sets, then a
preliminary result (Lemma 7, Section 6) permits establishing a topologi-
cal decomposition of CMin(M), in a sense analogous to that of Cantor–
Bendixson’s Theorem for Polish spaces (Theorem 3, Section 5):

• If CMin(M) is uncountable then all but a countable number of compact
minimal sets of the flow have c compact minimal sets in each of their
neighbourhoods.

Several other results are presented in Sections 4 and 5, culminating in a
simple characterization of the topological-dynamical structure of the set of
all compact minimal sets of a flow (Theorem 2, Section 5).

Despite its topological nature, the greatest interest of Theorem 1 lies in
the context of Cr≥0 flows on Cr manifolds (1). Particularly noteworthy is,
perhaps, its contribution to the understanding of what can happen, from the
dynamical point of view, in two potential “nightmare” phenomena of dif-
ferentiable dynamics: non-hyperbolic singularities and periodic orbits (see
[teix]). To see how hopeless standard analytic methods may be in the study
of the former, even in low dimensions, consider, for example, the case of com-
plete smooth vector fields on R2 having the origin O as an isolated flat (2)
singularity. It is not difficult to see that there are c such vector fields Xi,
i ∈ R, that are pairwise topologically nonequivalent (3) at O, and whose
local topological behaviour at O cannot (with the possible exception of some
very general dynamical properties, such as Lyapunov stability) be investi-
gated by standard differential methods (Cr≥1 coordinate changes, blow-up
desingularizations, etc.). This shows that already in R2, there are c distinct
possible topological smooth flow behaviours near an isolated singularity O,
which are practically left in the dark by analytic methods, and in such cases
there seems to be no much alternative to what can be learned from the
topological-dynamical approach.

Finally, it is perhaps worth mentioning that some natural questions re-
lated to Ura–Kimura–Bhatia’s Theorem have apparently remained unan-
swered until now:

(1) Unless otherwise stated, manifolds are always assumed to be smooth (C∞), 2nd
countable, Hausdorff, connected, boundaryless but not necessarily compact.

(2) The point O is a flat singularity of X ∈ X∞(R2) if this vector field vanishes at O
together with its derivatives of all orders.

(3) Two complete vector fields X,Y ∈ X∞(R2) are topologically equivalent at O if
there are open neighbourhoods U and V of O and a homeomorphism ϕ : U → V , fixing O
and carrying each maximal segment of X-orbit contained in U onto a maximal segment
of Y -orbit contained in V , preserving time orientation.
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1. In Ura–Kimura–Bhatia’s Theorem, can condition IV be replaced by
“given any neighbourhood U of K, there is a minimal set contained
in U \K ” ?

2. If K is a compact invariant set isolated from minimal sets, is there
necessarily an x ∈M \K such that ∅ 6= α(x) ⊂ K or ∅ 6= ω(x) ⊂ K ?

3. Desbrow’s conjecture [desb, p. 111]: if K is an unstable compact in-
variant set isolated from minimals, then there is an x ∈ M \K such
that ∅ 6= α(x) ⊂ K.

All these questions have a negative answer, though counter-examples
are not easy to find (4). The main difficulty is that a flow failing to sat-
isfy (any) one of these conditions must exhibit rather intricate “fractal-like
structures” with respect to orbital limit relations (called K-α shells, K-ω
shells and K-trees; see Fig. 1.2 and Section 3 for an accurate description).
This difficulty may also, in part, account for the apparent stagnation in
which the research around Ura–Kimura–Bhatia’s Theorem has fallen along
the years. The occurrence of any of the above mentioned three structures
directly implies the existence of orbits of infinite height arbitrarily near
but outside the compact invariant set K (their detection actually being
a partial refinement of condition VI of Corollary 1). This is an immediate
consequence of Theorem 1 (Section 4), which theoretically forecasts the pos-
sibility of occurrence of these strange dynamical phenomena. The existence
of smooth flows exhibiting all these beautiful structures in every dimension
n ≥ 3 confirms that prediction. Again, the compact invariant set K can be
taken as an equilibrium orbit. Raising the dimension of the phase space, it

K

K

Fig. 1.2. Left: a K-ω shell. Right: a K-tree.

(4) Even if we require M to be a manifold and the flow smooth, the answer to these
three questions remains negative (see [teix]).
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may also be taken as a periodic orbit or as a compact aperiodic minimal
set. Explicit constructions of subsmooth flows exhibiting K-α shells, K-ω
shells and K-trees are given in Section 8, Example 1 negatively answering
the above three questions. To the best of our knowledge, the only tool so
far available for achieving this purpose are the above mentioned smooth
flows without minimal sets (on noncompact manifolds), the first examples
of which were only discovered near the end of the last century by T. Inaba
[inab], answering a twenty years old question of P. Schweitzer [schw, p. 252].

2. Definitions and basic results. Let M be a metric space with a
(global) C0 flow θ : R × M → M and K (always nonvoid) a compact,
invariant, proper subset of M (we denote “the flow θ on M” by (M, θ)).
A minimal set of (M, θ) is a nonvoid, closed, invariant subset of M that
contains no proper subset satisfying these three conditions, i.e., an orbit
closure that contains no smaller one. We reserve the term periodic orbit for
orbits O(x) for which {t ∈ R : θ(t, x) = x} = λZ for some λ > 0. In this
case, the unique λ > 0 satisfying that identity is the period of O(x) (of
the periodic point x). A minimal set that is neither an equilibrium orbit (5)
nor a periodic orbit is called an aperiodic minimal, the standard compact
example being the linear flows with irrational slope on T2.

Definition. Let M , θ, K as above and x ∈M , X ⊂M . We define

NX := the set of neighbourhoods of X in M,

O(x) := {θ(t, x) : t ∈ R} = the orbit of x,

O+(x) := {θ(t, x) : t ≥ 0} = the positive (half) orbit of x,

O(X) :=
⋃
x∈X
O(x) = the orbital saturation of X,

O+(X) :=
⋃
x∈X
O+(x) = the positive orbital saturation of X,

Orb(X) := {O(x) : O(x) ⊂ X} = the set of orbits contained in X.

O−(x) and O−(X) are the negative concepts corresponding to O+(x) and
O+(X). When dealing with a unique flow θ we write xt for θ(t, x) and set

ω(x) :=
⋂
t>0

clO+(xt) = the ω-limit set of x,

α(x) :=
⋂
t<0

clO−(xt) = the α-limit set of x.

(5) The orbit of an equilibrium point z, i.e. a singleton {z} = {θ(t, z) : t ∈ R}.
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For any orbit γ = O(x), we define α(γ) := α(x), ω(γ) := ω(x). Moreover

B+(K) := {x ∈M : ∅ 6= ω(x) ⊂ K},
B−(K) := {x ∈M : ∅ 6= α(x) ⊂ K},
A+(K) := {x ∈M : ∅ 6= ω(x) ∩K 6= ω(x)},
A−(K) := {x ∈M : ∅ 6= α(x) ∩K 6= α(x)},

i.e. A+(K) (resp. A−(K)) is the set of points of M whose ω-limit (resp.
α-limit) set intersects both K and M \K. We say K is:

• (Lyapunov) stable if for any U ∈ NK there is a V ∈ NK such that
O+(V ) ⊂ U ;
• bi-stable with respect to N ⊂M if for any U ∈ NK there is a V ∈ NK

such that O(N ∩ V ) ⊂ U , i.e. any point x ∈ N sufficiently close to K
has its orbit entirely contained in U ;
• an attractor if it is stable and B+(K) ∈ NK ;
• a repeller if it is an attractor in the time-reversed flow φ(t, x) =
θ(−t, x);
• stagnant if there are points x, y ∈M \K such that ∅ 6= α(x) ⊂ K and
∅ 6= ω(y) ⊂ K;
• isolated from minimal sets if there is a U ∈ NK such that U \ K

contains no minimal set of the flow.

(Note that the latter does not exclude the occurrence of minimal sets inter-
secting (but not completely contained in) U \K.) We will use the abridged
term isolated from minimals. If K is itself a minimal set, then we say that
K is an isolated minimal (set). We define

C(X) := the set of nonvoid, compact subsets of X,

Ci(X) := the set of nonvoid, compact, invariant subsets of X ,

Cc(X) := the set of nonvoid, compact, connected subsets of X ,

Cci(X) := Ci(X) ∩ Cc(X),

CMin(X) := the set of compact minimal sets contained in X,

Eq(X) := the set of equilibrium orbits contained in X,

Per(X) := the set of periodic orbits contained in X,

Am(X) := the set of compact aperiodic minimal sets contained in X.

C(M) and its subsets are naturally endowed with the Hausdorff metric dH .
To emphasize that this metric is the one in question, we employ the terms

dH -open/closed, dH -near, dH -converges (
dH−−→), dH -isolated, etc. (6) A set

(6) Metric concepts in [C(M), dH ] are distinguished from the corresponding concepts
in [M,d] by the subscript H , e.g., BH(X, ε) := {Y ∈ C(M) : dH(X,Y ) < ε}; analogously,
closure, boundary and interior are denoted by clH , bdH , intH .
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A ⊂ C(M) dH -accumulates in B ⊂ C(M) if (clH A) ∩B 6= ∅. A sequence
Xn ∈ C(M) dH -accumulates in B ⊂ C(M) if it has a subsequence dH -con-
verging to some X ∈ B. Working primarily in the Hausdorff metric, we shall
deal essentially with equilibrium orbits rather than with equilibria. Note,
however, that the set E of equilibria of the flow, endowed with the metric
d of M , is isometric to the metric space [Eq(M), dH ] via the canonical map
e 7→ {e}. The following classical result, originally proved by W. Blaschke in
the context of convex body theory, is of central importance to the present
work:

Theorem (see e.g. [bura, p. 253]). If [N, d] is a compact metric space,
then so is [C(N), dH ].

If N is a compact metric space and C is a dH -closed (and thus compact)
subset of C(N), then the possibility of selecting from a giving sequence
Λn ∈ C a subsequence dH -converging to some Λ ∈ C will be referred to as
Blaschke’s Principle. Again in the metric space M , if N ⊂ M is compact
then the continuity of the flow implies that Ci(N) is dH -closed in C(N) and
thus compact; a simple argument shows that Cc(N) is also compact, hence
Cci(N) = Ci(N) ∩ Cc(N) is compact. Observe that while Ci(N), Cc(N),
Cci(N) and Eq(N) are dH -closed in C(N), thus compact, CMin(N), Per(N)
and Am(N) in general are not. Note that CMin(N) = Eq(N) t Per(N) t
Am(N) ⊂ Cci(N) ⊂ C(N) (t denotes disjoint union).

Remark. The reader should keep in mind the following basic facts as
they will often be implicitly used without mention. Suppose N ⊂ M is
compact. If O+(x) ⊂ N then ω(x) and clO+(x) = O+(x) ∪ ω(x) both
belong to Cci(N) and in particular are nonvoid. The analogous facts hold
for O−(x), α(x) and clO−(x) when O−(x) ⊂ N . Also γ ∈ Orb(N) implies
cl γ = γ∪α(γ)∪ω(x) ∈ Cci(N). If N is a nonvoid, compact invariant set then
it contains at least one compact minimal set of the flow. If X is a minimal
set and K is a closed invariant set, then either X ⊂ K or X ⊂M \K, since
the set of closed invariant sets is closed under intersections. If N ⊂ M is
invariant then clN , bdN and intN (respectively, the topological closure,
boundary and interior of N) are also invariant.

Definition. A set X is countable if #X ≤ ℵ0 = #N, denumerable
if #X = ℵ0, uncountable if #X > ℵ0. Moreover, c = 2ℵ0 = #R is the
cardinality of the continuum.

Definition. A set C ⊂ C(M) is dH -dense in itself if every Λ ∈ C is
non-dH -isolated in C, i.e. Λ ∈ clH(C \ {Λ}) for all Λ ∈ C. A set Λ ∈ C(M)
is a c-condensation element of C if for every ε > 0,

#(BH(Λ, ε) ∩ C) = c.
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A set C ⊂ C(M) is c-dense in itself if every Λ ∈ C is a c-condensation
element of C.

(Note that in this paper, unless the context suggests otherwise, the term
“c-dense in itself” always refers to the Hausdorff metric dH , and the same
applies to “c-condensation element”).

Remark. If M is a locally compact, connected metric space, then M
is necessarily separable (see e.g. [koba, p. 269]) and thus has at most c
points [levy, p. 223]. Therefore there are at most c orbits in the flow (M, θ),
and also at most c minimal sets (distinct minimal sets are disjoint), thus if
Λ ∈ C ⊂ CMin(M) then

#(BH(Λ, ε) ∩ C) ≤ c.

In Section 6 (Corollary 9) we shall actually see that a set of compact min-
imal sets C ⊂ CMin(M) is c-dense in itself iff every neighbourhood U ⊂M
of each Λ ∈ C contains c elements of C, showing that in this particularly im-
portant case, we may actually think in terms of the simpler metric d of M ,
instead of the Hausdorff metric dH of C(M).

Definition. For each C ⊂ 2M (= the set of all subsets of M) and
A ⊂M , we set

C∗ :=
⋃

C =
⋃
Γ∈C

Γ, C(A) := {X ∈ C : X ⊂ A}.

Given any two nonvoid sets X, Y ⊂M and ε > 0, we define

B(X, ε) :=
⋃
x∈X

B(x, ε), B[X, ε] :=
⋃
x∈X

B[x, ε],

|Y |X := sup{dist(y,X) : y ∈ Y } ∈ [ 0,+∞].

3. Special orbital structures. We will introduce three kinds of “or-
bital structures”: X-trees, X-α shells and X-ω shells. The reason for consid-
ering these denumerable collections of orbits is that they capture essential
features of the “dynamical complexity” of the flows in which they occur. In
particular, their presence implies that arbitrarily near X there are orbits
having limit sets of an outstanding kind.

Throughout this section, X is a compact, invariant, proper subset of a C0

flow on a locally compact metric space M .

3.1. X-trees. Let F := {0, 1} and E0 := {0}. Define

En := {0} × Fn, n ≥ 1, E :=
⊔
n≥0

En, E∞ := {0} × FN

(E and E∞ are, respectively, the set of finite and the set of infinite sequences
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of 0’s and 1’s with first (left) digit 0). Since no risk of ambiguity arises,
commas and brackets are omitted in the representation of both finite and
infinite sequences of 0’s and 1’s, e.g. we write 01 and 00 . . . instead of (0, 1)
and (0, 0, . . .). If a, b ∈ E , ab represents as usual the element of E obtained
by adjoining b to the right end of a. For each v ∈ E∞ (v = 0c1 . . . cn . . . ,
cn ∈ {0, 1} for all n ≥ 1) define v0 := 0 and vn := 0c1 . . . cn for all n ≥ 1.

Definition. If γ, ζ ∈ Orb(M), we denote ζ ⊂ α(γ), ζ ⊂ ω(γ) and

ζ ⊂ α(γ) ∪ ω(γ) by γ
0� ζ, γ

1� ζ and γ � ζ, respectively. Note that all

these three relations are transitive, and γ
c� ζ and ζ � ξ implies γ

c� ξ, for
c ∈ {0, 1}.

Let U be a compact neighbourhood of X. An X-tree is a pair (Θ,ψ)
where Θ is a collection of orbits contained in U \ X and ψ is a surjective
map

ψ : E → Θ ⊂ Orb(U \X), a 7→ γa,

such that for any b ∈ E ,

(3.1)
γb

0� γb0 and γb0 6� γb,

γb
1� γb1 and γb1 6� γb,

and for every v ∈ E∞,

(3.2) |cl γvn |X → 0.

γ0 is called the first orbit of the X-tree (see Fig. 3.1). Observe that (3.1)
implies (because of the transitivity of �) that for every v ∈ E∞, the sequence
(γvn) is injective, i.e. the γvn ’s are distinct and therefore Θ is denumerable

γ
0

00
γ

01
γ

000
γ

001
γ

010
γ γ

011

γ
1

γ
2

γ
3

γ
4

γ
5

γ
7

γ
6

Fig. 3.1. Left: an X-ω shell with X an equilibrium orbit. Time-reversing the flow, an X-α
shell is obtained. Right: an X-tree with X a periodic orbit.
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(since E is). X-trees have significant dynamical properties, some of which
we single out:

(i) Every z ∈ γ ∈ Θ belongs to A−(X) ∩A+(X).
(ii) For each v ∈ E∞ (v = 0c1 . . . cn . . . , cn ∈ {0, 1} for all n ≥ 1),

(3.3) γv0
c1� γv1

c2� · · ·
and

(3.4) q > p ⇒ γvq 6� γvp ,
thus

(3.5) cl γvn ) cl γvn+1 for all n ≥ 0.

(iii) We have

(3.6) cl γvn
dH−−→ Λv :=

⋂
n≥1

cl γvn ∈ Cci(X).

Proof. (i) If z ∈ γb ∈ Θ, b ∈ E then γb
0� γb0, γb

1� γb1 where γb0, γb1 ∈
Θ ⊂ Orb(U \X), hence both the α-limit and ω-limit sets of z have points
outside X. On the other hand, letting kn := {0}n ∈ Fn and ln := {1}n ∈ Fn

it follows immediately from (3.1) that γb
0� γbkn and γb

1� γbln for all n ≥ 1;
also (3.2) implies that both |γbkn |X and |γbln |X tend to zero as n→∞, thus
both the α-limit and ω-limit sets of z intersect X, since these two sets are
closed.

(ii) (3.3) is trivial; (3.4) and (3.5) follow from (3.1) because � is transi-
tive.

(iii) cl γvn ∈ Cci(U) and cl γvn+1 ⊂ cl γvn for all n ≥ 0, therefore by

Lemma 8.1 (Section 6), cl γvn
dH−−→ Λv ∈ Cci(U) since Cci(U) is compact

(recall that U ∈ NX is compact); on the other hand, |cl γvn |X → 0, hence
Λv ⊂ X and finally Λv ∈ Cci(X).

Observe that if (Θ,ψ) is an X-tree, then given any a ∈ E , letting

Υ = {γd : d = a or d = ab, b ∈ Fn, n ≥ 1}
and defining the surjective map

φ : E → Υ,

0 7→ ζ0 := γa = ψ(a),

0b 7→ ζ0b := γab = ψ(ab) for each b ∈
⊔
n≥1

Fn,

we get an X-tree with first orbit γa, whose orbits are contained in Θ. We
call (Υ, φ) a sub-X-tree of (Θ,ψ) and commit a safe abuse of language saying
that (Υ, φ) is contained in (Θ,ψ). Note that |ζd|X ≤ |cl ζ0|X = |ζ0|X = |γa|X
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for all d ∈ E , since ζd ⊂ ζ0 ∪ α(ζ0) ∪ ω(ζ0) = cl ζ0. Therefore, in virtue of
(3.2), given an X-tree (Θ,ψ) and an ε > 0, there is always a sub-X-tree of
(Θ,ψ) with all its orbits contained in B(X, ε) \X.

3.2. X-α shells and X-ω shells. We will define X-ω shells; X-α shells
are the time symmetric concept, more precisely, a sequence (γn)n≥1 of orbits
is an X-α shell if it is an X-ω shell in the time-reversed flow φ(t, x) =
θ(−t, x).

Let U be a compact neighbourhood of X. An X-ω shell is a sequence of
orbits γn ⊂ U \X satisfying the following three conditions:

• γn ⊂ B−(X) for every n ≥ 1,

• γn
1� γn+1 and γn+1 6� γn, for all n ≥ 1,

• |cl γn|X → 0.

These imply (7) that γn ⊂ A+(X) for every n ≥ 1 and hence

γn ⊂ B−(X) ∩A+(X) for every n ≥ 1.

Also, the sequence (γn) is necessarily injective, i.e. the γn’s are distinct
(see Fig. 3.1). Again, as in the case of X-trees, it is easily seen that

γ1
1� γ2

1� · · · ,
q > p ⇒ γq 6� γp,
cl γn ) cl γn+1 for all n ≥1,

cl γn
dH−−→ Λ :=

⋂
n≥1

cl γn ∈ Cci(X).

X-α shells have exactly the same properties, on interchanging α with ω, +

with − and changing
1� to

0� everywhere. Obviously, if (γn)n≥1 is an X-ω
shell then any subsequence (γni)i≥1 is also an X-ω shell and we call it a
sub-X-ω shell of (γn)n≥1. Therefore, since |cl γn|X → 0, given any ε > 0,
an X-ω shell always has a sub-X-ω shell with all its orbits contained in
B(X, ε) \X. The analogous fact holds for X-α shells.

4. The main theorem. Corollaries. Let M be a locally compact,
connected metric space with a C0 flow. Consider the following six propo-
sitions where the variable X assumes values in the set Ci(M) of nonvoid,
compact, invariant subsets of M :

1.X. X is an attractor.
2.X. X is a repeller.

(7) Clearly γn
1� γm for every 1 ≤ n < m, thus ω(γn)∩X 6= ∅ since |cl γm|X → 0 and

ω(γn) is closed. On the other hand, ω(γn) 6⊂ X because γn+1 ⊂ ω(γn) and γn+1 ⊂M \X.
Hence γn ⊂ A+(X).
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3.X. X is isolated from minimals and stagnant.

4.X. X is isolated from minimals and there is an X-α shell.

5.X. X is isolated from minimals and there is an X-ω shell.

6.X. X is isolated from minimals and there is an X-tree.

Observe that, by the connectedness of M , if a proper subset X ∈ Ci(M)
satisfies condition 1.X or 2.X, then it satisfies none of the remaining five con-
ditions: if 1.X (resp. 2.X) holds, then the remaining five conditions contra-
dict the stability (resp. negative stability, i.e. stability in the time-reversed
flow) of X. Isolated from minimals and stagnant compact, invariant sets play
an important role in the present work. In differentiable dynamics, typical,
dynamically distinct examples are given by hyperbolic saddle, fake saddle
and saddle-node equilibrium orbits and periodic orbits. Another instructive
example is given by the orbit of the equilibrium (0, . . . , 0, 1) ∈ Sn ⊂ Rn+1

in the compactification of the flow on Sn \ {(0, . . . , 0, 1)} induced, via the
inverse stereographic projection, by the constant vector field ∂/∂x1 on Rn
(see Fig. 4.1, centre, for the case n = 2). A more subtle example is given by
the unique (exceptional) minimal set of Denjoy’s celebrated C1 flow on T2.

Fig. 4.1. Examples of isolated from minimals and stagnant compact invariant sets on S2.
Left: fake saddle equilibrium orbit. Right: periodic orbit attracting on one side and re-
pelling on the other (periodic orbit of saddle-node type).

Theorem 1. Let M be a locally compact, connected metric space with a
C0 flow θ and K a compact, invariant proper subset of M . Then either

1. K is an attractor;

or

2. K is a repeller;

or at least one of the following four conditions holds:

3. K is isolated from minimals and stagnant;
4. K is isolated from minimals and there is a K-α shell;
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5. K is isolated from minimals and there is a K-ω shell;
6. K is isolated from minimals and there is a K-tree;

or at least one of the following eighteen conditions holds:

7.i (1 ≤ i ≤ 6). There is a sequence of equilibrium orbits {en} con-
tained in M \K, dH-converging to some equilibrium orbit contained
in bdK, such that condition i.X is satisfied by all en;

8.i (1 ≤ i ≤ 6). There is a sequence of periodic orbits γn ⊂M \K, dH-
converging to some (nonvoid) compact, connected invariant subset
of bdK, such that condition i.X is satisfied by all γn;

9.i (1 ≤ i ≤ 6). There is a sequence of compact aperiodic minimals
Γn ⊂M \K, dH-converging to some (nonvoid) compact, connected
invariant subset of bdK, such that condition i.X is satisfied by
all Γn;

or

10. There is an open neighbourhood U of K such that CMin(U \ K)
is c-dense in itself and at least one of the following four conditions
holds:

10.1. Eq(U \ K) is c-dense in itself and dH-accumulates in
Eq(bdK);

10.2. Per(U \ K) is c-dense in itself and dH-accumulates in
Cci(bdK);

10.3. Am(U \ K) is c-dense in itself and dH-accumulates in
Cci(bdK);

10.4. There are c-dense in itself sets P ⊂ Per(U \ K) and A ⊂
Am(U \K), dH-open in Per(M) and in Am(M), respectively,
and such that:

• both P and A dH-accumulate in Cci(bdK),
• K is bi-stable with respect to P ∗ =

⋃
γ∈P γ and A∗ =⋃

Γ∈A Γ ,
• for any sequence γn ∈ P , dist(γn,K) → 0 implies that

period(γn)→ +∞.

Remark. (1) As Eq(M) is closed in M and since in 10 we may obviously
assume that the neighbourhood U ∈ NK has compact closure, denoting by E
the set of equilibria contained in U \ K, we may give 10.1 the following
stronger formulation:

10.1′. cl E is a compact and dense in itself set intersecting bdK. Given
any z ∈ cl E and ε > 0, there is an embedding h of Cantor’s
ternary set into B(z, ε) ∩ cl E , with z ∈ imh (see e.g. [levy,
p. 227]).
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Fig. 4.2. Cases 1 to 7.3
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W period
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Fig. 4.5. Case 10.4

(2) Observe that γn ∈ P and dist(γn,K) → 0 together actually imply
that |γn|K → 0, since P ∗ is bi-stable with respect to K. On the other hand,

by the 1st point of 10.4 there is a sequence P 3 γn
dH−−→ Q ∈ Cci(bdK). As

P is c-dense in itself, the 3rd point can thus be replaced by the following
condition:

• given any n ≥ 1, all periodic orbits γ ∈ P contained in a sufficiently
small neighbourhood V of K have period > n, and the set of these has
cardinality c.

Remark. The reader should keep in mind the following two elementary
facts about locally compact metric spaces M :

• Any neighbourhood of a compact set K ⊂M contains a compact ball
B[K, δ] for some δ > 0.
• Every open

/
closed subset of M is also locally compact.

We now make a few brief comments concerning the applicability of The-
orem 1 in the context of differentiable dynamics and also mention some of
its consequences for the topological structure of the set CMin(M) of all
compact minimal sets of the flow, endowed with the Hausdorff metric dH .

Let M be a (2nd countable, Hausdorff) connected Cm (0 ≤ m ≤ ∞)
manifold (compact or not) with a Cr (0 ≤ r ≤ m) flow. Due to its topo-
logical nature, Theorem 1 gives information not only about the possible
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behaviour of the flow near each of its compact, invariant, proper subsets
(if there are any), but also it illuminates the behaviour of the flow within
each closed, invariant, connected subset N , provided N contains a com-
pact, invariant proper subset (this is always the case if N is, in addition,
a nonminimal compact set). Moreover, if M is noncompact, then M has
an end-points compactification M∝ = M t E(M) that, roughly speaking,
captures the different possible ways of going to infinity on M. As is well
known, besides being compact, M∝ is connected and metrizable (with the
inclusion M → M∝ defining a homeomorphism), and the flow φ on M
(uniquely) extends to a C0 flow θ on M∝ (Cr on M), with the end points
e ∈ E(M) becoming equilibria. At each end point e ∈ E(M), not only the
differentiable, but also the topological manifold structure may break (i.e.
an end point may not even have a neighbourhood (in M∝) homeomorphic
to Rn). However as the extended flow is still continuous at these points, we
may apply Theorem 1 to the equilibrium orbit K = {e} of each end point
e ∈ E(M), therefore obtaining valuable insight into the possible behaviour
of the original flow near each of its “points at infinity”.

Theorem 1 has several interesting consequences. Below we give a selection
of some simple corollaries. Part II of the present work will be devoted to the
investigation of more subtle implications.

Remark. All compact invariant sets considered are, by hypothesis, non-
void. All lemmas invoked in this section and the next are proved in Section 6.

Definition. Let M be a metric space. A set E ⊂ 2M has elements
arbitrarily near X ⊂ M if for any ε > 0, B(X, ε) contains an element of E
(i.e. E(B(X, ε)) 6= ∅). In this case we also say that X has elements of E
arbitrarily near. More restrictively, E has elements arbitrarily near (but)
outside X if for any ε > 0, E(B(X, ε) \X) 6= ∅. We also use the expression
that X has elements of E outside arbitrarily near.

Observe that the last two concepts are defined using the metric of M and
should not be confused with dH -nearness. Also, note that the whole phase
space M is always both an attractor and a repeller in any flow, hence from
Theorem 1 we get the following immediate consequences (see also Corollary 1
in the introduction, Section 1):

Corollary 2. Let M be a locally compact, connected metric space with
a C0 flow. Then every compact invariant set, isolated from minimals and
having no orbits of infinite height arbitrarily near, is either an attractor or
a repeller or stagnant.

Corollary 3. Let M be a locally compact, connected metric space with
a C0 flow and K a compact, invariant set, isolated from minimal sets. If K
is neither an attractor, nor a repeller, nor stagnant, then orbits of infinite
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height occur arbitrarily near (but) outside K. Actually, there is a K-α shell
or a K-ω shell or a K-tree in the flow.

Corollary 4. Let θ be a C0 flow on a locally compact, connected metric
space having only a finite number of compact minimal sets. Then any com-
pact invariant set that is neither an attractor, nor a repeller, nor stagnant,
has orbits of infinite height outside arbitrarily near.

Again, suppose M is a locally compact, connected metric space with
a C0 flow θ. Let

A := {X ∈ CMin(M) : X satisfies one of conditions 1.X to 3.X},
that is, A is the set of compact minimal sets of the flow that are either
attractors, or repellers, or isolated from minimals and stagnant. The next
result shows that if the compact minimal sets belonging to A are not dH -
dense in CMin(M), then “c-abundance” of minimal sets or orbits of infinite
height will occur in the flow. In the above context, we have

Corollary 5. Let M be a locally compact, connected metric space with
a C0 flow. If A is not dH-dense in CMin(M), then there is a nonvoid,
c-dense in itself, dH-open subset of CMin(M) or there are orbits of infinite
height arbitrarily near every Y ∈ CMin(M) \ clH A 6= ∅.

We prove a stronger “local” result. Corollary 5 then follows by letting
A = M .

Corollary 6. Let M be a locally compact, connected metric space with
a C0 flow and A an open subset of M . If the set

A(A) = {X ∈ CMin(A) : X satisfies one of conditions 1.X to 3.X}
is not dH-dense in CMin(A), then at least one of the following two situations
occurs:

(1) there is a nonvoid, c-dense in itself, dH-open subset of CMin(M)
contained in CMin(A);

(2) there are orbits of infinite height arbitrarily near every set Y in
CMin(A) \ clH A(A) 6= ∅.

In particular, if there are only countably many compact minimal sets in A,
then case (2) occurs.

Proof. By hypothesis, A ⊂M is open and ∆ := CMin(A)\clH A(A) 6= ∅,
hence CMin(A) is a nonvoid, dH -open subset of CMin(M) (Lemma 5, Sec-
tion 6). The set

Υ := {Y ∈ ∆ : there are orbits of infinite height arbitrarily near Y }
is clearly a dH -closed subset of ∆. Suppose Θ := ∆\Υ 6= ∅, i.e. assume there
are compact minimal sets in ∆ having no orbits of infinite height arbitrarily
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near. Then Θ is a nonvoid, dH -open subset of CMin(M). Let K ∈ Θ. Since
K is compact, there is an open U ∈ NK with compact closure contained
in A such that U contains no Y ∈ A(A) (this follows from Lemma 4, as
K ∈ CMin(A) \ clH A(A)), and also contains no orbit of infinite height (ob-
serve that these two facts together also imply that any Λ ∈ CMin(U) belongs
to Θ). Hence none of the 24 cases 1 to 9.6 of Theorem 1 holds, thus by the
same result, at least one of the four conditions 10.1 to 10.4 must be valid.
But any of these implies the existence of c compact minimal sets contained
in every B(K, δ), δ > 0, and thus, by Corollary 9 (Section 6), of c com-
pact minimal sets in every BH(K, ε), ε > 0, and for ε small enough these are
contained in U and thus must belong to Θ. Therefore Θ is c-dense in itself.

Obviously, every X ∈ A(M) is dH -isolated in CMin(M) (and thus {X}
is dH -open in CMin(M)), hence in the above context, we have

Corollary 7. If θ is a C0 flow on a locally compact, connected metric
space M with only countably many compact minimal sets and displaying no
orbits of infinite height, then the set A(M) is dH-open dense in CMin(M).

Remark. Suppose N is a locally compact, connected metric space en-
dowed with a C0 flow φ, and M a connected, closed invariant subset of N ,
containing a compact invariant proper subset K. Then Theorem 1 applies
to the subflow (M, θ) where θ := φ|R×M , M being endowed with the metric
of N . In this context, all definitions must be interpreted “within” (M, θ),
i.e. as concerning this subflow (for example a nonvoid, compact invariant
set Λ ⊂M may be an attractor in (M, θ) without being one in (N,φ)). The
next result shows that if addition the phase space N is locally connected
and is separated by the compact invariant set J , then a finer understanding
of the flow behaviour near J is possible.

Corollary 8. Let N be a locally compact, connected and locally con-
nected metric space with a C0 flow φ, and J a compact, invariant proper
subset of N. Let D be a connected component of N \ J . Then Theorem 1
applies to M := clD, θ := φ|R×M , K := M ∩ J .

Roughly speaking, this result means that within the closure of each con-
nected component D of N \ J , at least one of the 28 phenomena described
in Theorem 1 (see Section 6 for the full statement) occurs near the compact
invariant set (clD) ∩ J (it being possible that within distinct components,
different cases hold).

Proof of Corollary 8. Let D be a (connected) component of N \J . Since
N is locally connected and N \ J is open, D is open in N , hence it cannot
be closed as N is connected. On the other hand, D is closed in N \J , hence
∅ 6= bdD = (clD) \ D ⊂ J . The invariance of D now follows from that
of N \ J : the orbit of a point z ∈ D cannot pass from D to a different
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component of N \ J without intersecting bdD ⊂ J , and this is impossible
since N \ J ⊃ D is invariant. Therefore M := clD is a nonvoid, connected,
closed (and hence locally compact) invariant subset ofN , andK := (clD)∩J
is a nonvoid, compact, invariant proper subset of M . Define the (sub)flow
θ := φ|R×M . Now endowed with the metric of N, M is a locally compact,
connected metric space with a C0 flow θ, and K is a compact, invariant
(under θ) proper subset of M . Theorem 1 can thus be applied to these M ,
θ and K.

Example. Let φ be a Cr (r ≥ 0) flow on N = Sn and K ⊂ N an
invariant, codimension one, compact, connected C0 submanifold. As is well
known, by the generalized Jordan–Brouwer Separation Theorem [al] (8),
K separates the flow into three invariant regions, K, B and A, the last
two being the connected components of N \ K, with common boundary
K. Besides applying to N , φ, K, Theorem 1 also applies to M = A t K,
θ = φ|R×M , K, and to M = B tK, θ = φ|R×M , K. Moreover, if K is not a
minimal set, then it also applies to the (compact, connected, metric) phase
space K, giving, in this case, information about the possible behaviour of
the codimension one subflow θ = φ|R×K near any compact, invariant, proper
subset of K (there is at least one). This is always the case if, for example, K
is the image of a C0 embedding S2m ↪→ S2m+1, n = 2m+ 1 (since such a K
must contain an equilibrium, even if φ is only C0; this follows easily from the
following corollary to the S2n-hairy ball theorem: a continuous map S2n →
S2n that sends no point x to its antipode −x, has at least one fixed point).

5. Topological dynamics of CMin(M). Theorem 1 brings to light
the importance of compact minimal sets to the characterization of the pos-
sible “dynamical landscapes” in the vicinity of a compact invariant proper
subset of a flow. Obviously, there is a close relation between the dynami-
cal behaviour of a flow near a compact minimal set X and the topological
Hausdorff structure of CMin(M) near X. Actually, from Theorem 1 we eas-
ily obtain an elegant characterization of the set CMin(M) of all compact
minimal sets of the flow, endowed with the Hausdorff metric.

Let M be a locally compact, connected metric space with a C0 flow.
Consider the following seven propositions, where the variable X now takes
values in the set CMin(M) of all compact minimal subsets of the flow:

1.X. X is an attractor.
2.X. X is a repeller.
3.X. X is an isolated minimal set and stagnant.
4.X. X is an isolated minimal set and there is an X-α shell.

(8) Alexander’s term “immersed” means C0-embedded. Recall that [al] is prior to
Whitney’s foundational papers on the theory of manifolds.
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5.X. X is an isolated minimal set and there is an X-ω shell.
6.X. X is an isolated minimal set and there is an X-tree.

10.X. There is an ε > 0 such that the compact minimal sets contained
in B(X, ε) form a c-dense in itself subset of CMin(M).

By Corollary 9 (Section 6), the latter is equivalent to

10′.X. There is an ε > 0 such that every neighbourhood U ⊂M of each
Y ∈ CMin(B(X, ε)) contains c compact minimal sets.

If X satisfies 10.X, then as X is itself a compact minimal set, every
neighbourhood of X actually contains c compact minimal sets.

Remark. Recall that the definition of the Hausdorff metric and Lem-
ma 4 together imply that

• X is an isolated compact minimal set iff it is dH-isolated in CMin(M).

(By definition (Section 2), X is an isolated minimal set if for some U ∈ NX ,
U \X contains no minimal set of the flow.)

Definition. Denote by Mi, 1 ≤ i ≤ 6 or i = 10, the set of all X in
CMin(M) satisfying condition i.X, and by M1-6 the set of all X∈CMin(M)
satisfying (at least) one of the six conditions 1.X to 6.X.

Theorem 2. Let M be a locally compact, connected metric space with
a C0 flow. Then:

(1) M1-6 is the set of isolated compact minimal sets and thus a countable,
dH-open subset of CMin(M).

(2) M10 is a dH-open and c-dense in itself subset of CMin(M). It is
either empty or has cardinality c.

(3) M1-6 is dH-dense in CMin(M) \M10.

Proof. First, note the following trivial fact that will be implicitly used
in (3) below: if X is a compact minimal set and Yn is a sequence of compact
minimal sets dH -converging to Q ∈ Cci(X), then Q = X.

(1) Clearly every X ∈ M1-6 is an isolated compact minimal set; on the
other hand, by Theorem 1, any compact minimal set X satisfying none of
the six conditions 1.X to 6.X is not an isolated compact minimal set (9),
hence M1-6 is the set of isolated compact minimal sets of the flow. By the
remark preceding this theorem, every X ∈M1-6 is dH -isolated in CMin(M),
hence M1-6 is dH -open in CMin(M). Finally, M1-6 is countable since it is
a dH -discrete and separable metric space (by Lemma 10, C(M) ⊃ M1-6 is
dH -separable).

(9) Note that if X ∈ CMin(M) satisfies none of conditions 1.X to 6.X, then X is
necessarily a proper subset of M, as M compact implies M is both an attractor and a
repeller in the flow, therefore Theorem 1 can be applied.
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(2) 10.X is clearly a dH -open property in CMin(M), hence M10 is a
dH -open and c-dense in itself subset of CMin(M). Since the phase space M
is separable, there are at most c compact minimal sets in the flow, therefore
M10 is either empty or has cardinality c, as it is c-dense in itself.

(3) This follows immediately from Theorem 1 once it is shown that M10

is the set of minimals of the flow satisfying condition 10 of that theorem.
Note that if K is a (compact) minimal set satisfying 10, then there is a
U ∈ NK such that CMin(U) is c-dense in itself, implying that K ∈ M10.
On the other hand, if K ∈ M10, then for some ε > 0, B(K, ε) contains no
isolated minimal set, hence none of the 24 conditions 1 to 9.6 of Theorem 1
holds, thus by the same theorem, K satisfies condition 10. Therefore, if
X ∈ CMin(M) \M10, then X must satisfy (at least) one of conditions 1 to
9.6 of Theorem 1, and this obviously implies that X ∈ clH M1-6.

Note, however, that 10.X is indeed a very strong condition, essentially
due to its dH -openness: even when CMin(M) \M1-6 is nonvoid and c-dense
in itself, it can happen that M10 is empty, since it is still possible that M1-6

is dH -dense in the whole CMin(M) (simple examples of C∞ flows exhibit-
ing this phenomenon already occur on S1 and S2). However, the next result
shows that a nonvoid c-dense in itself set of compact minimal sets always
occurs whenever there are uncountably many compact minimal sets in the
flow. More precisely, if CMin(M) is uncountable, then removing from this
set a suitable countable (possibly empty) set we obtain a nonvoid c-dense
in itself set of compact minimal sets. This decomposition theorem is analo-
gous to the celebrated Cantor–Bendixson Theorem for separable, complete
metric spaces (Polish spaces). Note, however, that although dH -separable
(since C(M) ⊃ CMin(M) is, by Lemma 10), CMin(M) is in general neither
dH -complete nor dH -locally compact. Also observe that since there are at
most c compact minimal sets in the flow (see Section 2), the above result
implies that CMin(M) obeys, in a sense, the Continuum Hypothesis: its car-
dinality is either finite (possibly null), denumerable (ℵ0), or the continuum
c = 2ℵ0 .

Lemma. If M is a separable metric space, then the set I of all points
having a countable neighbourhood is countable and open. If M is uncount-
able, then M \ I is dense in itself.

Proof. By its very definition, I has an open cover consisting of countable
subsets. Since I is separable, that cover has a countable subcover, thus I is
countable. If M is uncountable, then the set D := M \ I is dense in itself:
obviously D is nonvoid (since it is uncountable), and in fact, given any
x ∈ D and ε > 0, B(x, ε)∩D is uncountable since by definition of I, B(x, ε)
is uncountable and so is B(x, ε) ∩D = B(x, ε) \ I (as I is countable).
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Theorem 3. Let θ be a C0 flow on a locally compact, separable metric
space M , displaying uncountably many compact minimal sets. Then there is
a countable (possibly empty) set I ⊂ CMin(M) such that:

• D := CMin(M) \ I is a c-dense in itself and dH-closed subset of
CMin(M), of cardinality c.
• I is the set of all X ∈ CMin(M) having a neighbourhood containing

only countably many compact minimal sets (possibly one), hence D is
the largest c-dense in itself subset of CMin(M).

Therefore, if CMin(M) is uncountable, then all but a countable number
of compact minimal sets of the flow have c compact minimal sets in each of
their neighbourhoods, or equivalently, CMin(M) is the union of a countable
(possibly empty) set and a c-dense in itself set. The proof uses, in an essential
way, a “Cantor’s ternary set-like” construction that constitutes the core of
the proof of Lemma 7.

Proof of Theorem 3. Suppose CMin(M) is uncountable. Let I be the set
of all X ∈ CMin(M) having a countable neighbourhood in the Hausdorff
metric. By the previous lemma, I is a countable, dH -open subset and D :=
CMin(M) \ I a nonvoid dH -dense in itself subset of CMin(M).

Claim. D is c-dense in itself.

As D ⊂ CMin(M), in virtue of Corollary 9 (Section 6), we need only
prove that given any X ∈ D and ε > 0, there are c compact minimal
sets Y ∈ D contained in B(X, ε) ⊂ M . Taking ε sufficiently small we may
assume B[X, ε] is compact (X is compact and M is locally compact). Let
A := B(X, ε), Λ0 := X and ε0 := ε/2. Now since D is dH -dense in itself, we
may carry the construction of the proof of Lemma 7 within D(A) = {Z ∈ D :
Z ⊂ A}, i.e. we may select each Λa, a ∈ F , in D(A) rather than in CMin(A).
As in the proof of Lemma 7, we get c dH -Cauchy sequences, dH -converging to
c pairwise disjoint, nonvoid, compact invariant sets contained in A, thereby
proving the existence of c compact minimal sets contained in this open set
(as each K ∈ Ci(A) contains at least one compact minimal set). Now since I
is countable, c of these compact minimal sets Γ ∈ CMin(A) actually belong
to D = CMin(M)\I. Therefore D is c-dense in itself. Finally, D is dH -closed
in CMin(M) since I is dH -open in the same set.

It is easy to see that the set E of equilibria has the following analogous
property, stronger than that expressed in Theorem 3:

• If E is uncountable, then E is the union of a countable set and a perfect
subset E of M of cardinality c. For each z ∈ E and ε > 0 there is an
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embedding h of Cantor’s ternary set into B(z, ε) ∩ E with z ∈ imh.
Hence E ⊂ E is a c-dense in itself closed subset of M (10).

The question now arises whether the corresponding propositions analo-
gous to Theorem 3, for the set Per(M) of all periodic orbits and for the set
Am(M) of all compact aperiodic minimal sets of the flow, also hold:

1. If Per(M) is uncountable then all but a countable number of periodic
orbits of the flow have c periodic orbits on each of their neighbour-
hoods.

2. If Am(M) is uncountable then all but a countable number of compact
aperiodic minimal sets of the flow have c compact aperiodic minimal
sets on each of their neighbourhoods.

It is, in a sense (11), useless to look for counterexamples to any of these
two propositions within “standard” dynamical systems theory: both state-
ments 1 and 2 are provable in ZFC set theory under the additional assump-
tion of the Continuum Hypothesis CH. Hence each turns out to be either
demonstrable in ZFC or independent of this standard axiomatic (due to
Gödel’s result [göde]). The proof that CH ⇒ 1 ∧ 2 is simple and actually
depends only on the fact Per(M) and Am(M) are separable metric spaces:
1 and 2 are particular cases of the following proposition, which is equivalent
to the Continuum Hypothesis:

• c-Denseness Hypothesis (cDH): If L is an uncountable separable metric
space, then a c-dense in itself set is obtained by removing from L a
suitable countable set (possibly empty) (12).

As we could not locate a reference for the equivalence CH ⇔ cDH, a short
proof is given for the sake of completeness.

(CH ⇒ cDH): Recall that a separable metric space L has at most c
points. Suppose L is uncountable. Let I be the set of points of L having a
countable neighbourhood. By the proof of the Lemma preceding Theorem 3,
I is a countable, open subset of L and D := L \ I is a set such that every
neighbourhood Uz of each z ∈ D contains uncountably many points of D.

(10) This follows immediately from the following observation: since the phase space
M is locally compact and separable it can be endowed with an equivalent boundedly
compact metric (on which every closed bounded set is compact, see e.g. [brid, p. 157]),
thus becoming a complete, separable metric space (Polish space). As E is closed in M ,
it is also a Polish space in this equivalent metric, and the proposition in question is well
known to hold on such spaces (see e.g. [levy, Chap. VII.2]).

(11) Namely working within Zermelo–Fraenkel Set Theory + Axiom of Choice (ZFC)
and provided this standard axiomatic is consistent.

(12) Here X ⊂ M being c-dense in itself means, as for the dH metric, that for every
x ∈ X and ε > 0, B(x, ε) ∩X has cardinality c.
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As the cardinality of L ⊃ D is at most c = 2ℵ0 , the Continuum Hypothesis
actually implies #(Uz ∩D) = c. Hence D is c-dense in itself.

(¬CH ⇒ ¬cDH): Assume there is a cardinal ℵ0 < β < c. Given a
bijection between c ⊃ β and R, there is a set S ⊂ R with ℵ0 < #S = β < c.
With the Euclidean metric inherited from R, S is an uncountable separable
metric space. Removing from S an arbitrary countable set I we again obtain
a set D = S \ I of cardinality #(S \ I) = #S = β. Hence ℵ0 < #D = β < c
and therefore, since D is nonvoid, it cannot be c-dense in itself.

6. Lemmas. Several lemmas, some of them dynamically interesting on
their own, will be needed for the proof of Theorem 1. Due to the time-reversal
symmetry of (global) flows, Lemmas 1 and 3 below admit analogous negative
time formulations, which will be implicitly used later.

The following result gives an unusual characterization of attractors in
terms of the behaviour of the negative orbits of points outside the compact
invariant set in question. It illustrates a topological-dynamical phenomenon
that plays a key role in the present work.

Lemma 1. Let M be a locally compact metric space with a C0 flow θ,
and K a compact, invariant, proper subset of M . Then K is an attractor
iff there is a neighbourhood U of K such that no point z ∈ U \ K has its
negative orbit O−(z) entirely contained in U .

Proof. (⇒) Suppose K is an attractor. Let U be a compact neighbour-
hood of K contained in B+(K) and z ∈ U \K. Then O−(z) 6⊂ U . Otherwise
we would have ∅ 6= α(z) ⊂ B+(K), which implies α(z)∩K 6= ∅, contradict-
ing the stability of K (as α(z) is closed invariant, if y ∈ α(z)∩B+(K), then
∅ 6= ω(y) ⊂ α(z) ∩K).

(⇐) Suppose that U ∈ NK is such that

(6.1) z ∈ U \K ⇒ O−(z) 6⊂ U.
Since condition (6.1) is hereditary under inclusion U ′ ⊂ U , we may without
loss of generality assume that U is compact (as M is locally compact).

Claim I. K is stable.

Given W ∈ NK , let U0 be a compact neighbourhood of K contained in
U ∩ W and let S = bdU0. As (6.1) also holds for U0, and S is a (nonvoid)
compact, the continuity of the flow implies the existence of a finite T < 0
such that θ([T, 0] × {x}) 6⊂ U0 for every x ∈ S, which in its turn implies
O−(S)∩U0 ⊂ θ([T, 0]×S) =: Θ (Fig. 6.1). Now Θ is a (nonvoid) compact set,
disjoint and hence at a positive distance from the compact invariant set K.
Taking V ∈ NK disjoint from Θ, it follows that no point in V can leave U0 in
positive time, as its positive orbit cannot cross S. Thus O+(V ) ⊂ U0 ⊂ W,
proving the stability of K.
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K
V

S

U0

U

Fig. 6.1. Lemma 1: the existence of a compact U ∈ NK for which z ∈ U \K ⇒ O−(z) 6⊂ U
implies the stability of K

Claim II. B+(K) is a neighbourhood of K.

As K is stable, there is a V ∈ NK such that O+(V ) ⊂ U . We claim that
V ⊂ B+(K). Since U is compact, ∅ 6= ω(x) ⊂ U for every x ∈ V and no
point y ∈ U \K may belong ω(x), as this would imply O(y) ⊂ ω(x) ⊂ U ,
contradicting the hypothesis O−(y) 6⊂ U . Therefore ∅ 6= ω(x) ⊂ K for every
x ∈ V and the claim is proved.

The following result is essentially a version of Ura–Kimura–Bhatia’s The-
orem for locally compact, connected metric spaces (see e.g. [bhsz, p. 114]).
Our proof is in the spirit of the present work. Note that the phase space of
a C0 flow being locally compact, a compact invariant set K is isolated from
minimal sets if for every U ∈ NK , U \K contains no compact minimal set.

Lemma 2. Let M be a locally compact, connected metric space with a C0

flow θ, and K a compact, invariant, proper subset of M . Then either

I. K is an attractor, or
II. K is a repeller,

or at least one of the following conditions holds:

III. K is isolated from minimals and stagnant.
IV. Given any U ∈ NK , U \K contains an (entire) orbit.

Proof. SupposeK is an attractor. Since ∅ 6= K (M andM is connected,
U \ K 6= ∅ for all U ∈ NK . Each of conditions II, III and IV then clearly
implies the existence of a z ∈ U \K such that O−(z) ⊂ U for every U ∈ NK .
This contradicts the existence of a neighbourhood U in Lemma 1, thus none
of them holds. Analogously if K is a repeller then none of conditions I, III
and IV holds.
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Suppose now that none of conditions I, II and IV holds. Then there is a
compact U ∈ NK such that U \K contains no (entire) orbit, in particular, K
is isolated from minimals. Since K is neither an attractor nor a repeller, by
Lemma 1, there are x, y ∈ U\K such thatO−(x) ⊂ U andO+(y) ⊂ U , hence
∅ 6= α(x), ω(y) ⊂ U . No point z ∈ U \K may belong to α(x) or ω(y), since
otherwise the invariance of limit sets and ofM\K would implyO(z) ⊂ U\K,
contradicting the hypothesis about U . Thus ∅ 6= α(x), ω(y) ⊂ K, i.e. K
is stagnant. Therefore, condition III holds, since K is also isolated from
minimals.

The next result is, in a sense, a counterpart to Butler–Mcgehee’s Lemma
(Butler and Waltman [butl, p. 259]). Since its proof involves three distinct
flows, we shall indicate them by subscripts.

Lemma 3. Let M be a locally compact metric space with a C0 flow θ
and K a compact invariant proper subset of M . If K is nonstagnant and
z ∈ A+(K), then given any U ∈ NK there is a y ∈ ω(z) such that O(y) ⊂
U \K (see Fig. 6.2).

x
z

K'

K

Fig. 6.2. Lemma 3

Proof. Using Carlson’s globalization of local flows on metric spaces [carl,
p. 198], we may remove the point z from M without changing the oriented
phase portrait of θ elsewhere, i.e. there is a (global) C0 flow ϕ on M ′ =
M \ {z} (with the metric of M), having the same oriented phase portrait
as θ, except that the original orbit of z is broken into two distinct new orbits
(z is not periodic), corresponding to its open half-orbits t < 0 and t > 0. The
point z is suppressed. Note that being open in M , M ′ is a locally compact.
Take x ∈ O+

θ (z) distinct from z. Let N be the closure of Oϕ(x) in M ′, thus
an invariant subset of ϕ. Now we focus on the subflow (N,φ = ϕ|R×N ). Being
an orbit closure, N is a locally compact and connected metric space. The fact
that x belongs to the orbit of z in the original flow and z ∈ A+

θ (K) implies
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that the compact invariant set K ′ = N∩K is nonvoid and x ∈ A+
φ (K ′). Thus

K ′ is neither an attractor nor a repeller in (N,φ) and it is also nonstagnant,
since by hypothesis K is nonstagnant in θ. Applying Lemma 2 to (N,φ)
and K ′, it follows that condition IV of that lemma holds. Since K ′ = N ∩K,
the result easily follows on noting that all orbits in (N,φ), except those
contained in Oθ(z) (at most two), belong to the ω-limit set of z in (M, θ).

Definition. Let M be a metric space with a C0 flow. A sequence
An ⊂ M approaches X ⊂ M if for every ε > 0, An ⊂ B(X, ε) for all
sufficiently large n, i.e. |An|X → 0.

In the next proof, the following elementary fact will be used:

• In a metric space, a sequence converges to a point z if every subse-
quence contains a (sub)subsequence converging to z.

Lemma 4. Let M be a locally compact metric space with a C0 flow. If
a sequence Λn ∈ Ci(M) approaches a compact minimal set S then (Λn)
actually dH-converges to S, i.e.

|Λn|S → 0 ⇒ Λn
dH−−→ S.

Proof. Let U be a compact neighbourhood of S. Since |Λn|S → 0, given
any subsequence (Λni), there is an i0 ≥ 1 such that Λni ⊂ U for all i > i0.
Now [Ci(U), dH ] is a compact metric space by Blaschke’s Theorem (Sec-
tion 2), hence by Blaschke’s Principle there is a (sub)subsequence (Λnik

) dH -
converging to some nonvoid, compact, invariant set Q ⊂ U. But |Λnik

|S → 0
implies Q ⊂ S, and since S is a minimal set, Q = S. Hence the above
convergence criterion is satisfied.

Therefore, X ∈ CMin(M) is an isolated minimal set iff X is dH -isolated
in CMin(M) (Lemma 4 establishes (⇐), and (⇒) follows from the definition
of the Hausdorff metric).

Lemma 5. Let M be a metric space. If C ⊂ C(M) and A ⊂M is open,
then C(A) := {X ∈ C : X ⊂ A} is dH-open in C.

Proof. Let X ∈ C(A). Since X is compact and A is open, there is a
λX > 0 such that B(X,λX) ⊂ A. But

Y ∈ C ∩BH(X,λX) ⇒ Y ∈ C(B(X,λX)) ⇒ Y ∈ C(A),

therefore C(A) is dH -open in C.

Lemma 6. Given Q ∈M ⊂ CMin(M), the set {M(B(Q, δ)) : δ > 0} is
a basis of neighbourhoods of Q in [M, dH ].

Proof. From Lemma 4 it follows that, given Q ∈M and ε > 0, there is
a δ > 0 such that B := M(B(Q, δ)) ⊂M ∩ BH(Q, ε), and by Lemma 5, B
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is a dH -open neighbourhood of Q in M. Since {M ∩ BH(Q, ε) : ε > 0} is a
basis of neighbourhoods of Q in [M, dH ], the claim is proved.

This immediately yields

Corollary 9. Let M be a locally compact metric space with a C0 flow.
If M ⊂ CMin(M) and for every X ∈M and ε > 0,

#M(B(X, ε)) = c (resp. M(B(X, ε) \X) 6= ∅)
then M is c-dense in itself (resp. dH-dense in itself ).

Hence a set of compact minimal sets M is c-dense in itself (resp. dH -dense
in itself) iff every neighbourhood U ⊂M of each X ∈M contains c elements
of M (resp. an element of M distinct from X).

Lemma 7. Let M be a locally compact metric space with a C0 flow. If
M is a dH-open and dense in itself subset of CMin(M) then M is c-dense
in itself.

Before entering the proof, a few technical definitions will be needed. Let
F := {0, 1} and

F :=
⊔
n∈N

Fn.

If a, b ∈ F , then ab represents, as usual, the element of F obtained by
adjoining b to the right end of a (13). For any n ∈ N and a ∈ Fn, |a| := n
(the length of a). We now define the operators ∗,− on F (for every b ∈ F ,
c ∈ F):

0∗ := 1, 1∗ := 0, (bc)∗ := bc∗,

0− := 0, 1− := 0, (bc)− := b.

Proof of Lemma 7. As M is dH -open in CMin(M), given any Λ0 ∈ M,
take ε0 > 0 small enough so that A := B(Λ0, ε0) has compact closure and
CMin(A) ⊂M (use Lemma 6). We show that

#CMin(A) = c,

which in virtue of Corollary 9 proves the lemma. The demonstration is based
on a generalization of the idea lying behind the construction of Cantor’s
ternary set: we construct c dH -Cauchy sequences of compact minimal sets
Λwn ∈ CMin(A), dH -converging to c pairwise disjoint sets Λw ∈ Cci(A).
The result then follows since each such Λw contains at least one compact
minimal set of the flow. However, some care must be taken to ensure that
these limit sets Λw are actually pairwise disjoint (which is obviously crucial).

(13) Again, since no risk of ambiguity arises, commas and brackets are omitted in the
representation of the elements of F , thus we write 01 instead of (0, 1) and F1 is naturally
identified with F.
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To achieve this, we must introduce the metric of M into the construction,
as the dH -metric permits determining if two compact sets are distinct, but
not whether they are disjoint or not (14).

We proceed by induction over n: Suppose that, for a certain n ∈ N, we
have already defined Λa ∈ CMin(A) and numbers εm > 0, for all a ∈ F with
1 ≤ |a| ≤ n and all integers 1 ≤ m ≤ n, so that, for these a and m:

1. εm < ε0/2
m,

2. Λa ∈ BH(Λa− , ε|a|−1),
3. B[Λa, ε|a| ] ∩B[Λa∗ , ε|a| ] = ∅,
4. B[Λa, ε|a| ] ⊂ B(Λa− , ε|a|−1).

Since CMin(A) is dH -dense in itself, this can clearly be done for n = 1 (note
that Λ0 and ε0 were defined at the outset) and we only need to well define
the induction step. Take, for each b ∈ F with |b| = n, two distinct compact
minimal sets

Λb0, Λb1 ∈ BH(Λb, εn)

(again, this is clearly possible, as CMin(A) is dH -dense in itself) and

0 < εn+1 < ε0/2
n+1

small enough so that conditions 3 and 4 hold for all a ∈ F with |a| = n+ 1
(this is possible since Λa and Λa∗ are disjoint and Λa ⊂ B(Λa− , ε|a|−1)). For

each w ∈ FN, let wn ∈ Fn denote the sequence of the first n digits of w.
Now 1, 2 and 4 together imply that Λwn is a dH -Cauchy sequence in the
dH -compact metric space C := Cci(B[Λw1 , ε1]) ⊂ Cci(B(Λ0, ε0)) and thus
dH -converges to some Λw ∈ C. Moreover, if v ∈ FN is distinct from w, then
vm = w∗m for some m ∈ N, and from 3 and 4 it follows that

Λv ∩ Λw = ∅
where Λv = limΛvn , as the sequences Λvnand Λwn are ultimately contained
in disjoint compact “balls”. We thus get c = #FN disjoint (nonvoid) sets
Λv ∈ Cci(B(Λ0, ε0)) ⊂ Cci(A), each containing a compact minimal set of
the flow. Therefore, #CMin(A) = c, as #CMin(M) ≤ c.

Lemma 8 (Nested Compacts Lemma). Let M be a metric space and C
a dH-closed subset of C(M). If Kn ∈ C and Kn ⊃ Kn+1 for all n ≥ 1 then:

(1) Kn
dH−−→

⋂
n≥1Kn ∈ C,

(2) every sequence xn ∈ Kn has a subsequence converging to some x in⋂
n≥1Kn,

(14) In this way, our construction differs from the standard one used to prove that a
nonvoid, complete, separable metric space without isolated points has locally cardinality c
(see e.g. [levy, p. 227, 2.16]). There, only the original metric of the space enters into the
construction.
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(3) every sequence Λn ⊂ Kn where Λn ∈ B, B a dH-closed subset of
C(M), has a subsequence dH-converging to some X ∈ B(

⋂
n≥1Kn).

The proof of Lemma 8, based on Blaschke’s Theorem, is omitted since
it presents no difficulty.

Lemma 9. Let M be a locally compact metric space with a C0 flow. If
Q is a compact aperiodic minimal set, then for any m ≥ 1 there is an ε > 0
such that

γ ∈ Per(M) and dist(γ,Q) < ε ⇒ period(γ) > m.

Proof. Suppose the contrary. Then there is an m ≥ 1 and there are
sequences γn ∈ Per(M) and xn ∈ γn such that dist(xn, Q) → 0 and 0 <
period(xn) = period(γn) ≤ m. Take ε > 0 sufficiently small so that B[Q, ε]
is compact. Applying Lemma 8(2) (with Kn := B[Q, ε/n]), we may sup-
pose (taking a convergent subsequence) that xn → p for some p ∈ Q. But
period(xn) ≤ m implies that p is a periodic point or an equilibrium (be-
cause the periodic points with period≤ T together with the equilibria form
a closed set [bhsz, p. 18]), which is absurd since Q is an aperiodic minimal.

Recall that every locally compact, connected metric space is separable.

Lemma 10. If M is a locally compact, separable metric space then so is
[C(M), dH ], where C(M) is the set of all nonvoid compact subsets of M .

Proof. It is known (Aleksandrov’s one-point compactification) that
[M,d] is homeomorphic, via the inclusion map, to an open subset of a com-
pact metric space [M∗, d′],M∗ ⊃M . By Blaschke’s Theorem, [C(M∗), d′H ] is
compact. Therefore [C(M), d′H ] is separable and also locally compact, since
C(M) is d′H -open in C(M∗) (as M is open in M∗, Lemma 5). The result
now follows since dH and d′H are equivalent metrics on C(M) (as d and d′

are equivalent on M).

In the proof of the main theorem, the following well known cardinality
principle will be systematically used:

Cantor–Dirichlet’s Principle. If n0 ∈ N and A =
⋃

1≤n≤n0
An is

infinite, then #An = #A for some 1 ≤ n ≤ n0.

7. Proof of Theorem 1. Synopsis. Assume neither 1 nor 2 hold.
(A) If K is isolated from minimal sets then we will prove that at least

one of conditions 3 to 6 necessarily holds.
(B) If K is not isolated from minimals, then two possible cases are con-

sidered:
(B.1) If for every neighbourhood U of K, U \ K contains an isolated

compact minimal set X, then (by (A) above) X necessarily satisfies (at
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least) one of the six conditions 1.X to 6.X, and it follows that (at least) one
of the eighteen cases 7.1 to 9.6 occurs.

(B.2) If the contrary is true, then there is a neighbourhood U of K such
that CMin(U \ K) is a dH -open and dense in itself subset of CMin(M),
dH -accumulating in Cci(K). By Lemma 7, CMin(U \K) is actually c-dense
in itself, and it is proved that at least one of the four conditions 10.1 to
10.4 holds.

Proof. It is easily seen that condition 1 excludes the remaining 27 con-
ditions and the same holds with condition 2 (15). Assume, throughout the
remainder of this proof, that neither 1 nor 2 holds. In this situation we
distinguish the two possible cases:

(A) K is isolated from minimals, i.e. for some U ∈NK , CMin(U\K)=∅.
(B) For every V ∈ NK , CMin(V \K) 6= ∅.

We recall an important elementary fact that will be implicitly used in
several instances below: on a locally compact metric space, every sufficiently
small neighbourhood of a compact set has compact closure, and thus may
only contain compact minimal sets.

Case A. Since K is compact and M is locally compact, we may assume,
without loss of generality, that U is compact. Then for any z ∈ U,

O+(z) ⊂ U ⇒ ω(z) ∩K 6= ∅ ⇒ z ∈ A+(K) tB+(K),

O−(z) ⊂ U ⇒ α(z) ∩K 6= ∅ ⇒ z ∈ A−(K) tB−(K).

since otherwise we would have CMin(U \K) 6= ∅. (As U is compact, O+(z)
⊂ U implies ∅ 6= ω(z) ⊂ U. Being a nonvoid compact invariant set, ω(z)
contains at least one minimal set, thus by (A), it cannot be contained in
U \K, hence ω(z) ∩K 6= ∅. The case O−(z) ⊂ U is analogous.)

Suppose now that condition 3 does not hold. Since K is isolated from
minimals it follows that K is nonstagnant, therefore for every orbit O(z) ⊂
U \K, exactly one of the following three cases holds:

0. z ∈ A−(K) ∩B+(K),
I. z ∈ B−(K) ∩A+(K),

II. z ∈ A−(K) ∩A+(K).

Accordingly, we say O(z) is an orbit of type 0, I or II. More generally, the fact
that K is nonstagnant implies that orbits of type 0 and I cannot coexist in
U \K. This implies that exactly one of the following three conditions holds:

(15) If K is an attractor, then by Lemma 1, there is an U ∈ NK such that z ∈ U \K ⇒
O−(z) 6⊂ U . A time-symmetric fact holds if K is a repeller. This immediately implies that
if 1 (resp. 2) holds, then none of the remaining 27 conditions can be valid.
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(1) there is an orbit O(x) ⊂ U \K such that (clO(x)) \K contains only
orbits of type 0,

(2) there is an orbit O(y) ⊂ U \K such that (clO(y)) \K contains only
orbits of type I,

(3) for every orbit O(z) ⊂ U \ K, (clO(z)) \ K contains an orbit of
type II.

We claim that:

• (1) implies there is a K-α shell,
• (2) implies there is a K-ω shell,
• (3) implies there is a K-tree.

Suppose there is an orbit O(y) satisfying condition (2). Since O(y) is of
type I, by Lemma 3 (recall that K is, by hypothesis, nonstagnant), given any
neighbourhood V of K, there is a p ∈ ω(y) ⊂ clO(y) such thatO(p) ⊂ V \K.
Clearly O(p) is also of type I since O(p) ⊂ clO(y). The existence of a K-ω
shell with first orbit O(y) is now a straightforward inductive consequence
of Lemma 3. Analogously, if O(x) is an orbit satisfying condition (1), then
there is a K-α shell with first orbit O(x).

We now assume (3) holds. Recall that by hypothesis, K satisfies none of
conditions 1, 2 and 3, therefore by Lemma 2, there is necessarily an orbit
O(z) ⊂ U \K. By (3), (clO(z)) \K contains an orbit γ0 of type II. We will
inductively define a map

ψ : E → Orb((cl γ0) \K) ⊂ Orb(U \K) ⊂ Orb(M \K),

a 7→ γa,

so that (Θ,ψ) is a K-tree, where Θ := imψ. Adopt the following lexico-
graphic order on E :

0 < 00 < 01 < 000 < 001 < 010 < 011 < 0000 < 0001 < 0010 < · · · .

Suppose a ∈ E is such that for all E 3 d < a, γd is an already defined
orbit of type II contained in (cl γ0) \K ⊂ U \K. We define γa: evidently,
a = bc for some b ∈ E and c ∈ {0, 1}; by Lemma 3 (16) there is an orbit
ζbc ⊂ U \K such that:

• γb
c� ζbc,

• 0 < |ζbc|K < |γb|K
/

2,

hence ζbc 6� γb and ζbc ⊂ (cl γb) \ K ⊂ (cl γ0) \ K. By hypothesis (3),
(cl ζbc) \K contains an orbit of type II and we identify γa with it. Clearly

(16) Note that K ∈ Ci(M)\{M}, K is nonstagnant and by hypothesis, γb is of type II,
i.e. γb ⊂ A−(K) ∩A+(K).
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γb
c� γbc for every b ∈ E , c ∈ {0, 1} since γbc ⊂ cl ζbc and γb

c� ζbc. Note that
the inequality |γbc|K ≤ |ζbc|K < |γb|K/2 guarantees γbc 6� γb for every b ∈ E
and c ∈ {0, 1}, and |cl γvn |K → 0 for every v ∈ E∞. It is now immediate to
verify that (Θ,ψ), where Θ is the inductively defined set {γa : a ∈ E}, is
indeed a K-tree.

We thus conclude that case (A) implies that at least one of conditions
3, 4, 5 or 6 necessarily holds, so if conditions 1 to 6 (i.e. 1.K to 6.K ) all
fail then condition (B) holds (recall that we assumed, at the beginning of
the proof, that both 1 and 2 are false). Note that since K is an arbitrary
compact, invariant, proper subset of M , the above observation is true for
all X ∈ Ci(M) \ {M}, i.e. we have

Lemma 11. If X (M is a compact invariant set and all conditions 1.X
to 6.X fail, then arbitrarily near X there is always a compact minimal set
disjoint from X, i.e., for any ε > 0, CMin(B(X, ε) \X) 6= ∅.

Case (B). We distinguish two (sub)cases:

(B.1) For every V ∈ NK , V \ K contains a compact minimal set X
satisfying (at least) one of the six conditions 1.X to 6.X.

(B.2) There is an open U ∈ NK such that no X ∈ CMin(U \K) satisfies
any of the six conditions 1.X to 6.X.

Case (B.1). We will show that in this case at least one of the eighteen
cases 7.1 to 9.6 will necessarily hold. Take ε > 0 such that U := B[K, ε] is
compact. We may obviously define a sequence Λn ∈ CMin(M) such that for
every n ≥ 1,

• Λn satisfies at least one of the six conditions 1.X to 6.X.
• Λn ⊂ B[K, ε/n] \K ⊂ U \K.

Since Λn ∈ CMin(U) ⊂ Cci(U) for all n ≥ 1 and |Λn|K → 0, by
Lemma 8(3), we may select from (Λn) a subsequence dH -converging to
some Q ∈ Cci(K). Obviously Q ⊂ bdK, since Λn ⊂ M \ K, thus in fact
Q ∈ Cci(bdK). By Cantor–Dirichlet’s Principle we may select from this
subsequence another subsequence consisting of compact minimal sets all be-
longing to the same one of the following three classes: equilibrium orbits
Eq(M), periodic orbits Per(M), compact aperiodic minimals Am(M). Fi-
nally, since each term of (Λn) satisfies at least one of the six conditions
1.X to 6.X, using Cantor–Dirichlet’s Principle again, we select from the last
subsequence another subsequence such that (at least) one of the six condi-
tions 1.X to 6.X is satisfied by all its terms, therefore obtaining a sequence
of compact minimal sets contained in M \K satisfying at least one of the
eighteen conditions 7.1 to 9.6.
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To complete the proof of Theorem 1 we show that in case (B.2), i.e. if

(1) CMin(V \K) 6= ∅ for all V ∈ NK and
(2) for some open U ∈ NK , no X ∈ CMin(U \ K) satisfies any of the

six conditions 1.X to 6.X,

then at least one of the four cases 10.1 to 10.4 necessarily holds.

Case (B.2). We may obviously assume, without loss of generality, that
U has compact closure. Observe that:

• CMin(U\K) is dH -open in CMin(M) since U\K is open and CMin(M)
⊂ C(M) (Lemma 5).
• In virtue of Lemma 11, (2) implies that for any X ∈ CMin(U \ K)

and ε > 0, CMin(B(X, ε) \X) 6= ∅, thus by Corollary 9, CMin(U \K)
is dH -dense in itself. By Lemma 7, CMin(U \K) is in fact c-dense in
itself.
• Using Lemma 8(3) we infer from (1) that CMin(U\K) dH -accumulates

in Cci(K), hence in Cci(bdK).

Therefore, in case (B.2), there exists an open U ∈ NK with compact closure
such that

• CMin(U \ K) is a c-dense in itself, dH-open subset of CMin(M),
dH-accumulating in Cci(bdK).

Note that in particular, Per(U \K) t Am(U \K) is a c-dense in itself,
dH -open subset of CMin(M) since Eq(M) is a dH -closed subset of CMin(M).
Now by the above remark concerning CMin(U \ K), there is a sequence
Λn ∈ CMin(U \K), dH -accumulating in Cci(bdK). By Cantor–Dirichlet’s
Principle we may suppose this sequence is such that all Λn belong to the
same one of the following three classes: equilibrium orbits Eq(M), periodic
orbits Per(M), compact aperiodic minimals Am(M).

Suppose now that conditions 10.1, 10.2 and 10.3 all fail. We will show
that condition 10.4 is necessarily true. The equality CMin(N) = Eq(N) t
Per(N) t Am(N), valid for all N ⊂ M , will be repeatedly used (t denotes
disjoint union). Three possible cases are distinguished:

1st case: There exists a sequence Λn ∈ Am(U \K) dH -accumulating in
Cci(bdK).

Since Am(U \K) dH -accumulates in Cci(bdK) but 10.3 is false, given
any open V ∈ NK , Am(V \K) is not c-dense in itself. By Corollary 9, this
implies that we may find Γ ∈ Am(V \K) and ε > 0 such that

B(Γ, ε) ⊂ V \K and #Am(B(Γ, δ)) < c

Therefore it is easily seen that there are sequences Γn ∈ Am(U \K) and
δn > 0 such that:
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(1) |Γn|K → 0,
(2) B[Γn, δn] ⊂ U \K,
(3) #Am(B(Γn, δn)) < c.

Again, by Lemma 8(3) (recall that Γn ⊂ U \K and clU is compact), we
may replace condition (1) above by

(1) Γn
dH−−→ Q for some Q ∈ Cci(bdK),

Clearly,

(4) δn < dH(Γn, Q)

since B[Γn, δn] ∩ Q = ∅ (recall that ∅ 6= Q ⊂ K). Taking a smaller δn if
necessary, we may further require that

(5) Eq(B(Γn, δn)) = ∅,
(6) γ ∈ Per(B(Γn, δn))⇒ period(γ) > n (by Lemma 9).

CMin(U \K) is nonvoid and c-dense in itself, thus so is CMin(B(Γn, δn))
since B(Γn, δn) ⊂ U \K is open and Γn ∈ CMin(M); also by (5),

CMin(B(Γn, δn)) = Per(B(Γn, δn)) tAm(B(Γn, δn))

hence in virtue of (3), Cantor–Dirichlet’s Principle implies

(7) X ∈ CMin(Γn, δn) and ε > 0⇒ #Per(B(X, ε)) = c.

In particular, Pn := Per(B(Γn, δn)) is an dH -open, c-dense in itself subset
of Per(M), dH -accumulating in Γn (by (7) and Lemma 4). Let P :=

⋃
n∈N Pn.

Then since P dH -accumulates in Γn and Γn
dH−−→ Q ∈ Cci(bdK), it follows

that

• P ⊂ Per(M \ K) is a c-dense in itself, dH-open subset of Per(M),
dH-accumulating in Cci(bdK).

Moreover,

• K is bi-stable with respect to P ∗ =
⋃
γ∈P γ.

Indeed, P ∗ is a union of periodic orbits and hence invariant. Given any
V ∈ NK let λ > 0 be such that B(K,λ) ⊂ V. Since Q ⊂ K and dH(Γn, Q)→
0 and δn < dH(Γn, Q), there is an n0 ≥ 1 such that:

n > n0 ⇒ dH(Γn, Q) < λ/2

⇒ Γn ⊂ B(Q,λ/2) ⊂ B(K,λ/2) and δn < λ/2

⇒ B(Γn, δn) ⊂ B(K,λ)

⇒ Pn := Per(B(Γn, δn)) ⊂ Per(B(K,λ)) ⊂ Per(V ).

Since K is compact, by (2) there is a 0 < δ < λ/2 such that

(7.1) B(K, δ) ∩
⋃

1≤n≤n0

B[Γn, δn] = ∅.
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Therefore,

x ∈ B(K, δ) ∩ P ∗ ⇒ x ∈ P ∗n for some n > n0 ⇒ O(x) ⊂ V
because O(x) ∈ Pn and Pn ⊂ Per(V ). The bi-stability of K with respect
to P ∗ is proved.

• For any sequence γn ∈ P , dist(γn,K)→ 0 ⇒ period(γn)→ +∞.

Indeed, as clU is compact, by (2), each B[Γn, δn] is a compact disjoint
from K, hence given any n0 ≥ 1, there is a δ > 0 satisfying the identity (7.1)
above, therefore by (6),

γ ∈ P and γ ∩B(K, δ) 6= ∅ ⇒ γ ∈ Pn for some n > n0

⇒ period(γ) > n > n0.

2nd case: There exists a sequence Λn ∈ Per(U \K) dH -accumulating in
Cci(bdK).

Since by hypothesis, condition 10.2 is not true, an argument completely
similar to that used in the 1st case proves that

• there is a c-dense in itself set A ⊂ Am(M \K), dH-open in Am(M),
dH-accumulating in Cci(bdK) and such that K is bi-stable with re-
spect to A∗.

3rd case: There exists a sequence Λn ∈ Eq(U \K) dH -accumulating in
Eq(bdK).

Since by hypothesis 10.1 is not true, reasoning as in the 1st and 2nd
cases, there are sequences zn ∈M and εn > 0 such that

{zn} ∈ Eq(U \K), dist(zn,K)→ 0, #Eq(B(zn, εn)) < c.

By the dH -closedness of Eq(M) in conjunction with Lemma 8(2), we

may suppose, taking a subsequence, that {zn}
dH−−→ {z} for some {z} ∈

Eq(bdK). Now CMin(U \K) is c-dense in itself, {zn} ∈ CMin(U \K) for all
n ≥ 1, CMin(U \K) = Eq(U \K)tPer(U \K)tAm(U \K) and moreover
#Eq(B(zn, εn)) < c, so Cantor–Dirichlet’s Principle implies that there is a
subsequence (zni) such that

#Am(B(zni , ε)) = c ∀i ≥ 1, ε > 0 or #Per(B(zni , ε)) = c ∀i ≥ 1, ε > 0.

Thus by Lemma 4,

{zni} ∈ clHAm(U \K) ∀i ≥ 1 or {zni} ∈ clH Per(U \K) ∀i ≥ 1,

and since {zni}
dH−−→ {z} ∈ Eq(bdK) ⊂ Cci(bdK), either there is a se-

quence in Am(U \K) dH -accumulating in Cci(bdK) or there is a sequence
in Per(U \ K) dH -accumulating in Cci(bdK). Thus, the 3rd case implies
the 1st or the 2nd. On the other hand, as we have seen, the 1st case implies
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the 2nd and vice versa, hence the 1st and 2nd cases always occur. Therefore
if conditions 10.1, 10.2 and 10.3 are false then 10.4 is true. The proof of
Theorem 1 is complete.

8. Independent realizations. Examples. With Theorem 1 estab-
lished, the question of whether all the 28 cases it describes are realizable
naturally arises. Furthermore, we may doubt whether all these cases are
mutually independent. Let (M, θ) be a C0 flow on a compact, connected
metric space, ∅ 6= K (M a compact invariant set and Σ one of the 28 con-
ditions of Theorem 1. We say that (M, θ), K is an independent realization
of Σ if condition Σ is satisfied for this choice of M , θ and K but none of
the remaining 27 conditions of Theorem 1 holds, for the same M , θ and K.
Note that, due to the closedness of the set of equilibria, none of the seven
cases 7.1 to 7.6 and 10.1 may occur with K a periodic orbit.

Definition. Let θ be a C∞ flow on M = Rn having the origin On as
an equilibrium. Then On is an n-dimensional singularity of type Σ if (M, θ),
K = {On} is an independent realization of condition Σ. Analogously, if the
same is true for a C∞ flow on M = S1×Bn−1 having K = γ = S1×{On−1} as
a periodic orbit, we say that γ is an n-dimensional periodic orbit of type Σ.

We can give the following answer to the questions raised above: if Σ is
(any) one of the 28 conditions of Theorem 1, then for some m ≤ 5 there
are n-dimensional singularities of type Σ, for all n ≥ m. Analogously, if
Σ is distinct from 7.1 to 7.6 and 10.1, then for some m ≤ 5 there are
n-dimensional periodic orbits of type Σ, for all n ≥ m. Obviously, we may
smoothly transfer, via local charts and bump functions, these n-dimensional
singularities and periodic orbits to any open sets of arbitrary n-manifolds.
In the case of periodic orbits, we can make them coincide with any smoothly
embedded circles, having trivial neighbourhood in the manifold, regardless
of their homotopy class. Table 1 summarizes the author’s present knowledge
concerning the above answer.

Conjecture. In each dimension n ≥ 3, there are smooth singularities
and periodic orbits of all types described in Theorem 1 (with the obvious
seven exceptions in the case of periodic orbits).

As indicated in Table 1, this has been established for n ≥ 5, with most
cases already occurring in lower dimensions. It is easily seen that the lower
bounds m given in Table 1 cannot be reduced whenever m ≤ 3.

Here, for the sake of brevity, we shall confine our attention to cases
4, 5 and 6, which are the simplest ones exhibiting less known and more
interesting dynamical phenomena (orbits of infinite height). In order to keep
the presentation both within moderate proportions and in harmony with
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Table 1. Least known dimension m for each type is given in the n ≥ m columns.

C∞ n-singularities exist for all C∞ n-periodic orbits exist for all

Type n ≥ m Type n ≥ m
1, 2, 3 n ≥ 1 1, 2, 3 n ≥ 2

4, 5, 6 n ≥ 3 4, 5, 6 n ≥ 4

7.1–7.3 n ≥ 1 – –

7.4–7.6 n ≥ 3 – –

8.1–8.3 n ≥ 2 8.1–8.3 n ≥ 2

8.4–8.6 n ≥ 4 8.4–8.6 n ≥ 4

9.1–9.3 n ≥ 3 9.1–9.3 n ≥ 3

9.4–9.6 n ≥ 5 9.4–9.6 n ≥ 5

10.1 n ≥ 1 – –

10.2 n ≥ 2 10.2 n ≥ 2

10.3–10.4 n ≥ 3 10.3–10.4 n ≥ 3

the rest of the paper, we shall make some concessions concerning the class
of differentiability of the flows constructed: our phase space M will be a
compact, connected invariant subset of a smooth flow φ on S3, θ = φ|R×M
and K = {p}, p an equilibrium of (M,φ). Hence, while being of class C0, θ
is a subflow of a C∞ flow φ. We call independent realizations of this kind
subsmooth independent realizations, and the manifold carrying the larger
smooth flow φ its ambient manifold ; moreover, φ is the ambient flow.

We shall first produce an example of a subsmooth independent realiza-
tion for condition 6, with K an equilibrium orbit (17).

Example 1 (Subsmooth independent realization of condition 6 with M
an orbit closure of a C∞ flow ζt on S3⊂R4, θ=ζt|R×M and K={(0, 0, 0, 1)}
(M an equilibrium orbit). Our point of departure is a beautiful example,
due to Beniere and Meigniez [beni], of a smooth (C∞) complete vector field
υ generating a flow without minimal sets on a noncompact, orientable sur-
face M of infinite genus. The set E(M) of end points is homeomorphic to
∆ :={0}∪{n−1 : n ∈ N} ⊂ R and all end points are flat (18), except the non-

(17) Vector fields on submanifolds M ⊂ Rn will always be represented in the usual
abridged form X : M → Rn, i.e. instead of considering υ : M → TM ⊂ TRn = Rn × Rn,
we work with X = π2 ◦ υ, where π2 is the projection onto the 2nd factor. When giving
examples of flows generated by Cr (r ≥ 1) vector fields on manifolds M , often the vector
field in question is indicated as a subscript, e.g. we write ωX(z) for the ω-limit set of z in
the flow Xt generated by X ∈ Xr(M). We use these notations freely (with the subscript
indicating either the flow or the generating vector field) since no risk of ambiguity arises.

(18) An end point e ∈ E(M) is flat if it has a neighbourhood homeomorphic to R2 in
the end-points compactification M∝ = M t E(M) of M. Richards [rich] calls such an end
point planar. Beniere and Meigniez [beni] designate by M our surface M.
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Fig. 8.1. The infinite genus smooth surface S ⊂ R3

isolated one. We shall first construct a smoothly embedded surface S ⊂ R3

that is smoothly diffeomorphic to M. Make the following smooth surgery
within the ambient manifold R3: to the plane R2 × {0} ⊂ R3 smoothly add
denumerably many handles as shown in Fig. 8.1. From each handle remove
one point en, n ∈ N. We obtain a nonclosed, smooth surface S ⊂ R3. Just
like M, S is orientable and of infinite genus, with all ends isolated and flat
except one, e∞, which is both nonisolated and nonflat. This implies that
its end points set E(S) is also homeomorphic to ∆ (see above), hence there
is a homeomorphism ξ : E(M) → E(S) sending the unique nonflat end
of M to the unique nonflat end of S. By Kerekjarto’s Theorem (see e.g.
[rich, p. 262], [beni, p. 26]) the surfaces M and S are homeomorphic (19),
hence, as is well known, smoothly diffeomorphic. Let f : M → S be a
smooth diffeomorphism defining an embedding M ↪→ R3 ⊃ S and inducing
the smooth complete tangent vector field X := f∗υ on S ⊂ R3. Just as
for υ, the flow Xt has no minimal sets (f realizes a smooth flow conjuga-
tion).

Definition. Let θ be a C0 flow on a metric space M . A point x ∈M is
called a limit point of (M, θ) if x belongs to the α-limit set or to the ω-limit
set of some point of M . In this case the orbit O(x) is called a limit orbit of
the flow. We denote the set of limit points of the flow (M, θ) by Υθ, and if
the flow is given by a vector field υ, by Υυ.

From the inductively constructed tangentially orientable foliated atlas
of M corresponding to the vector field υ (given in [beni]), it is easily seen
that:

• each limit point x ∈ M has nonvoid α-limit and ω-limit sets and
both the positive and negative orbit of x accumulate in the unique
nonisolated end of M and in no other end of this surface.

Since a homeomorphism between noncompact surfaces uniquely extends to
a homeomorphism between their respective end-points compactifications, it
follows that in the flow Xt generated by X ∈ X∞(S), both the αX -limit and

(19) We need not care about nonorientable ends since there are none: both M and S
are orientable.
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ωX -limit sets of each limit point of (S,Xt) are closed, unbounded (20) subsets
of R3. Let U be an open normal tubular neighbourhood of S in R3 (indeed
a trivial 1-dimensional vector bundle over S). Extend X := f∗υ ∈ X∞(S) to
a nonsingular vector field X0 ∈ X∞(U) defining

X0 : U → R3, z 7→ X ◦ π(z),

where π : U → S is the canonical smooth submersion (orthogonal projection
of U over S). Let p := (0, 0, 0, 1), O4 := (0, 0, 0, 0), ϕ : R3 → S3 \ {p} be
the inverse stereographic projection (R3 identified with R3 × {−1}). Then
ϕ induces the smooth vector field ϕ∗X0 on the open subset ϕ(U) of S3.

By Kaplan’s Smoothing Theorem [kapl, p. 157], there is a scalar function
λ ∈ C∞(S3, [ 0, 1]) with λ−1(0) = S3 \ ϕ(U) and such that

ζ : R4 ⊃ S3 → R4,

s 7→ O4 on S3 \ ϕ(U),

s 7→ λϕ∗X0(s) on ϕ(U),

defines a smooth vector field (generating the ambient flow) on S3 (the am-
bient manifold). The smoothly embedded surface ϕ(S) is invariant under
the flow ζt (ϕ|S realizes a smooth flow conjugation between the global flow
(S,Xt) and (ϕ(S), (ϕ∗X)t); moreover imλ|ϕ(S) ⊂ ]0, 1], thus λϕ∗X = ζ|ϕ(S)
is necessarily a complete vector field, topologically equivalent to X ∈ X∞(S)
via the smooth diffeomorphism ϕ).

Let q ∈ ΥX and z := ϕ(q). Recall that αX(q), ωX(q) and clOX(q) are
unbounded, closed subsets of R3, so for all such q and z,

(8.1)
αζ(z) = ϕ(αX(q)) t {p}, ωζ(z) = ϕ(ωX(q)) t {p},
clOζ(z) = ϕ(clOX(q)) t {p}.

Let M := clOζ(z), θ := ζt|R×M and K := {p}. Then θ is a C0 flow on
the compact, connected metric space M ⊂ S3 (with the Euclidean metric
of R4 ⊃ S3) and K is a compact, invariant proper subset of M . Now with
respect to the (sub)flow (M, θ), it is clear from (8.1) that every y ∈M \K
= M \ {p} belongs to A−θ (K) ∩ A+

θ (K) as M = ϕ(clOX(q)) t {p} and
clOX(q) = OX(q) ∪ αX(q) ∪ ωX(q) ⊂ ΥX . Obviously K is isolated from
minimals in (M, θ) and no x ∈ M \ K has its αθ-limit set or its ωθ-limit
set contained in K (i.e. equal to {p}). This immediately implies that, for
this choice of M , θ and K, none of conditions of Theorem 1, except 6, can
hold. Therefore by Theorem 1 the above M , θ and K necessarily provide

(20) Both these sets are closed subsets of S that do not accumulate in the isolated
ends en, n ∈ N, of this surface and the closure of S in R3 equals S t {en : n ∈ N}. Their
unboundedness also follows from the fact that a closed, bounded subset of R3 is compact
and thus if it is a nonvoid, invariant subset of the flow Xt, then it must contain a minimal
set of it. But Xt has no minimal sets.
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Fig. 8.2. K-tree in the smooth flow (S3, ζt), K = {p}

a subsmooth independent realization of condition 6, with ambient manifold
M = S3 (see Fig. 8.2). This can be easily verified directly: the existence of
a K-tree with K = {p} and γ0 = Oθ(z) is now a straightforward inductive
consequence of Lemma 3, since every y ∈M \K belongs to A−θ (K)∩A+

θ (K)
and K is consequently nonstagnant in (M, θ).

The simplest way to get the analogous subsmooth independent realiza-
tion of condition (6), with K a periodic orbit, is to form the product vector
field (identifying R2 with C),

υ : S1 × S3 → C× R4, (z1, z2) 7→ (iz1, ζ(z2)),

and then take M := clOυ(z1, z2), where z1 ∈ S1, z2 ∈ ϕ(ΥX) ⊂ S3, θ :=
υt|R×M and K := S1 × {p} (a periodic orbit, since p ∈ Sing(ζ)).

We will now briefly indicate how to obtain a subsmooth independent re-
alization of condition 5 with K an equilibrium orbit. For K a periodic orbit,
we only have to proceed as above. The analogous subsmooth independent
realizations of condition 4 are obtained by time-reversing those above.

Example 2. A subsmooth independent realization of condition 5
with K an equilibrium orbit and ambient manifold S3 is achieved through a
simple (and obvious) modification of Beniere and Meigniez’s construction:
in their paper [beni, p. 23, bottom], the cut-and-paste operation that defines
M1 is performed only for each p ∈ Z+

0 (and not for all p ∈ Z). Following,
with this exception, their construction, we finally obtain a smooth orientable
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surface N of infinite genus, again with its end points set homeomorphic to
∆ := {0} ∪ {n−1 : n ∈ N} ⊂ R and all ends flat except the nonisolated
one. Again, by Kerekjarto’s Theorem, this surface is smoothly diffeomor-
phic to the surface M of Example 1 (i.e. to the original surface carrying a
flow without minimal set constructed in [beni]) and hence to S ⊂ R3.

Now N carries a smooth vector field υ whose flow is no longer without
minimal sets, as there are points x ∈ N with α(x) = ∅ = ω(x). However
for each limit point x ∈ N of the flow υt, it is easily seen that α(x) = ∅,
ω(x) 6= ∅ and both the positive and negative orbits of x accumulate in
the unique nonisolated end of N and in no other end of this surface. As
in Example 1, we again have a smooth diffeomorphism f : N → S ⊂ R3

defining an embedding N ↪→ R3 and inducing a complete tangent vector
field X := f∗υ on S ⊂ R3. Then for each limit point x of (S,Xt), ωX(x) is
a closed, unbounded subset of R3 and limt→−∞ ‖Xt(x)‖ = +∞ (‖ · ‖ being
the Euclidean norm on R3), i.e. the point x escapes to infinity on R3 as
t→ −∞. Then proceeding exactly as in Example 1, for each q ∈ ΥX , letting
z := ϕ(q) we have

αζ(z) = {p}, ωζ(z) = ϕ(ωX(q)) t {p},
clOζ(z) = ϕ(clOX(q)) t {p}.

For such a z ∈ ϕ(ΥX) ⊂ S3, letting M := clOζ(z) ⊂ S3, θ := ζt|R×M and
K := {p}, we then have

y ∈M \K ⇒ y ∈ B−θ (K) ∩A+
θ (K)

It is now immediate to verify that for these M , θ, K, none of the 28 condi-
tions of Theorem 1, except of condition 5, can hold and therefore (M, θ), K
provide a subsmooth independent realization of condition 5 (see Example 1).
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