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Complete sequences of coanalytic sets

by

Riccardo Camerlo (Torino)

Abstract. The notion of a complete sequence of pairwise disjoint coanalytic sets is
investigated. Several examples are given and such sequences are characterised under ana-
lytic determinacy. The ideas are based on earlier results of Saint Raymond, and generalise
them.

1. Introduction. Given a pointclass Γ in Polish spaces and a set B
in Γ (Y ), B is said to be Γ -complete if for any zero-dimensional Polish space
X and A ∈ Γ (X) there is a continuous f : X → Y such that A = f−1(B).
The set B is said to be Borel Γ -complete if the property holds with f Borel.
The pointclass Γ = Π1

1 of coanalytic sets admits a complete member: several
examples are provided in [3, §33]. Moreover, Kechris proved in [4] that for
coanalytic sets the concepts of completeness and Borel completeness coin-
cide.

In [5], Saint Raymond investigated the notion of complete pair—and,
more generally, complete sequence—of disjoint coanalytic sets (see Section 2
for the definition). In particular, the members of such a complete pair (A,B)
must be Borel inseparable: for no Borel C ⊆ X does one have A ⊆ C,
C∩B = ∅. Actually he proved that under the axiom of analytic determinacy,
completeness and Borel inseparability are equivalent conditions.

On the other hand, in [2] and [1] several uncountable families of pairwise
disjoint, Borel inseparable coanalytic sets were constructed. These seem to be
good candidates to provide concrete examples of complete sequences. The
present paper elaborates on the techniques developed by Saint Raymond,
and shows that this is indeed the case, extending ideas and results of the
aforementioned articles.

After displaying in Section 2 definitions and some technical tools to be
used later, it is shown in Section 3 that for the main examples of [1] every
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countable subsequence of the families of coanalytic sets studied there is in
fact complete. In Section 4 a similar result is obtained for the example of [2].

In Section 5, assuming analytic determinacy, a characterisation of com-
plete sequences is given; it generalises the condition of completeness for pairs
given in [5]. To do this, two classical notions are extended in a suitable way
to families of sets: the concepts of a universal set and of a Borel inseparable
pair of sets. The former gives rise to the notion of a universal sequence, the
latter to the one of strongly inseparable sets. In order to get the desired
characterisation, I prove the non-existence of universal sequences of Borel
sets, and the existence of strongly inseparable coanalytic sets. These are
strengthenings of the non-existence of a universal Borel set and the exis-
tence of a Borel inseparable pair of disjoint coanalytic sets, and might be of
independent interest.

2. Some preliminary constructions. This section contains prelimi-
nary definitions, notations and some lemmas that will be applied to obtain
the main results. Several of these lemmas are adaptations or modifications
of ideas from [2], [1], or [5].

Definition 1. A (possibly finite) sequence (Q0, Q1, . . .) of pairwise dis-
joint coanalytic subsets of a Polish space Y is complete if, for every se-
quence of the same length (C0, C1, . . .) of pairwise disjoint coanalytic sub-
sets of a zero-dimensional Polish space X, there is a continuous function
f : X → Y such that ∀n Cn = f−1(Qn). A function f as above is said to
reduce (C0, C1, . . .) to (Q0, Q1, . . .).

One could state a similar definition by declaring that a sequence
(Q0, Q1, . . .) is Borel complete if the above definition holds with f Borel.
However this does not extend the classes of sequences under consideration.

Theorem 1. If (Q0, Q1, . . .) is a Borel complete sequence of pairwise
disjoint coanalytic sets, then it is actually complete.

Proof. The proof is the same as the one in [4]. The only adaptation is to
define sets (B∗0 , B

∗
1 , . . .), instead of one single set B∗, by letting

〈a0, c0〉 ∈ B∗h ⇔ ∀i ∈ N (〈ai, ci〉 is good) ∧ (mi) ∈ B
and then notice that the coanalytic sets B∗0 , B∗1 , . . . are pairwise disjoint.

Lemma 2. Suppose (Q0, Q1, . . .) is a complete sequence of pairwise dis-
joint coanalytic subsets of a Polish space X. Then:

(1) If (Q′0, Q
′
1, . . .) is a sequence of pairwise disjoint coanalytic subsets

of a Polish space Y and g : X → Y is a Borel function such that
∀n Qn = g−1(Q′n), then (Q′0, Q

′
1, . . .) is complete as well.

(2) Any subsequence (Qn0 , Qn1 , . . .) is complete as well.
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(3) Any permutation of (Q0, Q1, . . .) is complete as well.
(4) The sets (Q0, Q1, . . .) are complete coanalytic and pairwise Borel in-

separable.

Proof. (1) If (C0, C1 . . .) are pairwise disjoint coanalytic subsets of a zero-
dimensional Polish space Z and f : Z → X is continuous and such that
∀n Cn = f−1(Qn), then gf is Borel and ∀n Cn = (gf)−1(Q′n).

(2) Given a sequence (C0, C1, . . .) of pairwise disjoint coanalytic subsets
of a zero-dimensional Polish space, apply the completeness of (Q0, Q1, . . .)
to the sequence of coanalytic sets

Dm =

{
Ci if m = ni,
∅ otherwise.

(3) This holds since the sequence of pairwise disjoint coanalytic subsets
of a zero-dimensional Polish space to be reduced to a complete sequence is
arbitrary.

(4) Reducing to (Q0, Q1, . . .) a sequence of pairwise disjoint, Borel in-
separable, complete coanalytic sets shows that the sets Q0, Q1, . . . are Borel
inseparable as well.

The space of (descriptive set-theoretic) trees on N will be denoted by Tr,
the subset of well-founded trees will be denoted by WF, while UB will stand
for the subset of trees with a unique infinite branch.

The sets WF and UB are complete coanalytic and Borel inseparable
(see [3]). This has been improved in [2, Theorem 3], where it is shown that
WF×UB,UB×WF are Borel inseparable in Tr2. In fact a further extension
of this result can be deduced. For n ∈ N, let

An = WF× · · · ×WF×UB×WF× · · ·
be the set of sequences (T0, T1, . . .) ∈ TrN such that Tn has a unique branch,
while Tm is well-founded for m 6= n.

Theorem 3. The complete coanalytic sets An0 ,An1 are Borel insepara-
ble for n0 6= n1.

Proof. Fix a well-founded tree W and define a continuous function g :
Tr2 → TrN by

g(T,U)(m) =


T if m = n0,
U if m = n1,
W otherwise.

Then

(T,U) ∈ UB×WF ⇔ g(T,U) ∈ An0 ,

(T,U) ∈WF×UB ⇔ g(T,U) ∈ An1 ,

and the result follows by the aforementioned [2, Theorem 3].
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However, this fact can be further strengthened, providing a complete
sequence that will be used to prove other completeness results.

If A is a subset of a product X × Y , for x ∈ X the vertical section of A
above x, that is, the set {y ∈ Y | (x, y) ∈ A}, will be denoted A(x). Similar
notations will be used for longer products.

Theorem 4. The sequence (WFN,A0,A1, . . .) is a complete sequence of
pairwise disjoint coanalytic sets. In fact, given any sequence (C0, C1, . . .) of
pairwise disjoint coanalytic subsets of some X ∈ Π0

1(NN), there is a contin-
uous function f : X → TrN such that, for x ∈ X,

• if x ∈ C0, then f(x) ∈WFN;
• if x ∈ Cn+1, then f(x) ∈ An;
• if x /∈

⋃
n∈NCn, then all components of f(x) have at least two infinite

branches.

Proof. Given (C0, C1, . . .), for each n ≥ 1 let Dn =
⋃
m∈N\{n}Cm. Apply-

ing [5, Lemma 26] to the sequence (Dn, Cn, ∅, ∅, . . .), let Fn ∈ Π0
1(X × NN)

be such that

Dn = {x ∈ X | Fn(x) = ∅},
Cn = {x ∈ X | Fn(x) is a singleton}.

Let Tn be the tree of Fn. The function fn : X → Tr assigning to each
element of X the corresponding section tree of Tn is continuous. So the
function f : X → TrN defined by f(x) = (f1(x), f2(x), . . .) is continuous too.
Moreover, fix x ∈ X. Then:

• If x ∈ C0, then Fn(x) = ∅ for all n ≥ 1, so all fn(x) are well-founded.
• If x ∈ Cn for some n ≥ 1, then Fn(x) is a singleton, while Fm(x) = ∅

for m 6= n. It follows that f(x) ∈ An−1.
• If x /∈

⋃
m∈NCm, then all Fn(x) have at least two points, which are

the elements of [fn(x)].

If K(X) denotes the set of (possibly empty) compact subsets of a topo-
logical space X, for K ∈ K(NN) let TK ⊆ Tr be the set of trees whose body
is homeomorphic to K.

Given n ∈ N and a set A of finite sequences of natural numbers, nA will
denote the set obtained by adding a first term n to all sequences in A, that
is,

(s0, s1, . . . , sm) ∈ nA ⇔ s0 = n ∧ (s1, . . . , sm) ∈ A.
The next lemmas describe techniques to modify in a continuous way a

given tree to provide it with some desired features.

Lemma 5. Let K ∈ K(NN). Then there is a continuous function g :
Tr→ Tr such that, given T ∈ Tr:
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• if T is well-founded, then g(T ) is well-founded;
• if T has a unique infinite branch, then g(T ) ∈ TK ;
• if T has more than one infinite branch, then [g(T )] is not compact.

Proof. Fix a continuous function γ : Tr→ Tr reducing WF∪UB to WF.
By [1, Lemma 1.3] there are continuous functions ϕ,ψ : Tr→ Tr such that:

• if T is well-founded, then ϕ(T ), ψ(T ) are well-founded;
• if T has a unique infinite branch, then [ψ(T )] is homeomorphic to K;
• if T is ill-founded, then [ϕ(T )] contains a closed subset homeomorphic

to Baire space.

Now define g(T ) = {∅} ∪ 0ϕγ(T ) ∪ 1ψ(T ). Then:

• if T is well-founded, then both ϕγ(T ), ψ(T ) are well-founded, hence so
is g(T );
• if T has a unique infinite branch, then ϕγ(T ) is well-founded while

[ψ(T )] is homeomorphic to K, so [g(T )] is homeomorphic to K;
• if T has more than one infinite branch, then [ϕγ(T )] is not compact,

so neither is [g(T )].

Lemma 6. There is a continuous function g : Tr→ Tr such that:

• if T is well-founded, then g(T ) is well-founded;
• if T has exactly one infinite branch, then g(T ) has exactly one infinite
branch;

• if T has at least two infinite branches, then g(T ) has continuum many
infinite branches.

Proof. For T ∈ Tr, t ∈ N<ω, let t ∈ h(T ) if and only if

• t = ∅, or
• t = (u0, v0, . . . , un−1, vn−1, un) for some (u0, . . . , un) ∈ T and some

(v0, . . . , vn−1) ∈ N<ω, or
• t = (u0, v0, . . . , un, vn) for some (u0, . . . , un) ∈ T, (v0, . . . , vn) ∈ N<ω.

Then h : Tr → Tr continuously reduces well-founded trees to well-founded
trees and ill-founded trees to trees, having continuum many infinite branches.
Now take a continuous reduction γ of WF ∪ UB to WF and set g(T ) =
{∅} ∪ 0T ∪ 1hγ(T ).

Finally, the next couple of lemmas will take care of building closed subsets
of (NN)2 with vertical sections of prescribed order types, with respect to the
lexicographic order on NN.

Lemma 7. Let C0, C1 be disjoint coanalytic subsets of a Polish space X,
and α a countable ordinal. Then there is a closed F ⊆ X × NN such that:
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• if x ∈ C0, then F (x) = ∅;
• if x ∈ C1, then F (x) has order type α with respect to the lexicographic
order;
• if x ∈ X \ (C0 ∪ C1), then F (x) is uncountable.

Proof. We proceed by induction on α, borrowing some arguments from
the proof of [5, Theorem 23]. Let H ∈ Π0

1(X × NN) be such that π1(H) =
X \ (C0 ∪C1), where π1 denotes the first projection on a Cartesian product.
Then K = H × NN is a closed subset of X × (NN)2 such that π1(K) =
X \ (C0 ∪C1) and whose non-empty vertical fibers are uncountable. Using a
homeomorphism of NN with (NN)2, a closed L ⊆ X ×NN is found such that
π1(L) = X \ (C0 ∪ C1), whose non-empty vertical fibers are uncountable.

If α ∈ N, one can use the statement of [5, Lemma 26] to find F ′ ∈
Π0

1(X × NN) such that F ′(x) is empty if x ∈ C0 and it has α points for
x ∈ C1 (for α > 0 take Cm in the statement there to be C0 if m = 0; C1 if
m = α; empty otherwise). Then F = F ′ ∪ L does.

Assume the assertion for α ≥ 1. Let F0, F1 ∈ Π0
1(X × NN) be such that

• the vertical sections of F0, F1 at any point of C0 are empty;
• the vertical section of F0 at any point of C1 has order type α under

the lexicographic order;
• the vertical section of F1 at any point of C1 is a singleton;
• all other vertical sections of F0, F1 are uncountable.

Let (x, y) ∈ F ⇔ (y(0) = 0 ∧ (x, (y(1), y(2), . . .)) ∈ F0) ∨ (y(0) = 1 ∧
(x, (y(1), y(2), . . .)) ∈ F1). Notice that F is closed and the order type of its
sections is the sum of the order types of the corresponding sections of F0

and of F1; so it is 0 for points in C0, it is α + 1 for points in C1 and it is
uncountable outside C0 ∪ C1.

Finally, let α be limit and assume the assertion for all β < α. Let γn
be a sequence of ordinals such that

∑
n∈N γn = α. For each n ∈ N let

Fn ∈ Π0
1(X × NN) satisfy the assertion for γn. Set (x, y) ∈ F if and only if

(x, (y(1), y(2), . . .)) ∈ Fn where y(0) = n. Thus F is closed and the order type
of its sections is the sum of the order types of the corresponding sections of
all Fn, so it is 0 for points in C0, it is α for points in C1 and it is uncountable
outside C0 ∪ C1.

Lemma 8. Fix a countable ordinal α. Let X be a Polish space, and let
{Cξ}ξ∈α be a family of pairwise disjoint coanalytic sets. Then there is a closed
F ⊆ X × NN such that:

• if x ∈ Cξ, then F (x) has order type ξ;
• if x /∈

⋃
ξ∈αCξ, then F (x) is uncountable.
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Proof. If α = 0, let F = X × NN. For α > 0 let {αn}n be a (possibly
finite) enumeration of α. By Lemma 7, for each n let Fn ∈ Π0

1(X×NN) have
vertical sections at points of Cαn of order type αn, empty vertical sections
at points of

⋃
β∈α\{αn}Cβ , all other vertical sections being uncountable. Put

(x, y) ∈ F if and only if (x, (y(1), y(2), . . .)) ∈ Fn where y(0) = n. Then F
is closed. Moreover, the order type of any of its sections is the sum of the
order types of the corresponding sections of the Fn, so it has the desired
properties.

3. Complete sequences of classes of trees. In [1] the members of
the following families of pairwise disjoint coanalytic sets were shown to be
Borel inseparable:

• The family of all {TK}K∈K, where K consists of a representative from
each homeomorphism class in K(NN).
• The family {Vα}α∈ω1 , where Vα is the class of trees whose body is

well-ordered in type α with respect to the lexicographic order of NN.
• The family {UBA}A∈A, where A is any class of pairwise disjoint coan-

alytic subsets of NN each one containing a closed subset of NN home-
omorphic to NN, and UBA is the set of trees with a unique infinite
branch, such a branch belonging to A.

These classes, however, behave differently with respect to completeness.
In this section it will be proved that any countable sequence taken from the
first two classes is complete, while in the next section it will be shown that
this is not the case for the last one.

Theorem 9. Fix any sequence (K0,K1, . . .) of pairwise non-homeomor-
phic compact subsets of NN. Then the sequence (TK0 , TK1 , . . .) is a complete
sequence of coanalytic sets.

Proof. By Lemma 2 it can be assumedK0 =∅. Fix a sequence (C0, C1, . . .)
of pairwise disjoint coanalytic subsets of some X ∈ Π0

1(NN) and a continuous
function f : X → TrN, x 7→ (f0(x), f1(x), . . .) with the properties given in
Theorem 4. Using Lemma 5, for each n ∈ N let gn : Tr→ Tr be continuous
and such that:

• if T is well-founded, then gn(T ) is well-founded;
• if T has a unique infinite branch, then gn(T ) ∈ TKn+1 ;
• if T has more than one infinite branch, then [gn(T )] is not compact.

Define g : X → Tr by

g(x) = {∅} ∪
⋃
n∈N

ngnfn(x).
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So, if x ∈ C0, then all fn(x) are well-founded, thus g(x) is well-founded
as well. If x ∈ Cn for some n > 0, then all fi(x) are well-founded, with
the exception of fn−1(x), that have a unique branch; consequently, [g(x)] is
homeomorphic to Kn. Finally, if x /∈

⋃
n∈NCn, then all fn(x) have at least

two infinite branches, so that no [gnfn(x)] is compact and neither is [g(x)].

In particular, the following result of [1, Section 1] is obtained.

Corollary 10. The complete coanalytic sets TK , TL are Borel insepa-
rable whenever K,L are non-homeomorphic compact subsets of NN.

Theorem 11. For any sequence (α0, α1, . . .) of distinct countable ordi-
nals, the sequence (Vα0 ,Vα1 , . . .) is a complete sequence of coanalytic subsets
of Tr.

Proof. Let X be a closed subset of NN and (C0, C1, . . .) a sequence of
pairwise disjoint coanalytic subsets of X. Let F ∈ Π0

1(X ×NN) be such that
every Cn is the set of all points x ∈ X whose section F (x) has order type αn
(this can be done by applying Lemma 8 to sup{αn + 1}n). Let T be a tree
on N2 whose body is F . The function f : X → Tr assigning to each x ∈ X
the corresponding section tree of T is continuous and ∀n f−1(Vαn) = Cn.

As a corollary, one can deduce the following result of [1, Section 2].

Corollary 12. The members of the family of complete coanalytic sets
{Vα}α∈ω1 are pairwise Borel inseparable.

Theorems 9 and 11 are both extensions of [5, Theorem 27].

4. Complete sequences of classes of structures. The family of Borel
inseparable coanalytic sets considered in [2] provides complete sequences in
the framework of countable structures.

Let L = {fn}n∈N be a language with countably many unary function
symbols, and letXL be the set of (codes for) L-structures. For each countable
group G let BG be the set of (codes for) L-structures whose automorphism
group is isomorphic to G.

Theorem 13. Fix any sequence {Gn}n∈N of pairwise non-isomorphic
countable groups. Then the sequence (BG0 ,BG1 , . . .) is complete.

Proof. By Lemma 2 it can be assumed that G0 = {1G0}. It will be shown
that there is a Borel function f : TrN → XL such that WFN = f−1(BG0)
and ∀n ∈ N An = f−1(BGn+1). This will be enough by Lemma 2(1).

By Theorem 4 let g0 : TrN → TrN be a continuous function such that:

• g−1
0 (WFN) = WFN;

• ∀n ∈ N g−1
0 (An) = An;
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• if (T0, T1, . . .) /∈ WFN ∪
⋃
n∈NAn, then all the components of

g0(T0, T1, . . .) have at least two infinite branches.

If g is the function granted by Lemma 6, let g1 = (g × g × · · · )g0. Thus:

• g−1
1 (WFN) = WFN;

• ∀n ∈ N g−1
1 (An) = An;

• if (T0, T1, . . .) /∈WFN∪
⋃
n∈NAn, then all components of g1(T0, T1, . . .)

have continuum many infinite branches.

By [2], there are Borel functions Φn : Tr→ XL such that:

• if T is well-founded, then Φn is rigid;
• if T has exactly one infinite branch, then the automorphism group of
Φn(T ) is isomorphic to Gn;
• if T has continuum many infinite branches, then the automorphism

group of Φn(T ) is uncountable;
• if M is in the range of Φn, then there is no element of M that is fixed

under all fMm , except if Gn = {1Gn}, in which case there is just one
such element (the one denoted e0 there).

Fix a bijection N2 → N, (h, k) 7→ 〈h, k〉. Given a sequence Mn of L-struc-
tures, define their direct sum

⊕
n∈NMn whose universe is the disjoint union

of the Mn and where f
⊕

n∈NMn

〈h,k〉 acts as fMh
k on Mh and it is the identity

elsewhere. Finally define

f(T0, T1, . . .) =
⊕
n∈N

Φnπng1(T0, T1, . . .),

where πn denotes the projection on the nth component.
Now notice that every automorphism ϕ of f(T0, T1, . . .) is invariant on

the summands. Indeed, if u is an element of Φnπng1(T0, T1, . . .) and v is an
element of Φmπmg1(T0, T1, . . .) with 0 6= n 6= m, then f〈n,k〉(u) 6= u for some
k ∈ N, while f〈n,k〉(v) = v, so ϕ(u) 6= v. If 0 = n 6= m, apply the argument
to ϕ−1.

Thus using the properties of functions g1, Φn, the asserted properties for f
follow. Indeed, suppose first that (T0, T1, . . .) ∈WFN. Then πng1(T0, T1, . . .)
is well-founded for all n ∈ N, so all structures Φnπng1(T0, T1, . . .) are rigid;
by the remark above, f(T0, T1, . . .) is rigid as well. Suppose now (T0, T1, . . .)
∈ An. Then all πmg1(T0, T1, . . .) are well-founded, except for πng1(T0, T1, . . .)
∈ UB. Consequently, the group of automorphisms of Φnπng1(T0, T1, . . .) is
isomorphic to Gn and the same is true for f(T0, T1, . . .). Finally, if among
T0, T1, . . . there are at least two ill-founded trees or there is a tree with at least
two infinite branches, then πng1(T0, T1, . . .) has continuum many infinite
branches for all n ∈ N. This implies that all Φnπng1(T0, T1, . . .) have an
uncountable group of automorphisms and the same holds for f(T0, T1, . . .).
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The statement of [2, Theorem 4] becomes now a corollary.

Corollary 14. Given non-isomorphic, countable groups G,H, the sets
BG,BH are Borel inseparable.

5. A characterisation of completeness. [5, Theorem 9] states that
under analytic determinacy all pairs of disjoint Borel inseparable coanalytic
sets are complete. This does not hold for longer sequences.

Theorem 15.

(1) For every n ≥ 2 there is an n+ 1-tuple (C0, . . . , Cn) of pairwise dis-
joint, Borel inseparable, complete coanalytic subsets of NN that is not
complete. Moreover, (C0, . . . , Cn) can be built so that any subsequence
of length n obtained by omitting one of its terms is complete.

(2) There is a sequence (C0, C1, . . .) of pairwise disjoint, Borel insepa-
rable, complete coanalytic subsets of NN that is not complete, but
such that every finite sequence (C0, . . . , Cn) is complete.

Proof. (1) Write NN =
⋃n
i=0Xi, where X0, . . . , Xn are pairwise dis-

joint, clopen and non-empty. For every i, let (Qi0, . . . , Qi,n−1) be a complete
n-tuple of coanalytic subsets of Xi. Set Ci =

⋃n−1
j=0 Qi⊕j,j , where ⊕ is sum

modulo n+ 1 (so each Ci intersects all Xh except Xi⊕n).
The inclusion map continuously reduces the sequence (Qi0, . . . , Qi,n−1)

to the one obtained from (C0, . . . , Cn) by omitting Ci⊕1, so the latter is
complete.

Nevertheless, C0, . . . , Cn is not complete. Indeed, let x0, . . . , xn be se-
quences in NN converging to a same limit such that the sets of their terms are
pairwise disjoint. If Di = {xi(m)}m∈N, no continuous function g : NN → NN

can reduce (D0, . . . , Dn) to (C0, . . . , Cn), since for such a function the se-
quences gx0(m), . . . , gxn(m) would eventually belong to a same Xi, but
Xi ∩ Ci⊕1 = ∅.

(2) Let NN =
⋃
n∈NXn, where the Xn are pairwise disjoint, clopen, non-

empty subsets. For each n ∈ N, let (Qn0, . . . , Qnn) be a complete sequence
of pairwise disjoint, Borel inseparable, coanalytic subsets of Xn (for n = 0,
this amounts to a single complete coanalytic Q00 ⊆ X0). Set Ci =

⋃∞
n=iQni.

Then (C0, . . . , Cn) is complete. Indeed, given any sequence (D0, . . . , Dn)
of pairwise disjoint coanalytic sets of NN, any function g : NN → Xn reduc-
ing (D0, . . . , Dn) to (Qn0, . . . , Qnn) reduces (D0, . . . , Dn) to (C0, . . . , Cn)
too. On the other hand, if xn is an injective converging sequence in NN, no
continuous reduction of ({x0}, {x1}, . . .) to (C0, C1, . . .) can exist, since for
such a reduction g the sequence g(xn) cannot converge.

An example of a sequence satisfying Theorem 15(2) can be extracted
from [1, Theorem 3.1], where it is stated, in the notations of the preceding
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section, that if A,B are disjoint coanalytic subsets of Baire space, each one
containing a closed subset of NN homeomorphic to NN, then UBA,UBB are
disjoint, Borel inseparable, complete coanalytic subsets of Tr.

Theorem 16. Let An = 0n1NN. Then the sequence (UBA0 ,UBA1 , . . .) is
not complete, while all finite sequences (UBA0 , . . . ,UBAm) are.

Proof. Let xn be a sequence of distinct points in NN converging to x0.
Then no continuous function NN → Tr reduces the sequence ({x0}, {x1}, . . .)
to the sequence (UBA0 ,UBA1 , . . .). Indeed, suppose g is such a reduction and
let Tn = g(xn), thus limn→∞ Tn = T0 ∈ UBA0 . Then 0n1 ∈ Tn, which implies
that the branch of constant value 0 is in T0, a contradiction.

On the other hand, any finite (UBA0 , . . . ,UBAm) is complete. This can
be shown with an argument similar to that used for the proof of Theorem 4.
First, for 0 ≤ i ≤ m, let A′i ⊆ Trm+1 be the coanalytic set of those sequences
(T0, . . . , Tm) with Ti having a unique infinite branch and all other Tj being
well-founded. Given a sequence (C0, . . . , Cm) of pairwise disjoint coanalytic
subsets of some X ∈ Π0

1(NN), let Di =
⋃
j 6=iCj . By Lemma 8, let Fi ∈

Π0
1(X × NN) be such that for 0 ≤ i ≤ m:

• Di = {x ∈ X | Fi(x) = ∅},
• Ci = {x ∈ X | Fi(x) is a singleton}.

Let Si be the tree of Fi. The function fi : X → Tr assigning to each element
of X the corresponding section tree of Si is continuous, so f : X → Trm+1

defined by letting f(x) = (f0(x), . . . , fm(x)) is continuous as well. Fix x ∈ X.
Then:

• If x ∈ Ci, then Fi(x) is a singleton, while Fj(x) = ∅ for j 6= i. So
f(x) ∈ A′i.
• If x /∈

⋃m
i=0Ci, then any Fi(x) contains at least two points, thus f(x) /∈⋃m

i=0A′i.
This shows that (A′0, . . . ,A′m) is a complete sequence of coanalytic sets.

Now define g : Trm+1 → Tr by letting g(T0, . . . , Tm) be the tree gen-
erated by

⋃m
i=0 0i1Ti. Then g is continuous and reduces (A′0, . . . ,A′m) to

(UBA0 , . . . ,UBAm), establishing the completeness of this latter sequence.

To find the right generalisation of [5, Theorem 9] to longer sequences,
a suitable extension of the notion of a Borel inseparable pair of coanalytic
sets is to be isolated. As the existence of such a pair relies on the non-
existence of a universal Borel set, the extension of this concept is also to be
worked out. This is done as follows.

Definition 2. Let X be a Polish space, Γ a class of subsets in Polish
spaces. For 2 ≤ n ≤ ℵ0, an n-sequence (A0, A1, . . .) of members of Γ (X2) is
universal for Γ (X) if
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• {Aα | α < n} is a partition of X2, and
• for every partition of X of the same cardinality {Bα | α < n} with

each Bα ∈ Γ (X), there is x ∈ X such that ∀α < n Bα ∩ Aα(x) = ∅
(equivalently, ∀α < n Bα ⊆

⋃
β 6=αAβ(x)).

When n = 2 and Γ is the class of Borel sets, for a pair (A0, X
2 \ A0)

being universal means that A0 (equivalently, X2 \ A0) is a universal Borel
set. In fact, a universal Borel set does not exist (see [3]). This is generalised
by the following.

Theorem 17. For X any Polish space, there is no universal sequence
for B(X).

Proof. If {Aα | α < n} is a partition of X2, define Bα = {x ∈ X |
(x, x) ∈ Aα}. Suppose there is x ∈ X such that ∀α < n Bα ∩ Aα(x) = ∅.
If α is such that (x, x) ∈ Aα, then x ∈ Aα(x) ∩ Bα, a contradiction. So
{Aα | α < n} is not universal.

Definition 3. Suppose 2 ≤ n ≤ ℵ0 and let {Ck | k < n} be a collec-
tion of pairwise disjoint coanalytic subsets of a Polish space X. Then sets
C0, C1, . . . are strongly inseparable if for any partition {B0, B1, . . .} of X into
n Borel pieces

∃h ∀k Bh ∩ Ck 6= ∅.

Notice that for n = 2 one recovers the definition of a Borel inseparable
pair of coanalytic sets. Moreover, if C0, C1, . . . are strongly inseparable, then
any subsequence Ch0 , Ch1 , . . . is strongly inseparable as well. Indeed, consider
a Borel partition in the appropriate number of subsets, which can be indexed
as {Bh0 , Bh1 , . . .}. Suppose ∀i ∃j Bhi ∩Ckj = ∅. Then build a new partition
{B′0, B′1, . . .} with B′h a singleton whenever h 6= hi for all i, and B′hi ⊆ Bhi
(it is enough to excise a countable proper subset from the first infinite Bhi
and use it to build all the required singletons). So, ∀h ∃k B′h ∩ Ck = ∅,
contradicting the strong inseparability of C0, C1, . . . .

Under analytic determinacy, strong inseparability will yield a necessary
and sufficient condition for the completeness of a sequence, provided that
strongly inseparable families of coanalytic sets actually exist. The latter is
granted by the next theorem.

Theorem 18. For any 2 ≤ n ≤ ℵ0 there exists a family {Ck | k < n} of
strongly inseparable coanalytic subsets of NN.

Proof. The property will be proved for (NN)2 instead of NN. For n = 2, it
states the existence of a pair of Borel inseparable coanalytic sets. However,
in order to start out the induction, some specific pairs will be used. Let
U ∈ Π0

1((NN)3) be universal for Π0
1((NN)2), meaning that for every closed
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C ⊆ (NN)2 there is w ∈ NN such that C = U(w). For each k ∈ N, let
Uk = {(w, x) ∈ (NN)2 | U(w, x) has exactly k elements}.

By induction on n ≥ 2 it will be shown that for any pairwise distinct
i0, . . . , in−1 ∈ N, the sets Ui0 , . . . , Uin−1 are strongly inseparable.

Let n = 2. Assume for contradiction that there exist Borel sets B0, B1

⊆ (NN)2 providing a counterexample. This amounts to the existence of
B ∈ B((NN)2) such that

B ∩ Ui0 = ∅, Ui1 ⊆ B.
So, for any w ∈ NN,

B(w) ∩ Ui0(w) = ∅, Ui1(w) ⊆ B(w).

Let V be an arbitrary Borel subset of NN. By Lemma 8, there is F ∈
Π0

1((NN)2) such that

V0 = NN \ V = {x ∈ NN | F (x) has exactly i0 points},
V1 = V = {x ∈ NN | F (x) has exactly i1 points}.

By the universality of U , there is w̄ ∈ NN such that F = U(w̄). Hence

V0 = {x ∈ NN | U(w̄, x) has exactly i0 points} ⊆ NN \B(w̄),

V1 = {x ∈ NN | U(w̄, x) has exactly i1 points} ⊆ B(w̄),

implying V = B(w̄). So B ∈ B((NN)2) would be universal for B(NN), but
such a set does not exist.

Assume now the assertion for n. Fix distinct i0, . . . , in ∈ N and Borel
sets B0, . . . , Bn partitioning (NN)2. Assume, towards a contradiction, that

∀h ∈ {0, . . . , n} ∃k ∈ {0, . . . , n} Bh ∩ Uik = ∅.
Claim. There is a bijection f : {0, . . . , n} → {0, . . . , n} such that ∀h ∈

{0, . . . , n} Bh ∩ Uif(h) = ∅.

Proof. First, build a partition {B′0, . . . , B′n} of (NN)2 in n+ 1 Borel sets
with the following properties:

• for all h and k, if Bh ∩ Uik 6= ∅, then B′h ∩ Uik 6= ∅,
• each B′h intersects exactly n sets among Ui0 , . . . , Uin .

To see that this is possible, suppose h̄ is least such that Bh̄ meets less than
n sets, say justm, among Ui0 , . . . , Uin . Using the fact that each Uik is infinite,
it is possible to add to Bh̄ some n−m points, taken away from some other
Bh without affecting the non-emptiness of any Bh ∩Uik , to make Bh̄ meet n
sets among Ui0 , . . . , Uin . Now proceed inductively until a partition with the
required properties is built.

So, for each h, there is f(h) such that B′h ∩ Uik 6= ∅ ⇔ k 6= f(h). In
particular, this implies ∀h ∈ {0, . . . , n} Bh ∩ Uif(h) = ∅.
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It remains to show that f : {0, . . . , n} → {0, . . . , n} is injective. If not,
suppose f(h′) = f(h′′) for distinct h′, h′′ and consider the partition B =
{Bh′ ∪ Bh′′ , Bh | h /∈ {h′, h′′}} consisting of n Borel sets. By the inductive
hypothesis, for each k̄ there is a member of B intersecting all Uik with k 6= k̄,
different values of k̄ giving rise to different elements of B since no element
of B intersects all Ui0 , . . . , Uin . But this is impossible, as k̄ ranges over n+ 1
values, while B has n elements.

By the Claim it is possible to reindex the sets Bh so that f becomes the
identity, that is,

∀h ∈ {0, . . . , n} Bh ∩ Uih = ∅.
Let now V0, . . . , Vn be arbitrary Borel sets partitioning NN. By Lemma 8
there is a closed set F ⊆ (NN)2 such that

Vk = {x ∈ NN | F (x) has exactly ik elements}.
By the universality of U there is w̄ ∈ NN such that F = U(w̄). Hence

Vk = {x ∈ NN | U(w̄, x) has exactly ik elements} ⊆ NN \Bk(w̄),

as (w̄, x) ∈ Uik ⇒ (w̄, x) /∈ Bk. So (B0, . . . , Bn) is a universal sequence,
contradicting Theorem 17.

Finally, it will be shown that U0, U1, . . . form an infinite sequence of
strongly inseparable coanalytic sets. Let B0, B1, . . . ∈ B((NN)2) partition
(NN)2. Assume, towards a contradiction, ∀h ∈ N ∃k ∈ N Bh ∩ Uk = ∅.
Given h, let ϕ(h) be the least such k. Define B′k =

⋃
ϕ(h)=k Bh. Throwing

away those B′k that are empty, one gets a new Borel partition {B′k0 , B
′
k1
, . . .}

of (NN)2, with the property that B′kl ∩ Ukl = ∅ for all l. If the sequence
k0, k1, . . . is finite, a contradiction is reached with the already established
strong inseparability of Uk0 , Uk1 , . . . . If it is infinite, let {V0, V1, . . .} be a
Borel partition of NN. As above, use Lemma 8 to find a closed set F ⊆ (NN)2

such that
Vl = {x ∈ NN | F (x) has exactly kl elements}.

By the universality of U there is w̄ ∈ NN such that F = U(w̄). Hence

Vl = {x ∈ NN | U(w̄, x) has exactly kl elements} ⊆ NN \B′kl(w̄).

So (B′k0 , B
′
k1
, . . .) is a universal sequence, contrary to Theorem 17.

Theorem 19. Assume analytic determinacy. Let 2 ≤ n ≤ ℵ0 and let
(C0, C1, . . .) be a sequence of length n of pairwise disjoint coanalytic subsets
of NN. The following are equivalent:

(1) the sequence (C0, C1, . . .) is complete;
(2) C0, C1, . . . are strongly inseparable.

Proof. (1)⇒(2). Suppose (C0, C1, . . .) is a complete sequence. By Theo-
rem 18, let (Q0, Q1, . . .) be an n-sequence of strongly inseparable coanalytic
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sets. Any reduction of (Q0, Q1, . . .) to (C0, C1, . . .) witnesses the strong in-
separability of (C0, C1, . . .).

(2)⇒(1). Let C0, C1, . . . be strongly inseparable and Q0, Q1, . . . be pair-
wise disjoint coanalytic subsets of NN. Consider the game

1 a0 a1 a2 . . .

2 b0 b1 b2 . . .

where the two players play natural numbers and construct, respectively,
α, β ∈ NN. Player 2 wins the game if and only if

∃i < n (α ∈ Qi ∧ β ∈ Ci) ∨
(
α /∈

⋃
i<n

Qi ∧ β /∈
⋃
i<n

Ci

)
,

so this game is determined.
If player 1 had a winning strategy, this would define a continuous function

f : NN → NN, β 7→ α such that

∀i < n (α /∈ Qi ∨ β /∈ Ci) ∧
(
α ∈

⋃
i<n

Qi ∨ β ∈
⋃
i<n

Ci

)
.

This means that, denoting Q′i = f−1(Qi),

∀i Ci ∩Q′i = ∅ and
⋃
i<n

Ci ∪
⋃
i<n

Q′i = NN.

Let B ∈ B(NN) separate the disjoint analytic sets NN\
⋃
iCi, NN\

⋃
iQ
′
i. No-

tice that all Q′i∩B,Ci\B are actually Borel. Let g be a bijection on the index
set of the sequence such that ∀i g(i) 6= i and set Bi= (B ∩Q′i) ∪ (Cg(i)\B).
Then {B0, B1, . . .} is a Borel partition of NN such that ∀i Bi ∩ Ci = ∅, in
contradiction with the strong inseparability of C0, C1, . . . .

So, player 2 has a winning strategy, which induces a continuous function
NN → NN, α 7→ β reducing (Q0, Q1, . . .) to (C0, C1, . . .).

Acknowledgments. I wish to thank an anonymous referee, who sug-
gested that Kechris’ theorem in [4] could hold in the context of sequences as
well, which was indeed the case.
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