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Statistical stability of geometric Lorenz attractors
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José F. Alves and Mohammad Soufi (Porto)

Abstract. We consider the robust family of geometric Lorenz attractors. These at-
tractors are chaotic, in the sense that they are transitive and have sensitive dependence on
initial conditions. Moreover, they support SRB measures whose ergodic basins cover a full
Lebesgue measure subset of points in the topological basin of attraction. Here we prove
that the SRB measures depend continuously on the dynamics in the weak∗ topology.

1. Introduction. The theory of dynamical systems was initiated by
Poincaré’s work on the three-body problem of celestial mechanics and it
studies processes which are evolving in time. The description of the processes
is given in terms of flows when the time is continuous or iterations of maps
when the time is discrete. An orbit is a time-ordered collection of states of the
system, obtained by starting from a specific state and applying the flow or
the map. The main goals of this theory are to describe the typical behavior of
orbits as time goes to infinity, and to understand how this behavior changes
when we perturb the system or to which extent it is stable. In this work we
are concerned with the stability of systems.

Ergodic theory deals with measure preserving processes in a measure
space. One in particular tries to describe the average time spent by typical
orbits in different regions of the phase space. According to Birkoff’s Ergodic
Theorem, such times are well defined for almost all points, with respect to
any invariant probability measure. However, the notion of typical orbit is
usually meant in the sense of volume (Lebesgue measure), which is not al-
ways an invariant measure. It is a fundamental open problem to understand
under which conditions the behavior of typical (with respect to Lebesgue
measure) orbits is well defined from the statistical point of view. This prob-
lem can be precisely formulated by means of Sinai–Ruelle–Bowen (SRB)
measures which were introduced by Sinai for Anosov diffeomorphisms [Si72]
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and later extended by Ruelle and Bowen to Axiom A diffeomorphisms and
flows [BR75, Ru76].

Definition 1.1 (SRB measures). Let µ be an invariant Borel probabil-
ity measure for a flow (Xt)t on the Borel sets of a manifold M . The basin
of µ is the set of points x ∈M such that for any continuous ϕ : M → R,

(1.1) lim
T→∞

1

T

T�

0

ϕ(Xt(x)) dt =
�
ϕdµ.

The measure µ is called an SRB measure if its basin has positive Lebesgue
measure.

The notions of basin and SRB measure can be easily extended to discrete
time dynamical systems, simply by replacing the integral by a time series
in (1.1).

A fairly good description of the statistical behavior of orbits can be given
by an SRB measure in the sense that, for a “big” (meaning positive volume)
set of points, the time averaging of a physical observable (a continuous func-
tion on the manifold) of the system is accomplished simply by integrating
the observable with respect to SRB measure (space average).

In trying to capture the persistence of the statistical properties of a
dynamical system, Alves and Viana [AV02] proposed a notion, called statis-
tical stability, which expresses the continuous variation of SRB measures as
a function of the dynamical system. This is a kind of stability in the sense
that the outcome of evaluating continuous functions along orbits does not
change much under small perturbations of the system. This is what may be
observed in computer experiments, where typically the picture obtained by
plotting an orbit seems to be independent of the starting point and trunca-
tion errors.

Next we introduce the notion of statistical stability for vector fields.

Definition 1.2 (Statistical stability). Assume we have a family X of
vector fields endowed with a topology, admitting a common trapping region
U on which each X ∈ X has a unique SRB measure µX . We say that X is
statistically stable (in U) if the map X 3 X 7→ µX is continuous, where the
space of probability measures is equipped with the weak∗ topology.

Our goal in this work is to prove the statistical stability of a family of
vector fields associated to the Lorenz equations.

1.1. Lorenz equations. Lorenz [Lo63] studied numerically a vector
field X defined by the system of equations
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ẋ = a(y − x),

ẏ = bx− y − xz,
ż = xy − cz,

for the parameters a = 10, b = 28 and c = 8/3. The following properties of
this vector field are well known:

(1) X has a singularity at the origin where DX(0) has real eigenvalues

0 < −λ3 ≈ 2.6 < λ1 ≈ 11.83 < −λ2 ≈ 22.83;

(2) there is an open set U , the trapping region, such that Xt(Ū) ⊆ U
for all t > 0; the maximal invariant set in U , Λ =

⋂
t>0X

t(U), is an
attractor and the origin is the only singularity contained in U ;

(3) the divergence of X is negative:

divX = ∂ẋ/dx+ ∂ẏ/dy + ∂ż/dz = −(a+ 1 + c) < 0.

By Liouville’s formula, the flow of X contracts volume. Thus, Λ has
zero volume.

Lorenz found with his experimental computations that the flow is sen-
sitive to initial conditions near the attractor, i.e. even a small initial error
leads to enormous differences in the outcome. It was a challenging problem
to give a rigorous mathematical proof for this experimental evidence. Tucker
[Tu99] gave a computer assisted proof that the original Lorenz system in-
deed corresponds to a robustly transitive non-hyperbolic attractor contain-
ing a singularity. Moreover, he proved that the Lorenz equations define a
dynamical system with the behavior of the geometric model introduced by
Guckenheimer and Williams [GW79] that we describe next.

1.2. Geometric model. Here we briefly describe the geometric model
of the Lorenz attractor (see e.g. [AP10] for more details). The model is
given by a vector field X0 which is linear in a neighborhood of the origin.
The real eigenvalues λ1, λ2 and λ3 of DX0(0) with the eigenvectors along
the coordinate axes satisfy 0 < −λ3 < λ1 < −λ2. We consider the square
given by

Σ = {(x, y, 1) : −1/2 ≤ x, y ≤ 1/2},
and let Γ be the intersection of Σ with the local stable manifold of the
singularity. The segment Γ divides Σ into two parts

Σ+ = {(x, y, 1) ∈ Σ : x > 0} and Σ− = {(x, y, 1) ∈ Σ : x < 0},
The images of Σ± under this map are curvilinear triangles S± without the
vertices (±1, 0, 0), and every line segment in F = {x = const ∩ Σ} except
Γ is mapped to a segment in {z = const ∩ S±}. The time τ it takes for
each (x, y, 1) ∈ Σ \ Γ to reach S± is given by τ(x, y, 1) = − 1

λ1
log |x|. Now

we suppose that the flow takes the triangles back to Σ in a smooth way as
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Fig. 1. Geometric Lorenz flow

shown in Figure 1. The resulting Poincaré map from Σ \ Γ into Σ has the
form

(1.2) P (x, y) = (f(x), g(x, y))

for some f : I \ {0} → I and g : I \ {0}× I → I, where I = [−1/2, 1/2]. The
one-dimensional map f is as described in Figure 2 and satisfies:

(1) f has a discontinuity at x = 0 with one-sided limits f(0+) = −1/2
and f(0−) = 1/2;

Fig. 2. Lorenz map
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(2) f is differentiable on I \ {0} and there is c > 1 such that f ′(x) ≥ c
for all x ∈ I \ {0};

(3) the limit of f ′(x) is infinity as x approaches 0±;
(4) f ′′(x) > 0 for x ∈ [−1/2, 0) and f ′′(x) < 0 for x ∈ (0, 1/2];
(5) f is transitive.

The map g in (1.2) is defined in such a way that the stable foliation F
is uniformly contracting: there exist constants C ′ > 0 and 0 < ρ < 1 such
that for any given leaf γ of the foliation and ξ1, ξ2 ∈ γ and n ≥ 1,

dist(Pn(ξ1), P
n(ξ2)) ≤ C ′ρn dist(ξ1, ξ2).

1.3. Statement of results. A crucial fact about the geometric Lorenz
attractor is that it is robust, i.e. vector fields sufficiently close in the C1

topology to the original one constructed as above also have strange at-
tractors. Indeed, there exist an open neighborhood U in R3 containing the
geometric Lorenz attractor Λ and an open neighborhood U of X0 in the C1

topology such that for all vector fields X ∈ U , the maximal invariant set
ΛX =

⋂
t≥0X

t(U) is a transitive set which is invariant under the flow of X.
This is a consequence of the persistence of an invariant contracting foliation
FX on the cross section Σ for X ∈ U (see [AP10, Theorem 3.10]).

Under some conditions on the eigenvalues of the singularity, for a vector
field X C2-close to X0, the leaves of FX are C2 close to those of F and
it follows that fX is C2 close to f (see [Ro81, Ro84]). Thus, there exists
o ∈ [−1/2, 1/2] which plays for fX the same role as 0 for f , and the properties
of f in Subsection 1.2 are still valid for fX on a subinterval [−b, b], for some
0 < b < 1/2 close to 1/2.

Definition 1.3. We define the family X of geometric Lorenz vector
fields as a C2 neighborhood of X0 with the following properties:

(1) for each X ∈ X , the maximal forward invariant set ΛX inside U is
an attractor containing a hyperbolic singularity;

(2) for each X ∈ X , Σ is a cross-section for the flow with a return time
τX and a Poincaré map PX ;

(3) for each X ∈ X , the map PX admits a C2 uniformly contracting
invariant foliation FX on Σ with projection along the leaves of FX
onto I given by a map πX ;

(4) for each X ∈ X , the map fX on the quotient space I by the leaves in
FX is transitive C2 piecewise expanding with two branches; more-
over, there is c > 1 such that f ′X(x) ≥ c except at the discontinuity
point OX and limx→O±

X
f ′X(x) = +∞;

(5) there is some constant C > 0 such that for each X ∈ X ,

(1.3) τX(ξ) ≤ −C log |πX(ξ)−OX |.
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Observe that as the length of I is 1, we have |πX(ξ) − OX | < 1 for
all X ∈ X . For a detailed exposition of the properties of geometric Lorenz
flows see e.g. [AP10, Section 2.3]; see also [AV12, equation (9)] for the last
property. The main goal of this work is to prove the following result.

Theorem 1.4. Geometric Lorenz vector fields are statistically stable.

2. Preliminaries. Consider the family X of geometric Lorenz vector
fields as in Definition 1.3. We assume that for each X ∈ X the derivative f ′X
is monotonic on each branch. On the other hand, 1/f ′X is bounded because
f ′X > 1. Therefore 1/f ′X is monotonic and bounded and hence is of bounded
variation. It follows from [Vi97, Corollary 3.4] that each fX admits a unique
ergodic invariant probability µ̄X which is absolutely continuous with re-
spect to Lebesgue measure λ, whose density dµ̄X/dλ is a bounded variation
function and, in particular, it is bounded.

We point out that statistical stability results for piecewise expanding
maps have been obtained in [Ke82]. According to [Ke82, Corollary 14.] or
[BG97, Theorem 11.2.2], the family fX with X ∈ X satisfies the conditions
of Keller’s results. Moreover, the density dµ̄X/dλ can be obtained by means
of the Lasota–Yorke inequality whose constants can be taken the same for all
Lorenz maps (see [Vi97, Proposition 3.1]). Therefore the density functions
dµ̄X/dλ are uniformly bounded [Vi97, Corollary 3.4]. Hence we have:

Proposition 2.1. Each fX with X ∈ X is strongly statistically stable,
i.e. fX 7→ dµ̄X/dλ is continuous with respect to the L1-norm in the space
of densities. Moreover, there exists M > 0 such that dµ̄X/dλ < M for all
X ∈ X .

For any bounded function φ : Σ → R, we define φ± : I → R by

(2.1) φ+(x) = sup
ξ∈π−1

X (x)

φ(ξ) and φ−(x) = inf
ξ∈π−1

X (x)
φ(ξ),

where πX : Σ → I is the canonical projection along stable leaves. The next
result is proved in [APPV09, Corollary 6.2].

Lemma 2.2. There is a unique PX-invariant ergodic probability measure
µ̃X on Σ such that for every continuous function φ : Σ → R,

�
φdµ̃X = lim

n→∞

�
(φ ◦ PnX)− dµ̄X = lim

n→∞

�
(φ ◦ PnX)+ dµ̄X .

The measure µ̃X is an SRB measure for PX that we shall call the lift
of µ̄X . Indeed, the uniform contraction of the stable leaves implies that the
forward time averages of any pair ξ1, ξ2 of points on the same stable leaf for
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a continuous function φ : Σ → R are equal:

lim
n→∞

1

n

n−1∑
j=0

φ(P jX(ξ1)) = lim
n→∞

1

n

n−1∑
j=0

φ(P jX(ξ2)).

Hence the inverse image of the basin of µ̄X under πX is contained in the
basin of µ̃X . This shows that the basin of µ̃X contains an entire strip of
positive Lebesgue measure, because the basin of µ̄X is a subset of positive
Lebesgue measure.

On the other hand, since the density dµ̄X/dλ is bounded, we conclude
that the return time is integrable with respect to µ̃X . Thus we can satu-
rate this measure along the flow to obtain a unique SRB measure µX for
the flow, supported on the attractor ΛX , whose ergodic basin covers a full
Lebesgue measure subset of points on the topological basin of attraction
(see [APPV09, Section 7]).

Proposition 2.3. The flow of each X ∈ X has a unique SRB measure
µX given for any continuous map ϕ : U → R by

�
ϕdµX =

1

µ̃X(τX)

� τX(ξ)�

0

ϕ(X(ξ, t)) dt dµ̃X(ξ),

where µ̃X(τX) =
	
τX dµ̃X .

3. Statistical stability for the Poincaré map. Here we prove the
statistical stability of the Poincaré maps on the cross-section Σ, i.e. the
SRB measures µ̃X depend continuously on the vector fields. Let (Xn)n≥1
be any sequence in X converging to X ∈ X in the C2 topology. To shorten
notation, in subscripts we shall use n instead of Xn, for n ≥ 1, and no
subscript instead of X.

Let φ : Σ → R be an arbitrary continuous function.

Lemma 3.1. Given m ≥ 1 and ε > 0, there is n0 = n0(m, ε) such that
for all n ≥ n0, �

|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ < ε.

Proof. Given m ≥ 1, we can write
	
|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ as the

sum

(3.1)
�

Bn

|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ+
�

Bc
n

|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ,

where Bn = {
∑m−1

i=0 τn ◦ P in > N} and N = N(m) is some large number.
Now, by the last property in the definition of the geometric Lorenz flow and
the fact that the leaves of Fn are nearly vertical lines, there is some constant
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C1 > 0 such that

λ(Bn) ≤ C1

m−1∑
i=0

|{x ∈ I : −C log |f in(x)−On| > N}|

≤ C1

m−1∑
i=0

|f−in (On − e−N/C , On + e−N/C)| ≤ C1

m−1∑
i=0

(2/c)ie−N/C ,

where c > 1 is the uniform lower bound for the derivative. As φ is bounded,
the first integral in (3.1) can be made arbitrarily small, provided N is large
enough.

We now estimate the second integral in (3.1). Considering

An =
{
ξ :
∣∣∣m−1∑
i=0

(τn ◦ P in)(ξ)−
m−1∑
i=0

(τ ◦ P i)(ξ)
∣∣∣ ≥ 1

}
,

we easily see that the second integral in (3.1) is bounded by
�

{
∑m−1

i=0 τ◦P i≤N+1}

|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ

+
�

An

|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ.

Observe that

(3.2) λ(An)→ 0 as n→∞,

because for large n, a point belongs to An only if it belongs to some small
neighborhood of the (finite) set of discontinuity lines of Pm. As φ is bounded,
the second term in the last sum is bounded by 2λ(An) supφ. Then, (3.2)
implies that the second term in that sum is small for sufficiently large n.

It remains to control the first term�

{
∑m−1

i=0 τ◦P i≤N+1}

|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ.

Observe that the points in {
∑m−1

i=0 τ ◦ P i ≤ N + 1} must necessarily be
outside a neighborhood of the discontinuity lines of the map Pm. If n is
sufficiently large, then the same holds for Pmn . This means that the return
time associated to these maps is uniformly bounded for large n. Then, just
by the continuous variation of trajectories in finite periods of time, we can
make |(φ ◦ Pmn )+ − (φ ◦ Pm)+| small for large n.

Lemma 3.2. For any m ≥ 1 we have

lim
n→∞

�
(φ ◦ Pmn )+ dµ̄n =

�
(φ ◦ Pm)+ dµ̄.
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Proof. Given m ∈ N, then∣∣∣ � (φ ◦ Pmn )+ dµ̄n −
�
(φ ◦ Pm)+dµ̄

∣∣∣ ≤ ∣∣∣ � (φ ◦ Pmn )+ dµ̄n −
�
(φ ◦ Pm)+ dµ̄n

∣∣∣
+
∣∣∣ � (φ ◦ Pm)+ dµ̄n−

�
(φ ◦ Pm)+ dµ̄

∣∣∣.
Since the density of µ̄n converges to the density of µ̄ in the L1-norm, by
Proposition 2.1 and the fact that φ is bounded, we easily see that the second
term in the sum above tends to zero as n→∞. So, it remains to prove that
the first term converges to zero. In fact, using the uniform boundedness of
the densities in Proposition 2.1, we obtain∣∣∣ � (φ ◦ Pmn )+dµ̄n −

�
(φ ◦ Pm)+dµ̄n

∣∣∣ ≤ �
|(φ ◦ Pmn )+ − (φ ◦ Pm)+|

∣∣∣∣dµ̄ndλ
∣∣∣∣ dλ

≤M
�
|(φ ◦ Pmn )+ − (φ ◦ Pm)+| dλ,

which, by Lemma 3.1, can be arbitrarily small for n sufficiently large.

Proposition 3.3. limn→∞
	
φdµ̃n =

	
φdµ̃.

Proof. The compactness of Σ implies that φ is uniformly continuous,
and therefore given ε > 0 there exists δ > 0 such that

(3.3) |φ(ξ1)− φ(ξ2)| < ε for all ξ1, ξ2 ∈ Σ with dist(ξ1, ξ2) < δ.

As we know, the rate of contraction of the stable foliation on Σ is uniform
for all vector fields in X . So, the first return maps are uniformly contractive.
In particular, given δ > 0 there exists m0 > 0 such that for all n we have

(3.4) diamPmn (γ) ≤ δ for all γ ∈ Fn and m ≥ m0.

Take arbitrary numbers m1,m2 with m2 ≥ m1 ≥ m0. Given x ∈ I, let γ
be the leaf in Fn containing x and γm2−m1 be the leaf in Fn containing
Pm2−m1
n (γ). We have

(φ ◦ Pm2
n )+(x) = supφ|Pm2

n (γ) = supφ|
P

m1
n (P

m2−m1
n (γ))

.

As fm2−m1(x) ∈ γm2−m1 , we also have

(φ ◦ Pm1
n )+(fm2−m1(x)) = supφ|Pm1

n (γm2−m1 )

Then, since γm2−m1 contains Pm2−m1
n (γ), it follows from (3.3) and (3.4) that

|(φ ◦ Pm2
n )+(x)− (φ ◦ Pm1

n )+(fm2−m1(x))| < ε.

Knowing that
	

(φ ◦ Pm1
n )+ dµ̄n =

	
(φ ◦ Pm1

n )+ ◦ fm2−m1
n dµ̄n, because µ̄n is

an fn-invariant probability measure, we obtain∣∣∣ � (φ ◦ Pm2
n )+dµ̄n −

�
(φ ◦ Pm1

n )+dµ̄n

∣∣∣ ≤ ε.
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Consequently, the sequence (
	

(φ ◦ Pmn )+ dµ̄n)m,n is uniformly Cauchy, be-
cause m0 does not depend on n. Hence,

lim
n→∞

lim
m→∞

�
(φ ◦ Pmn )+ dµ̄n = lim

m→∞
lim
n→∞

�
(φ ◦ Pmn )+ dµ̄n.

Therefore,

lim
n→∞

�
φdµ̃n = lim

n→∞
lim
m→∞

�
(φ ◦ Pmn )+ dµ̄n = lim

m→∞
lim
n→∞

�
(φ ◦ Pmn )+ dµ̄n,

and by Lemma 3.2,

lim
n→∞

�
(φ ◦ Pmn )+ dµ̄n =

�
(φ ◦ Pm)+ dµ̄.

Letting m→∞ we complete the proof, by definition of µ̃.

4. Statistical stability for the flow. Now we prove Theorem 1.4. Let
(Xn)n≥1 be a sequence in X converging to X ∈ X in the C2 topology. Using
again shortened subscript notation as in Section 3, we need to prove that
µn → µ in the weak∗ topology. Let ϕ : Ū → R be any continuous function.
We have

�
ϕdµn =

1

µ̃n(τn)

� τn(ξ)�

0

ϕ(Xn(ξ, t)) dt dµ̃n(ξ).

Adding and subtracting the term

1

µ̃n(τn)

� τ(ξ)�

0

ϕ(X(ξ, t)) dt dµ̃(ξ),

we have |
	
ϕdµn −

	
ϕdµ| bounded by the sum of two terms,

(4.1)

∣∣∣∣ 1

µ̃n(τn)
− 1

µ̃(τ)

∣∣∣∣ � τ(ξ)�
0

|ϕ(X(ξ, t))| dt dµ̃(ξ)

and

(4.2)
1

µ̃n(τn)

∣∣∣ � τn(ξ)�

0

ϕ(Xn(ξ, t)) dt dµ̃n(ξ)−
� τ(ξ)�

0

ϕ(X(ξ, t)) dt dµ̃(ξ)
∣∣∣.

Our goal now is to show that (4.1) and (4.2) converge to zero as n→∞.

Lemma 4.1. limn→∞
	
τn dµ̃n =

	
τ dµ̃.

Proof. Define

τN (ξ) = min{τ(ξ), N} and τn,N (ξ) = min{τn(ξ), N}.
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Observe that for each fixed N ≥ 1 the functions τN and τn,N are bounded
and continuous, and τn,N converges uniformly to τN as n→∞. We have∣∣∣ � τn dµ̃n − �

τ dµ̃
∣∣∣ ≤ ∣∣∣ � τn dµ̃n − �

τn,N dµ̃n

∣∣∣(4.3)

+
∣∣∣ � τn,N dµ̃n −

�
τN dµ̃

∣∣∣+
∣∣∣ � τN dµ̃−

�
τ dµ̃

∣∣∣.
Now we prove that the first term on the right hand side is small for large N
(uniformly in n); the calculation for the third term is similar. We have

(4.4)
∣∣∣ � τn dµ̃n − �

τn,N dµ̃n

∣∣∣ =
�
(τn − τn,N ) dµ̃n ≤

�
(τn − τn,N )+ dµ̃n.

Now, for n,N,m ≥ 1 define

(τn − τn,N )+m(ξ) = min{(τn − τn,N )+(ξ),m}.
Note that (τn− τn,N )+m converges monotonically to (τn− τn,N )+ as m→∞.
Moreover the functions (τn− τn,N )+m and (τn− τn,N )+ can be interpreted as
the functions defined in I introduced in (2.1). Using the Monotone Conver-
gence Theorem, the definition of µ̃n and the uniform boundedness on the
density of µ̄n we can write�

(τn − τn,N )+ dµ̃n = lim
m→∞

�
(τn − τn,N )+m dµ̃n = lim

m→∞

�
(τn − τn,N )+m dµ̄n

≤M lim
m→∞

�
(τn − τn,N )+m dλ = M

�
(τn − τn,N )+ dλ.

Now, defining An,N = {x ∈ I : −C log(x−On) > N} by (1.3) we have

�
(τn − τn,N )+ dλ ≤

�

An,N

−C log(x−On) dx =

e−C/N�

0

−C log x dx,

and this last integral is clearly small for large N (uniformly in n).
Finally, for each N ≥ 1, the second term on the right hand side in (4.3)

converges to zero as n → ∞, since µ̃n converges weakly to µ̃, by Proposi-
tion 3.3, and the functions τn,N are continuous and converge uniformly to
τN as n→∞.

Lemma 4.1 implies that (4.1) converges to zero as n→∞, since∣∣∣∣ 1

µ̃n(τn)
− 1

µ̃(τ)

∣∣∣∣ � τ(ξ)�
0

|ϕ(X(ξ, t))| dt dµ̃(ξ) ≤
∣∣∣∣ 1

µ̃n(τn)
− 1

µ̃(τ)

∣∣∣∣ ‖ϕ‖∞µ̃(τ).

The next result implies that (4.2) converges to zero as n→∞.

Lemma 4.2.

lim
n→∞

� τn(ξ)�

0

ϕ(Xn(ξ, t)) dt dµ̃n(ξ) =
� τ(ξ)�

0

ϕ(X(ξ, t)) dt dµ̃(ξ).
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Proof. We define

h(ξ) =

τ(ξ)�

0

ϕ(X(ξ, t)) dt, hn(ξ) =

τn(ξ)�

0

ϕ(Xn(ξ, t)) dt,

and using the notations of the proof of Lemma 4.1, we also define, for N ≥ 1,

hN (ξ) =

τN (ξ)�

0

ϕ(X(ξ, t)) dt, hn,N (ξ) =

τn,N (ξ)�

0

ϕ(Xn(ξ, t)) dt.

The difference∣∣∣ � τn(ξ)�

0

ϕ(Xn(ξ, t)) dt dµ̃n(ξ)−
� τ(ξ)�

0

ϕ(X(ξ, t)) dt dµ̃(ξ)
∣∣∣

is bounded by∣∣∣ �hndµ̃n − �
hn,Ndµ̃n

∣∣∣+
∣∣∣ �hn,N dµ̃n − �

hN dµ̃
∣∣∣+
∣∣∣ �hNdµ̃− �

h dµ̃
∣∣∣.

The first term is bounded by

‖ϕ‖∞
�
(τn − τn,N ) dµ̃n ≤ ‖ϕ‖∞

�
(τn − τn,N )+ dµ̃n.

As we saw in the proof of Lemma 4.1, this last term is small for large enough
N (uniformly in n), and a similar conclusion holds for the third term. The
second term is also handled as in the proof of Lemma 4.1, because the
functions hn,N are continuous and converge uniformly to hN as n→∞.
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