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Abstract. The goal of this paper is to address A. Shumakovitch’s conjecture about
the existence of Z2-torsion in Khovanov link homology. We analyze torsion in Khovanov
homology of semi-adequate links via chromatic cohomology for graphs, which provides
a link between link homology and the well-developed theory of Hochschild homology. In
particular, we obtain explicit formulae for torsion and prove that Khovanov homology of
semi-adequate links contains Z2-torsion if the corresponding Tait-type graph has a cycle
of length at least 3. Computations show that torsion of odd order exists but there is no
general theory to support these observations. We conjecture that the existence of torsion
is related to the braid index.

1. Introduction. In his visionary paper [Kh0] M. Khovanov revolu-
tionized the theory of quantum knot invariants by categorifying the Jones
polynomial of links. In 2003, A. Shumakovitch conjectured that any link
which is not a connected or disjoint sum of Hopf links and trivial links has
Z2-torsion in Khovanov homology [Sh1, Sh2].

In this paper we consider Khovanov bigraded homology (see Defini-
tion 2.8) of adequate and semi-adequate knots and links. Adequacy is a
natural generalization of the alternating property suitable for studying Kho-
vanov homology. Firstly, the outermost Khovanov homology group of +-
adequate links is equal to Z [Kh0, Kh1], i.e., Hn,∗(D)=Hn,n+2|Ds+ |(D)=Z,

where D is a +-adequate diagram of a link L with n crossings. Further-
more, M. Asaeda and J. Przytycki [AP] showed that the next nontrivial
homology group Hn−2,n+2|Ds+ |−4(D) has nontrivial Z2-torsion as long as

the graph G(D) = Gs+(D) associated with the state s+ is not bipartite
(see Section 2.1 for definitions). An explicit formula for Hn−2,n+2|Ds+ |−4(D)

of a +-adequate link is derived in [PPS], showing, in particular, that for a
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nonsplit +-adequate diagram D,

(1.1) torHn−2,n+2|Ds+ |−4(D) =

{
Z2 if G(D) has an odd cycle,

0 if G(D) is a bipartite graph.

Torsion that lies in Khovanov homology one step deeper,Hn−4,n+2|Ds+ |−8(D),

is analyzed in [AP]. The authors show that for a strongly +-adequate dia-
gram D with the graph G(D) containing an even cycle, Hn−4,n+2|Ds+ |−8(D)

contains Z2-torsion. This statement implies Shumakovitch’s result that any
alternating link which is not a connected or disjoint sum of trivial links and
Hopf links, has a nontrivial Z2-torsion in its Khovanov homology [Sh2].

In Section 4 we compute the entire Hn−4,n+2|Ds+ |−8(D) for many classes

of +-adequate diagrams, including strongly +-adequate diagrams. We prove
that for a +-adequate diagram D,

torHn−4,n+2|Ds+ |−8(D) =

{
Zp1(G′(D))−1

2 if G′(D) has an odd cycle,

Zp1(G′(D))
2 if G′(D) is a bipartite graph,

where G(D) = Gs+(D) is the graph associated to the Kauffman state s+,
G′(D) is a simple graph obtained from G(D) by replacing multiple edges by
singular edges (see Section 2), and p1(G) denotes the cyclomatic number of
the graph G.

In Section 2 we provide an overview of relations between plane graphs
and link diagrams, and the corresponding polynomial invariants: the Kauff-
man bracket polynomial and the Kauffman bracket version of the Tutte
polynomial. Next, we outline the theory of Khovanov homology, categorifica-
tion of the Kauffman bracket polynomial, and a related comultiplication-free
version of homology of graphs (derived by L. Helme-Guizon and Y. Rong
[HR] as a categorification of the chromatic polynomial).

In Section 3 we prove Main Lemma 3.1 computing homology H1,v−2(G),
and derive important corollaries.

In Section 4 we modify the translation of Khovanov homology to graph
homology by allowing one comultiplication. This allows us to compute the
torsion of Hn−4,n+2|Ds+ |−8(D) for any +-adequate diagram D.

In Section 5 we give examples of adequate diagrams in a braid form
starting from the 3-braid σ3

1σ
3
2σ

2
1σ

2
2 representing the knot 10152.

Finally, in Section 6 we speculate about the existence of arbitrary torsion
in Khovanov homology and its relations to the braid index.

2. Background. When developing our results for graph homology, we
had in mind the application to Khovanov homology of links. This is also the
reason why we modify the comultiplication-free version of Khovanov homol-
ogy of graphs introduced in [HR] by allowing the “first” comultiplication
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(see Section 4). Thus we approximate Khovanov homology one step further
but still have homology of graphs independent of a surface embedding.

In this section we provide the background material: the connection be-
tween graphs and links used in this paper. We also recall relations be-
tween graphs and link polynomials, and between Khovanov homology and
its comultiplication-free version for graphs.

2.1. State graphs, state diagrams, and the Kauffman bracket
polynomial. Tait was the first to notice the relation between knots and
planar graphs [Ta, LT]. He colored the regions of a knot diagram alternately
white and black (following Listing) and constructed the graph by placing a
vertex inside each white region, and then connecting vertices by edges going
through the crossing points of the diagram.

To generalize Tait’s construction and associate to any Kauffman state a
graph, we have to recall some preliminary definitions.

Definition 2.1. A Kauffman state s of D is a function from the set
of crossings of D to the set {+1,−1}. Diagrammatically, we assign to each
crossing of D a marker according to the convention of Figure 1:

Fig. 1. Markers and associated smoothings

By Ds we denote the system of circles embedded in the plane obtained
by smoothing all crossings of D according to the markers of the state s
(for example see Figure 2(b)). Let |Ds| denote the number of circles in the
state Ds.

Definition 2.2 ([PPS]). Let D be a diagram of a link and s its Kauff-
man state. We form a graph Gs(D), associated to D and s, as follows. Ver-
tices of Gs(D) correspond to circles of Ds. Edges of Gs(D) are in bijection
with crossings of D and an edge connects given vertices if the corresponding
crossing connects circles of Ds corresponding to the vertices (see Figures 2,
4, 6, 7). As in the case of the Tait graph, Gs(D) can be turned into a signed
graph with the sign of an edge e(p) associated with the crossing p ∈ D equal
to the sign of the marker of the Kauffman state s at that crossing p (notice
that we will not be working with signed graphs in this paper).

The Kauffman bracket polynomial 〈D〉(µ,A,B) ∈ Z[µ,A,B] of a diagram
D is defined by:

(i) 〈Un〉 = µn−1, where Un is the trivial diagram of n components.
(ii) 〈D 〉 = A〈D 〉+B〈D 〉.
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From this we obtain the state sum formula:

〈D〉(µ,A,B) =
∑
s

A|s
−1(1)|B|s

−1(−1)|µ|Ds|−1.

In order to have invariance of the Kauffman bracket polynomial under reg-
ular isotopy (i.e. Reidemeister moves R2 and R3), we need B = A−1 and
µ = −A2 −A−2 [Ka1, Ka2].

In this notation the Kauffman bracket polynomial of D is given by
the state sum formula: 〈D〉 =

∑
sA

σ(s)(−A2 − A−2)|Ds|−1, where σ(s) =
|s−1(1)| − |s−1(−1)| =

∑
p s(p) is the number of positive markers minus the

number of negative markers in the state s.

(a)                                       (b)                                        (c)       

s+

s-

G

s+
G

s-

Fig. 2. (a) A minimal diagram of the Whitehead link; (b) Ds− and Ds+ ; (c) the corre-
sponding graphs Gs− and Gs+ .

The unreduced Kauffman bracket polynomial [D] is defined as [D] =
(−A2 −A−2)〈D〉, thus

[D] =
∑
s

Aσ(s)(−A2 −A−2)|Ds|.

Before we move to the polynomial invariants of graphs, we describe
classes of knots and links we will be analyzing in this paper, and their
corresponding graphs.

Definition 2.3.

(i) In the language of graphs, a diagram D is s-adequate if the graph
Gs(D) has no loops. Similarly, D is strongly s-adequate if Gs(D)
has no loops and no multiple edges.
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(ii) The girth `(s) of a state s is the girth of the graph Gs(D), i.e.,
the length of the shortest cycle in Gs(D) (in case G is a forest, we
define `(s) = ∞). Thus D is s-adequate iff `(s) > 1, and strongly
s-adequate iff `(s) > 2.

(iii) The s+ Kauffman state is a constant function sending all cross-
ings to +1, and s− to −1. We say that D is +-adequate if it is
s+-adequate, and that D is −-adequate if it is s−-adequate (1).
Similarly, D is strongly +-adequate if it is strongly s+-adequate,
and D is strongly −-adequate if it is strongly s−-adequate.

Figure 2 shows a diagram of a Whitehead link D = DWh, its s− smooth-
ing (and Ds−), s+ smoothing (and Ds+), and their corresponding graphs
G(D) = Gs+(D) and G(D̄) = Gs−(D). Notice that DWh is strongly
−-adequate. In general if D̄ denotes the mirror image of D then Gs(D̄) =
G−s(D); in particular, Gs+(D̄) = Gs−(D).

2.2. The Kauffman bracket polynomial of graphs [G](µ,A,B). Ap-
plying the idea of Kauffman bracket polynomial of diagrams [D](µ,A,B) to
graphs gives a version of the Tutte polynomial as explained below.

Definition 2.4. The Kauffman bracket polynomial [G] = [G](µ,A,B) of
the graph G ([G] ∈ Z[µ,A,B]) is defined inductively by the following for-
mulas (2):

(i) [Un] = µn, where Un is the discrete graph on n vertices.
(ii) [G] = A[G− e] +B[G//e] where G//e = G/e if e is not a loop, and

if e is a loop, then G//e is defined to be the graph obtained from
G− e by adding an isolated vertex.

The Kauffman bracket satisfies the following state sum formula (see e.g.
[PP], [Pr1, Chapter V]).

Lemma 2.5. Let G be a graph with V (G) the set of vertices and E(G)
the set of edges. Let s ⊆ E denote an arbitrary set of edges of G, including
the empty set, and G − s the graph obtained from G by removing all edges
contained in s. Let p0(G) be the number of connected components of G, and

(1) We follow [AP, HPR, PPS] in our notation. In particular, if D is an alternating
diagram then G(D) is a signed Tait graph of D with all negative edges. However, we do
not use signed graphs in this paper so our convention should not lead to confusion. In
this paper, generally G(D) = Gs+(D), and a +-adequate diagram has an s+-adequate
state. Our choice of convention is dictated by the fact that we want a +-smoothing of the
crossing in the diagram to correspond to the case when the edge is absent in the graph
case; compare Section 4.5 in [HPR].

(2) Notice that 〈D〉(µ,A,B) from Definition V.1.3 in [Pr1] is related to [G](µ,A,B) by
[G](µ,A,B) = µ〈G〉(µ,B,A). The Tait graph G(D) from [Pr1] is our Gs−(D) graph.
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p1(G) = rank(H1(G,Z)) = |E| − v + p0 the cyclomatic number of G. Then

[G] =
∑

s∈2E(G)

µp0([G:s])+p1([G:s])A|E(G)\s|B|s|.

The following formula expresses the relation between the Kauffman
bracket and Tutte polynomial χ(G;x, y) of a graph G.

Proposition 2.6 (see e.g. [PP], [Pr1, Chapter V]). The following iden-
tity holds:

[G](µ,A,B) = µp0(G)Ap1(G)B|E(G)|−p1(G)χ(G;x, y),

where x = (B + µA)/B and y = (A+ µB)/A.

2.3. Khovanov homology via enhanced states chain complex.
A convenient way of defining Khovanov homology, as noticed by O. Viro
[Vi1, Vi2], is to consider enhanced Kauffman states.

Definition 2.7. An enhanced Kauffman state S of an unoriented
framed link diagram D is a Kauffman state s with an additional assign-
ment of + or − sign to each circle of Ds.

Enhanced states can be used to express the Kauffman bracket polynomial
as a sum of monomials:

(2.1) [D] = (−A2 −A−2)〈D〉 =
∑
S

(−1)σ(S)Aσ(s)+2τ(S),

where τ(S) is the number of positive circles minus the number of negative
circles in the enhanced state S (notice that τ(S) ≡ |Ds| mod 2).

Definition 2.8 (Khovanov link homology). Let S(D) denote the set of
enhanced Kauffman states of a diagram D, and let Si,j(D) denote the set
of enhanced Kauffman states S such that σ(S) = i and σ(S) + 2τ(S) = j.
We call i a homology grading and j a Kauffman bracket grading.

(i) The Khovanov chain group C(D) (resp. Ci,j(D)) is the free abelian
group freely generated by S(D) (resp. Si,j(D)). Hence, C(D) =⊕

i,j∈Z Ci,j(D) is a bigraded free abelian group.
(ii) For a link diagram D with ordered crossings, we define the chain

complex (C(D), d) with a differential d = {di,j} determined by maps

di,j : Ci,j(D) → Ci−2,j(D) such that di,j(S) =
∑

S′(−1)t(S:S′)[S :
S′]S′ where S ∈ Si,j(D), S′ ∈ Si−2,j(D), and [S : S′] equals 0 or 1;
[S : S′] = 1 if and only if the markers of S and S′ differ exactly at
one crossing, call it v, and all the circles of DS and DS′ not touching
v have the same sign (3). Furthermore, t(S : S′) is the number of

(3) From our conditions it follows that at the crossing v the marker of S is positive,
the marker of S′ is negative, and τ(S′) = τ(S) + 1.
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negative markers assigned to crossings in S bigger than v in the
chosen ordering.

(iii) The Khovanov homology of the diagram D is defined to be Hi,j(D)
= ker(di,j)/di+2,j(Ci+2,j(D)), the homology of the chain complex
(C(D), d). The Khovanov cohomology of the diagram D is the ho-
mology of the dual complex.

In Khovanov’s original approach every circle of a Kauffman state was
decorated by a free 2-dimensional module A over Z (with basis 1 and x)
with an additional structure of a Frobenius algebra A = Z[x]/(x2) [Kh0,
Kh1, Kh2]. According to the notation in [Vi1], we use − and + in place of 1
and x. On the level of algebra the differential is given by either multiplication
or comultiplication, depending on whether the number of circles in the state
is greater or less than that of its image.

Khovanov proved that link homology is a topological invariant [Kh0].
For the first Reidemeister move R1 where R+1( ) = ( ) and R−1( ) =
( ) we have Hi+1,j+3(R+1(D)) = Hi,j(D) = Hi−1,j−3(R−1(D)). Hi,j(D)
is preserved by the second and third Reidemeister moves.

With the notation introduced before, we can write the formula for the
Kauffman bracket polynomial of a link diagram in the following form:

[D] =
∑
j

Aj
(∑

i

(−1)(j−i)/2
∑
S∈Si,j

1
)

=
∑
j

Aj
(∑

i

(−1)(j−i)/2 dimCi,j

)
=
∑
j

Ajχ(C∗,j),

where
χ(C∗,j) =

∑
i: j≡i (mod 2)

(−1)(j−i)/2 dimCi,j

is a slightly adjusted Euler characteristic of the chain complex C∗,j for a
fixed j. This explains that Khovanov homology categorifies the Kauffman
bracket polynomial, as well as the Jones polynomial (4).

2.4. Khovanov-type functor on the category of graphs. The chro-
matic graph cohomology was introduced in [HR], as a comultiplication-free
version of the Khovanov cohomology of alternating links, where alternat-
ing link diagrams are translated to plane graphs (Tait graphs). Moreover,

(4) In the narrow sense, a categorification of a numerical or polynomial invariant
is a homology theory whose Euler characteristic or polynomial Euler characteristic (the
generating function of Euler characteristics) is equal to the invariant we have started with.
We quote M. Khovanov [Kh0]: “A speculative question now comes to mind: quantum
invariants of knots and 3-manifolds tend to have good integrality properties. What if
these invariants can be interpreted as Euler characteristics of some homology theories of
3-manifolds?”.
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this homology theory is a categorification of the chromatic polynomial of
a graph.

The chromatic polynomial of a graph keeps track of the number of its
proper vertex colorings using no more than a given number of colors, so that
adjacent vertices have different colors. The analogy with the Khovanov ho-
mology construction is almost complete: instead of Kauffman states we use
subgraphs [G : s], containing all vertices in G and i edges from s ⊆ E. Anal-
ogously to labeling the circles in the enhanced Kauffman states by pluses
and minuses, we define the enhanced graph states as connected components
of a graph [G : s] labeled by either 1 or x, the generators of the algebra
A = Z[x]/(x2 = 0). The number |Ds| of circles in the Kauffman state cor-
responds to the number k(s) of connected components of the graph [G : s]
containing all vertices in G and i edges in s ⊆ E. Now, we consider the
following state sum formula for the chromatic polynomial:

χG(λ) =
∑
i≥0

(−1)i
∑

s⊆E, |s|=i

λk(s)

=
∑
i,j≥0

(−1)iλj]{s ⊆ E | |s| = i, k′([G : s]) = j},

where k′([G : s]) denotes the number of components of [G : s] labeled by x.
Cochain groups are spanned by all subgraphs [G : s], with each of k([G : s])
components labeled by either 1 or x, with exactly k′([G : s]) = j components
labeled by x.

Definition 2.9. Define the chromatic cochain complex and chromatic
cohomology of a graph G over the commutative algebra A = Z[x]/(x2 = 0)
in the following way:

(i) The cochain group is

Ci(G) =
⊕
|s|=i

s⊂E(G)

Cis(G),

with Cis(G) = Ak(s) where k(s) denotes the number of components
of the subgraph [G : s]. Assume that the edges of G are ordered (5).
For a given state s and the edge e ∈ E\s, let t(s, e) equal the number
of edges in s that are less than e in the chosen ordering. The cochain
map di : Ci(G)→ Ci+1(G) is a sum

di =
∑
e/∈s

(−1)t(s,e)die,

(5) The chromatic graph cohomology is independent of the ordering of edges, however,
the ordering is required to define the boundary map.
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where the map die depends on whether e connects different com-
ponents of [G : s] or it connects vertices in the same component of
[G : s]. In the latter case we assume die to be the identity [HR] (6). If e
connects different components of [G : s], say ith and jth, i < j, then
die(a1, . . . , ak(s)−1)=(a1, a2, . . . , aiaj , . . . , aj−1, aj+1, . . . , ak(s)−1).

(ii) We define the chromatic cohomology, denoted by H∗(G), as the co-
homology of the chromatic cochain complex above.

Because A is graded, with deg(1) = 0, deg(x) = 1, one can consider the
bigraded homology H i,j(G) [HR, HPR]. The chromatic graph cohomology
of a graph with a loop is always zero [HR].

In this setting it is easier to work with the chain complex, similar to the
classical homology theories. Therefore we perform concrete calculations in
the chromatic graph homology setting and then use the universal coefficient
theorem (see Proposition 2.10) to express the results in the chromatic graph
cohomology setting.

Proposition 2.10. If the homology groups Hn and Hn−1 of a chain
complex C of free abelian groups are finitely generated then

Hn(C;Z) = Hn(C;Z)/tor(Hn(C;Z))⊕ tor(Hn−1(C;Z)).

In particular, we have the following identities:

(i) H0,v−1(G) = H0,v−1(G)/tor(H0,v−1(G)),
(ii) H1,v−1(G) = H1,v−1(G)⊕ tor(H0,v−1(G)).

Additionally for `(G) ≥ 2 we have C2,v−1(G) = 0, and H1,v−1(G) is the free
abelian group ker(C1,v−1(G)→ C0,v−1(G)).

In this particular bigrading the chromatic graph cohomology of a graph
G = (V (G), E(G)) over the algebra A2 is equivalent to the homology with
chain groups defined as in the standard graph homology and the boundary

map (7) defined by ∂(e) = ∂(
−−→
V1V2) = V1 + V2 where e = (V1, V2) ∈ E. As a

corollary we get the following lemma from [PPS]:

Proposition 2.11. Given a connected simple graph G and the algebra A
we have

(2.2) H0,v−1(G) =

{
Z if G is a bipartite graph,

Z2 if G has an odd cycle.

(6) Alternatively, die can be defined to be a zero map in this case, but this makes no
difference for our purposes.

(7) An intriguing observation is that the standard graph boundary ∂(
−−→
V1V2) = V2−V1,

gives, in our range of bigradings, the odd Khovanov homology of Ozsváth, Rasmussen,
and Szabó [ORS]; this is worthy of further consideration.
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Consider the category of finite graphs in which they are objects, and
Mor(G′, G) are graph embeddings between G′ and G which are bijections
on vertices. To every graph G we associate its chain complex {Ci,j(G)}, and
any morphism α : G′ → G induces a chain map α# : {Ci,j(G′)} → {Ci,j(G)}.
We obtain in this way a functor from the category of finite graphs to the
category of graded chain complexes, and further to the category of bigraded
groups {Hi,j(G)}. In a standard way we consider a morphism α of G′ in G
and related short exact sequence of chain complexes

0→ Ci,j(G
′)→ Ci,j(G)→ Ci,j(G,G

′)→ 0,

where Ci,j(G,G
′) = Ci,j(G)/Ci,j(G

′). Finally, we obtain the related long
exact homology sequence:

(2.3) · · · → Hi,j(G
′)→ Hi,j(G)→ Hi,j(G,G

′)→ Hi−1,j(G
′)→ · · ·

· · · → H1,j(G)→ H1,j(G,G
′)→ H0,j(G

′)→ H0,j(G)→ H0,j(G,G
′)→ 0.

We write Z[i]{j} for Z with homological grading i and chromatic grad-
ing j.

Proposition 2.12. Let T be a spanning tree of a connected graph G.
Then

(i) H∗,∗(T ) = H0,v−1(T )⊕H0,v(T ) = Z[0]{v − 1} ⊕ Z[0]{v}.
(ii) Hi,j(G) is supported on two diagonals: Hi,j(G) = 0 for i + j 6=

v, v − 1, and the torsion is trivial except possibly for i+ j = v − 1:
torHi,j(G) = 0 for i+ j 6= v − 1.

(iii) Hi,j(G) = Hi,j(G,T ) if i > 1 or i = 1 and j 6= v − 1. In particular,
H1,v−2(G) = H1,v−2(G,T ).

Proof. Let G1 ∗G2 denote the one-vertex product of graphs, and let Kn

denote the complete graph on n vertices.

(i) Adding an edge K1 to a graph G results in Hi,j(G ∗K1) = Hi,j+1(G)
(see [HR]).

(ii) Part (ii) reflects the fact that Khovanov homology of alternating
links lies on two adjacent diagonals [Lee]. The proof uses the long exact
homology sequence with smoothings in a link case and deleting–contracting
in the graph case (see [HR, AP]).

(iii) The third part follows from (i) and (ii) by applying the long exact
sequence of the pair (G,T ).

2.5. Correspondence between Khovanov and chromatic graph
homology. Based on [HPR, Pr2] we state a relation between the graph
cohomology and classical Khovanov homology of alternating links (in Viro’s
[Vi1] notation). Proposition 2.13 is generalized in Proposition 4.7.
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Proposition 2.13. Let D be a diagram of an unoriented framed alter-
nating link (8), and let G = Gs+(D). For all i < `(G)− 1, we have

H i,j(G) ∼= Ha,b(D),

where a = |E(G)| − 2i, b = |E(G)| − 2|V (G)| + 4j and Ha,b(D) are the
Khovanov homology groups of the unoriented framed link defined by D, as
explained in Definition 2.7 based on [Vi1].

Furthermore, torH i,j(G) = torHa,b(D) for i = `(G)− 1.

Theorem 2.14 ([PPS]). Let G be a simple graph. Then

(i) H0,v−1(G) = Zpbi
0 , where pbi

0 is the number of bipartite components
of G.

(ii) H1,v−1(G) = Zp1−(p0−pbi
0 )⊕Zp0−pbi

0
2 , where p0 is the number of com-

ponents of G and p1 = rank(H1(G,Z)) = |E| − v + p0 is the cyclo-
matic number of G.

3. The Main Lemma and chromatic graph homology H1,v−2.
Next we compute H1,v−2(G) for any connected graph G, hence H2,v−2(G)
for any graph G and, eventually, Hn−4,n+|Ds+ |−8(D) for the corresponding

+-adequate link diagram.

Lemma 3.1 (Main Lemma). If G is a connected simple graph, i.e., a
graph of girth `(G) ≥ 3, then:

(i) H1,v−2(G) = Zp1(G)
2 if G is bipartite.

(ii) H1,v−2(G) = Zp1(G)−1
2 ⊕ Z if G has an odd cycle.

Proof. Since H1,v−2(G) = H1,v−2(G,T ) for any spanning tree T of G, by
Proposition 2.12, we focus on computing H1,v−2(G,T ). We assume that both
edges and vertices are ordered, although the results do not depend on this. To
make the proof more comprehensible we introduce the following notation.
Let ρ(v, w) denote the distance between vertices v, w ∈ V (T ), equal to
the length of the shortest path connecting them in T . If (∂0(ei), ∂1(ei))
denotes the endpoints of the edge ei in G, we use the short notation ρ(ei) =
ρ(∂0(ei), ∂1(ei)). In particular, for ei /∈ T , ρ(ei) is odd if e closes an even
cycle in T ∪ ei, and ρ(ei) is even if e closes an odd cycle in T ∪ ei. For
ei, ej /∈ T we also use ρ(ei, ej) to denote the distance between ei and ej in
T ∪ ei ∪ ej , or equivalently, the minimal distance between endpoints of ei
and endpoints of ej in T .

Let e1, . . . , ep1 be the edges in E(G\T ) where p1(G) = |E(G)|−|E(T )| =
|E(G)| − |V (G)|+ 1.

(8) In the case of unoriented alternating links, Gs−(D) and Gs+(D) are Tait graphs,
i.e. obtained from the checkerboard coloring of the projection plane.
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The chain group C1,v−2(G,T ) is freely generated by enhanced states
(ei, vj) where the component of the graph [G : ei] containing the vertex vj
has label 1 (all other labels are x). If the vertex vj is the endpoint of ei, we
use the short notation (ei, 1) for an enhanced state (ei, ∂0(ei)) = (ei, ∂1(ei)).

Notice that H0,v−2(G,T )=0=C0,v−2(G,T ) since C0,v−2(G)=C0,v−2(T ).
Therefore, ker(d : C1,v−2(G,T )→ C0,v−2(G,T )) = C1,v−2(G,T ), so

H1,v−2(G,T ) = C1,v−2(G,T )/d(C2,v−2(G,T )).

Since `(G) ≥ 3 the chain group C2,v−2(G,T ) has two types of free gen-
erators (enhanced states):

(i) pairs (ei, e), where e∈E(T ), generating the subgroup of C2,v−2(G,T )
denoted by C ′, and

(ii) pairs (ei, ej) generating the subgroup C ′′.

Let us first compute C1,v−2(G,T )/d(C ′). For any edge e ∈ T ,

d(ei, e) = ±((ei, ∂1(e)) + (ei, ∂0(e)))

yields the following relation in homology: (ei, ∂1(e)) = −(ei, ∂0(e)). Hence,
we eliminate all generators of C1,v−2(G,T ) except pairs (ei, ∂0(ei)), satisfy-
ing the relations

(ei, ∂1(ei)) = (−1)ρ(∂0(ei),∂1(ei))(ei, ∂0(ei)), that is,

(ei, 1) = (−1)ρ(ei)(ei, 1).

Thus C1,v−2(G,T )/d(C ′) = Zkodd
2 ⊕ Zp1−kodd , where kodd is the number of

edges ei with ρ(ei) odd.

Next, we compute (C1,v−2(G,T )/d(C ′))/d(C ′′). For an enhanced state
(ei, ej) we have

(3.1) d(ei, ej) = ±
(
(ei, ∂0(ej)) + (ei, ∂1(ej))− (ej , ∂0(ei))− (ej , ∂1(ei))

)
.

The relation in C1,v−2(G,T )/d(C ′) corresponding to (3.1) can be written as

(3.2) (ei, 1)(1 + (−1)ρ(ej)) = ε
(
(ej , 1)(1 + (−1)ρ(ei))

)
,

where ε = ±1, or more precisely ε = (−1)ρ(∂0(ei),∂0(ej)). We analyze this
relation in more detail, based on the types of enhanced states generating C ′′.
Depending on the parity of ρ(ei, ej), we consider three different types of
generators of C ′′:

(i) (ei, ej) such that both ρ(ei) and ρ(ej) are odd generate the subgroup
C ′′odd,

(ii) (ei, ej) where exactly one of ρ(ei) and ρ(ej) is odd generate the
subgroup C ′′mixed,

(iii) (ei, ej) such that both ρ(ei) and ρ(ej) are even generate the sub-
group C ′′even.
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In the case of C ′′odd, both sides of (3.2) are zero, so there are no new
relations in C1,v−2(G,T )/d(C ′). If a graph G is bipartite, ρ(ei) is always odd
and C2,v−2(G,T ) is generated by C ′ and C ′′odd, so (i) of the Main Lemma is
proven.

In the second case, (3.2) reduces to 2(ei, 1) = 0, which already holds in
C1,v−2(G,T )/d(C ′).

Finally, consider the third case when 2(ei, 1) = ε2(ej , 1), or more pre-
cisely,

(3.3) 2((ei, 1)− (−1)ρ(ei,ej)(ej , 1)) = 0.

To conclude the proof of (ii), let e1, . . . , ek be edges of G \ T with odd
ρ(ei), and ek+1, . . . , ep1 the remaining edges, with ρ(ei) even. The graph H
obtained by adding e1, . . . , ek to the tree T is a bipartite graph, so

H1,v−2(H,T ) = C1,v−2(H,T )/d(C ′) = {{(ei, 1)}ki=1 | 2(ei, 1) = 0} = Zk2,
and H1,v−2(G,T ) = H1,v−2(H,T )/C ′′even. Observe now that for ei, ej in
E(G) \ E(H) the relation (3.3) follows from

2((ei, 1)− (−1)ρ(ei,ek+1)(ek+1, 1)) = 0,

2((ej , 1)− (−1)ρ(ej ,ek+1)(ek+1, 1)) = 0,

since ρ(ei, ej) ≡ ρ(ei, ek+1) + ρ(ej , ek+1) (mod 2). Hence, H1,v−2(G,T ) is
generated by(

e1, . . . , ek+1, ek+2 − (−1)ρ(ek+2,ek+1)(ek+1, 1), . . . ,

ep1 − (−1)ρ(ep1 ,ek+1)(ek+1, 1)
)
,

where ek+1 is an infinite cyclic element and all other generators have order 2.
The proof of the Main Lemma is complete.

As a corollary we get the following main result.

Main Theorem 3.2. If G is a connected simple graph containing t3
triangles and v vertices, and having cyclomatic number p1, then:

(i) H1,v−2(G) =

{
Zp1(G)

2 if G is bipartite,

Zp1(G)−1
2 ⊕ Z if G has an odd cycle.

(ii) H2,v−2(G) =

{
Z(p12 )−t3 if G is bipartite,

Z(p12 )−t3+1 if G has an odd cycle.

(iii) H1,v−2(G) =

{
0 if G is bipartite,

Z if G has an odd cycle.

(iv) H2,v−2(G) =

{
Zp1

2 ⊕ Z(p12 )−t3 if G is bipartite,

Zp1−1
2 ⊕ Z(p12 )+1−t3 if G has an odd cycle.
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Proof. (i) Follows from the Main Lemma.

(ii) Using the Euler characteristic of chromatic graph cohomology in
degree j = v−2 we get rankH2,v−2(G)− rankH1,v−2(G) = av−2 where av−2

denotes the coefficient of qv−2 in the chromatic polynomial (9), given by

(3.4) av−2 =

(
|E|
2

)
− t3 − |E|(v − 1) +

(
v

2

)
=

(
p1

2

)
− t3.

(iii)–(iv) Parts (iii) and (iv) follow from (i) and (ii) by applying the
universal coefficient theorem: H2,v−2(G) = free(H2,v−2(G))⊕ torH1,v−2(G),
and H1,v−2(G) = free(H1,v−2(G)).

The restriction to connected graphs was made only for simplicity. The
Künneth formula is sufficient for recovering homology of the graph from the
homology of the connected components (compare [Ha, HR]). In fact, when
computing the homology of a disjoint sum of graphs, H∗∗(G1 tG), we can
sometimes ignore the tor part of the formula.

Corollary 3.3. Let G, G1 and G2 denote arbitrary graphs, Gbi all
bipartite components of G, and Gnbi = G − Gbi the remaining components
of the graph G. Then

(i) H i,v−i(G1 tG2) =
⊕
p+q=i
s+t=j

Hp,s(G1)⊗Hq,t(G2).

(ii) If Gbi and Gnbi are simple graphs then:

H2,v−2(Gbi) = Zp1(Gbi)
2 ⊕ Z(p1(Gbi)

2 ),(3.5)

H2,v−2(Gnbi) = Zp0(Gnbi)p1(Gnbi)−(p0(Gnbi)+1
2 )

2 ⊕ Zα,(3.6)

where α =
(
p1(Gnbi)+1

2

)
− p0(Gnbi)p1(Gnbi) +

(
p0(Gnbi)+1

2

)
− t3(Gnbi).

(iii) If G is a simple graph then

(3.7) torH2,v−2(G) = Zp1(Gbi)+p0(Gnbi)p1(G)−(p0(Gnbi)+1
2 )

2 .

(9) To put our calculation in a general combinatorial context we note that we have
the following identity which we use here only for i = 2 and in full generality in a sequel
paper:

|E|∑
i=0

(−1)i
( |E|
i

)
λv−i = λv−|E|(λ− 1)|E|

λ=q+1
= (q + 1)v−|E|q|E| = qv(1 + q−1)−(|E|−v)

=
∞∑
i=0

(−1)i
( (|E| − v + 1) + i− 2

i

)
qv−i=

∞∑
i=0

(−1)i
(p1 + i− 2

i

)
qv−i.
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(iv) If G is a simple graph then

rankH2,v−2(G) =

(
p1(G) + 1

2

)
− dim torH2,v−2(G)− t3(G).

Proof. (i) The Künneth formula yields the following formula for chro-
matic graph cohomology over A:

(3.8) H i,j(G1 tG2)

=
( ⊕
p+q=i
s+t=j

Hp,s(G1)⊗Hq,t(G2)
)
⊕
( ⊕
p+q=i+1
s+t=j

Hp,s(G1) ∗Tor H
q,t(G2)

)
,

thus it suffices to show that⊕
p+q=i+1
s+t=j

Hp,s(G1) ∗Tor H
q,t(G2) = 0

in bidegrees (i, j) satisfying i+ j = v(G1 tG2).
If G is a connected graph, then

• homology is supported in bidegrees (i, j) satisfying v(G) − 1 ≤ i + j
≤ v(G),
• torsion is supported in bidegrees (i, j) such that i+ j = v(G).

By induction on the number of components and using the Künneth for-
mula we get a well known fact (cf. [AP, HPR]) that for an arbitrary graph G:

• homology is supported in bidegrees (i, j) such that v(G) − p0(G) ≤
i+ j ≤ v(G),
• torsion is supported in bidegrees (i, j) such that v(G) − p0(G) + 1 ≤
i+ j ≤ v(G).

Based on the second inequality and the Künneth formula we are in-
terested only in bidegrees satisfying p + q + r + s = v(G1 t G2) + 1 =
v(G1) + v(G2) + 1. However, this implies that either p + q ≥ v(G1) or
s+ t ≥ v(G2), which contradicts the previous observation. Hence,⊕

p+q=i+1
s+t=j

Hp,s(G1) ∗Tor H
q,t(G2)

is trivial.
(ii) According to part (i) we have

H2,v(G1tG2)−2(G1 tG2) = H2,v(G1)−2(G1)⊕H2,v(G2)−2(G2)

⊕ (H1,v(G1)−1(G1)⊗H1,v(G2)−1(G2)).

We apply this formula inductively, using Theorems 3.2(iv) and 2.14, to
obtain formulas (3.5) and (3.7). An intermediate step is computation of
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H2,v−2(Gbi) assuming that Gbi = Gbi
1 t · · · tGbi

p0(Gbi)
:

H2,v−2(Gbi) = Zp1(Gbi)
2 ⊕ Z(p1(Gbi)

2 ),

using the identity(
p1(G1)

2

)
+ · · ·+

(
p1(Gp0(G))

2

)
+
∑
i<j

p1(Gi)p1(Gj) =

(
p1(G)

2

)
.

Similarly, assuming that Gnbi = Gnbi
1 t · · · tGnbi

p0(Gnbi)
, we have

H2,v−2(Gnbi) = Zp0(Gnbi)p1(Gnbi)+(p0(Gnbi)+1
2 )

2 ⊕ Zα

where α =
(
p1(Gnbi)+1

2

)
− (p0(Gnbi)− 1)p1(Gnbi)−

(
p0(Gnbi)+1

2

)
− t3(Gnbi).

(iii)–(iv) Part (iii) follows from (ii), and for part (iv) notice that for any
simple graph G,

rank free(H2,v(G)−2(G)) + dim tor(H2,v(G)−2(G)) =

(
p1(G) + 1

2

)
− t3(G).

Corollary 3.4. Let Kn denote the complete graph with n ≥ 3 vertices.
Then

H2,v−2(Kn) = Zn(n−3)/2
2 ⊕ Z3(n4)+1−(n3).

Corollary 3.5. Let Wn denote the wheel graph with n ≥ 4 vertices,
i.e. the cone over an (n− 1)-gon. Then

H2,v−2(Wn) = Zn−2
2 ⊕ Z(n−1

2 )−n+1.

4. Torsion in Khovanov homology of semi-adequate links. In or-
der to make further use of the correspondence between Khovanov and chro-
matic graph cohomology described in Subsection 2.5 and [AP, HPR, Pr2,
PPS], we adjust the original definition by incorporating comultiplication
in the differential. This modification extends the correspondence between
Khovanov homology and chromatic graph cohomology to additional homo-
logical grading. In particular, this definition enables computing torsion in
Khovanov homology in bidegree (n− 4, n+ 2|Ds+ | − 8).

First, the chain complex is adjusted so that it can accommodate comul-
tiplication. The original cochain groups contain a copy of the algebra for
each connected component in the graph [G : s] (see Definition 2.9). The
cochain groups ∆Ci(G) stay the same for i < `(G), and trivial for i > `(G).
The modified cochain groups ∆Ci(G) will contain the tensor product A⊗A
instead of a single copy of A for each state containing a closed cycle. Pictori-
ally, the component containing a closed cycle is decorated by basis elements
of the tensor product A ⊗ A (see Figure 3). This description is formalized
in the following definition.
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G=

Fig. 3. The graph G and the generators of ∆C3(G) and ∆C4(G). The four generators of
∆C3(G) appear in the annular region; there are 13 generators of ∆C4(G): twelve graphs
in the exterior region and one in the center of the figure.

Definition 4.1. For a given graph G of girth l, let ∆Ci,∗(G) denote the
modified chromatic cochain groups defined in the following way:

(i) ∆Ci,∗(G) ∼= Ci,∗(G) for i < l,
(ii) ∆Ci,∗(G) ∼=

⊕
|s|=iA⊗(p0([G:s])+p1([G:s])) for i = l,

(iii) ∆Ci,∗(G) = 0 for i > l.

Next, we modify the differential in the case when adding an edge for
the first time does not change the number of connected components, i.e.
when the added edge closes one of the shortest cycles. Let ∆ds,e denote the
modified differential. If p1([G : s]) = p1([G : s∪e]) = 0, the differential stays
the same, ∆ds,e = ds,e.

If the edge e we are adding is an internal edge of [G : s] (i.e. 1 = p1([G :
s ∪ e]) = p1([G : s]) + 1), the differential is determined by comultiplication
in A, given by 4(1) = (1⊗ x) + (x⊗ 1) and 4(x) = x⊗ x.

We have all the necessary ingredients to define the new differential.

Definition 4.2. The differential map ∆di(G) : ∆Ci(G)→ ∆Ci+1(G) is
defined by

∆di[G : s] =
∑

e∈E(G)\s

(−1)t(s,e)de([G : s]),
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where [G : s] ∈ ∆Ci(G) and t(s, e) = |{e′ ∈ s | e′ < e}| for all i < l = `(G).
Let c1, . . . , ck denote the components of the state [G : s]. The definition of
the map de varies depending on whether the edge e connects two different
components of [G : s], say cm and cn with m < n, or closes a shortest cycle
(this can happen only in degree i = `(G)− 1):

(i) If |s| < l − 1, then de([G : s]) has one component less than [G : s],
say

c1, . . . , cm ∪ e ∪ cn, . . . , cn−1, cn+1, . . . , ck.

The label of the newly obtained component cm∪e∪cn is equal to the
product of the labels of the components being merged, cm and cn.
In other words, de is given by multiplication in the algebra.

(ii) If |s| = l − 1, then

• if the number of components of s is greater than that of s ∪ e,
then de is the same as in case (i).
• if the number of components is preserved then de([G : s]) =

(c1, . . . , cm∪ e, . . .) and the closed component cm∪ e is decorated
with ∆(cm).

(iii) If |s| ≥ l (e.g. p1([G : s]) ≥ 1), then de is a zero map.

In order to have a degree-preserving differential we adjust the definition
of degrees of basis elements of A⊗A obtained from comultiplication, accord-
ing to the convention from Table 1. In general, the degree would be lowered
by the cyclomatic number p1(G), but since we are closing the shortest cycle
the adjustment is only by 1.

Table 1. Degrees of basis elements in A⊗A coming from comultiplication

Basis element Degree

1⊗ 1 −1

1⊗ x, x⊗ 1 0

x⊗ x 1

The cohomology ∆H∗,∗(G) of the modified bigraded cochain complex
∆C(G) is also an invariant of all graphs.

Next, we analyze the differences between the modified chromatic graph
cohomology and the original one. In general, the homology of these two com-
plexes agrees in homological degrees less than the girth of the graph `(G).

Lemma 4.3. For a loopless graph G, with v vertices and girth `(G) = l,
Ci(G) ∼= ∆Ci(G) for 0 ≤ i < l. Moreover, there exists an injective map α :
C l(G)→ ∆C l(G), so the homology groups are isomorphic up to homological
level l − 1.
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We are mostly interested in the bidegree (`(G), v − `(G)), in particular,
(2, v − 2). The change in the definition preserves H2,v−2(G) for loopless
graphs even if multiple edges are allowed. The proof of this fact relies on
duality between homology and cohomology, and on the following lemma.

Lemma 4.4. For a loopless graph G with possible multiple edges,

H1,v−2(G) ∼= ∆H1,v−2(G).

Proof. According to the original and modified definitions of chromatic
graph homology, both chain groups and differentials agree on the zeroth
and first level. Hence, we only need to analyze ∆d2 and ∆H2,v−2(G) if G
has double or multiple edges. Under this assumption ∆C2,v−2(G) has more
generators than ∆C2,v−2(G′), where G′ denotes the simple graph obtained
from G. Without loss of generality, denote the double edge by e = (e1, e2).
Based on the label of e we have two different cases:

(i) If e has weight x⊗ x of degree 1, then all but one of the remaining
vertices have labels x. Denote the special vertex by v and the state
by (e(x⊗x), v(1)). The image of this state ∆d2(e, v) = (e1(x), v(1))±
(e2(x), v(1)) gives the relation (e1(x), v(1)) = (e2(x), v(1)), so there
are no new generators in homology.

(ii) If e is labeled by 1 ⊗ x or x ⊗ 1, both of degree zero, all of the
remaining vertices have to be labeled by x and ∆d2(e(1 ⊗ x)) =
∆d2(e(x⊗ 1)) = e1(1)− e2(1).

Therefore Im ∆d2 and Im d2 impose the same relations on homology, which
completes the proof.

Corollary 4.5. For a loopless graph G with v vertices, torH2,v−2(G) ∼=
tor ∆H2,v−2(G).

Proposition 4.6. For a connected graph G with girth `(G) = 1 we have
∆H0,v−1(G) = 0 and tor ∆H1,v−1(G) = 0.

Proof. If e` denotes a loop in G at the vertex v, notice that there is an
epimorphism

∆d1 = d1 : ∆C1,v−1(G)→ ∆C0,v−1(G)

sending each generator of ∆C1,v−1(G) containing e` to a generator of
∆C0,v−1(G) with a label 1 or x at the vertex v, if e` had weight 1 ⊗ x,
x⊗ 1, or x⊗ x. Hence ∆H0,v−1(G) = 0 and ∆H1,v−1(G) is torsion free.

Finally, we have a version of Proposition 2.13 for the modified chro-
matic homology. It holds because ∆C∗,∗(G) imitates the original Khovanov
homology one homological degree deeper.
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Proposition 4.7. Let D be the diagram of an unoriented framed link L
whose associated graph G = Gs+(D) has girth l = `(G) > 1, i.e., contains
no loops. Then:

(i) For all i < `, we have ∆H i,j(G) ∼= Ha,b(D),
(ii) For i = `, we have tor ∆H i,j(G) = torHa,b(D),

where a = E(G)−2i, b = E(G)−2v(G)+4j and Ha,b(D) are the Khovanov
homology groups of the unoriented framed link L defined by D.

We use this result together with Corollary 3.3 to compute the torsion in
Khovanov link homology.

Proposition 4.8. Consider a +-adequate diagram D with n crossings.
Let G = Gs+(D) be the graph corresponding to the diagram D and state
s+, and G′ = G′s+(D) be the simple graph obtained from G by replacing

every multiple edge by a single one. Let p0(Gbi) denote the number of bipar-
tite components, p0(Gnbi) the number of nonbipartite components, p0(G) the
number of connected components, and p1(G′) the cyclomatic number. Then

(i) If G′(D) is connected then

torHn−4,n+2|Ds+ |−8(D) =

{
Zp1(G′(D))−1

2 if G′(D) has an odd cycle;

Zp1(G′(D))
2 if G′(D) is a bipartite graph.

(ii) If we allow any +-adequate link diagram D (that is, G(D) is not
necessarily connected) then by applying Lemma 3.3 we get

torHn−4,n+2|Ds+ |−8(D) = Zp1(G′bi)+p0(Gnbi)p1(G′)−(p0(Gnbi)+1
2 )

2 .

Fig. 4. The link 84
1 and the corresponding graph Gs+(84

1)

Example 4.9. The following example illustrates the strength of Propo-
sition 4.8 with respect to the previous results. Consider the link 84

1, shown in
Figure 4 together with its graphG(84

1) = Gs+(84
1). The torsion torH4,8(84

1) =
Z2 in Khovanov homology of this link could not be detected by results
of [AP], but can be obtained from Theorem 3.2(4) together with Propo-
sition 4.8(1). More importantly, it answers the question raised in [AP],
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whether Theorem 3.2 of [AP] can be improved so that Hn−4,n+2|Ds+ |−8(D)

has Z2-torsion for any +-adequate diagram with an even n-cycle (n ≥ 4).

Our next goal is to find an explicit formula for Khovanov homology
Hn−2i,n+2|Ds+ |−4i(D), i<`(G(D)), and torHn−2`(G(D)),n+2|Ds+ |−4`(G(D))(D).

We plan to use our method for computing elements of a categorification
of skein modules of a product of a surface with the interval as defined
in [APS].

5. Adequate positive braids. Results obtained in Section 3 can be
used for finding torsion in Khovanov homology, in particular we find 2-tor-
sion for some positive 3-braids.

Fig. 5. The smallest nonalternating adequate knot 10152

Notice that the smallest adequate nonalternating knot 10152 in Rolf-
sen’s table [Ro] corresponds to the positive minimal braid is s3

1s
2
2s

2
1s

3
2 (see

Figure 5). The graph assigned to the Kauffman state with all negative res-
olutions s− has only multiple edges, so our method cannot detect torsion
(see Figure 6).

Fig. 6. s− Kauffman state of 10152 and the corresponding graph
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Fig. 7. s+ Kauffman state of 10152 and the corresponding graph

On the other hand, the graph corresponding to the state s+ with all pos-
itive smoothings, contains triangles [PPS], hence, H8,16 (10152) contains Z2

(see Figure 7). More precisely,

torH8,16(10152) = Z2 = torH6,12(10152).

This example can be generalized to positive and negative 3-braids (10). In
Proposition 5.1 we state the result for positive braids; the result for negative
braids is analogous.

Proposition 5.1. Let γ = σa1
i1
. . . σakik be a positive 3-braid such that

ij 6= ij+1, ai ≥ 1, and let γ̂ be a closure of γ. Then

(i) The link diagram γ̂ is adequate if and only if aj ≥ 2 for every
0 < j ≤ k.

(ii) If, additionally, aj ≥ 3 for some j, then the link diagram γ̂ has
Z2-torsion in Khovanov homology.

(iii) If γ̂ is an adequate knot or link of two components then its Khovanov
homology contains Z2-torsion.

Proof. Consider a standard diagram γ̂ of a positive 3-braid γ. Since
the diagram is positive, the link is +-adequate. In this case the graph Gs+
has three vertices and only 2-cycles (compare with Figure 6). On the other
hand, the graph Gs− contains an ai-gon for any 0 < i ≤ k. In particular,
if all ai ≥ 2, this graph has no loops, hence γ̂ is −-adequate. Furthermore,
if at least one aj ≥ 3, then the girth of the corresponding graph Gs− is at
least 3. According to Theorems 2.14 and 3.2, Khovanov homology of such
3-braids contains Z2-torsion. Part (iii) follows from the fact that when all
ai are 2, then γ̂ is a link of three components.

(10) 10152 is a positive braid in the original (old) convention. In Proposition 5.1 we
use the new convention, so 10152 will have all negative crossings and be a negative knot.
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A weaker version of Proposition 5.1 holds for all positive n-braids.

Proposition 5.2. Let γ = σa1
i1
. . . σakik be a positive n-braid such that

ai ≥ 2 for any i. Then γ̂ is an adequate diagram. If, additionally, aj ≥ 3 for
some j, then γ̂ has Z2-torsion in Khovanov homology.

6. Conjectures. The main goal of this paper was to enhance our un-
derstanding of torsion in Khovanov homology. In order to do so, we have
analyzed those gradings in chromatic graph cohomology that agree with
Khovanov homology. This approach brought new insights about torsion
that agree with the recent results by A. Shumakovitch [Sh3] stating that
there is no other torsion except Z2 in Khovanov homology of alternating
knots. Experimental results obtained using Shumakovitch’s software KhoHo,
Knotscape by M. Thistlethwaite, and LinKnot by S. Jablan and the second
author show that there are eight positive 15-crossing knots whose 4-braid di-
agrams are adequate, and which have Z4-torsion in Khovanov homology (11).
We suspect that the order of torsion in Khovanov homology partially de-
pends on the minimal braid index of a given link as stated in the following
conjecture.

Conjecture 6.1 (PS braid conjecture).

(1) Khovanov homology of a closed 3-braid can have only Z2-torsion.
(2) Khovanov homology of a closed 4-braid cannot have an odd torsion.
(2′) Khovanov homology of a closed 4-braid can have only Z2- and

Z4-torsion.
(3) Khovanov homology of a closed n-braid cannot have p-torsion for

p > n (p prime).
(3′) Khovanov homology of a closed n-braid cannot have Zpr -torsion for

pr > n.

Note that we are stating these conjectures with various degrees of confi-
dence. The case of 3-braids was extensively tested using A. Shumakovitch’s
software KhoHo, and P. Turner proved that the Khovanov homology of (3, q)
torus links can only contain 2-torsion [Low, Tu]. In 2011, W. Gilliam [Gi]
showed that only Z2-torsion is possible in their Khovanov homology. D. Bar-
Natan [BN] checked that (n, 4) torus knots have Z4-torsion for n = 5, 7, 9, 11.

(11) Closures of the following braids have Z4-torsion in Khovanov homology:

BR[4, 1, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 3, 2, 2, 3], BR[4, 1, 1, 2, 2, 2, 1, 1, 3, 2, 2, 1, 3, 2, 2, 3],

BR[4, 1, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 3, 3], BR[4, 1, 2, 2, 1, 3, 3, 3, 2, 2, 2, 1, 3, 2, 2, 3],

BR[4, 1, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 3, 2, 2, 3], BR[4, 1, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3],

BR[4, 1, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3], BR[4, 1, 2, 2, 2, 1, 3, 2, 2, 2, 1, 3, 2, 2, 2, 3],

as verified by Slavik Jablan, Cotton Seed, and Alexander Shumakovitch [Ja, Se, Sh4].
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Example 6.2. As of summer of 2012, examples of knots with Z5-torsion
in Khovanov homology were quite rare: for example 5-strand torus knots:
(6, 5), (7, 5), (8, 5), and (9, 5). We predicted that the positive adequate
36-crossing knot K given by the closure of the braid

s2
1s

2
2s

3
1s

2
2s1s3s

2
2s

2
4s3s

2
1s

2
2s

3
1s

3
2s

2
1s3s

2
2s

3
4s

2
3

has Z5-torsion, which was confirmed by A. Shumakovitch using JavaKh
[BNG]. More precisely, we show that homology mod 5 and mod 7 have
different ranks while homology mod 7 and mod 11 have the same ranks.
The difference between Khovanov polynomials computed mod 5 and mod 7
(see Appendix) is strictly positive:

KH5(K)−KH7(K) = (t12 + t11)q51 + (t11 + t10)q47.

This means that the rank of 5-torsion is strictly greater than the one of
7-torsion, hence torsion of order 5 exists at least in degrees (12, 51), and
(11, 47) (12).

Finally for the (8, 7) torus knot Bar-Natan computed Khovanov ho-
mology and showed that it contains Z7-, Z5-, Z4-, and Z2-torsion but this
48-crossing 7-braid reaches the limits of current computational resources.

Appendix. Khovanov homology computations. We include the
Khovanov polynomials of the positive adequate 36-crossing knot K given by
the closure of the 5-braid s2

1s
2
2s

3
1s

2
2s1s3s

2
2s

2
4s3s

2
1s

2
2s

3
1s

3
2s

2
1s3s

2
2s

3
4s

2
3 computed

over Z5 and Z7. Computations were done in JavaKh [BNG] by A. Shu-
makovitch using Mathematisches Forschungsinstitut Oberwolfach world-
class computer facilities. Note that the Khovanov homology in the exam-
ple considered is normalized to categorify the Jones polynomial, not the
Kauffman bracket polynomial (13).

KH5(K) = q31t0 + q33t0 + q35t2 + q39t3 + 2q37t4 + q39t4 + 2 + q41t5 + q43t5 + q39t6

+ 2q41t6 + 2q43t7 + 2q45t7 + 4q41t8 + 3q43t8 + q47t8 + 13q43t9 + 4q45t9

+ 4q47t9 + 2q43t10 + 29q45t10 + 14q47t10 + q51t10 + 9q45t11 + 44q47t11

+ 31q49t11 + q51t11 + 2q45t12 + 34q47t12 + 68q49t12 + 42q51t12 + 2q53t12

+ 11q47t13 + 85q49t13 + 97q51t13 + 59q53t13 + 45q49t14 + 159q51t14

+ 142q53t14 + 63q55t14 + 137q51t15 + 245q53t15 + 202q55t15 + 9q57t15

+ 345q53t16 + 5376q55t16 + 237q57t16 + 54q59t16 + 735q55t17 + 589q57t17

(12) Theoretically, Khovanov homology can contain more 5-torsion, but then it must
coincide with 7-torsion, which we predict to be trivial.

(13) If Hi,j(K) is the Khovanov homology of K from Definition 2.8 and Hc,d(K) is
the homology used in Example 5.2, then c = (i− 36)/2 corresponds to the power of t and
d = (j − 3 · 36)/2 corresponds to the power of q. Notice that |Ds+ | = 5 and |Ds− | = 21
and the writhe w(K) is 36.
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+ 260q59t17 + 37q61t17 + 1328q57t18 + 953q59t18 + 253q61t18 + 21q63t18

+ 2040q59t19 + 1501q61t19 + 220q63t19 + 9q65t19 + 2729q61t20 + 2149q63t20

+ 173q65t20 + 2q67t20 + 2q61t21 + 3203q63t21 + 2779q65t21 + 109q67t21

+ 11q63t22 + 3344q65t22 + 3219q67t22 + 50q69t22 + 36q65t23 + 3127q67t23

+ 3345q69t23 + 16q71t23 + 81q67t24 + 2608q69t24 + 3116q71t24 + 3q73t24

+ 137q69t25 + 1934q71t25 + 2572q73t25 + 191q71t26 + 1271q73t26 + 1853q75t26

+ 228q73t27 + 759q75t27 + 1134q77t27 + 238q75t28 + 446q77t28 + 568q79t28

+ 219q77t29 + 294q79t29 + 218q81t29 + 175q79t30 + 226q81t30 + 56q83t30

+ 119q81t31 + 175q83t31 + 7q85t31 + 65q83t32 + 119q85t32 + 26q85t33

+ 65q87t33 + 7q87t34 + 26q89t34 + q89t35 + 7q91t35 + q93t36,

KH7(K) = q31t0 + q33t0 + q35t2 + q39t3 + 2q37t4 + q39t4 + 2q41t5 + q43t5 + q39t6

+ 2q41t6 + 2q43t7 + 2q45t7 + 4q41t8 + 3q43t8 + q47t8 + 13q43t9 + 4q45t9

+ 4q47t9 + 2q43t10 + 29q45t10 + 13q47t10 + q51t10 + 9q45t11 + 43q47t11

+ 31q49t11 + 2q45t12 + 34q47t12 + 68q49t12 + 41q51t12 + 2q53t12 + 11q47t13

+ 85q49t13 + 97q51t13 + 59q53t13 + 45q49t14 + 159q51t14 + 142q53t14

+ 63q55t14 + 137q51t15 + 245q53t15 + 202q55t15 + 59q57t15 + 345q53t16

+ 376q55t16 + 237q57t16 + 54q59t16 + 735q55t17 + 589q57t17 + 260q59t17

+ 37q61t17 + 1328q57t18 + 953q59t18 + 253q61t18 + 21q63t18 + 2040q59t19

+ 1501q61t19 + 220q63t19 + 9q65t19 + 2729q61t20 + 2149q63t20 + 173q65t20

+ 2q67t20 + 2q61t21 + 3203q63t21 + 2779q65t21 + 109q67t21 + 11q63t22

+ 3344q65t22 + 3219q67t22 + 50q69t22 + 36q65t23 + 3127q67t23 + 3345q69t23

+ 16q71t23 + 81q67t24 + 2608q69t24 + 3116q71t24 + 3q73t24 + 137q69t25

+ 1934q71t25 + 2572q73t25 + 191q71t26 + 1271q73t26 + 1853q75t26 + 228q73t27

+ 1134q77t27 + 238q75t28 + 446q77t28 + 568q79t28 + 219q77t29 + 294q79t29

+ 218q81t29 + 759q75t27 + 175q79t30 + 226q81t30 + 56q83t30 + 119q81t31

+ 175q83t31 + 7q85t31 + 65q83t32 + 119q85t32 + 26q85t33 + 65q87t33

+ 7q87t34 + 26q89t34 + q89t35 + 7q91t35 + q93t36.
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Added in proof (February 2014). Lukas Lewark informed us that his calculations
show that Conjecture 6.1 holds for the torus knot (9, 8), and that it has Z8 torsion in
Khovanov homology. In particular, the torsion in one specific bigrading is equal to Z8 ⊕
Z5 ⊕ Z4 ⊕ Z3 ⊕ Z3

2. It is interesting that the Khovanov homology of the torus knot (9, 8)
contains no 7-torsion (email of January 27, 2014).
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