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Torsion of Khovanov homology

by

Alexander N. Shumakovitch (Washington, DC)

Abstract. Khovanov homology is a recently introduced invariant of oriented links
in R3. It categorifies the Jones polynomial in the sense that the (graded) Euler character-
istic of Khovanov homology is a version of the Jones polynomial for links. In this paper we
study torsion of Khovanov homology. Based on our calculations, we formulate several con-
jectures about the torsion and prove weaker versions of the first two of them. In particular,
we prove that all non-split alternating links have their integer Khovanov homology almost
determined by the Jones polynomial and signature. The only remaining indeterminacy is
that one cannot distinguish between Z2k factors in the canonical decomposition of the
Khovanov homology groups for different values of k.

1. Introduction. Let L be an oriented link in the Euclidean space
R3 represented by a planar diagram D. In a seminal paper, Mikhail Kho-
vanov [Kh1] assigned to D a family of abelian groups Hi,j(L), whose iso-
morphism classes depend on the isotopy class of L only. These groups are
defined as the homology groups of an appropriate (graded) chain complex
C(D) with integer coefficients. The main property of Khovanov homology
is that it categorifies the Jones polynomial. More specifically, let JL(q) be
a version of the Jones polynomial of L that satisfies the following identities
(called the Jones skein relation and normalization):

(1.1)

−q−2J
+

(q) + q2J
−

(q) = (q − 1/q)J
0

(q),

J (q) = q + 1/q.

The skein relation should be understood as relating the Jones polynomials
of three links whose planar diagrams are identical everywhere except in a
small disk, where they are different as depicted in (1.1). The normalization
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fixes the value of the Jones polynomial on the trivial knot. JL(q) is a Laurent
polynomial in q for every link L and is completely determined by its skein
relation and normalization.

The gist of the categorification is that the (graded) Euler characteristic
of Khovanov chain complex equals JL(q):

(1.2) JL(q) =
∑
i,j

(−1)iqjhi,j(L),

where hi,j(L) = rk(Hi,j(L)), the Betti numbers of H(L). The reader is
referred to [BN1, Kh1] for detailed treatment.

There are several numerical conjectures about Khovanov homology. We
recall them briefly below.

Given a link L, the ranks hi,j(L) of its Khovanov homology can be
arranged into a table with columns and rows numbered by i and j, re-
spectively (see Figure 1). A pair of entries in such a table is said to be a
“knight move” pair if these entries have the same (positive) value and their
i- and j-positions in the table differ by 1 and 4, respectively. This “knight
move” rule is depicted in Figure 1, where a can be an arbitrary positive
integer.

a

a

77 −3 −2 −1 0 1 2 3 4

9 1

7 1

5 2 1

3 2 1

1 1 + 1 2

−1 2 1 + 2

−3 1 1

−5 2

−7 1

Fig. 1. Pattern of the “knight move” rule. Ranks of the Khovanov homology of the knot 77

that illustrates Conjecture 1.A.

1.A. Conjecture (Bar-Natan, Garoufalidis, Khovanov [BN1]). Let L
be a knot. Consider the table of the Khovanov ranks hi,j(L) for L. If one
subtracts 1 from two adjacent entries in the column i = 0, then the remaining
entries are arranged in “knight move” pairs.
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1.B. Example. Figure 1 illustrates Conjecture 1.A for the knot 77 (1).
The two 1’s to subtract are shown inside circles with a gray background and
the rest of the circles joined by lines depict the “knight move” pairs.

Remark. In fact, different “knight move” pairs are allowed to overlap.
The common entry in this case is simply the sum of the overlapping entries
from both pairs. For example, the knot 13n3663, whose homology is presented
in Section A.4 of the Appendix, has two overlapping pairs (h1,−1, h2,3) and
(h2,3, h3,7). This confusion will be cleared up after we give a more rigorous
statement of Conjecture 1.A in Section 2.3.

Remark. Conjecture 1.A was proved by Eun Soo Lee [L1, L2] for the
special case of H-thin knots (see below), in particular for all alternating
knots.

Let R be a commutative ring with unity. In this paper, we are mainly
interested in the cases when R = Z, Q, or Z2.

1.C. Definitions (cf. Khovanov [Kh2]). A link L is said to be homolog-
ically thin over a ring R or simply RH-thin if its Khovanov homology groups
with coefficients in R are supported on two adjacent diagonals 2i−j = const.
A link L is said to be homologically slim or simply H-slim if it is ZH-thin and
all its homology groups supported on the upper diagonal have no torsion.
A link L that is not RH-thin is said to be RH-thick.

1.D. If a link is ZH-thin, then it is QH-thin as well. Conversely, a QH-
thick link is necessarily ZH-thick. If a link is H-slim, then it is ZpH-thin for
every prime p.

1.E. Examples. The knot 77 is QH-thin since the free part of its ho-
mology is supported on the diagonals 2i − j = ±1 (see Figure 1). In fact,
it is H-slim as well (see Theorem 1.F below). The first QH-thick knot is 819
(see Figure 2 later on).

Remark. Most of the ZH-thin knots are H-slim. The first prime ZH-thin
knot that is not H-slim is the mirror image of 16n197566. It is also Z2H-thick.

1.F. Theorem (Lee [L1, L2]). Every oriented non-split alternating link
L is H-slim and the Khovanov homology of L is supported on the diagonals
2i− j = σ(L)± 1, where σ(L) is the signature of L.

(1) Throughout this paper we use the following notation for knots: knots with 10
crossings or less are numbered according to Rolfsen’s table of knots [Ro] and knots with
11 crossings or more are numbered according to the knot table from Knotscape [HTh].
For example, 942 is the knot number 42 with 9 crossings from Rolfsen’s table, and 13n

3663

is a non-alternating knot number 3663 with 13 crossings from Knotscape’s one.
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Remark. This theorem was originally conjectured by Bar-Natan, Garo-
ufalidis, and Khovanov [BN1, G] in a somewhat weaker form. Their conjec-
ture stated that every non-split alternating link is QH-thin and not H-slim.
Lee proved a stronger version (see [L1, Corollary 4.3]).

Khovanov homology is very difficult to compute by hand. Conjecture 1.A
above was formulated based on extensive computations by Dror Bar-Natan
using a Mathematica software package that he developed [BN1]. He com-
puted ranks of Khovanov homology for all prime knots with up to 11 cross-
ings. In 2002, the author developed KhoHo [Sh] that used reductions of the
Khovanov chain complex to compute its homology faster and over Z. All
the conjectures below about torsion of Khovanov homology were formulated
based on computations done with KhoHo. As of this writing, integer Kho-
vanov homology is known for all prime knots with at most 16 crossings, all
prime links with at most 14 crossings, as well as many thousands of other
knots and links.

Remark. For several years, KhoHo was the fastest program for comput-
ing Khovanov homology. It works efficiently for knots and links with up to
17–19 crossings. Only in Summer 2005 was a significantly faster program
written by Bar-Natan and Green [BN2, BNG].

As it turns out, torsion of Khovanov homology has very special prop-
erties and is at least as interesting and important as the free part of the
homology. First of all, every knot and link considered, except the unknot,
the Hopf link, their connected sums, and disjoint unions, has torsion of or-
der 2. If proved, this could lead to a (relatively) easy way to detect the
unknot.

Conjecture 1. The Khovanov homology of every non-split link except
the trivial knot, the Hopf link, and their connected sums has 2-torsion, that
is, torsion elements of order 2.

Torsion of orders other than 2 appears very seldom in Khovanov ho-
mology. Among all 1,701,936 prime knots with at most 16 crossings, all
alternating ones have 2-torsion only. 38 knots with 15 crossings and 129
knots with 16 crossings have 4-torsion. One of the first such knots is the
(4, 5)-torus knot. Its Khovanov homology is presented in Section A.5 of the
Appendix.

Remark. The original version of this paper contained a conjecture that
no link has torsion of odd order in its Khovanov homology. This turned out
to be false. The first known counter-example is the (5, 6)-torus knot [BN2]
with 3-torsion. It has 24 crossings. Nonetheless, a large class of links is
proved to have 2-torsion only (see Theorem 1 below).



Torsion of Khovanov homology 347

Let ti,j
pk

(L), where p is a prime number and k ≥ 1, be the pk-rank of

Hi,j(L), that is, the multiplicity of Zpk in the canonical decomposition of

Hi,j(L). Let also T i,jp (L) =
∑∞

k=1 t
i,j
pk

(L). The complete information about

the canonical decomposition of all the groups Hi,j(L) can be combined into
a table, where an (i, j)-entry contains the corresponding rank hi,j(L) and a

comma-separated list of ti,j
pk

(L) for all relevant p and k with the subscript

indicating the torsion order. For example, a hypothetical entry of 5,32,14

means that the corresponding group is Z5⊕Z3
2⊕Z4 (see Figure 2 as well as

the Appendix).

Similarly to the case of ranks, torsion for a majority of knots and links
fits into very regular patterns that are explained below (see Figures 2 and 3).

a

a2

a

819 0 1 2 3 4 5

17 1

15 1

13 1 1

11 12 1

9 1

7 1

5 1

942 −4 −3 −2 −1 0 1 2

7 1

5 12

3 1 1

1 1 12 1

−1 12 1 1

−3 1 1

−5 12

−7 1

Fig. 2. Torsion version of the “knight move” rule. Khovanov homology of the knots 819

and 942 that are both QH- and ZH-thick but are T-fancy and T-simple, respectively.

1.G. Definitions. A link L is said to be weakly torsion simple or just
WT-simple if (1) it satisfies Conjecture 1.A; (2) it has no torsion of odd
order; (3) for every “knight move” pair of value a that comprises entries

(i, j) and (i + 1, j + 4), one has T i+1,j+2
2 (L) = a; and (4) all 2k-ranks of L

fit into such patterns (see Figure 2, where the torsion corresponding to
a “knight move” pair is depicted in a gray square). A link L is said to be
torsion simple or T-simple if it is WT-simple and has torsion of order 2 only.
It follows that ti+1,j+2

2 (L) = a in this case. A link L that is not WT-simple
is said to be T-fancy.

Remark. Strictly speaking, Conjecture 1.A is stated for knots only.
Nonetheless, it was generalized (and proved) by Lee [L2] to the case of QH-
thin links (see Theorem 2.3.C below). Throughout this paper we are going
to refer to a link L as being T-simple or T-fancy with the understanding
that this notion is assumed to be applicable, that is, L is either a knot or a
QH-thin link.
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1.H. Examples. The knot 942 is T-simple (see Figure 2) and the knot
819 is the first T-fancy one. Both of them are QH- and ZH-thick. Theo-
rems 1.F and 3 (see below) imply that the only T-fancy knots are non-
alternating ones. Figure 3 lists the number of prime T-fancy knots with at
most 16 crossings.

Remark. The torsion of a T-simple link is completely determined by the
ranks of Khovanov homology. In particular, for non-split alternating links it
is completely determined by the Jones polynomial and signature [L2].

Conjecture 2. Every H-slim link is T-simple. In particular, every non-
split alternating link is T-simple.

Most of the T-fancy links have their torsion ranks never greater than the
value of the corresponding “knight move” pair.

1.I. Definition. A T-fancy link L is said to be torsion rich or just
T-rich if it satisfies Conjecture 1.A, has no torsion of odd order (that is, all
torsion elements have order 2k for some k) and there is at least one value

of (i, j) such that T i+1,j+2
2 (L) is greater that the value of the corresponding

“knight move” pair (hi,j , hi+1,j+4).

Number of crossings 8 9 10 11 12 13 14 15 16

Number of prime
non-alternating knots 3 8 42 185 888 5110 27436 168030 1008906

Number of T-fancy knots 1 0 6 11 71 322 1736 10889 64341

Number of T-rich knots 0 0 0 0 0 4 14 177 1413

Fig. 3. Number of prime T-fancy and T-rich knots

1.J. Example. The first T-rich knot has 13 crossings. It is the knot
13n3663 mentioned above. This knot is also the first one whose homology is
supported on 4 adjacent diagonals. Figure 3 lists the number of prime T-rich
knots with at most 16 crossings.

In [Kh2] Khovanov defined a reduced version of his homology. The graded
Euler characteristic of this reduced homology is again a version of the Jones
polynomial. More specifically, it satisfies the same skein relation from (1.1)
but is normalized to be 1, as opposed to q + 1/q, on the unknot. Reduced
Khovanov homology is always supported on exactly one diagonal less than
the standard one. Very few knots have torsion in reduced homology and all
known examples of those that have are T-rich.

Conjecture 3. A knot is T-rich if and only if its reduced Khovanov
homology has torsion.
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The following conjecture is a bit optimistic, but its confirmation would be
very exciting, since the torsion seems to be easier to read from the diagram
than the rest of the homology.

Conjecture 4. If two knots have the same torsion in their Khovanov
homology, then they have the same ranks as well. In other words, the Kho-
vanov homology of a knot is completely determined by its torsion.

Remark. There are many examples of knots which have the same ranks
in Khovanov homology but different torsion. Some of the first ones are 14n9933
and the mirror image of 15n129763. The former one is T-simple, while the latter
one is T-fancy.

In this paper we prove the following results.

Theorem 1. The Khovanov homology of every H-slim link has no tor-
sion of order pk for any odd prime p and k ≥ 1.

Corollary 2. The Khovanov homology of every non-split alternating
link has no torsion of order p for any p other than a power of 2.

We prove Theorem 1 by showing that Conjecture 1.A holds true for every
H-slim link not only for rational homology, but also for homology over Zp
for all odd prime p. This is done using a slight modification of Lee’s methods
from [L2].

Theorem 3 (cf. Conjecture 2). Every H-slim link is WT-simple.

Corollary 4. Every non-split alternating link is WT-simple. In par-
ticular, the integer Khovanov homology of non-split alternating links is all
but determined by the Jones polynomial and signature except that one can-
not distinguish between Z2k factors in the canonical decomposition of the
Khovanov homology groups for different values of k.

Remark. Lee proved that the rational Khovanov homology of non-split
alternating links is completely determined by the Jones polynomial and
signature (see [L2]).

Corollary 5 (cf. Conjecture 1). Every alternating link except the triv-
ial knot, the Hopf link, their connected sums and disjoint unions has torsion
of order 2.

Remark. Marta Asaeda and Józef Przytycki gave [AP] an independent
proof of Corollary 5. Moreover, they proved that an adequate link that satis-
fies some additional conditions has torsion of order 2 as well. Contrary to our
approach, their proof is constructive. They explicitly find a generator in the
Khovanov chain complex that gives rise to an appropriate torsion element.
More recently, Milena Pabiniak, Józef Przytycki, and Radmila Sazdanović
provided similar treatments for semi-adequate links [PPS, PS].



350 A. N. Shumakovitch

Theorem 3 is a corollary of Theorem 3.2.A that establishes a structure
of an exact sequence in Khovanov homology over Z2. To complete the proof
of Conjecture 2, one only has to show that every H-slim link has no torsion
elements of order 2k for k ≥ 2.

This paper is organized as follows. Section 2 contains the main definitions
and facts about Khovanov homology that are going to be used in the paper.
Theorems 1 and 3 and Corollary 5 are proved in Sections 4, 3, and 3.3,
respectively. The Appendix contains information about the standard and
reduced Khovanov homology of knots whose torsion has some remarkable
properties.

2. Khovanov chain complex and its properties. In this section
we briefly recall the main ingredients of Khovanov homology theory. Our
exposition follows the one by Viro, whose paper [V] is recommended for a
full treatment.

2.1. Generators and the differential of the Khovanov chain com-
plex. Let D be a planar diagram representing an oriented link L. Assign
a number ±1, called a sign, to every crossing of D according to the rule
depicted in Figure 4. The sum of such signs over all the crossings is called
the writhe number of D and is denoted by w(D).

positive crossing negative crossing

Fig. 4. Positive and negative crossings

At every crossing of D, the diagram locally divides the plane into four
quadrants. A choice of a pair of antipodal quadrants at a crossing can be de-
picted on the diagram with the help of a marker, which can be either positive
or negative (see Figure 5). A collection of markers chosen at every crossing of
a diagram D is called a (Kauffman) state of D. There are, clearly, 2n different
states, where n is the number of crossings of D. Denote by σ(s) the difference
between the numbers of positive and negative markers in a given state s.

Given a state s of a diagram D, one can smooth D at every crossing
with respect to the corresponding marker from s (see Figure 5). The result

+

positive marker

−

negative marker

Fig. 5. Positive and negative markers and the corresponding smoothings of a diagram
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is a family Ds of disjointly embedded circles. Denote the number of these
circles by |s|.

Let s be a state of a diagram D. Equip each circle from Ds with either
a plus or a minus sign. We call the result an enhanced (Kauffman) state of
D that belongs to s. There are exactly 2|s| different enhanced states that
belong to a given state s. Denote by τ(S) the difference between the numbers
of positively and negatively signed circles in a given enhanced state S.

With every enhanced state S belonging to a state s of a diagram D one
can associate two numbers:

i(S) =
w(D)− σ(s)

2
, j(S) = −σ(s) + 2τ(S)− 3w(D)

2
.

Since both w(D) and σ(s) are congruent modulo 2 to the number of cross-
ings, i(S) and j(S) are always integer.

Fix i, j ∈ Z. It was shown by Viro [V] that the Khovanov chain group
Ci,j(D) is generated by all the enhanced states of D with i(S) = i and
j(S) = j. With the basis of the chain groups chosen, the Khovanov dif-
ferential di,j : Ci,j(D) → Ci+1,j(D) can be described by its matrix, called
the incidence matrix in this context. The elements of the incidence matrix
are called incidence numbers and are denoted by (S1 : S2), where S1 and
S2 are enhanced states (that is, generators) from Ci,j(D) and Ci+1,j(D),
respectively.

The incidence number (S1 : S2) is zero unless all of the following three
conditions are met:

I. The markers from S1 and S2 differ at one crossing of D only, and
at this crossing the marker from S1 is positive, while the marker
from S2 is negative.

Remark. If this condition is satisfied, then DS2 is obtained from DS1

by either joining two circles into one or splitting one circle into two, and
hence |S2| = |S1| ± 1.

II. The common circles of DS1 and DS2 have the same signs.
III. One of the following four conditions is met:

(1) |S2| = |S1| − 1, both joining circles from DS1 are negative and
the resulting circle from DS2 is negative as well;

(2) |S2| = |S1|− 1, the joining circles from DS1 have different signs
and the resulting circle from DS2 is positive;

(3) |S2| = |S1|+1, the splitting circle from DS1 is positive and both
the resulting circles from DS2 are positive as well;

(4) |S2| = |S1|+1, the splitting circle from DS1 is negative and the
resulting circles from DS2 have different signs.
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If all the conditions I–III are satisfied, then the incidence number (S1 : S2)
is defined to be equal to (−1)t, where t is defined as follows. Choose some
order on the crossings of D. Let the crossing where one changes the marker
to get from S1 to S2 have number k in this order. Then t is the number of
negative markers in S1 whose order number is greater than k. As it turns
out, the resulting homology does not depend on the choice of the crossing
order. More details can be found in [BN1, V].

2.2. Reduced Khovanov homology. Let D be a diagram of a link L.
Pick a base point on D that is not a crossing. Let C̃(D) be a subcomplex of
C(D) generated by all the enhanced states of D that have a positive sign on

the circle that the base point belongs to. The homology H̃(L) of this sub-
complex is called the reduced Khovanov homology of L. It can be shown that
if L is a knot, then its reduced homology does not depend on the choice of
the base point. In general, the reduced homology of a link might depend on
the component that the base point is chosen on. See [Kh2] for more details.

2.2.A (Khovanov [Kh2], cf. (1.2)). The graded Euler characteristic of

C̃(D) is a version of the Jones polynomial of L:

(2.1) J̃L(q) = JL(q)/(q + 1/q) =
∑
i,j

(−1)iqj h̃i,j(L),

where h̃i,j(L) are the Betti numbers of H̃i,j(L).

J̃L(q) is completely determined by the following identities (cf. (1.1)):

(2.2) − q−2J̃
+

(q) + q2J̃
−

(q) = (q − 1/q)J̃
0

(q), J̃ (q) = 1.

2.2.B (Khovanov [Kh2]). For any link L, its reduced Khovanov homology

H̃(L) over Q is supported on exactly one diagonal less than the standard one.

2.2.C. Corollary. If L is a QH-thin link (in particular, a non-split

alternating link), then H̃(L) is supported on exactly one diagonal. It follows

that J̃L(q) is alternating, that is, its coefficients have alternating signs. More

precisely, if J̃L(q) =
∑

i∈Z ciq
2i+γ, where γ is the number of components of L

modulo 2, then J̃L(q) is alternating if and only if (−1)i−jcicj ≥ 0 for all i
and j.

2.3. Khovanov polynomial and its torsion version. Let L be a link
and Kh(L)(t, q) =

∑
i,j t

iqjhi,j(L) be the Poincaré polynomial in variables
t and q of its Khovanov homology. This polynomial is called the Khovanov
polynomial of L. Now Conjecture 1.A can be reformulated in the following
way.

2.3.A (Rigorous statement of Conjecture 1.A). Let L be a knot. Then
there exists a polynomial Kh′(L) in t±1 and q±1 with non-negative coeffi-
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cients only and an even integer s = s(L) such that

(2.3) Kh(L) = qs−1(1 + q2 + (1 + tq4) Kh′(L)).

In other words, there exist non-negative integers gi,j(L) such that

(2.4) hi,j(L) = gi,j(L) + gi−1,j−4(L) + εi,j ,

where ε0,s±1 = 1 and εi,j = 0 if i 6= 0 or j 6= s± 1.

Remark. It is clear from the construction that gi,j(L) is the coefficient
of the term tiqj−s+1 in Kh′(L). It must be non-zero for finitely many values
of the pair (i, j) only.

2.3.B. If L is a QH-thin knot, then the polynomial Kh′(L) contains
powers of tq2 only. Let Kh′(L) =

∑
i∈Z ait

iq2i. In this case gi,2i+s−1(L) = ai,
and hence

hi,2i+s−1(L) = gi,2i+s−1(L) + gi−1,2i+s−5(L) + εi,2i+s−1 = ai + δi0,(2.5)

hi,2i+s+1(L) = gi,2i+s+1(L) + gi−1,2i+s−3(L) + εi,2i+s+1 = ai−1 + δi0,(2.6)

where δij is the Kronecker delta. All other hi,j(L) are zero.

Theorem 1.F implies that s(L) = −σ(L) for all alternating knots L,
where σ(L) is the signature of L.

The following theorem is a counterpart of Conjecture 1.A for the case of
QH-thin links.

2.3.C. Theorem (Lee [L2]). Let L be an m-component oriented QH-
thin link (for example, a non-split alternating link). Let `k,l be the linking
number of the kth and lth components of L and let σ(L) be the signature
of L. Then

(2.7)

Kh(L) = q−σ(L)−1
[
(1 + q2)

( ∑
E⊂{2,...,m}

(tq2)
2
∑

k∈E
l 6∈E

`k,l)
+ (1 + tq4) Kh′(L)(tq2)

]
for some polynomial Kh′(L) with non-negative coefficients.

2.3.D. Definition. For a given link L, its torsion Khovanov polyno-
mialKhT in variables t±1 andQ±1

pk
is defined asKhT (L)(t, Q2, Q3, Q4 . . . ) =∑

i,j,p,k t
iQj

pk
ti,j
pk

(L), where i and j are arbitrary, k ≥ 1, and p runs through

all prime numbers. Recall that ti,j
pk

(L) is the pk-rank ofHi,j(L) and T i,jp (L) =∑∞
k=1 t

i,j
pk

(L).

The following proposition provides a straightforward reformulation of
Definitions 1.G and 1.I in terms of KhT .
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2.3.E. (1) A link L is T-simple if and only if KhT (L) depends on
the variables t±1 and Q±12 only and KhT (L)(t, q) = tqs+1 Kh′(L). The lat-

ter equality holds true if and only if ti,j2 (L) = gi−1,j−2(L) for all i and j
(see 2.3.B).

(2) A link L is WT-simple if and only if KhT (L) depends on the variables
t±1 and Q±1

2k
only and KhT (L)(t, q, q, . . . ) = tqs+1 Kh′(L). The latter equality

holds true if and only if T i,j2 (L) = gi−1,j−2(L) for all i and j (see 2.3.B).
(3) A link L is T-rich if and only if KhT (L) depends on the variables t±1

and Q±1
2k

only and tqs+1 Kh′(L) − KhT (L)(t, q, q, . . . ) contains some terms
with negative coefficients.

3. Khovanov homology with Z2 coefficients. Denote by Hi,jZ2
(L)

the Khovanov homology over Z2 (instead of Z) of an oriented link L and

by hi,jZ2
(L) the corresponding Betti numbers. In this section we construct an

acyclic differential ν of bidegree (0, 2) on Hi,jZ2
(L) and prove Theorem 3.

3.1. Construction of the (0, 2)-differential. Let D be a planar di-
agram of a link L, and S be some enhanced state of D. Denote by N (S)
the set of all enhanced states of D that have the same markers and signs on
all the circles as S except one circle where ‘+’ is replaced with ‘−’. It is a
straightforward verification that for every enhanced state S′ ∈ N (S) one has
σ(S′) = σ(S) and τ(S′) = τ(S)−2. Hence, i(S′) = i(S) and j(S′) = j(S)+2.

3.1.A. Definition. A differential νi,j : Ci,j(D;Z2) → Ci,j+2(D;Z2) of
bidegree (0, 2) on the Khovanov chain groups with coefficients in Z2 is de-
fined on the generators of Ci,j(D;Z2) as νi,j(S)=

∑
S′∈N (S) S

′ (see Figure 6).

+

+

−
ν

−

+

−

+

−

−

Fig. 6. Action of ν on generators of the chain groups

To show that ν is indeed a differential, i.e. ν2 = 0, we observe that for
any enhanced states S and S′′ that have the same markers and signs on all
the circles except two circles where S has ‘+’, while S′′ has ‘−’, S′′ appears
exactly twice in ν(ν(S)).

3.1.B. Lemma. The map ν is acyclic, i.e. all homology groups with
respect to ν are trivial.
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Proof. Let Zn be the set of all length n sequences of signs ‘+’ and ‘−’
and let Zkn ⊂ Zn consist of all sequences with the difference between the
numbers of minuses and pluses being exactly k (with k ≡ n mod 2). Then
Zn and Zkn have 2n and bkn =

(
n

(n+k)/2

)
elements, respectively. Denote by Gkn

the group Zb
k
n
2 whose factors are enumerated by the elements of Zkn.

One can construct a differential µkn : Zkn → Zk+2
n similarly to ν: a gener-

ator of Gkn corresponding to a sequence ρ from Zkn is mapped into the sum of
the generators of Gk+2

n corresponding to all the sequences obtained from ρ
by changing exactly one ‘+’ into a ‘−’.

Let Gn be the complex

(3.1) 0 −→ G−nn
µ−n
n−−→ G−n+2

n
µ−n+2
n−−−−→ · · · µn−4

n−−−→ Gn−2n
µn−2
n−−−→ Gnn −→ 0.

It follows from the definition of the Khovanov chain complex that the com-
plex

(3.2) · · · ν
i,j−4

−−−→ Ci,j−2(D,Z2)
νi,j−2

−−−→ Ci,j(D,Z2)
νi,j−−→ Ci,j+2(D,Z2)

νi,j+2

−−−→ · · ·
is isomorphic to a direct sum of G|s| with various shifts, where s runs over
all the Kauffman states of D such that i(s) = i.

We claim that the complex Gn is acyclic. Let us prove this by induction
on n. The base case of n = 1 is trivial. Denote by G−n the subcomplex of
Gn that is obtained by choosing only those sequences that have ‘−’ in the
first position. Then G−n is isomorphic to Gn−1, and hence is acyclic by the
induction hypothesis. It follows that Gn has the same homology as Gn/G−n .
But the latter is again isomorphic to Gn−1. Hence, Gn is acyclic as well.

3.1.C. Lemma. The map ν commutes with the Khovanov differential d
(over Z2).

The proof is elementary and is left to the reader as an exercise.

3.2. Patterns in Z2 homology. Lemma 3.1.C implies that ν can be
extended to the (0, 2)-differential ν in Khovanov homology over Z2. This
differential is also acyclic, although this does not follow from Lemma 3.1.B
directly.

3.2.A. Theorem. The map ν is acyclic. In particular, for every fixed
i the following sequence is exact:

(3.3) · · · ν
i,j−4

−−−−→ Hi,j−2Z2
(L)

νi,j−2

−−−−→ Hi,jZ2
(L)

νi,j−−→ Hi,j+2
Z2

(L)
νi,j+2

−−−−→ · · · .

Consequently,
∑

j∈Z(−1)jhi,2j+γZ2
(L) = 0 for every i, where γ is the number

of components of L modulo 2.

The following proof is due to Khovanov. It replaces the original one that
was too technical and unnecessarily complicated.
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Proof. Choose a base point b somewhere on the diagram D away from
the crossings. In [Kh2] Khovanov introduced another differential Xi,j :
Ci,j(D)→ Ci,j−2(D) of bidegree (0,−2) on the chain groups Ci,j(D) with Z
coefficients. It is defined as follows. Let S ∈ Ci,j(D) be some enhanced state.
If the circle of S that contains b has a positive sign, then Xi,j(S) = 0. Other-
wise Xi,j(S) = S′ ∈ Ci,j−2(D), where S′ is obtained from S by changing the
sign of the circle that contains b from ‘−’ to ‘+’. It follows immediately from
the definition that X ◦X = 0, that is, X is indeed a differential.

It is easy to check that X commutes with the Khovanov differential
d and, hence, can be extended to the (0,−2)-differential X in Khovanov
homology. We will abuse the notation slightly and denote reductions of X
and X modulo 2 by the same symbols.

We first claim that ν◦X+X◦ν = id. Indeed, let S be some enhanced state
of D. If the circle of S that contains b has a positive sign, then ν(X(S)) = 0.
Moreover, ν(S) is a sum of enhanced states such that all but one of them
have positive signs on their circles that contain b. Hence, X(ν(S)) = S. On
the other hand, if the circle of S containing b has a negative sign, then all the
enhanced states from ν(S) have negative signs on their circles containing b,
andX(ν(S)) is the sum of all the states that are obtained from S by changing
the sign of the circle that contains b from ‘−’ to ‘+’ and changing the sign
of some other circle from ‘+’ to ‘−’. Moreover, X(S) has one more positive
sign than S, and ν(X(S)) is the sum of all the same states as X(ν(S)) plus
S itself. The claim follows.

Since ν and X both commute with the differential d, one can see that
ν ◦X +X ◦ ν = id at the homology level as well. It follows that ν is acyclic.
Indeed, if α ∈ Hi,j(D) is such that ν(α) = 0, then ν(X(α)) = α, that is,
α lies in the image of ν.

3.2.B. Corollary. The map X is acyclic on HZ2(L) as well.

Since the reduced Khovanov homology over Z2 is isomorphic to the kernel
of X, we obtain

3.2.C. Corollary. Hi,jZ2
(L) ' H̃i,j−1Z2

(L)⊕ H̃i,j+1
Z2

(L) for every i, j.

3.2.D. Corollary. Let L be an H-slim link. Then it is Z2H-thin
by 1.D, that is, its Z2 homology is supported on the diagonals 2i−j = −s±1.

Theorem 3.2.A implies that hi,2i+s−1Z2
(L) = hi,2i+s+1

Z2
(L) for every i.

Proof of Theorem 3. Let L be an H-slim knot. It follows from Theorem 1
that L has torsion of order 2k only. It remains to show that T i,j2 (L) =

gi−1,j−2(L) for all i and j (see 2.3.E). Since T i,j2 (L) = gi−1,j−2(L) = 0 for
j 6= 2i + s − 1 and gi−1,2i+s−3(L) = ai−1 in the notation of 2.3.B, we only

need to prove that T i,2i+s−12 (L) = ai−1.
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Observe now that hi,jZ2
(L) = hi,j(L) + T i,j2 (L) + T i+1,j

2 (L). It follows

from 2.3.B that hi,2i+s−1Z2
= ai + δi0 + T i,2i+s−12 and hi,2i+s+1

Z2
= ai−1 + δi0 +

T i+1,2i+s+1
2 . Corollary 3.2.D implies that

(3.4) T i,2i+s−12 − ai−1 = T i+1,2i+s+1
2 − ai

for all i. Hence, T i,2i+s−12 −ai−1 = const for some constant independent of i.
Since the support of Khovanov homology is finite, there exists i such that
T i,2i+s−12 = ai−1 = 0. It follows that the constant must be zero.

The case of L being a link can be considered similarly.

3.3. Proof of Corollary 5. Let L be an alternating link with m com-
ponents. Then its Jones polynomial has the form J̃L(q) =

∑
i ciq

2i+γ , where

γ = m mod 2 (cf. Corollary 2.2.C). Define d(L) = |J̃L(
√
−1)| =

∑
i |ci|.

In fact, d(L) = |det(L)|, where det(L) is the determinant of L, hence the
notation.

3.3.A. Theorem (Thistlethwaite [Th, Theorem 1]). Let L be a prime
non-split alternating link that admits an irreducible alternating diagram with
n crossings, and let J̃L(q) =

∑v
i=u ciq

2i+γ with cu 6= 0 and cv 6= 0 be its
Jones polynomial. Then v − u = n and cici+1 ≤ 0 for every u ≤ i < v. If,
moreover, L is not a (2, k)-torus link, then ci 6= 0 for every u ≤ i ≤ v.

3.3.B. Lemma. Let L be an alternating link with m components. Then
d(L) ≥ 2m−1. Moreover, if L is not the trivial knot, the Hopf link, their
connected sum or disjoint union, then d(L) > 2m−1.

Proof. Assume first that L is non-split and prime. It is easy to deduce
from (2.2) (see also [J]) that J̃L(1) =

∑
i ci = (−2)m−1. Hence, d(L) ≥

|J̃L(1)| = 2m−1. It only remains to show that if L is neither the trivial knot

nor the Hopf link, then the polynomial J̃L(q) has both strictly positive and
strictly negative coefficients. Theorem 3.3.A implies this for all L except the
trivial knot and (2, k)-torus links.

Denote a (2, k)-torus link by TLk. It easily follows from (2.2) that d(TLk)
= k. Indeed, if one changes a positive crossing of TLk into a negative one,
one gets TLk−2, and if one smooths such a crossing, one obtains TLk−1.
Recall now that a (2, k)-torus link has at most two components and that
the Hopf link is exactly the (2, 2)-torus link.

Now the lemma follows from the fact that the Jones polynomial of the
connected sum and disjoint union of links L1 and L2 is equal to J̃L1(q)J̃L2(q)

and (q + 1/q)J̃L1(q)J̃L2(q), respectively.
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3.3.C. Lemma. Let L be an alternating link that is not the trivial knot,
the Hopf link, their connected sum or disjoint union. Then rankH(L) > 2m,
where m is the number of components of L and rankH(L) =

∑
i,j h

i,j(L) is
the total rank of the Khovanov homology.

Proof. Consider first the case when L is non-split. Theorem 2.3.C implies
that rankH(L) ≥ 2m. Assume that this rank is 2m. In this case Kh′(L) must
be 0 and

(3.5) JL(q) = Kh(L)(−1, q) = q−σ(L)
[
(q + 1/q)

( ∑
E⊂{2,...,m}

(−q2)
2
∑

k∈E
l 6∈E

`k,l)]
.

Since J̃L(q) = JL(q)/(q + 1/q), one has

(3.6) d(L) = |J̃L(
√
−1)| =

∑
E⊂{2,...,m}

1
2
∑

k∈E
l 6∈E

`k,l
= 2m−1.

This contradicts Lemma 3.3.B. Hence, rankH(L) > 2m.

The general case follows from the fact that rankH(L) is multiplicative
under disjoint union (see [Kh1, Corollary 12]).

Let us now finish the proof of Corollary 5. Lemma 3.3.C states that
rankH(L) > 2m, and hence Kh′(L) 6= 0 (in the notation of Theorem 2.3.C).
Since L is WT-simple by Theorem 3, it follows from 2.3.E that KhT (L) 6= 0
as well. Hence, L has non-trivial torsion. Since L is WT-simple, some torsion
elements must be of order 2.

4. Torsion of order p of Khovanov homology. This section is de-
voted to proving Theorem 1. We start by showing that the Khovanov ho-
mology over Zp of an H-slim link satisfies Conjecture 1.A as well.

4.1. Khovanov homology with Zp coefficients. Let L be an ori-

ented link and p be an odd prime number. Denote by Hi,jZp
(L) the Khovanov

homology of L over Zp and by hi,jZp
(L) its Betti numbers. Let KhZp(L)(t, q) =∑

i,j t
iqjhi,jZp

(L) be the corresponding Poincaré polynomial.

4.1.A. Theorem (cf. Theorem 2.3.C and [L2, Theorems 1.2 and 1.4]).
Let L be an m-component oriented H-slim link, for example, a non-split
alternating link. Then KhZp(L) satisfies identity (2.7) for the original Kho-
vanov polynomial with some other polynomial Kh′p(L) instead of Kh′(L).
If L is an H-slim knot, then this identity becomes

(4.1) KhZp(L) = q−σ(L)−1
(
1 + q2 + (1 + tq4) Kh′p(L)(tq2)

)
,

where σ(L) is the signature of L.
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Proof. We will show that the methods used by Lee to prove Theo-
rem 2.3.C for Khovanov homology with Q coefficients work in our Zp case
as well if p is an odd prime. Only the main steps are to be outlined and the
reader is assumed to be familiar with [L2].

First of all, we define the Lee differential Φ of bidegree (1, 4) on the
Khovanov chain complex C. The corresponding incidence numbers (S1 : S2)Φ
of two enhanced states S1 ∈ Ci,jZp

(D) and S2 ∈ Ci+1,j+4
Zp

(D) are defined in

a similar way to the original ones from page 351 with the only difference
being in condition III: The incidence number (S1 : S2)Φ is zero unless all of
the following three conditions are met, in which case (S1 : S2)Φ = ±1 with
the sign defined as before:

IΦ. The markers from S1 and S2 differ at one crossing of D only, and
at this crossing the marker from S1 is positive, while the marker
from S2 is negative.

IIΦ. The common circles of DS1 and DS2 have the same signs.
IIIΦ. One of the following two conditions is met:

(1) |S2| = |S1| − 1, both joining circles from DS1 are positive and
the resulting circle from DS2 is negative;

(2) |S2| = |S1| + 1, the splitting circle from DS1 is positive and
both the resulting circles from DS2 are negative;

It is easy to see that Φ is indeed a differential and (anti)commutes with
the Khovanov differential d. Lee’s proofs from [L2] can be applied to our
version of Φ to show that it also commutes with the isomorphisms induced
on HZp(L) by the Reidemeister moves. Hence, Φ gives rise to a well defined
differential on HZp(L).

Consider now yet another differential Φ + d on CZp(D). It can be best
described by changing the labels on the circles comprising enhanced states
from ‘+’ and ‘−’ to a = (‘+’) + (‘−’) and b = (‘+’)− (‘−’). In this notation
one has a new third condition on the incidence numbers (S1 : S2)Φd:

IIIΦ. One of the following four conditions is met:

(1) |S2| = |S1|−1, both joining circles from DS1 and the resulting
circle from DS2 are marked with a; then (S1 : S2)Φd = ±2.

(2) |S2| = |S1|−1, both joining circles from DS1 and the resulting
circle from DS2 are marked with b; then (S1 : S2)Φd = ∓2.

(3) |S2| = |S1| + 1, the splitting circle from DS1 and both the
resulting circles from DS2 are marked with a; then (S1 : S2)Φd
= ±1.

(4) |S2| = |S1| + 1, the splitting circle from DS1 and both the
resulting circles from DS2 are marked with b; then (S1 : S2)Φd
= ±1.
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Denote by H(D) the homology with respect to Φ + d. It can be shown
that H(D) is invariant under the Reidemeister moves, so that we can safely
write H(L) instead. The fact that p 6= 2 is crucial here, as the proof involves
division by 2 (see [L2]).

Theorem 4.4 from [L2] that states

(4.2) H(L) ∼=
Ker(Φ : HZp(L)→ HZp(L))

Im(Φ : HZp(L)→ HZp(L))

still holds true without changes. One needs to use the fact that L is ZpH-thin,
since it is H-slim here.

The only non-trivial generalization is proving an analogue of Theorem 4.2
of [L2] that dimZp H(L) = 2m. Lee’s proof uses Hodge theory arguments
which are not applicable to the Zp case. Fortunately for us, Hodge theory is
only used to provide a lower bound on dimQH(L;Q). It follows that 2m ≤
dimQH(L;Q) ≤ dimZp H(L), where the former inequality is provided by
Theorem 4.2 from [L2], and the latter by the Universal Coefficient Theorem.
In particular, all the enhanced states of D such that at every crossing the
two touching circles have different labels, are linearly independent in H(L).
Such states are in one-to-one correspondence with all the orientations of L
(see [L2]). Lee’s proof of the fact that dimQH(L;Q) ≤ 2m still works without
changes for Zp. Hence 2m ≤ dimZp H(L) ≤ 2m and dimZp H(L) = 2m.

Filling the remaining technical gaps is left to the reader.

4.2. Proof of Theorem 1. Let L be an H-slim link. Since hi,jZp
(L) =

hi,j(L) +T i,jp (L) +T i+1,j
p (L), it follows from Theorems 2.3.C and 4.1.A that

hZp(L) − h(L) are arranged in “knight move” pairs everywhere without
having to subtract anything (cf., for example, Conjecture 1.A). Hence,

(4.3) T i,2i−σ(L)−1p (L) = T i+1,2i−σ(L)+3
p (L) + T i+2,2i−σ(L)+3

p (L).

Since the support of Khovanov homology is finite, all T i,jp (L) must be zero.

Appendix. This section contains information about standard and re-
duced Khovanov homology of knots whose torsion has some remarkable
properties. The knot pictures below were generated using Robert Scharein’s
program KnotPlot [S].

A.1. How to read the tables. Columns and rows of the tables below
are marked with i- and j-grading of Khovanov homology, respectively. For
the standard homology, the j-grading is always odd and the corresponding
table entries are printed in boldface. The reduced homologies have their
j-grading even. They occupy places between the main rows.



Torsion of Khovanov homology 361

Only entries representing non-trivial groups are shown. An entry of the
form a, b2, c4 means that the corresponding group is Za ⊕ Zb2 ⊕ Zc4. If some
factors are missing from the group, then the corresponding numbers are
absent as well.

A.2. The knot 819 (see Table 1). This is the first QH-thick knot. It is
T-fancy as well.

0 1 2 3 4 5

17 1
1

15 1

13 1 1
1 1

11 12 1
1

9 1

7 1
1

5 1

Table 1. The knot 819 and its Khovanov homology (standard and reduced)

A.3. The knot 942 (see Table 2). This knot is QH-thick but T-simple.
Conjecture 2 states that every T-fancy knot should be H-thick as well. This
example shows that the converse is not true in general.

−4 −3 −2 −1 0 1 2

7 1
1

5 12

1
3 1 1

1
1 1 1, 12

2 1
−1 1, 12 1

1
−3 1 1

1
−5 12

1
−7 1

Table 2. The knot 942 and its Khovanov homology (standard and reduced)
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A.4. The knot 13n3663 (see Table 3). This is the first T-rich knot (the
groups with excessive torsion are H−3,−7, H−3,−5, H−2,−5, H−2,−3, H0,−1,
H0,1, H1,1, and H1,3). This knot has 2-torsion in the reduced homology as
well. This supports the claim of Conjecture 3 that a knot is T-rich if and
only if its reduced Khovanov homology has torsion. This knot is also the
first one whose homology is supported on four diagonals. The only other
knots with 13 crossings or less that share the same properties are 13n4587,
13n4639, and 13n5016.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

13 1
1

11 12

1
9 1 1

1
7 1 1 12

1 2
5 1 12 1, 12

2 1
3 12 2, 12 1

1, 12 1
1 2, 12 1, 12 12

2, 12 1
−1 1 1 1, 22 1

1 2
−3 22 1, 12

1 1, 12
−5 1, 12 1, 12

12
−7 1 12

1
−9 12

1
−11 1

Table 3. Standard and reduced Khovanov homology of the knot 13n
3663

A.5. The (4, 5)-torus knot (see Table 4). This is one of the first knots
whose Khovanov homology has torsion of order 4. Its minimal diagram has
15 crossings. There are no knots with 14 crossings or less that have torsion
of order other than 2. This knot is also T-rich and has 2-torsion in reduced
homology (cf. Conjecture 3).
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0 1 2 3 4 5 6 7 8 9 10

29 12

12
27 1 12

1
25 1 14

1 1
23 1 1, 12 1

1 12
21 1 1 12

1
19 1 1 1

1 1
17 12 1

1
15 1

13 1
1

11 1

Table 4. Standard and reduced Khovanov homology of the (4, 5)-torus knot

The author’s initial work on this paper was partially supported by the
Swiss National Science Foundation in 2001–2003.

References

[AP] M. Asaeda and J. Przytycki, Khovanov homology: torsion and thickness, in: Ad-
vances in Topological Quantum Field Theory, Kluwer, Dordrecht, 2004, 135–166.

[BN1] D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr.
Geom. Topol. 2 (2002), 337–370.

[BN2] D. Bar-Natan, Fast Khovanov homology computations, J. Knot Theory Ramif. 16
(2007), 243–255.

[BNG] D. Bar-Natan and J. Green, JavaKh—a fast program for computing Khovanov
homology, part of the KnotTheory Mathematica Package, http://katlas.math.
utoronto.ca/wiki/KhovanovHomology.

[G] S. Garoufalidis, A conjecture on Khovanov’s invariants, Fund. Math. 184 (2004),
99–101.

[HTh] J. Hoste and M. Thistlethwaite, Knotscape—a program for studying knot theory
and providing convenient access to tables of knots, http://www.math.utk.edu/
˜morwen/knotscape.html.

[J] V. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer.
Math. Soc. 12 (1985), 103–111.

[Kh1] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101
(2000), 359–426.

http://dx.doi.org/10.2140/agt.2002.2.337
http://dx.doi.org/10.1142/S0218216507005294
http://katlas.math.utoronto.ca/wiki/KhovanovHomology
http://katlas.math.utoronto.ca/wiki/KhovanovHomology
http://dx.doi.org/10.4064/fm184-0-7
http://www.math.utk.edu/~morwen/knotscape.html
http://www.math.utk.edu/~morwen/knotscape.html
http://dx.doi.org/10.1090/S0273-0979-1985-15304-2
http://dx.doi.org/10.1215/S0012-7094-00-10131-7


364 A. N. Shumakovitch

[Kh2] M. Khovanov, Patterns in knot cohomology I, Experiment. Math. 12 (2003), 365–
374.

[L1] E. S. Lee, The support of the Khovanov’s invariants for alternating knots, arXiv:
math.GT/0201105.

[L2] E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005),
554–586.

[PPS] M. Pabiniak, J. Przytycki and R. Sazdanović, On the first group of the chromatic
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