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Abstract. This article establishes the algebraic covering theory of quandles. For
every connected quandle Q with base point q ∈ Q, we explicitly construct a universal
covering p : (Q̃, q̃) → (Q, q). This in turn leads us to define the algebraic fundamental
group π1(Q, q) := Aut(p) = {g ∈ Adj(Q)′ | qg = q}, where Adj(Q) is the adjoint group
of Q. We then establish the Galois correspondence between connected coverings of (Q, q)
and subgroups of π1(Q, q). Quandle coverings are thus formally analogous to coverings of
topological spaces, and resemble Kervaire’s algebraic covering theory of perfect groups.
A detailed investigation also reveals some crucial differences, which we illustrate by nu-
merous examples.

As an application we obtain a simple formula for the second (co)homology group of
a quandle Q. It has long been known that H1(Q) ∼= H1(Q) ∼= Z[π0(Q)], and we construct
natural isomorphisms H2(Q) ∼= π1(Q, q)ab and H2(Q,A)∼= Ext(Q,A)∼= Hom(π1(Q, q), A),
reminiscent of the classical Hurewicz isomorphisms in degree 1. This means that whenever
π1(Q, q) is known, (co)homology calculations in degree 2 become very easy.
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1. Introduction and outline of results

1.1. Motivation and background. In every group (G, ·) one can de-
fine conjugation on the right a∗b = b−1 ·a ·b, and its inverse, conjugation on
the left a∗b= b·a·b−1. They enjoy the following properties for all a, b, c ∈ G:

(Q1) a ∗ a = a (idempotency),
(Q2) (a ∗ b) ∗ b = a = (a ∗ b) ∗ b (right invertibility),
(Q3) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (self-distributivity).

Turning these properties into axioms, D. Joyce [16] defined a quandle to
be a set Q equipped with two binary operations ∗, ∗ : Q×Q→ Q satisfying
(Q1)–(Q3). Alternatively it suffices to require that ∗ be right invertible,
the right inverse ∗ can then be deduced from ∗. Quandles thus encode the
algebraic properties of conjugation; this axiomatic approach is most natural
for studying situations where group multiplication is absent or of a secondary
nature. We mention three classical examples:

Example 1.1 (knot quandles). The main motivation to study quandles
comes from knot theory: the Wirtinger presentation of the fundamental
group πK = π1(S3 rK) of a knot or link K ⊂ S3 involves only conjugation
but not the group multiplication itself, and can thus be seen to define a
quandle QK . The three quandle axioms then correspond precisely to the
three Reidemeister moves. These observations were first explored in 1982
by Joyce [16], who showed that the knot quandle QK classifies knots up to
orientation. Many authors have since rediscovered and studied this notion.
(See the historical remarks in §3.8.)

Example 1.2 (Lie algebras). Every Lie group G is tied to its Lie algebra
g = T1G by two important maps: the exponential map exp: g→ G and the
adjoint action ad: G → Aut(g), denoted by ad(g) : x 7→ xg. They induce a
quandle structure on g by x ∗ y := xexp(y). The Lie bracket is its derivative,
[x, y] = d

dt [x ∗ ty]t=0. The quandle (g, ∗) is thus half-way between the Lie
group (G, ·) and the Lie algebra (g, [ , ]). It is usually preferable to work with
the strongest of these three structures, namely the Lie group (G, ·), which
induces the other two. Some infinite-dimensional Lie algebras, however, can-
not be integrated to a Lie group. The quandle structure, on the contrary,
can usually be saved (see §3.3).

Example 1.3 (symmetric spaces). A symmetric space is a Riemannian
manifold such that for each point x ∈ X there exists an isometry sx : X ∼−→ X
that reverses every geodesic arc γ : (]−ε, ε[, 0)→ (X,x). It follows that (X, ∗)
is a quandle with respect to the operation x ∗ y := sy(x) (see §3.7).

Slightly more general than quandles, a rack is only required to satisfy
(Q2)–(Q3). Such structures appear naturally in the study of braid actions
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(Brieskorn [2]) and provide set-theoretic solutions of the Yang–Baxter equa-
tion (Drinfel′d [8]).

In the 1990s emerged the concept of rack and quandle (co)homology [13],
and it has since been put to work in constructing combinatorial knot invari-
ants [7, 6, 5]. Calculating quandle cohomology, however, is difficult even in
low degrees, mainly for two reasons:

• Brute force calculations are very limited in range. Even when they are
feasible for small quandles and small degrees, their results are usually
difficult to interpret.
• Unlike group cohomology, the topological underpinnings are less well

developed. Geometric methods that make group theory so rich are
mostly absent for quandles.

For example, given a diagram of a knot K ⊂ R3, it is comparatively
easy to read off a fundamental homology class [K] ∈ H2(QK) and to verify
that it is an invariant of the knot [7]. Ever since the conception of quandle
homology, however, it was an important open question how to interpret this
fundamental class [K], and to determine when it vanishes.

The notion of quandle covering [9] was introduced in order to geo-
metrically interpret and finally determine the second (co)homology groups
H2(QK) ∼= H2(QK) ∼= Z for every non-trivial knot K. More precisely,
H2(QK) is freely generated by the canonical class [E] ∈ H2(QK), corre-
sponding to the Galois covering E : Z y QL � QK coming from the long
knot L obtained by cutting K open, while its dual H2(QK) is freely gener-
ated by the fundamental class [K] ∈ H2(QK). In particular, [K] vanishes if
and only if the knot K is trivial, answering Question 7.3 of [7]. As another
consequence, [K] encodes the orientation of the knot K, and so the pair
(QK , [K]) classifies oriented knots. (The generalization to links with several
components will be established in §7.5 and §9.4 below.)

1.2. Quandle coverings. Knot quandles are somewhat special, and so
it was not immediately realized that covering techniques could be useful for
arbitrary quandles as well. The aim of the present article is to fully develop
the algebraic covering theory of quandles. This will lead us to the appropriate
definition of the algebraic fundamental group π1(Q, q), and to the Galois
correspondence between connected coverings and subgroups of π1(Q, q) (1).

(1) In a more general context it will be cautious to use the notation πalg
1 (Q, q) to

emphasize that we are dealing with purely algebraic notions derived from the quandle
structure (Q, ∗); we do not consider Q as a topological space. When Q also carries a
topology, πalg

1 (Q, q) should not be confused with the usual topological fundamental group
πtop

1 (Q, q). While in the present article there seems to be no danger of confusion, the more
distinctive notation will become mandatory whenever both concepts are used alongside.
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Detailed definitions and results will be given in the next sections, following
this overview.

Definition 1.4 (see §2.8). A quandle homomorphism p : Q̃ → Q is
called a covering if it is surjective and p(ỹ) = p(z̃) implies x̃ ∗ ỹ = x̃ ∗ z̃ for
all x̃, ỹ, z̃ ∈ Q̃. In the words of Joyce, ỹ and z̃ are behaviourally equivalent,
that is, they act in the same way on Q̃.

Example 1.5. Consider a group extension p : G̃ � G and let Q̃ ⊂ G̃
be a conjugacy class, or more generally a union of conjugacy classes in G̃.
Without loss of generality we can assume that Q̃ generates G̃. As noted
above, Q̃ is a quandle with respect to conjugation, and the same holds for
its image Q = p(Q̃) ⊂ G. The projection p : Q̃� Q is a quandle covering if
and only if p is a central extension.

As a consequence, the covering theory of quandles embedded in groups is
essentially the theory of central group extensions. Most quandles, however,
do not embed into groups, which is why quandle coverings have their own
distinctive features. We will see below that unlike central extensions, the
theory of quandle coverings is inherently non-abelian.

Example 1.6. Consider the cyclic group Zm = Z/mZ with m ∈ N. We
explicitly allow m = 0, in which case Z0 = Z. The disjoint union Qm,n =
Zm t Zn becomes a quandle with a ∗ b = a for a, b ∈ Zm or a, b ∈ Zn, and
a ∗ b = a + 1 otherwise. This quandle has two connected components, Zm
and Zn, each is trivial as a quandle, but both act non-trivially on each other.
This expository example will serve us for various illustrations; for example,
we will see in Proposition 2.38 that Qm,n embeds into a group if and only if
m = n.

Z Z

Z5Z6

1

Fig. 1. The universal covering of the quandle Q6,5
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For every factorization m = m′m′′ and n = n′n′′, the canonical projec-
tions Zm � Zm′ and Zn � Zn′ define a map p : Qm,n � Qm′,n′ , which is a
quandle covering according to our definition. (See Figure 1.) In this family,
the trivial quandle Q1,1 = {0}t{0} is the terminal object, while Q0,0 = ZtZ
is the initial object. In fact, the map Q0,0 � Qm,n will turn out to be the
universal covering of Qm,n, provided that gcd(m,n) = 1. (The general case
is more complicated and involves the Heisenberg group; see Example 7.20
below.)

1.3. The adjoint group. The structure of a quandle Q, and in par-
ticular its coverings, are controlled by its adjoint group Adj(Q), a notion
introduced by Joyce [16, §6] and discussed in §2.4 below. In order to state
our results precisely, we briefly insert its definition as a technical digres-
sion:

Definition 1.7. The adjoint group of a quandle Q is the abstract group
generated by the elements of Q subject to the relations a ∗ b = b−1ab for
a, b ∈ Q. It comes with a natural map adj : Q → Adj(Q) sending each
quandle element to the corresponding group element.

There exists a unique group homomorphism ε : Adj(Q) → Z such that
ε(adj(Q)) = 1. We denote its kernel by Adj(Q)◦ = ker(ε). If Q is connected,
then ε is the abelianization of Adj(Q), and Adj(Q)◦ is its commutator sub-
group. Notice that we can reconstruct the adjoint group from Adj(Q)◦ as a
semidirect product Adj(Q) = Adj(Q)◦ o Z.

Remark 1.8. Even though it is easily stated, the definition of the adjoint
group Adj(Q) by generators and relations is difficult to work with in explicit
calculations. Little is known about such groups in general, and only a few
examples have been worked out.

Example 1.9. For the quandle Qm,n of the previous example we will
determine Adj(Qm,n) in Proposition 2.38 below: assuming gcd(m,n) = 1 we
find Adj(Qm,n) = Z×Z with adj(a) = (1, 0) for all a ∈ Zm and adj(b) = (0, 1)
for all b ∈ Zn. For m = n = 0, however, Adj(Q0,0) is the Heisenberg group
H ⊂ SL3 Z of upper triangular matrices. Since Q0,0 � Qm,n � Q1,1 induces
group homomorphisms H � Adj(Qm,n) � Z×Z, we find that Adj(Qm,n) is
some intermediate group. This turns out to beH/〈z`〉 where z ∈ H generates
the centre of H, and ` = gcd(m,n).

1.4. Galois theory for connected quandles. Motivated by the anal-
ogy with topological spaces, we shall develop the covering theory of quandles
along the usual lines:

• Introduce the category of coverings over a fixed pointed quandle (Q, q).
• Identify the universal covering space (uniqueness, existence, explicit

description).
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• Deduce the fundamental group π1(Q, q) as the group of deck transfor-
mations.
• Establish the Galois correspondence between coverings and subgroups.

The results are most easily stated for connected quandles. They can be
suitably refined and adapted to non-connected quandles, as explained below
and detailed in §§7–9.

Definition 1.10 (see §5.2). For a quandle Q we define its fundamental
group based at q ∈ Q to be π1(Q, q) = {g ∈ Adj(Q)◦ | qg = q}.

Notice the judicious choice of the group Adj(Q)◦; the approach would
not work with another group such as Adj(Q) or Aut(Q) or Inn(Q). The
right choice is not obvious, but follows from the explicit construction of the
universal covering quandle in §5.1.

Proposition 1.11 (functoriality, see §5.2). Every quandle homomor-
phism f : (Q, q) → (Q′, q′) induces a group homomorphism f∗ : π1(Q, q) →
π1(Q′, q′). We thus obtain a functor π1 : Qnd∗ → Grp from the category of
pointed quandles to the category of groups.

Proposition 1.12 (lifting criterion, see §5.4). Let p : (Q̃, q̃)→ (Q, q) be
a quandle covering and let f : (X,x)→ (Q, q) be a quandle homomorphism
from a connected quandle X. Then there exists a lifting f̃ : (X,x)→ (Q̃, q̃),
p ◦ f̃ = f , if and only if f∗π1(X,x) ⊂ p∗π1(Q̃, q̃). In this case the lifting f̃
is unique.

Theorem 1.13 (Galois correspondence for connected coverings, see §5.5).
For every connected quandle (Q, q) there exists a natural equivalence
Cov∗(Q, q) ∼= Sub(π1(Q, q)) between the category of pointed connected cov-
erings of (Q, q) and the category of subgroups of π1(Q, q). Moreover, a nor-
mal subgroup K ⊂ π1(Q, q) corresponds to a Galois covering p : (Q̃, q̃) →
(Q, q) with deck transformation group Aut(p) ∼= π1(Q, q)/K.

The Galois correspondence can be extended to non-connected coverings,
and further to principal Λ-coverings. The latter correspond to extensions
Λy Q̃� Q of the quandle Q by some group Λ as defined in §4.4.

Theorem 1.14 (Galois correspondence for general coverings, see §6.2).
For every connected quandle (Q, q) there exists a natural equivalence
Cov(Q) ∼= Act(π1(Q, q)) between the category of coverings of (Q, q) and
the category of actions of π1(Q, q). Moreover, there exists a natural bijec-
tion Ext(Q,Λ) ∼= Hom(π1(Q, q), Λ) between equivalence classes of extensions
Λy Q̃� Q and the set of group homomorphisms π1(Q, q)→ Λ.

Throughout this article our guiding principle is the analogy between
the covering theories of topological spaces and quandles. While their overall
structure is the same, the individual objects seem quite different. The formal
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analogy may thus come as a surprise, even more so as it pervades even the
tiniest details. This can in large parts be explained by the common feature of
the fundamental groupoid, as described in §8. We will complete this analogy
in §9 by establishing the relationship with (co)homology:

Theorem 1.15 (Hurewicz isomorphism for connected quandles, see §9.3).
For every connected quandle Q we have a natural isomorphism H2(Q) ∼=
π1(Q, q)ab. Moreover, for every group Λ we have natural bijections H2(Q,Λ)
∼= Ext(Q,Λ) ∼= Hom(π1(Q, q), Λ). If Λ is an abelian group, or more gener-
ally a module over some ring R, then these objects carry natural R-module
structures and the natural bijections are isomorphisms of R-modules.

The introduction of a cohomology H2(Q,Λ) with non-abelian coefficients
Λ is natural inasmuch as it allows us to treat all cases in a uniform way.
This is analogous to the cohomology H1(X,Λ) of a topological space X with
non-abelian coefficients Λ (see [30]).

1.5. Examples and applications. As a general application, let us
mention that every quandle Q can be obtained as a covering of a quandle
Q̄ ⊂ G in some group G. (Take for example the image of Q in its in-
ner automorphism group.) This is useful in understanding finite connected
quandles: it suffices to consider conjugacy classes Q̄ in finite groups G such
that G = 〈Q̄〉, together with their covering quandles Q � Q̄; these are
parametrized by subgroups of the fundamental group π1(Q̄, q̄).

Remark 1.16. For every finite connected quandle Q the group Adj(Q)◦

is finite, whence the fundamental group π1(Q, q) and the universal covering
Q̃→ Q are both finite.

Example 1.17 (dihedral quandles). The dihedral quandle Dn is ob-
tained from the cyclic group Zn = Z/nZ with the quandle operation a ∗ b =
2b − a. It is isomorphic to the subquandle Zn × {1} of the dihedral group
Zn o Z2, corresponding to the n reflections of a regular n-gon. For n odd,
the quandle Dn is connected, and we find Adj(Dn) = Zn o Z with group
action (a, i) · (b, j) = (a + (−1)ib, i + j), and adj : Dn → Adj(Dn) is given
by adj(a) = (a, 1). Since Adj(Q)◦ = Zn o {0} acts on Dn by a(b,0) = a− 2b,
we find that the fundamental group π1(Dn, 0) is {0}. This means that every
dihedral quandle Dn of odd order is simply connected. Equivalently, every
quandle covering of Dn is trivial, that is, equivalent to pr1 : Dn × F � Dn,
where F is some trivial quandle.

Example 1.18 (symmetric groups). Consider the symmetric group Sn
on n ≥ 3 points, and let Q be the conjugacy class of the transposition
q = (12). This is a quandle with

(
n
2

)
= n(n− 1)/2 elements. It is not diffi-

cult to see that Adj(Q) = An oZ, where the action of k ∈ Z on An is given



110 M. Eisermann

by a 7→ (12)ka(12)k. We thus find Adj(Q)◦ = An, which yields the fun-
damental group π1(Q, q) ∼= Sn−2. The subgroups of Sn−2 thus characterize
the connected coverings of the quandle Q. (For n = 3 notice that Q = D3,
for which we already know that π1 is trivial; π1(Q, q) is non-trivial only for
n ≥ 4.)

Turning to the extensions of Q by some group Λ, we find H2(Q,Λ) ∼=
Ext(Q,Λ) ∼= Hom(Sn−2, Λ). If Λ is abelian, we see without any further
calculation that H2(Q,Λ) is trivial for n = 3, and isomorphic to the group
of 2-torsion elements in Λ for n ≥ 4, because (Sn−2)ab

∼= Z2. Moreover,
H2(Q) = 0 for n = 3, and H2(Q) = Z2 for n ≥ 4.

Example 1.19 (knot quandles). As in [9, §3] let L be a long knot and
let K be its corresponding closed knot. Both knot quandles QL and QK
are connected, their adjoint groups are Adj(QL) = Adj(QK) = πK , and
the natural projection p : QL → QK is a quandle covering. We may choose
a canonical base point qL ∈ QL and its image qK ∈ QK . Both map to a
meridian mL = mK ∈ πK , and we denote by `K ∈ πK the correspond-
ing longitude. The explicit construction of universal coverings in [9] shows
π1(QL, qL) = {1}, and so QL is the universal covering of the quandle QK .
For the quotient QK = 〈`K〉\QL we thus find π1(QK , qK) = 〈`K〉, whence
π1(QK , qK) ∼= Z for every non-trivial knot K.

This observation, although not in the language of quandle coverings and
fundamental groups, was used by Joyce [16] in order to recover the knot
group data (πK ,mK , `

±
K) from the knot quandle QK . According to Wald-

hausen’s result [36], the triple (πK ,mK , `K) classifies knots, so the knot
quandle classifies knots modulo inversion. The remaining ambiguity can be
removed by the orientation class [K] ∈ H2(QK), as explained in [9, §6].

Remark 1.20 (knot colouring polynomials). The knot quandle QK , just
as the knot group πK , is in general very difficult to analyze. A standard
way to extract information is to consider (finite) representations: we fix a
finite quandle Q with base point q ∈ Q and consider knot quandle homo-
morphisms φ : (QK , qK) → (Q, q). Each φ induces a group homomorphism
φ∗ : π1(QK , qK)→ π1(Q, q), which is determined by the image of the canon-
ical generator `K ∈ π1(QK , qK). We can thus define a map

P qQ : {knots} → Zπ1(Q, q) by P qQ(K) :=
∑

φ : (QK ,qK)→(Q,q)

φ∗(`K).

This invariant is the knot colouring polynomial associated to (Q, q), and pro-
vides a common generalization to the invariants presented in [10] and [29].
Colouring polynomials encode, in particular, all quandle 2-cocycle invari-
ants, as proven in [10].
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Example 1.17 above shows that the longitude images are necessarily
trivial for dihedral colourings; the only information extracted is the number
of n-colourings. The situation is different for Q = (12)Sn , where longitude
images yield more refined information.

Example 1.21. We conclude with another natural and highly non-
abelian example, where our tools are particularly efficient. Consider the
quandle QπK ⊂ πK consisting of all meridians of the knot K, that is, the
conjugacy class of our preferred meridian mK in πK , or equivalently, the
image of the natural quandle homomorphism QK → πK . Here we find
Adj(QπK) = πK , and π1(QπK ,mK) is a free group of rank n if K = K1]· · ·]Kn

is the connected sum of n prime knots [9, Corollary 39]. Via the Hurewicz iso-
morphism we obtain H2(QπK) ∼= Zn, as previously noted in [9, Theorem 53].

1.6. Tournants dangereux. There are a number of subtleties where
quandle coverings do not behave as could be expected at first sight. First of
all, they do not form a category:

Example 1.22. The abelian group Q = Q/Z becomes a connected
quandle with a ∗ b = 2b − a. The map p : Q → Q, a 7→ 2a, is a quandle
covering. The composition p ◦ p : Q → Q, a 7→ 4a, however, is not a cov-
ering: 0 and 1/4 do not act in the same way on Q. The same phenomenon
already appears for finite quandles, for example D4n

2
� D2n

2
� Dn.

Remark 1.23. Coverings of topological spaces suffer from the same
problem (see Spanier [33, Example 2.2.8]): given two coverings p : X → Y
and q : Y → Z, their composition qp : X → Z is not necessarily a covering.
This phenomenon is, however, rather a pathology: the composition qp is al-
ways a covering if Z is locally path connected and semilocally 1-connected
(see [33, Theorems 2.2.3, 2.2.6, 2.4.10]). These hypotheses hold, in particu-
lar, for coverings of manifolds, simplicial complexes, or CW-complexes.

When we speak of topological covering theory as our model, we will ne-
glect all topological subtleties such as questions of local and semilocal con-
nectedness. The reader should think of covering theory in its nicest possible
form, say for CW-complexes.

Remark 1.24. There are two further aspects in which quandle coverings
differ significantly from the model of topological coverings:

• For a quandle covering p : (Q̃, q̃) → (Q, q) the induced map on the
fundamental groups, p∗ : π1(Q̃, q̃)→ π1(Q, q), need not be injective.
• If Q̃ is simply connected, then p is the universal covering of (Q, q).

The converse is not true: it may well be that p is universal but Q̃ is
not simply connected.

It is amusing to note that the Galois correspondence stated above is salvaged
because these two defects cancel each other.
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Example 1.25. For Q = Q/Z one finds Adj(Q) = (Q/Z) o Z with
adj(a) = (a, 1). The subgroup Adj(Q)◦ = Q/Z× {0} acts on Q via a(b,0) =
a−2b, which implies that π1(Q, 0) = {(0, 0), (1/2, 0)} ∼= Z2. This means that
p : Q → Q, a 7→ 2a, is the universal covering. In particular, the universal
covering quandle is not simply connected, and the induced homomorphism
p∗ between fundamental groups is not injective.

Remark 1.26. The previous example may appear somewhat artificial,
because the problem essentially arises from 2-torsion and the fact that all 2-
torsion elements are 2-divisible. In particular, these conditions force Q to be
infinite. Example 5.18 exhibits a finite quandle with a universal covering that
is not simply connected. This is definitely not a pathological construction:
the phenomenon naturally occurs in finite groups, for example the conjugacy
class of

[
0 1
−1 0

]
in the group PSL2 K over a finite field K.

1.7. Perfect groups. Quandle coverings resemble Kervaire’s algebraic
covering theory of perfect groups [19], which he applied to algebraic K-theory
in order to identify the Milnor group K2(A) of a ring A with the Schur
multiplier H2(GL(A)′). It is illuminating to contrast the theory of quandle
coverings with Kervaire’s classical results.

Recall that a group G is perfect, or connected in the words of Kervaire,
if G′ = [G,G] = G, or equivalently H1(G) = Gab = 0. A covering of G is
a central extension G̃� G with G̃ perfect. Kervaire established a bijection
between subgroups of H2(G) and isomorphism classes of coverings G̃ � G.
The theory is thus analogous to the covering theory of topological spaces,
and consequently Kervaire defined π1(G) := H2(G).

Remark 1.27. By construction, π1(G) is abelian and base points play
no rôle. Moreover, the covering theory of perfect groups is well-behaved in
the following sense:

• Coverings of perfect groups form a category, which means that the
composition of two coverings is again a covering [19, Lemme 1].
• A covering G̃ � G is universal if and only if G̃ is simply connected,

that is, π1(G̃) = H2(G̃) = 0 [19, Lemme 2].
• For every covering p : G̃ → G the induced map p∗ : π1(G̃) → π1(G) is

injective [19, Théorème de classification].

As we have seen above, quandle coverings do not enjoy these privileges in
general. They may thus be considered a “non-standard” covering theory
that warrants a careful analysis.

The analogy between coverings of quandles and perfect groups is not
only a formal one. As an illustration, it can be applied to determine certain
adjoint groups:
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Theorem 1.28. Let G be a simply connected group, i.e. H1(G) = H2(G)
= 0. Consider a conjugacy class Q = qG that generates G, so that Q is a
connected quandle. Then we have an isomorphism Adj(Q) ∼−→ G × Z given
by adj(q) 7→ (q, 1) for all q ∈ Q. In particular, we obtain Adj(Q)′ = G and
π1(Q, q) = CG(q) = {g ∈ G | qg = q}.

This directly applies to every simple group G with Schur multiplier
H2(G) = 0. Most often we have H2(G) 6= 0, in which case it suffices to
pass to the universal covering G̃.

1.8. Generalization to non-connected quandles. One final diffi-
culty arises when we pass from connected to non-connected quandles. In
the analogous model of topological spaces, this generalization is simple, be-
cause a topological space (say locally connected) is the disjoint union of its
components. For quandles, however, this is far from being true: the different
components act on each other, and this interaction is in general non-trivial.
In particular, the disjoint union is not the appropriate model.

In order to develop a covering theory for non-connected quandles we have
to treat all components individually yet simultaneously. A convenient way
to do this is to index the components by some fixed set I, and then to deal
with I-graded objects throughout. (For details see Section 7.) The upshot
is that for a non-connected quandle Q all preceding statements remain true
when suitably interpreted in the graded sense:

Definition 1.29 (grading, see §7.1). A graded quandle is a quandle
Q =

⊔
i∈I Qi partitioned into subsets (Qi)i∈I such that Qi ∗ Qj = Qi for

all i, j ∈ I. A pointed quandle (Q, q) is a graded quandle with a base point
qi ∈ Qi for each i ∈ I. We call (Q, q) well-pointed if q specifies one base point
in each component, i.e. Qi is the component of qi in Q. In this case we define
the graded fundamental group to be the product π1(Q, q) :=

∏
i∈I π1(Q, qi).

Theorem 1.30 (Galois correspondence, see §7.4). Let (Q, q) be a well-
pointed quandle indexed by some set I. There exists a natural equivalence
CovI(Q, q) ∼= SubI(π1(Q, q)) between the category of well-pointed coverings
of (Q, q) and the category of graded subgroups of π1(Q, q). Likewise, there
exists a natural equivalence Cov(Q) ∼= Act(π1(Q, q)) between the category
of coverings of (Q, q) and the category of graded actions of π1(Q, q).

Theorem 1.31 (Hurewicz isomorphism for general quandles, see §9.3).
For every well-pointed quandle (Q, q) we have a natural isomorphism
H2(Q) ∼=

⊕
i∈I π1(Q, qi)ab, and for every graded group Λ we have natural

bijections

H2(Q,Λ) ∼= Ext(Q,Λ) ∼= Hom(π1(Q, q), Λ) =
∏
i∈I

Hom(π1(Q, qi), Λi).
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One of the motivations to study non-connected quandles is their applica-
tion to links. Given an n-component link K = K1t· · ·tKn ⊂ S3, we choose
a base point qiK ∈ QK for each link component Ki, and obtain a decompo-
sition QK = Q1

K t · · · tQnK into components QiK = [qiK ]. This establishes a
natural bijection π0(K) ∼−→ π0(QK).

Theorem 1.32 (see §7.5). For every link K ⊂ S3 the graded fundamental
group of the link quandle QK is given by π1(QK , qK) =

∏n
i=1〈`iK〉, where

`iK ∈ Adj(QK) = π1(S3 r K) is the longitude associated to the meridian
mi
K = adj(qiK) ∈ Adj(QK).

This highlights once more that quandles are well suited to encode pe-
ripheral link group data. We will see in §9.4 that the Hurewicz isomorphism
maps the longitude `iK ∈ π1(QK , q

i
K) to the orientation class [Ki] ∈ H2(QK)

of the component Ki. We conclude that the quandle QK is a classifying in-
variant of the link K in the following sense:

Theorem 1.33 (see §9.4). Two oriented links K = K1 t · · · tKn and
K ′ = K ′1 t · · · tK ′n in S3 are ambient isotopic respecting orientations and
numbering of components if and only if there exists a quandle isomorphism
φ : QK

∼−→ QK′ such that φ∗[Ki] = [K ′i] for all i.

1.9. Related work. The present article focuses on a systematic inves-
tigation of quandle coverings and their Galois correspondence. The explicit
construction of a universal covering and the definition of the corresponding
algebraic fundamental group appear here for the first time. Our construc-
tion can easily be adapted to racks: here Adj(Q)◦ has to be replaced by
Adj(Q), and the definition of the fundamental group has to be adapted ac-
cordingly. Modulo these changes, our results hold verbatim for racks instead
of quandles.

As could be expected, these notions are closely related to quandle exten-
sions and cohomology, which have both been intensively studied in recent
years. The subject of rack cohomology originated in the work of R. Fenn,
C. Rourke, and B. Sanderson [13], who constructed a classifying topological
space BX for every rack X. The corresponding quandle (co)homology the-
ory was taken up by J. S. Carter and his collaborators, in order to construct
knot invariants (see for example [7, 6]). Quandle coverings were introduced
and applied to knot quandles in [9]. They have also appeared in the context
of non-abelian extensions, explored by N. Andruskiewitsch and M. Graña [1],
where a corresponding non-abelian cohomology theory was proposed. This
generalized cohomology, in turn, has been taken up and applied to knot
invariants in [5].

We have stated above how our approach via quandle coverings can be
applied to complete the trilogy of cohomology H2(Q,Λ) and extensions
Ext(Q,Λ) by the third aspect: the fundamental group π1(Q, q). The result
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is the natural isomorphism

(1) H2(Q,Λ) ∼= Ext(Q,Λ) ∼= Hom(π1(Q, q), Λ).

A similar isomorphism has been noted by P. Etingof and M. Graña [11,
Cor. 5.4]: for every rack X and every abelian group A they prove that
H2(X,A) ∼= H1(Adj(X),Map(X,A)), where Map(X,A) is the module of
maps X → A with the action of the adjoint group Adj(X). The formulation
(1) takes this one step further and highlights the geometric meaning. For
practical calculations it is as explicit and direct as one could possibly wish.

1.10. How this article is organized. The article follows the out-
line given in the introduction. Section 2 reviews the basic definitions of
quandle theory leading up to quandle coverings, while Section 3 displays
some detailed examples. Section 4 records elementary properties of quandle
coverings. Section 5 constructs the universal connected covering, defines the
fundamental group, and establishes the Galois correspondence for connected
coverings. Section 6 explains how to extend these results to non-connected
coverings over a connected base quandle, while Section 7 discusses the tech-
nicalities necessary for non-connected base quandles. Section 8 expounds the
concept of fundamental groupoid in order to explain the striking similarity
between quandles and topological spaces. Section 9, finally, elucidates the
correspondence between quandle extensions and quandle cohomology in the
non-abelian and graded setting, and thus completes the trilogy H2, Ext, π1.

2. Definitions and elementary properties. The following definitions
serve to fix our notation and to make the presentation self-contained. They
are mainly taken from Joyce [16], suitably extended and tailored to our
application. Some immediate examples are stated alongside the definitions,
more elaborate examples will be postponed until the next section.

We also seize the opportunity to record some elementary but useful obser-
vations, which have been somewhat neglected or dispersed in the published
literature. In particular, we emphasize the rôle played by central group ex-
tensions, which come to light at several places. While on the level of groups
only central extensions are visible, quandle coverings turn out to be essen-
tially non-abelian (see Example 1.18 above).

2.1. The category of quandles. The quandle axioms are symmetric
in ∗ and ∗: if (Q, ∗, ∗) is a quandle, then so is (Q, ∗, ∗). Moreover, each of
the operations ∗ and ∗ determines the other, so we can simply write (Q, ∗)
instead of (Q, ∗, ∗). If both operations coincide, then we have (a ∗ b) ∗ b = a
for all a, b ∈ Q, which is then called an involutory quandle. We will use
the same symbol “∗” for different quandles, and we will frequently denote a
quandle by Q instead of (Q, ∗), unless there is danger of confusion.
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Definition 2.1. A quandle homomorphism between two quandles Q
and Q′ is a map φ : Q → Q′ satisfying φ(a ∗ b) = φ(a) ∗ φ(b), and hence
φ(a ∗ b) = φ(a) ∗ φ(b), for all a, b ∈ Q. Quandles and their homomorphisms
form a category, denoted Qnd.

Example 2.2. Every group (G, ·) defines a quandle (G, ∗) with a ∗ b =
b−1ab. This is called the conjugation quandle of G and denoted Conj(G).
Every group homomorphism (G, ·)→ (H, ·) is also a quandle homomorphism
(G, ∗) → (H, ∗). We thus obtain a functor Conj : Grp → Qnd from the
category of groups to the category of quandles.

Example 2.3. Every group (G, ·) defines an involutory quandle (G, ∗)
with a∗b = ba−1b. This is called the core quandle of G and denoted Core(G).
Every group homomorphism (G, ·)→ (H, ·) is also a quandle homomorphism
(G, ∗) → (H, ∗). We thus obtain another functor Core : Grp → Qnd from
the category of groups to the category of quandles.

Example 2.4. If A is a group and T : A ∼−→ A an automorphism, then
A becomes a quandle with a ∗ b = T (ab−1)b. This is called the Alexan-
der quandle of (A, T ), denoted Alex(A, T ). Every group homomorphism
φ : (A, T )→ (B,S) with φ◦T = S ◦φ is also a homomorphism of Alexander
quandles (A, ∗)→ (B, ∗). We thus obtain a functor Alex: GrpAut→ Qnd
from the category of group automorphisms to the category of quandles.

If A is abelian, then the pair (A, T ) is equivalent to a Z[t±]-module A
with ta = T (a) for all a ∈ A. Restricting to this case, we obtain a functor
Alex: ModZ[t±] → Qnd from the category of Z[t±]-modules to the category
of quandles.

Remark 2.5. Our definition of Alexander quandles is more inclusive
than usual, in order to embrace also non-abelian groups. Joyce [16, §7]
used the general construction, but reserved the name Alexander quandle
for abelian groups A. In this case the quandle Alex(A, T ) is abelian in the
sense that (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) for all a, b, c, d ∈ Q. Notice the
special case Alex(A,−id) = Core(A,+).

Remark 2.6. Recall that a group (G, ·) is abelian if and only if the set
End(G, ·) of endomorphisms is a group with respect to pointwise multiplica-
tion, (f ·g)(x) = f(x) ·g(x). Likewise, if a quandle (Q, ∗) is abelian, then the
set End(Q, ∗) of endomorphisms is a quandle with respect to the pointwise
operation defined by aφ∗ψ = aφ ∗ aψ.

2.2. Inner automorphisms. The automorphism group Aut(Q) con-
sists of all bijective homomorphisms φ : Q → Q. We adopt the convention
that automorphisms of Q act on the right, written aφ, which means that
their composition φψ is defined by a(φψ) = (aφ)ψ for all a ∈ Q. The quandle
axioms (Q2) and (Q3) are equivalent to saying that for every b ∈ Q the
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right translation ρb : a 7→ a ∗ b is an automorphism of Q. Such structures
were studied by E. Brieskorn [2] under the name “automorphic sets” and by
C. Rourke and R. Fenn [12] under the name “rack”.

Definition 2.7. The group Inn(Q) of inner automorphisms is the sub-
group of Aut(Q) generated by all ρa with a ∈ Q. We define the map
inn: Q→ Inn(Q) by a 7→ ρa.

Remark 2.8. For every φ ∈ Aut(Q) and a ∈ Q we have inn(aφ) =
φ−1 ◦ inn(a) ◦ φ = inn(a)φ. In particular, the subgroup Inn(Q) is normal in
Aut(Q).

Notation. In view of the map inn: Q → Inn(Q), we also write ab for
the operation a ∗ b = ainn(b) in a quandle. Conversely, it will sometimes be
convenient to write a ∗ b for the conjugation b−1ab in a group. In neither
case will there be any danger of confusion.

Definition 2.9. A right action of a group G by quandle automorphisms
on Q is a group action Q×G→ Q, (a, g) 7→ ag, such that (a ∗ b)g 7→ ag ∗ bg
for all a ∈ Q and g ∈ G. This is the same as a group homomorphism
h : G → Aut(Q) with h(g) : Q ∼−→ Q, a 7→ ag. We say that G acts by inner
automorphisms if h(G) ⊂ Inn(Q).

2.3. Representations and augmentations. The following terminol-
ogy has proved useful in describing the interplay between quandles and
groups.

Definition 2.10. A representation of a quandle Q in a group G is a
map φ : Q → G such that φ(a ∗ b) = φ(a) ∗ φ(b) for all a, b ∈ Q. In other
words, a representation Q→ G is a quandle homomorphism Q→ Conj(G).

Q×Q φ×φ−−−−→ G×G
∗
y yconj

Q
φ−−−−→ G

Definition 2.11. Let φ : Q→ G be a representation and let α : Q×G→
Q, (a, g) 7→ ag, be a group action. We call the pair (φ, α) an augmentation
if a ∗ b = aφ(b) and φ(ag) = φ(a)g for all a, b ∈ Q and g ∈ G. In other words,
the following diagram commutes:

Q×Q id×φ−−−−→ Q×G φ×id−−−−→ G×G
∗
y yα yconj

Q
id−−−−→ Q

φ−−−−→ G
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Remark 2.12. The right square says that (Q,G, φ, α) is a crossed G-set
in the sense of Freyd and Yetter [14, §4.2]. Conversely, given (Q,G, φ, α)
making the right square commute, the left square can be used to define the
binary operation ∗ : Q×Q→ Q, and it is easily seen to satisfy axioms (Q2)
and (Q3). Adding the quandle condition (Q1), Joyce defined in this way the
notion of augmented quandle [16, §9]. By construction φ is a representation
and the action α is by quandle automorphisms. This shows that augmented
quandles are naturally equivalent to crossed G-sets satisfying aφ(a) = a.

Notation. We will usually reinterpret the group action α as a group

homomorphism ᾱ : G → Aut(Q), and denote the augmentation by Q
φ→

G
ᾱ→ Aut(Q).

Remark 2.13. Suppose that a representation φ : Q → G can be pro-
longed by a group homomorphism ᾱ : G → Aut(Q) such that ᾱ ◦ φ = %.
This condition is equivalent to the commutativity of the left square, where
we set α(a, g) = aᾱ(g). Moreover, φ(a∗b) = φ(a)∗φ(b) implies φ(ag) = φ(a)g

for all a ∈ Q and g ∈ 〈φ(Q)〉. If we assume that G is generated by the image
φ(Q), then the right square becomes redundant: φ is equivariant, G acts
by inner automorphisms, and the action of G on Q is uniquely determined
by the representation φ. In this case we simply say that φ : Q → G is an
augmentation.

Example 2.14. We have inn(a∗ b) = inn(a)∗ inn(b), in other words, inn
is a representation of Q in Inn(Q), called the inner representation. Together
with the natural action of Inn(Q) on Q we obtain the inner augmentation
Q

inn−→ Inn(Q)
inc−→ Aut(Q).

Remark 2.15. Augmented quandles form a category [16, §9]. The pre-
ceding example shows that each quandle Q can be augmented on G =
Inn(Q). This construction is canonical but not functorial (see §2.5). In this
respect the adjoint augmentation has better properties (see §2.4). We thus
emphasize that every quandle Q can be augmented on some group G, i.e.
presented as a crossed G-set, but the choice of G is not unique.

Remark 2.16. For an augmentation Q
φ→ G

α→ Aut(Q) we do not
require that the image quandle φ(Q) generates the entire group G. We can
always achieve this by restricting to the subgroup H = 〈φ(Q)〉. This also
entails α(H) = Inn(Q), so that we obtain

Q H Inn(Q)

Q G Aut(Q)

w
φ

z

u

ww
α|H

z

u
w

φ
w

α
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The typical (and somewhat trivial) example is given by the augmentation
inn: Q→ Aut(Q) and its restriction inn: Q→ Inn(Q).

Example 2.17. Consider a quandle Q that can be faithfully represented
in a group G, so that we can assume Q ⊂ G with the quandle operation given
by conjugation. Assuming QG = Q, we obtain an augmentation Q ↪→ G

conj−→
Aut(Q). For H = 〈Q〉, the inner representation inn: Q → Inn(Q) extends
to an augmentation Q ↪→ H

ρ
� Inn(Q), with ker(ρ) = Z(H) and Inn(Q) ∼=

Inn(H). In particular, ρ : H → Inn(Q) is a central group extension. This
observation will be generalized in §2.7 (see Corollary 2.41 below).

2.4. The adjoint group. The universal representation can be con-
structed as follows:

Definition 2.18. Given a quandle Q we define its adjoint group Adj(Q)
= 〈Q | R〉 to be the quotient group of the group F (Q) freely generated by
the set Q modulo the relations induced by the quandle operation, R =
{a ∗ b = b−1 · a · b | a, b ∈ Q}. By construction we obtain a canonical map
adj : Q ↪→ F (Q) � Adj(Q) with adj(a ∗ b) = adj(a) ∗ adj(b).

The group Adj(Q) can be interpreted as the “enveloping group” of Q.
Notice, however, that the map adj is in general not injective (see Proposi-
tion 2.38 below).

Remark 2.19 (universal property). The map adj : Q → Adj(Q) is the
universal group representation of the quandle Q: for every group representa-
tion φ : Q→ G there exists a unique group homomorphism h : Adj(Q)→ G
such that φ = h ◦ adj.

Remark 2.20 (functoriality). Every quandle homomorphism φ : Q→Q′

induces a unique group homomorphism Adj(φ) : Adj(Q) → Adj(Q′) such
that Adj(φ)◦adjQ = adjQ′ ◦ φ. We thus obtain a functor Adj : Qnd→ Grp.

Remark 2.21 (adjointness). Its name is justified by the fact that Adj is
the left adjoint functor of Conj : Grp→Qnd, already discussed above. More
explicitly this means that we have a natural bijection HomQnd(Q,Conj(G))
∼= HomGrp(Adj(Q), G) (see [24, Chap. IV]).

Example 2.22 (adjoint action). The inner representation inn: Q →
Inn(Q) induces a unique group homomorphism ρ : Adj(Q) � Inn(Q) such
that inn = ρ ◦ adj. In this way the adjoint group Adj(Q) acts on the
quandle Q, again denoted by Q×Adj(Q)→ Q, (a, g) 7→ ag.

Remark 2.23 (adjoint augmentation). The pairQ
adj−→Adj(Q)

ρ→ Inn(Q)
is an augmentation of the quandle Q on its adjoint group Adj(Q), called the
adjoint augmentation. By construction it is the universal augmentation, in
the obvious sense.
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Remark 2.24 (equivariance). Each quandle homomorphism φ : Q→ Q′

induces a morphism of adjoint augmentations. In particular, Adj(Q) acts on
Q via ρ, and on Q′ via ρ′ ◦ Adj(φ). The map φ thus becomes equivariant
under the natural action of Adj(Q).

2.5. (Non-)Functoriality. Unlike the adjoint representation adj : Q→
Adj(Q), the inner representation inn: Q→ Inn(Q) is not functorial:

Example 2.25. Consider a quandle Q′ and an element q′ ∈ Q′ that acts
non-trivially, i.e. inn(q′) 6= idQ′ . The trivial quandle Q = {q} maps into
Q′ with q 7→ q′, but no group homomorphism Inn(Q) → Inn(Q′) can map
inn(q) = idQ to inn(q′) 6= idQ′ .

A closer look reveals that the crucial hypothesis is surjectivity:

Proposition 2.26. For every surjective quandle homomorphism p :
Q � Q̄ there exists a unique group homomorphism h : Inn(Q) � Inn(Q̄)
such that h◦ innQ = innQ̄ ◦p. In other words, h makes the following diagram
commute:

Q Inn(Q)

Q̄ Inn(Q̄)
uu

p

w
innQ

uu
h=Inn(p)

w
innQ̄

Proof. Uniqueness is clear because Inn(Q) = 〈inn(Q)〉. In order to prove
existence, first observe that for each a ∈ Q the inner action x 7→ x ∗ a
preserves the fibres of p. The same is thus true for every g ∈ Inn(Q), so
we obtain a well-defined map ḡ : Q̄ → Q̄ as follows: for each x̄ choose a
preimage x ∈ Q with p(x) = x̄ and set x̄ḡ := p(xg). By construction we have
f ◦ g = f̄ ◦ ḡ, and g = inn(a) is mapped to ḡ = inn(p(a)). This shows that
the map h : Inn(Q)→ Inn(Q̄), g 7→ ḡ, is well-defined and a surjective group
homomorphism.

Remark 2.27 (functorial augmentation). In the category of augmen-
tations of a fixed quandle Q, the adjoint augmentation adj : Q → Adj(Q)
is the initial object, while inn: Q → Aut(Q) is the terminal object [16,
§9]. We have already noticed that adj is functorial, and so it provides a
functor from quandles to augmented quandles, whereas inn is not functo-
rial. In a more restrictive setting, Proposition 2.26 provides a functor from
quandles and surjective homomorphisms to augmented quandles and surjec-
tive homomorphisms by mapping each quandle Q to the inner augmentation
inn: Q→ Inn(Q).
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2.6. Connected components. As is the case for many other mathe-
matical structures, a quandle Q is called homogeneous if Aut(Q) acts tran-
sitively on Q. The following definition is more specific for quandles, and
essentially goes back to Joyce [16, §8]:

Definition 2.28. A quandle Q is called connected if Inn(Q) acts tran-
sitively on Q. A connected component of Q is an orbit under the action of
Inn(Q). Given an element q ∈ Q we denote by [q] its connected component,
that is, the orbit of q under the action of Inn(Q). Finally, we denote by
π0(Q) = {[q] | q ∈ Q} the set of connected components of Q.

Remark 2.29. The augmentation Q → Adj(Q) � Inn(Q) shows that
the connected components of Q are precisely the Adj(Q)-orbits. Sometimes
this alternative point of view proves technically simpler because the adjoint
group behaves functorially.

Proposition 2.30 (universal property). The set π0(Q) of connected
components can be considered as a trivial quandle, in which case the canon-
ical projection φ : Q � π0(Q), q 7→ [q], becomes a quandle homomorphism.
It is universal in the sense that every quandle homomorphism Q→ X to a
trivial quandle X factors uniquely through φ.

Corollary 2.31 (functoriality). Every quandle homomorphism φ :
Q → Q′ induces a map φ∗ : π0(Q) → π0(Q′) defined by [x] 7→ [φ(x)]. If
φ is surjective then so is φ∗. In particular, the homomorphic image of a
connected quandle is again connected.

Remark 2.32. For every quandle Q, the elements of a given compo-
nent become conjugate in Adj(Q). Its abelianization is thus given by α : :
Adj(Q) → Zπ0(Q), q 7→ [q], and its kernel is the commutator subgroup
Adj(Q)′ = ker(α).

Definition 2.33. For every quandle Q there exists a unique group ho-
momorphism ε : Adj(Q) → Z with adj(Q) → {1}. Its kernel Adj(Q)◦ :=
ker(ε) is generated by all products of the form adj(a)−1 adj(b) with a, b ∈ Q.
The image of Adj(Q)◦ under the natural group homomorphism Adj(Q) →
Inn(Q) will be denoted by Inn(Q)◦. It is generated by products of the form
inn(a)−1 inn(b), called transvections by Joyce [16, §5]. In his analysis of
symmetric spaces É. Cartan called this the group of displacements (see
Loos [23, §II.1.1]).

Remark 2.34. If Q is connected, then ε : Adj(Q) → Z is the abelian-
ization of the adjoint group, and in this case Adj(Q)◦ = Adj(Q)′ and
Inn(Q)◦ = Inn(Q)′.
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We have Adj(Q) = Adj(Q)◦ o Z: choosing a base point q ∈ Q, every
element g ∈ Adj(Q) can be uniquely written as g = adj(q)ε(g)h with h ∈
Adj(Q)◦.

Remark 2.35. The components of Q are the orbits under the adjoint
action of Adj(Q). We obtain the same orbits with respect to the subgroup
Adj(Q)◦. Indeed, for a ∈ Q and g ∈ Adj(Q) we have ag = ah with h =
adj(a)−ε(g)g ∈ Adj(Q)◦.

Remark 2.36. If Q is not connected, then the orbits under Adj(Q)◦

and Adj(Q)′ usually differ significantly: Consider the quandle Q = Qm,n
of Example 1.6 with gcd(m,n) = 1, where we find Adj(Q) = Z × Z and
Inn(Q) = Zn × Zm. The orbits under Adj(Q)◦ ∼= Z are the two connected
components, and do thus not coincide with the orbits under the trivial group
Adj(Q)′ = {id}.

2.7. Central group extensions. Fenn and Rourke [12] have called the
kernel of the natural group homomorphism ρ : Adj(Q) � Inn(Q) the excess
of Q, but did not study ρ more closely. We will now see that ρ is a central
extension.

As for every group, the inner automorphism group Inn(Adj(Q)) is the
image of the homomorphism γ : Adj(Q) � Aut(Adj(Q)) defined by conjuga-
tion, γ(g) : x 7→ xg, and its kernel is the centre of Adj(Q). By definition of the
adjoint group, we also have a homomorphism α : Aut(Q) → Aut(Adj(Q))
given by φ 7→ Adj(φ).

Q Inn(Q) Aut(Q)

Adj(Q) Inn(Adj(Q)) Aut(Adj(Q))

w
inn

u
adj

y w

uu
β

u
α

A
A
A
A
A
ACCρ

ww
γ

y w

Proposition 2.37. We have α(Inn(Q)) = Inn(Adj(Q)). The restriction
of α defines a group homomorphism β : Inn(Q) � Inn(Adj(Q)) that makes
the above diagram commute. As a consequence, the group homomorphism
ρ : Adj(Q) � Inn(Q) is a central extension.

Proof. We have inn = ρ ◦ adj by construction of ρ, so we only have to
verify that α ◦ ρ = γ. Every g ∈ Adj(Q) acts on Q by inner automorphisms,
ρ(g) : Q ∼−→ Q, a 7→ ag. The quandle automorphism ρ(g) induces a group au-
tomorphism Adj(ρ(g)) : Adj(Q) ∼−→ Adj(Q) with adj(a) 7→ adj(ag) = adj(a)g

(see Remark 2.23). We conclude that Adj(ρ(g)) = γ(g). This means that the
diagram is commutative and α(Inn(Q)) = Inn(Adj(Q)).
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As an illustration we wish to determine the adjoint group of the quandle
Qm,n = Zm t Zn from Example 1.6. Recall that it decomposes into two
components, Zm and Zn.

Proposition 2.38. The adjoint group Adj(Q0,0) is isomorphic to the
Heisenberg group

H =


1 ∗ ∗

0 1 ∗
0 0 1

 ∈ SL3 Z


generated by

x =

1 1 0

0 1 0

0 0 1

 , y =

1 0 0

0 1 1

0 0 1

 , z =

1 0 1

0 1 0

0 0 1

 .

More generally, for parameters m,n∈N the adjoint group G= Adj(Qm,n)
is isomorphic to the quotient H` = H/〈z`〉 with ` = gcd(m,n), via the
isomorphism φ : G ∼−→ H` defined by adj(a) 7→ xza for a ∈ Zm and adj(b) 7→
yz−b for b ∈ Zn.

In particular, adj : Qm,n → Adj(Qm,n) is injective if and only if m = n,
and we have Adj(Qm,n) ∼= Z× Z if and only if the parameters m and n are
coprime.

Proof. By definition, the adjoint group G = Adj(Qm,n) is generated by
elements sa with a ∈ Zm and tb with b ∈ Zn subject to the quandle relations
sa ∗ tb = sa+1 and tb ∗ sa = tb+1, as well as sa ∗ sa′ = sa and tb ∗ tb′ = tb, for
all a, a′ ∈ Zm and b, b′ ∈ Zn.

In H we have [x, y] = x−1y−1xy = z and [x, z] = [y, z] = 1, which entails
the desired relations (xza) ∗ (yz−b) = xza+1 and (yz−b) ∗ (xza) = yz−(b+1).
The quotient group H` = H/〈z`〉 thus allows a quandle representation
Qm,n → H` with a 7→ xza for a ∈ Zm and b 7→ yz−b for b ∈ Zn. This
induces a surjective group homomorphism φ : G� H`.

Since Inn(Qm,n) ∼= Zn × Zm is abelian, the commutator group G′ is
contained in the kernel of G� Inn(Q), which is central according to Propo-
sition 2.37. Consider

u := [sa, tb] = s−1
a t−1

b satb = s−1
a sa+1.

Repeatedly conjugating this equation by tb yields

u = s−1
a sa+1 = s−1

a+1sa+2 = · · · = s−1
a−1sa.

On the other hand we find u = t−1
b+1tb and repeatedly conjugating by sa

yields

u = t−1
b+1tb = t−1

b+2tb+1 = · · · = t−1
b tb−1.
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This shows that um = un = 1 and thus u` = 1 for ` = gcd(m,n). With
s := s0 and t := t0 we finally obtain sa = sua for all a ∈ Zm and tb = tu−b

for all b ∈ Zn. We conclude that every element of G can be written as sitjuk

with i, j ∈ Z and k ∈ Z`. The group homomorphism φ : G � H` satisfies
φ(sitjuk) = xiyjzk, and is thus seen to be injective.

Remark 2.39. The group homomorphism β : Inn(Q) � Inn(Adj(Q))
is surjective but in general not injective. Consider for example Q = Qm,n
with gcd(m,n) = 1. Then Adj(Q) ∼= Z2, so Inn(Adj(Q)) = {id}, whereas
Inn(Q) ∼= Zm × Zn.

Remark 2.40. The group homomorphism α : Aut(Q) → Aut(Adj(Q))
is in general neither injective nor surjective. The trivial quandle Q = {q},
for example, has trivial automorphism group Aut(Q) = {id}, whereas the
adjoint group Adj(Q) ∼= Z has Aut(Adj(Q)) = {± id}.

Corollary 2.41. For every augmentation Q
φ→ G

α→ Inn(Q) with
G = 〈φ(Q)〉, the induced group homomorphisms h : Adj(Q) � G and α :
G� Inn(Q) are central extensions, because α ◦ h = ρ is a central extension
according to Proposition 2.37.

Adj(Q)

Q G

Inn(Q)

[
[
[]]
h

ρ�
�
��adj

w
φ

[
[
[]

inn uu
�

�
���

α

2.8. Quandle coverings. The following definition of quandle covering
was inspired by [9], where this approach was successfully used to study knot
quandles.

Definition 2.42. A quandle homomorphism p : Q̃→ Q is called a cov-
ering if it is surjective and p(x̃) = p(ỹ) implies ã∗x̃ = ã∗ ỹ for all ã, x̃, ỹ ∈ Q̃.

In other words, a surjective quandle homomorphism p : Q̃ � Q is a
covering if and only if the inner representation inn: Q̃ → Inn(Q̃) factors
through p.

Example 2.43. For every augmentation Q
φ→ G

α→ Aut(Q) the quandle
homomorphism φ : Q � φ(Q) is a covering. In particular, the inner rep-
resentation inn: Q → Inn(Q) defines a quandle covering Q � inn(Q). By
definition, inn(Q) is the smallest quandle covered by Q. At the other extreme
we will show in Section 5 below how to construct the universal covering of Q.
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Notation. We shall reserve the term “covering” for the map p : Q̃→ Q.
If emphasis is desired, it is convenient to call p : Q̃→ Q the quandle covering
and Q̃ the covering quandle.

Example 2.44. A surjective group homomorphism p : G̃ � G yields a
quandle covering Conj(G̃)→ Conj(G) if and only if ker(p) ⊂ G̃ is a central
subgroup.

Example 2.45. A surjective group homomorphism p : G̃ � G yields a
quandle covering Core(G̃)→ Core(G) if and only if ker(p) ⊂ G̃ is a central
subgroup of exponent 2.

Example 2.46. A surjective group homomorphism p : Ã � A with p ◦
T̃ = T ◦ p yields a quandle covering Alex(Ã, T̃ )→ Alex(A, T ) if and only if
T̃ acts trivially on ker(p) ⊂ Ã.

Warning 2.47. The composition of two central group extensions is in
general not a central extension, and so the functor Conj shows that we
cannot generally expect the composition of two quandle coverings to be again
a covering (see also Example 1.22). Similar remarks apply to the functors
Core and Alex.

Remark 2.48. A covering p : Q̃� Q allows us to define a representation
σ̃ : Q → Inn(Q̃) by setting ã ∗ x := ã ∗ x̃ for all x ∈ Q and ã, x̃ ∈ Q̃ with
p(x̃) = x. This is well-defined because ã∗ x̃ does not depend on the choice of
the preimage x̃. Moreover, σ̃ induces a group homomorphism ρ̃ : Adj(Q)→
Inn(Q̃). This is summarized in the commutative diagram:

Q̃ Adj(Q̃)

Inn(Q̃)

Q Adj(Q)

Inn(Q)

w
adjQ̃

uu

p

'
'
'')

innQ̃

uu

Adj(p)

[
[[̂̂ ρQ̃

uu

Inn(p)

adjQ

\
\
\\]σ̃

'
'
'')

innQ

w

(
((** ρ̃

[
[
[̂̂ ρQ

In particular, σ̃ : Q→ Inn(Q̃) is an augmentation with Inn(Q̃) = 〈σ̃(Q)〉,
and the covering p is equivariant with respect to the action of Inn(Q̃). More-
over, ρ̃ defines a natural action of the adjoint group Adj(Q) on the covering
quandle Q̃, and p is equivariant with respect to this action. By functoriality,
Adj(p) and Inn(p) are likewise equivariant.
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Proposition 2.49. For every quandle covering p : Q̃ � Q, the induced
group homomorphisms Adj(p) : Adj(Q̃) � Adj(Q) and Inn(p) : Inn(Q̃) �
Inn(Q) are central extensions.

Proof. This follows from the commutativity of the diagram and from
Proposition 2.37.

3. Examples of quandles and coverings. This section recalls some
classical examples where quandles arise naturally: conjugation in groups,
the adjoint action of a Lie group on its Lie algebra, and the symmetries of
a Riemannian symmetric space. Our aim here is to highlight the notion of
quandle covering and its relationship to central group extensions, coverings
of Lie groups, and coverings of symmetric spaces, respectively.

3.1. Trivial coverings. Even though this is by far the least interesting
case, we shall start our tour with trivial coverings.

Example 3.1 (trivial covering). Let Q be a quandle and let F be a non-
empty set. We can consider F as a trivial quandle, and equip the product
Q̃ = Q×F with the quandle operation (a, s)∗(b, t) = (a∗b, s). The projection
p : Q × F → Q given by (q, s) 7→ q is a quandle covering, called the trivial
covering with fibre F .

Remark 3.2. For every quandle homomorphism p : Q̃ → Q, each fibre
F = p−1(q) is a subquandle of Q̃. If p is a quandle covering, then F is
necessarily trivial. The fibres over any two points of the same component
are isomorphic. The isomorphism is not canonical, however, and covering
theory studies the possible monodromy.

Remark 3.3 (almost trivial covering). If Q decomposes into connected
components (Qi)i∈I , then we can choose a non-empty set Fi for each i ∈ I
and equip the union Q̃ =

⊔
i∈I Qi × Fi with the previous quandle operation

(a, s) ∗ (b, t) = (a ∗ b, s). The result is a quandle covering Q̃→ Q, (q, s) 7→ q,
that is trivial over each component, but not globally trivial if the fibres over
different components are non-isomorphic (i.e. have different cardinality).

3.2. Conjugation quandles. As already noted in the introduction,
every group G becomes a quandle with respect to conjugation a∗ b = b−1ab.
More generally, every non-empty union Q of conjugacy classes in G is a
quandle with these operations, and Q is a connected quandle if and only if
Q is a single conjugacy class in the generated subgroup H = 〈Q〉.

Remark 3.4 (central extensions). Given a quandle Q ⊂ G and a central
group extension p : G̃ � G, the preimage Q̃ = p−1(Q) yields a quandle
covering p : Q̃ → Q. The kernel Λ = ker(p) acts on the covering quandle Q̃



Quandle coverings and their Galois correspondence 127

such that (λa) ∗ b = λ(a ∗ b) and a ∗ (λb) = a ∗ b for all a, b ∈ Q̃ and λ ∈ Λ.
This will be called a quandle extension (see Definition 4.14).

Example 3.5 (linear groups). Consider the special linear group SL2 K
over a field K. Its centre is Z = {± id} and is thus of order 2 if
charK 6= 2. The quotient is the projective special linear group PSL2 K =
SL2 K/Z, and by construction p : SL2 K � PSL2 K is a central extension.
We will assume that |K| ≥ 4, so that SL2 K is perfect and PSL2 K is simple.
(See [22, §XIII.8].)

The conjugacy class Q̃ = q̃G̃ of q̃ =
(

0 1
−1 0

)
defines a quandle in G̃ =

SL2 K. Its image Q := p(Q̃) = qG is the conjugacy class of q := p(q̃) = ±q̃ in

G = PSL2 K. We have G = 〈Q〉 because G is simple, and G̃ = 〈Q̃〉 because

G̃ is perfect. (This is a general observation: 〈Q̃〉 is normal in G̃ and maps
onto G, so that G̃/〈Q̃〉 is abelian, whence G̃ = 〈Q̃〉.)

Suppose that there exist a, b ∈ K such that a2 + b2 = −1. (This always
holds in finite characteristic, and also for K = C, but not for K = R.) In this
case the matrix c =

(
a b
b −a

)
∈ G̃ conjugates q̃ to q̃c = −q̃, so that Z · Q̃ = Q̃.

This means that p : Q̃ � Q is a two-fold covering of connected quandles,
and even an extension Z y Q̃� Q.

If a2 + b2 = −1 has no solution in K, as for example in K = R, then
q̃ and −q̃ are not conjugated in G̃ = SL2 K, so that p−1(Q) = +Q̃ t −Q̃
consists of two isomorphic copies of Q. This is again a two-fold quandle
covering, but a trivial one.

3.3. Lie groups and Lie algebras. Every Lie group G is tied to its
Lie algebra g = T1G by two maps: the exponential map exp: g→ G and the
adjoint action ad: G→ Aut(g), denoted by ad(g) : x 7→ xg. This corresponds
to a quandle structure in the following sense:

• The set g is a quandle with respect to x ∗ y = xexp(y). We recover the
Lie bracket as the derivative d

dt [x ∗ ty]t=0 = [x, y].

• The triple g
exp−→ G

ad−→ Aut(g) is an augmentation of the quandle
(g, ∗). The image Q = exp(g) is a quandle in the group G with respect
to conjugation.
• In general we have exp(g) ( G. If G is connected and exp: (g, 0) →

(G, 1) is a local diffeomorphism, then we have G = 〈exp(g)〉 and
ad(G) = Inn(g, ∗).

Remark 3.6. In the finite-dimensional case, the manifold G is modelled
on Rn or Cn, and the inverse function theorem ensures that exp is a local
diffeomorphism from an open neighbourhood of 0 ∈ g onto an open neigh-
bourhood of 1 ∈ G. In the infinite-dimensional case, this result still holds for
Lie groups modelled on Banach spaces. It may fail, however, for complete
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locally convex vector spaces, a setting motivated and studied by Milnor [28].
He notes that in some cases the conclusion G = 〈exp(g)〉 follows from the
additional property that the group G is simple, because 〈exp(g)〉 is a normal
subgroup.

Remark 3.7 (central extensions again). If p : G̃ → G is a connected
covering of the Lie group G, then G̃ carries a unique Lie group structure such
that p is a Lie group homomorphism. The linear isomorphism T1p : T1G̃

∼−→
T1G provides an isomorphism of Lie algebras g̃ ∼−→ g, and so we obtain
another augmentation g

exp−→ G̃
ad−→ Aut(g). This can be summarized as

follows:

g̃ Q̃ G̃ Inn(g̃)

g Q G Inn(g)

ww
expG̃

u

∼=

y w
inc

uu
p

ww
adG̃

uu

p

u

∼=

ww
expG

y w
inc

ww
adG

Assuming G = 〈Q〉 and G̃ = 〈Q̃〉, we recover a well-known fact of Lie group
theory: p : G̃ → G is a central group extension, because both G̃ and G
are intermediate to the central extension Adj(g, ∗) � Inn(g, ∗) (see Corol-
lary 2.41). In particular, p : Q̃→ Q is a quandle covering (see Remark 3.4).

3.4. Infinite-dimensional Lie algebras. In contrast to the finite-
dimensional case, not every infinite-dimensional Lie algebra (L, [ , ]) can be
realized as the tangent space of a Lie group G. This fails even for Banach Lie
algebras, as remarked by van Est and Korthagen [35]. (See also Serre [32,
Part II, §V.8].) It is worth noting that the construction of the quandle (L, ∗)
can still be carried out.

The obvious idea is to define x ∗ y by the initial condition x ∗ 0 = x and
the differential equation d

dt(x ∗ ty) = [x ∗ ty, y]. This equation has at most
one analytic solution, namely

x ∗ y =

∞∑
k=0

1

k!
[. . . [[x, y], y] . . . , y].

In order to ensure convergence, it suffices to impose some reasonable con-
dition on the topology of L: all obstacles disappear, for example, if L is a
Banach Lie algebra. It is then an amusing exercise to verify that (L, ∗) is
indeed a quandle:

(Q1) Antisymmetry [x, x] = 0 translates to idempotency x ∗ x = x.
(Q2) The functional equation exp(y)◦exp(−y) = id ensures invertibility.
(Q3) The Jacobi identity of the Lie bracket [ , ] translates to self-distribu-

tivity of the quandle operation ∗.
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We conclude that constructing the quandle (L, ∗) is a rather benign
topological problem. The natural group that appears here is G = 〈exp(L)〉 =
Inn(L, ∗), but in general this need not be a Lie group; and even if it is
we can only expect T1G = ad(L) = L/Z(L). The much deeper problem of
constructing a Lie group G realizing the Lie algebra L involves the structure
of L in a more profound way and leads in general to non-trivial obstructions.

The lesson to be learned from this excursion is that although a Lie
group G may be too much to ask, the less ambitious quandle structure (L, ∗)
can still be rescued. The construction is natural in the following sense:

Proposition 3.8. Let (K, [ , ]) and (L, [ , ]) be Lie algebras, and let (K, ∗)
and (L, ∗) be the corresponding quandles. A continuous linear map p : K →
L is a Lie algebra homomorphism (K, [ , ]) → (L, [ , ]) if and only if it is a
quandle homomorphism (K, ∗)→ (L, ∗). Moreover, p is a central extension
of Lie algebras if and only if it is a covering of quandles. (In this case p is
even an extension of quandles in the sense of Definition 4.14.)

3.5. Reflection quandles. Consider Rn with a ∗ b = a ∗ b = 2b − a,
which is the symmetry about the point b. This defines a connected involutory
quandle Q = (Rn, ∗), called the n-dimensional reflection quandle. Since b is
the unique fixed point of inn(b), we see that inn: Q → Inn(Q) is injective.
More precisely, (Rn, ∗) is isomorphic to conjugacy class of reflections in the
semidirect product Inn(Rn, ∗) ∼= (Rn,+) o {± id}.

Example 3.9. The quandle structure passes to the quotient group Tn =
Rn/Zn, where it can again be formulated as a ∗ b = 2b − a. In this way
the torus Tn inherits a unique quandle structure such that the projection
p : Rn → Tn is a quandle homomorphism. The quotient map p is not a
quandle covering, because innQ is injective and does not factor through p.

Example 3.10. We can produce quandle coverings Tn → Tn as follows.
Consider the subgroup Λ = p

(
1
2Z

n
)

=
{

[0],
[

1
2

]}n
acting on Tn by transla-

tion. For b, b′ ∈ Tn we have inn(b) = inn(b′) if and only if b − b′ ∈ Λ. The
quotient Λ\Tn carries a unique quandle structure such that the projection
Tn � Λ\Tn is a quandle covering. (This quotient can be identified with
Tn ·2−→ Tn.) Similar remarks apply to the quotient by any subgroup of Λ.

3.6. Spherical quandles. We can equip the unit sphere Sn ⊂ Rn+1

with the operation a ∗ b = 2〈a, b〉b− a, which is the unique involution fixing
b and mapping x 7→ −x for x orthogonal to b. This turns (Sn, ∗) into a
connected involutory quandle, called the n-dimensional spherical quandle.

Example 3.11. For λ = ±1 and a, b ∈ Sn we have (λa) ∗ b = λ(a ∗ b)
and a ∗ (λb) = a ∗ b. This means that the projective space RPn = Sn/{±1}
inherits a unique quandle structure [a] ∗ [b] = [a ∗ b] such that the projection
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p : Sn → RPn is a quandle covering. The map p is, of course, also a covering
of topological spaces.

Remark 3.12. The inner action defines a representation of the quandle
(Sn, ∗) in the orthogonal group O(n+ 1), and in SO(n+ 1) if n is even. This
representation is not faithful because inn(b) = inn(−b) for all b ∈ Sn, but we
obtain a faithful representation of the projective quandle (RPn, ∗). A faithful
representation of the spherical quandle (Sn, ∗) is obtained by lifting to the
double covering Pin(n+ 1) � O(n+ 1) (see [22, §XIX.4]). We get

(Sn, ∗) Pin(n+ 1)

(RPn, ∗) O(n+ 1)
uu

y w

uu

y w

3.7. Symmetric spaces. Reflection quandles and spherical quandles
have a beautiful common generalization: globally symmetric Riemannian
manifolds. They were introduced and classified by Élie Cartan in the 1920s
and form a classical object of Riemannian geometry. (See Helgason [15,
§IV.3], Loos [23], Klingenberg [20, §2.2], Lang [21, §XIII.5].) We briefly recall
some elementary properties in order to characterize the quandle coverings
that naturally arise in this context (2).

Definition 3.13. A symmetric space is a smooth connected manifold
X equipped with a Riemannian metric such that for each point x ∈ X there
exists an isometry sx : X ∼−→ X that reverses every geodesic arc γ : (]−ε, ε[, 0)
→ (X,x), meaning that sx ◦ γ(t) = γ(−t).

In a symmetric space every geodesic arc can be prolonged to a complete
geodesic R→ X, and the Hopf–Rinow theorem implies that X is a complete
Riemannian manifold. Conversely, the fact thatX is connected and complete
ensures that any two points x, x′ ∈ X can be joined by a geodesic, and so
the symmetry sx is unique for each x.

Proposition 3.14. A symmetric space X is an involutory quandle with
respect to the operation ∗ : X×X → X defined by the symmetry x∗y = sy(x).

Proof. Axiom (Q1) follows from sx(x) = x, and axiom (Q2) is a con-
sequence of s2

x = idX . For (Q3) notice that the isometry szsysz reverses

(2) In the classification of symmetric spaces one usually passes to universal coverings
and then concentrates on simply connected spaces. The observations that follow concern
non-simply connected symmetric spaces, because we are particularly interested in the
coverings themselves. We will not appeal to the classification, so our remarks can be
considered an elementary complement to the simply connected case.
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every geodesic (R, 0) → (X, sz(y)), and so we conclude szsysz = ssz(y) by
uniqueness of the symmetry about sz(y).

Remark 3.15. For a symmetric space X, topological connectedness en-
tails algebraic connectedness. The quandle (X, ∗) is even strongly connected:
since any two points x, x′ ∈ X can be joined by a geodesic γ : R→ X with
γ(0) = x and γ(1) = x′, the symmetry about y = γ(1/2) maps x to x′. In
other words, we do not need a product of successive symmetries to go from
x to x′; one step suffices. For the quandle (X, ∗) this means that x′ = xg for
some g ∈ inn(X), rather than g ∈ Inn(X) as usual.

In favourable cases a covering p : X̃ � X of symmetric spaces is also a
quandle covering (X̃, ∗) � (X, ∗), as for Sn � RPn, but in general it need
not be, as illustrated by the example Rn � Tn above. For Lie groups this
phenomenon is easy to understand:

Example 3.16. Consider a Lie group G with a bi-invariant Riemannian
metric, for example, a compact Lie group. (See [15, §IV.6].) In this case G is
a symmetric space: a smooth map (R, 0)→ (G, 1) is a geodesic if and only if
it is a group homomorphism, and the geodesic-reversing involution at 1 ∈ G
is just s1(g) = g−1. For any other point h ∈ G we find sh(g) = hg−1h; we
thus recover Core(G), the core quandle of G of Example 2.3.

We deduce from Example 2.45 that a covering p : G̃ � G of connected
Lie groups is a quandle covering Core(G̃) � Core(G) if and only if ker(p) is
a group of exponent 2. This is actually a general condition:

Theorem 3.17. Let X be a symmetric space. For every connected cover-
ing p : X̃ → X the covering space X̃ carries a unique Riemannian structure
such that p is a local isometry. Equipped with this canonical structure, X̃ is
itself a symmetric space and p is a quandle homomorphism. It is a quandle
covering if and only if Aut(p) is a group of exponent 2.

The proof relies on the following observation, which is interesting in its
own right:

Lemma 3.18. Let X be a homogeneous Riemannian manifold. Then in
every homotopy class c ∈ π1(X,x) there exists a loop γ : [0, 1] → X, with
γ(0) = γ(1) = x, minimizing the arc-length of all loops in c. Every such
loop γ is a closed geodesic, satisfying γ′(0) = γ′(1), so that its continuation
defines a geodesic (R, 0)→ (X,x) of period 1.

Notice that we do not consider free homotopy classes, but homotopy
classes based at x. Moreover, X need not be compact; the crucial hypothesis
is homogeneity. For the special case of symmetric spaces, which is of interest
to us here, the conclusion γ′(0) = γ′(1) can be obtained by parallel transport
along γ (see [20, Corollary 2.2.7]).
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Proof of Theorem 3.17. The symmetry sx : (X,x) → (X,x) acts as
inversion on πtop

1 (X,x), which implies that this group is abelian. Every

connected covering p : (X̃, x̃) → (X,x) is thus Galois, and the symme-
try sx : (X,x) → (X,x) lifts to a symmetry sx̃ : (X̃, x̃) → (X̃, x̃). This
turns X̃ into a Riemannian symmetric space, and we obtain a quandle
(X̃, ∗). The projection p is a quandle homomorphism: for a, b ∈ X̃ we have
p ◦ sb = sp(b) ◦ p, whence p(a ∗ b) = p ◦ sb(a) = sp(b) ◦ p(a) = p(a) ∗ p(b).

Any two points a, b ∈ p−1(x) are related by a unique deck transformation
h ∈ Aut(p) such that h(a) = b, and by a (possibly non-unique) geodesic
γ : R→ X̃ with γ(0) = a and γ(1) = b such that γ|[0,1] is length-minimizing.
We thus have γ(s)∗γ(t) = γ(2t−s) for all s, t ∈ R, and also hγ(t) = γ(t+1)
according to Lemma 3.18.

If p is a quandle covering, then sa = sb entails h2(a) = γ(2) = γ(0) ∗
γ(1) = a ∗ b = a. This shows that the deck transformation h2 : X̃ → X̃ fixes
a and is thus the identity.

Conversely, if h2 = id, then a ∗ b = γ(0) ∗ γ(1) = γ(2) = h2(a) = a.
This implies that sb = sa, because both are liftings of sx = p ◦ sa = p ◦ sb
fixing a.

Remark 3.19. The examples of Lie groups and symmetric Riemannian
manifolds are manifestly of a topological nature, and the quandles that
emerge naturally are topological quandles, analogous to topological groups.
It is conceivable to define the adjoint group in the topological category,
so that the adjoint augmentation Q → Adj(Q) → Inn(Q) is continuous
and universal in an appropriate sense. Likewise, the theory of (algebraic, i.e.
discrete) quandle coverings can be adapted to continuous quandle coverings,
and a topological Galois correspondence can be established. We postpone
this generalization and consider only the algebraic aspect, that is, discrete
quandles, in this article.

3.8. Historical remarks. As early as 1942, M. Takasaki [34] intro-
duced the notion of “kei” (i.e. involutory quandle) as an abstraction of sym-
metric spaces, and later O. Loos [23] extensively studied symmetric spaces
as differential manifolds with an involutory quandle structure. Racks first
appeared around 1959 under the name “wracks” in unpublished correspon-
dence between J. H. Conway and G. C. Wraith (see [12]). D. Joyce published
the first comprehensive treatment of quandles in 1982, and also coined the
name “quandle”. Independently, S. Matveev [26] studied the equivalent no-
tion of “distributive groupoid” (which is not a groupoid in the usual sense, as
in §8). Racks were rediscovered on many occasions and studied under various
names: as “automorphic sets” by E. Brieskorn [2], as “crossed G-sets” by
P. J. Freyd and D. N. Yetter [14], as “racks” by R. Fenn and C. Rourke [12],
and as “crystals” by L. H. Kauffman [17]. For a detailed review see [12].
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4. The category of quandle coverings. This section initiates the
systematic study of quandle coverings. They correspond vaguely to central
group extensions, but also incorporate intrinsically non-abelian features. The
best analogy seems to be with coverings of topological spaces. Throughout
this article we will use this analogy as a guiding principle wherever possible.

4.1. The category of quandle coverings. We have already seen that
the composition of quandle coverings is in general not a quandle covering
(see §1.6). In order to obtain a category we have to consider coverings over
a fixed base quandle:

Definition 4.1. Let p : Q̃→ Q and p̂ : Q̂→ Q be two quandle coverings.
A covering morphism from p to p̂ (over Q) is a quandle homomorphism
φ : Q̃→ Q̂ such that p = p̂ ◦ φ:

Q̃ Q̂

Q

w
φ

[[]
p ��� p̂

Proposition 4.2. A map φ : Q̃ → Q̂ with p = p̂ ◦ φ is a covering mor-
phism if and only if φ is equivariant with respect to Adj(Q), or equivalently,
its subgroup Adj(Q)◦.

Proof. Consider ã, b̃ ∈ Q̃ and b = p(b̃) = p̂φ(b̃). Since both p and p̂ are
coverings, we have on the one hand φ(ã ∗ b̃) = φ(ãadj(b)) and on the other
hand φ(ã) ∗φ(b̃) = φ(ã)adj(b). This proves the desired equivalence. It suffices
to assume equivariance under the subgroup Adj(Q)◦, by replacing adj(b)
with adj(a)−1 adj(b) ∈ Adj(Q)◦ where a = p(ã).

Proposition 4.3. Given a quandle Q, the coverings p : Q̃→ Q together
with their covering morphisms form a category, called the category of cov-
erings over Q, denoted Cov(Q).

Proof. The only point to verify is that, given three coverings pi : Q̃i → Q
with i = 1, 2, 3, the composition of two covering morphisms φ1 : Q̃1 → Q̃2

and φ2 : Q̃2 → Q̃3 is again a covering morphism. We already know that
Qnd is a category, so φ = φ2 ◦ φ1 : Q̃1 → Q̃3 is a quandle homomorphism.
Moreover, p3 ◦ φ = p3 ◦ φ2 ◦ φ1 = p2 ◦ φ1 = p1.

Remark 4.4. Every surjective covering morphism φ : Q̃ � Q̂ is itself a
quandle covering: if φ(x̃) = φ(ỹ) then p(x̃) = p̂φ(x̃) = p̂φ(ỹ) = p(ỹ) and so
inn(x̃) = inn(ỹ).

Definition 4.5. For a quandle covering p : Q̃→ Q we define Aut(p) to
be the group of covering automorphisms of p, also called the group of deck
transformations of the covering p. We will adopt the convention that deck
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transformations of p act on the left, which means that their composition φψ
is defined by (φψ)(q̃) = φ(ψ(q̃)) for all q̃ ∈ Q̃.

We let Aut(p) act on the left because this is the most convenient (and
traditional) way to denote two commuting actions:

Proposition 4.6. Given a quandle covering p : Q̃ → Q, two groups
naturally act on the covering quandle Q̃: the group of deck transformations
Aut(p) acts on the left while the group of inner automorphisms Inn(Q̃) acts
on the right. Both actions commute.

Proof. Consider φ ∈ Aut(p) and x̃, ỹ ∈ Q̃. Then φ(x̃∗ ỹ) = φ(x̃)∗φ(ỹ) =
φ(x̃) ∗ ỹ, which means that φ and inn(ỹ) commute. Since the group Inn(Q̃)
is generated by inn(Q̃), this proves that the actions of Aut(p) and Inn(Q̃)
commute.

4.2. Pointed quandles and coverings. As in the case of topolog-
ical spaces, we have to choose base points in order to obtain uniqueness
properties of coverings.

Definition 4.7. A pointed quandle (Q, q) is a quandle Q with a specified
base point q ∈ Q. A homomorphism (resp. covering) φ : (Q, q)→ (Q′, q′) be-
tween pointed quandles is a quandle homomorphism (resp. covering) φ : Q→
Q′ such that φ(q) = q′. Pointed quandles and their homomorphisms form a
category, denoted Qnd∗. Likewise, coverings p : (Q̃, q̃)→ (Q, q) over a fixed
base quandle (Q, q) form a category, denoted Cov(Q, q).

Definition 4.8. Let f : (X,x) → (Q, q) and p : (Q̃, q̃) → (Q, q) be ho-
momorphisms of pointed quandles. A lifting of f over p is a quandle homo-
morphism f̃ : (X,x)→ (Q̃, q̃) such that p ◦ f̃ = f :

(Q̃, q̃)

(X,x) (Q, q)
u
p

w
f

B
B
B
B
B
BC

f̃

Proposition 4.9 (lifting uniqueness). Let f : (X,x) → (Q, q) be a
quandle homomorphism, and let p : (Q̃, q̃) → (Q, q) be a quandle covering.
Then any two liftings f̃1, f̃2 : (X,x) → (Q̃, q̃) of f over p coincide on the
component of x in X. In particular, if X is connected, then f admits at
most one lifting over p.

Proof. The quandle homomorphism f induces a group homomorphism
h : Adj(X) → Adj(Q). Since p is a covering, the group Adj(Q) acts on Q̃,
and so does Adj(X) via h. In this way, all the maps in the above triangle are
equivariant with respect to the action of Adj(X). If f̃1 and f̃2 coincide on one
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point x, they coincide on its entire orbit, which is precisely the connected
component of x in X.

Corollary 4.10. Between a connected covering p : (Q̃, q̃)→ (Q, q) and
an arbitrary covering p̂ : (Q̂, q̂) → (Q, q) there can be at most one covering
morphism φ : (Q̃, q̃)→ (Q̂, q̂).

Proof. The equation p = p̂ ◦ φ means that φ is a lifting of p over p̂.

Corollary 4.11. Let p : Q̃ → Q be a quandle covering. If Q̃ is con-
nected, then the group Aut(p) of deck transformations acts freely on each
fibre.

Proof. Choose a base point q ∈ Q and consider the fibre F = p−1(q).
Every deck transformation φ ∈ Aut(p) satisfies φ(F ) = F , and so Aut(p)
acts on the set F . If φ fixes a point q̃ ∈ F , then φ = id by the previous
corollary.

4.3. Galois coverings. As for topological coverings, the Galois case is
most prominent:

Definition 4.12. A covering p : Q̃ → Q is said to be Galois if Q̃ is
connected and Aut(p) acts transitively on each fibre. (It necessarily acts
freely by the previous corollary.)

Numerous examples are provided by central group extensions (Re-
mark 3.4 and Example 3.5) and coverings of symmetric spaces (Exam-
ples 3.10 and 3.11, and Theorem 3.17).

Remark 4.13. Every Galois covering p : Q̃→ Q comes with the natural
action Λ y Q̃ of the deck transformation group Λ = Aut(p) satisfying the
following two axioms:

(E1) (λx̃) ∗ ỹ = λ(x̃ ∗ ỹ) and x̃ ∗ (λỹ) = x̃ ∗ ỹ for all x̃, ỹ ∈ Q̃ and λ ∈ Λ.
(E2) Λ acts freely and transitively on each fibre p−1(x).

Axiom (E1) says that Λ acts by automorphisms and the left action of Λ
commutes with the right action of Inn(Q̃) (see Proposition 4.6). We denote
such an action simply by Λ y Q̃. In this situation the quotient Q := Λ\Q̃
carries a unique quandle structure that turns the projection p : Q̃→ Q into
a quandle covering. Axiom (E2) then says that p : Q̃ → Q is a principal
Λ-covering, in the sense that each fibre is a principal Λ-set.

4.4. Quandle extensions. The freeness expressed in (E2) relies on the
connectedness of Q̃. As an extreme counter-example, consider the trivial
covering p : Q̃ = Q×F → Q where Q is a connected quandle and F is a set
with at least three elements. Here the deck transformation group Aut(p) =
Sym(F ) is too large: it acts transitively but not freely.
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If the covering quandle Q̃ is non-connected, we can nevertheless salvage
the above properties by passing from the group Aut(p) to a subgroup Λ that
satisfies (E2). We are thus led to the concept of a principal Λ-covering. Mo-
tivated by the terminology used in group theory, we will call this a quandle
extension:

Definition 4.14. An extension E : Λ y Q̃
p→ Q of a quandle Q by a

group Λ consists of a surjective quandle homomorphism p : Q̃ → Q and a
group action Λ y Q̃ satisfying the above axioms (E1) and (E2). This can
also be called a principal Λ-covering of Q.

Quandle extensions are intermediate between Galois coverings and gen-
eral coverings:

Proposition 4.15. In every extension E : Λ y Q̃
p→ Q the projection

p : Q̃→ Q is a quandle covering. It is a Galois covering if and only if Q̃ is
connected.

Conversely, every Galois covering p : Q̃→ Q defines an extension of Q,
with the group Λ = Aut(p) acting naturally on Q̃ by deck transformations.

We have already seen quandle extensions in the general Examples 2.44,
2.45, 2.46, and the more concrete Examples 3.1, 3.5, 3.10, 3.11. Here is
another natural construction, which essentially goes back to Joyce [16, §7]
and will be proven universal in §5.1.

Example 4.16. As in Example 2.4 we consider a group G with automor-
phism T : G ∼−→ G and the associated Alexander quandle Q = Alex(G,T ).
Suppose that H ⊂ G is a subgroup such that T |H = idH . Then H×G→ G,
(h, g) 7→ hg, defines a free action of H on the quandle Q satisfying ax-
iom (E1) above. As a consequence, the quotient set Q̄ = H\G carries a
unique quandle structure such that the projection p : Q � Q̄ is a quandle
homomorphism, and H y Q� Q̄ is a quandle extension.

Coverings of Q form a category, which provides us with a natural notion
of isomorphism, i.e. equivalence of coverings. Here is the appropriate notion
for extensions:

Definition 4.17. Let Q be a quandle and let Λ be a group. An equiv-
alence, or isomorphism, between extensions E1 : Λ y Q1

p1−→ Q and E2 :
Λ y Q2

p2−→ Q is a quandle isomorphism φ : Q1
∼−→ Q2 that respects pro-

jections, p1 = p2φ, and is equivariant, φλ = λφ for all λ ∈ Λ. We denote by
Ext(Q,Λ) the set of equivalence classes of extensions of Q by Λ.

One could also define the seemingly weaker notion of homomorphism
between extensions E1 and E2 as a quandle homomorphism φ : Q1 → Q2

that respects projections and is Λ-equivariant. This leads to the following
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observation, which is a variant of the well-known Five Lemma for short exact
sequences in abelian categories (see [25, §VIII.4]).

Proposition 4.18. Every homomorphism φ : Q1 → Q2 between two
quandle extensions E1 : Λ y Q1

p1−→ Q and E2 : Λ y Q2
p2−→ Q is an

isomorphism of extensions.

The proof is a straightforward diagram chase, and will be omitted.

4.5. Pull-backs. Given quandle homomorphisms p : Q̃ → Q and f :
X → Q we construct their pull-back, or fibred product, X̃ = X ×Q Q̃ as
follows:

X̃
f̃−−−−→ Q̃

p̃

y yp
X

f−−−−→ Q

The set X̃ := {(x, ã) ∈ X × Q̃ | f(x) = p(ã)} can be equipped with a
quandle operation (x, ã) ∗ (y, b̃) := (x ∗ y, ã ∗ b̃) such that the projections
p̃(x, ã) = x and f̃(x, ã) = ã are quandle homomorphisms and make the
above diagram commute. The triple (X̃, p̃, f̃) is universal in the usual sense
that any other candidate uniquely factors through it, and this property
characterizes it up to a unique isomorphism.

The quandle homomorphism f∗p := p̃ : X̃ → X is called the pull-back of
p along f .

Proposition 4.19. If p is a covering, then its pull-back f∗p is again a
covering. Thus every quandle homomorphism f : X → Q induces a covariant
functor f∗ : Cov(Q) → Cov(X) by sending each covering p : Q̃ → Q to
its pull-back f∗p : X̃ → X, and every morphism between coverings to the
induced morphism between their pull-backs.

Proof. Suppose that p : Q̃→ Q is a covering, that is, p is surjective and
p(ã) = p(b̃) implies inn(ã) = inn(b̃). Then p̃ : X̃ → X is surjective, and for
all x̃ = (x, ã) and ỹ = (y, b̃) the equality p̃(x̃) = p̃(ỹ) entails x = y as well
as p(ã) = f(x) = f(y) = p(b̃). These in turn imply that inn(x̃) = inn(ỹ), as
claimed. This construction is natural with respect to covering morphisms,
whence f∗ is a functor.

For extensions Λy Q̃� Q we record the following observations:

Proposition 4.20 (functoriality in Q). The pull-back of an extension
E : Λ y Q̃

p→ Q along a quandle homomorphism f : X → Q inherits a
natural Λ-action and defines an extension f∗E : Λ y X̃

f∗p−→ X. We thus
obtain a natural map f∗ : Ext(Q,Λ)→ Ext(X,Λ).
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Proof. The action on X̃ is given by λ(x, ã) = (x, λã) for λ ∈ Λ. Ax-
ioms (E1) and (E2) carry over from Q̃ to X̃, so that f∗E is an extension,
as claimed.

Proposition 4.21 (functoriality in Λ). Every group homomorphism h :
Λ→ Λ′ induces a natural map on extensions, h∗ : Ext(Q,Λ)→ Ext(Q,Λ′).

Proof. Given an extension E : Λ y Q̃
p→ Q, the induced extension h∗E

is defined as the product Λ′ × Q̃ modulo the relation (λ′, λã) ∼ (λ′h(λ), ã)
for λ ∈ Λ. The quotient Q̂ inherits the quandle structure [λ′, a] ∗ [λ′′, b] =
[λ′, a ∗ b], and the extension h∗E : Λ′ y Q̂

p̂→ Q is defined by the pro-
jection p̂[λ′, a] = p(a) and the action λ′[λ′′, a] = [λ′λ′′, a]. This construc-
tion is well-defined on isomorphism classes of extensions, so that we obtain
h∗ : Ext(Q,Λ)→ Ext(Q,Λ′) as desired.

The preceding propositions can be restated as saying that Ext(Q,Λ) is a
contravariant functor in Q and a covariant functor in Λ. In general Ext(Q,Λ)
is only a set, with the class of the trivial extension as zero element. We obtain
a group structure if Λ is abelian:

Proposition 4.22 (module structure). If Λ is an abelian group, or
more generally a module over some ring R, then Ext(Q,Λ) carries a natural
R-module structure, and the pull-back f∗ : Ext(Q,Λ) → Ext(X,Λ) is a ho-
momorphism of R-modules.

Proof. The group Λ is abelian if and only if its multiplication µ : Λ×Λ→
Λ is a group homomorphism. In this case we obtain a binary operation on
Ext(Q,Λ) as follows:

⊗ : Ext(Q,Λ)× Ext(Q,Λ)
P→ Ext(Q,Λ× Λ)

µ∗−→ Ext(Q,Λ)

Here P is the fibred product and µ∗ is the induced map as above. More
explicitly, given two extensions E1 : Λy Q1

p1−→ Q and E2 : Λy Q2
p2−→ Q,

their composition E3 = E1 ⊗ E2 is the fibred product Q1 ×Q Q2 modulo
the relation (λa1, a2) ∼ (a1, λa2) for λ ∈ Λ. The quotient Q3 inherits the
quandle structure [a1, a2] ∗ [b1, b2] = [a1 ∗ b1, a2 ∗ b2], and the extension
E3 : Λy Q3

p3−→ Q is defined by the projection p3[a1, a2] = p1(a1) = p2(a2)
and the action λ[a1, a2] = [λa1, a2] = [a1, λa2].

The composition is well-defined and associative on isomorphism classes
of extensions. The neutral element is given by the trivial extension E0 :
Λy Λ×Q pr2−→ Q. The inverse of E1 is obtained by replacing the action of
Λ with the inverse action via λ 7→ λ−1. The details are easily verified and
will be omitted.

5. Classification of connected coverings. In order to avoid clumsy
notation, we will first classify connected coverings. The passage to arbitrary
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coverings over a connected base quandle is then straightforward, and will
be treated in Section 6. Assuming that the base quandle is connected is
technically easier and corresponds most closely to our model, the Galois
correspondence for coverings over a connected topological space. The non-
connected case will be treated in Section 7.

5.1. Explicit construction of universal covering quandles. Our
first task is to ensure the existence of a universal covering quandle. As usual,
universality is defined as follows:

Definition 5.1. A pointed quandle covering p : (Q̃, q̃) → (Q, q) is uni-
versal if for each covering p̂ : (Q̂, q̂)→ (Q, q) there exists a unique covering
morphism φ : (Q̃, q̃)→ (Q̂, q̂). In other words, a universal covering is an ini-
tial object in the category Cov(Q, q). Two universal coverings of (Q, q) are
isomorphic by a unique isomorphism, so that we can unambiguously speak
of the universal covering of (Q, q).

The following explicit construction has been inspired by [9, Lemma 25].

Lemma 5.2. Consider a connected quandle Q with base point q ∈ Q.
Recall that the commutator subgroup Adj(Q)′ is the kernel of the group ho-
momorphism ε : Adj(Q)→ Z with ε(adj(Q)) = 1. Define

Q̃ := {(a, g) ∈ Q×Adj(Q)′ | a = qg}, q̃ := (q, 1).

The set Q̃ becomes a connected quandle with the operations

(a, g) ∗ (b, h) :=
(
a ∗ b, g · adj(a)−1 · adj(b)

)
,

(a, g) ∗ (b, h) :=
(
a ∗ b, g · adj(a) · adj(b)−1

)
.

The quandle Q̃ comes with a natural augmentation Q̃
ρ→ Adj(Q)

α→ Inn(Q̃),
where ρ(b, h) = adj(b) and α is defined by the action

Q̃×Adj(Q)→ Q̃ with (a, g)h :=
(
ah, adj(q)−ε(h) · gh

)
.

By construction, the subgroup Adj(Q)′ = ker(ε) acts freely and transitively
on Q̃. The canonical projection p : Q̃ → Q given by p(a, g) = a is a surjec-
tive quandle homomorphism, and equivariant with respect to the action of
Adj(Q).

Proof. Since Q is connected, we have adj(a)−1 adj(b) ∈ Adj(Q)′, which
ensures that the operations ∗ and ∗ are well-defined. The first quandle ax-
iom (Q1) is obvious:

(a, g) ∗ (a, g) =
(
a ∗ a, g · adj(a)−1 · adj(a)

)
= (a, g).

The second axiom (Q2) follows using adj(a ∗ b) = adj(b)−1 adj(a) adj(b):(
(a, g)∗ (b, h)

)
∗ (b, h) =

(
a, g ·adj(a)−1 ·adj(b) ·adj(a∗ b) ·adj(b)−1

)
= (a, g).
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For the third axiom (Q3) notice that each (a, g) ∈ Q̃ satisfies a = qg,
which entails adj(a) = g−1 · adj(q) · g. The quandle operations can thus be
reformulated as

(a, g) ∗ (b, h) =
(
a ∗ b, adj(q)−1 · g · adj(b)

)
,

(a, g) ∗ (b, h) =
(
a ∗ b, adj(q) · g · adj(b)−1

)
.

This implies self-distributivity, because(
(a, g) ∗ (b, h)

)
∗ (c, k) =

(
(a ∗ b) ∗ c, adj(q)−2g adj(b) adj(c)

)
equals(

(a, g) ∗ (c, k)
)
∗
(
(b, h) ∗ (c, k)

)
=
(
(a ∗ c) ∗ (b ∗ c), adj(q)−2g adj(c) adj(b ∗ c)

)
.

The projection p : Q̃ → Q, p(a, g) = a, is a quandle homomorphism,
which implies that ρ = adj ◦p : Q̃ → Adj(Q) is a representation. Moreover,
the action α satisfies (a, g) ∗ (b, h) = (a, g)adj(b), so that (ρ, α) is an aug-
mentation. Since adj(Q) generates the group Adj(Q), this also shows that
Adj(Q) acts on Q̃ by inner automorphisms, and that p is equivariant with
respect to the action of Adj(Q). Under this action, the subgroup Adj(Q)′

acts freely and transitively on Q̃, which shows that Q̃ is connected.

The reader will notice a close resemblance with the construction of the
universal covering for a connected topological space. In order to construct
Q̃ from Q, we keep track not only of the points a ∈ Q but also the paths
g ∈ Adj(Q)′ leading from our base point q to the point a in question. For-
getting the extra information projects back to Q, while keeping it defines
the universal covering Q̃� Q, as we shall now prove:

Theorem 5.3. Let Q be a connected quandle with base point q ∈ Q
and let (Q̃, q̃) be defined as in Lemma 5.2. Then the canonical projection
p : (Q̃, q̃)→ (Q, q) is the universal quandle covering of (Q, q).

Proof. It is clear from its construction that p : (Q̃, q̃)→ (Q, q) is a cover-
ing. We want to show that for every other covering p̂ : (Q̂, q̂)→ (Q, q) there
exists a unique quandle homomorphism φ : (Q̃, q̃) → (Q̂, q̂) with p̂ ◦ φ = p.
Uniqueness is clear from Corollary 4.10, the crucial point is thus to show
existence.

We recall from Remark 2.48 that every covering p̂ : Q̂ → Q induces an
action of Adj(Q) on Q̂ by inner automorphisms, and that p̂ is equivariant
with respect to this action. For our covering p : Q̃→ Q this action has been
made explicit in Lemma 5.2.

We define φ : (Q̃, q̃) → (Q̂, q̂) by φ(a, g) = q̂g. This is an equivariant
map with respect to Adj(Q)′. Both maps p̂φ and p are thus equivariant and
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coincide in q̃ = (q, 1). Since Q̃ is connected we conclude p̂φ = p. Proposi-
tion 4.2 now shows that φ is a quandle homomorphism, and hence a covering
morphism from p to p̂ as desired.

Remark 5.4. In Lemma 5.2, all the information on (a, g) ∈ Q̃ is con-
tained in the second coordinate g, so we could just as well dispense with the
first coordinate a = qg. This means that we consider the group G = Adj(Q)′

equipped with quandle operations

g ∗ h = x−1gh−1xh and g ∗ h = xgh−1x−1h,

where x = adj(q). This is the (non-abelian) Alexander quandle Alex(G,T )
with automorphism T : G ∼−→ G given by g 7→ x−1gx. These formulae al-
ready appear in the work of Joyce [16, §7] on the representation theory of
homogeneous quandles. There the natural choice is G = Aut(Q), whereas
the universal covering requires G = Adj(Q)′.

The notation proposed in the preceding in Lemma 5.2 emphasizes the
interpretation of Q̃ as a path fibration, where (a, g) designates a path g from
q to the endpoint a. This extra information of base points will become nec-
essary when we consider quandles with more than one connected component
(see Lemma 7.11 below).

5.2. Fundamental group of a quandle. As announced in the intro-
duction, once we have understood the universal covering p : (Q̃, q̃)→ (Q, q)
of a quandle (Q, q), we can define the fundamental group π1(Q, q) as the
group Aut(p) of deck transformations:

Definition 5.5. We call π1(Q, q) = {g ∈ Adj(Q)′ | qg = q} the funda-
mental group of the quandle Q based at q ∈ Q.

Proposition 5.6. For the universal covering p : (Q̃, q̃) → (Q, q) as
above, we obtain a canonical group isomorphism φ : π1(Q, q) ∼−→ Aut(p) from
the left action π1(Q, q)× Q̃→ Q̃ defined by h · (a, g) = (a, hg).

Proof. The action is well-defined and induces an injective group homo-
morphism π1(Q, q) → Aut(Q̃). By construction it respects the projection
p : Q̃ → Q, so we obtain φ : π1(Q, q) → Aut(p). The action of π1(Q, q) is
free and transitive on the fibre p−1(q) = {(q, g) | qg = q}. Given a covering
automorphism α ∈ Aut(p) there exists thus a unique element h ∈ π1(Q, q)
with α(q̃) = h · q̃. This means that α = φ(h), because Q̃ is connected (see
Corollary 4.10). This proves that φ is also surjective.

Proposition 5.7 (functoriality). Every quandle homomorphism f :
(X,x) → (Y, y) induces a homomorphism f∗ : π1(X,x) → π1(Y, y) of fun-
damental groups. We thus obtain a functor π1 : Qnd∗ → Grp from the
category of pointed quandles to the category of groups.
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Proof. Every quandle homomorphism f : X → Y induces a group homo-
morphism h = Adj(f) : Adj(X) → Adj(Y ). In this way Adj(X) acts on Y ,
and f becomes equivariant. In particular, every g ∈ Adj(X)′ with xg = x
is mapped to h(g) ∈ Adj(Y )′ with yh(g) = y, which proves the first claim.
Moreover, this construction respects composition.

Proposition 5.8. We have π1(Q, qg) = π1(Q, q)g for every g ∈ Adj(Q),
or more generally for every g ∈ Aut(Q). Thus, if Q is connected, or homo-
geneous, then the isomorphism class of the fundamental group π1(Q, q) is
independent of the choice of base point q ∈ Q.

5.3. Coverings and monodromy. As for topological coverings, two
groups naturally act on a quandle covering p : Q̃→ Q: the deck transforma-
tion group Aut(p) acts on the left, while the adjoint group Adj(Q) and in
particular its subgroup π1(Q, q) act on the right. Both actions are connected
as follows:

Proposition 5.9 (monodromy action). Every Galois covering p : Q̃→Q

induces a natural surjective group homomorphism h : π1(Q, q) � Aut(p).

More generally, every quandle extension E : Λ y Q̃
p→ Q of a con-

nected quandle Q by a group Λ induces a natural group homomorphism
h : π1(Q, q) → Λ. Moreover, h is surjective if and only if Q̃ is connected;
in this case p is a Galois covering.

In both settings, h is an isomorphism if and only if p is the universal
covering of Q.

Proof. Every Galois covering p : Q̃ → Q defines an extension, with the
group Λ = Aut(p) acting naturally on Q̃ by deck transformations (see Propo-
sition 4.15). We will thus concentrate on the more general formulation of
extensions.

Since the covering p : Q̃ → Q is equivariant under the natural action of
Adj(Q), every g ∈ π1(Q, q) maps the fibre F = p−1(q) to itself. In particular,
there exists a unique element h(g) ∈ Λ such that q̃g = h(g)q̃. For g1, g2 in
π1(Q, q) we find that

q̃g1g2 = (h(g1)q̃)g2 = h(g1)(q̃g2) = h(g1)h(g2)q̃,

since both actions commute (see Proposition 4.6). We conclude that h(g1g2)
= h(g1)h(g2), whence h is a group homomorphism.

If Q̃ is connected, there exists for each q̂ ∈ F a group element g ∈ Adj(Q)′

such that q̃g = q̂ (see Remark 2.34). By equivariance this equation projects
to qg = q, and so we have g ∈ π1(Q, q). This implies that h is surjective.

Conversely, if h is surjective, then Q̃ is connected: given q̂ ∈ Q̃, there
exists g1 ∈ Adj(Q) such that p(q̂)g1 = q, because Q is connected. This
implies that q̂g1 = λq̃ for some λ ∈ Λ. Since h is assumed to be surjective,
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there exists g2 ∈ π1(Q, q) such that h(g2) = λ−1. We conclude that q̂g1g2 = q̃,
as desired.

Finally, if h is an isomorphism, then Adj(Q)′ acts freely on Q̃. We thus ob-
tain an isomorphism between (Q̃, q̃) and the universal covering constructed
in Theorem 5.3.

Proposition 5.10. For every quandle covering p : (Q̃, q̃) � (Q, q) the
induced group homomorphism p∗ : π1(Q̃, q̃) → π1(Q, q) has im(p∗) =

{g ∈ Adj(Q)◦ | q̃g = q̃} and ker(p∗) = ker[Adj(p) : Adj(Q̃)→ Adj(Q)].

Proof. We know by Proposition 2.49 that φ= Adj(p) : Adj(Q̃)�Adj(Q)
is a central extension. By Definition 2.33 we have εQ̃ = εQ◦φ, so that φ maps

Adj(Q̃)◦ onto Adj(Q)◦. The action of Adj(Q) on Q̃ is such that q̃g̃ = q̃φ(g̃)

for all g̃ ∈ Adj(Q̃) (see Remark 2.48).

If g̃ ∈ π1(Q̃, q̃) then g = φ(g̃) satisfies g ∈ Adj(Q)◦ and q̃g = q̃. Con-
versely, for each g ∈ Adj(Q)◦ with q̃g = q̃, every preimage g̃ ∈ φ−1(g)
satisfies g̃ ∈ Adj(Q̃)◦ and q̃g̃ = q̃, whence g̃ ∈ π1(Q̃, q̃) and g = p∗(g̃).
Existence of g̃ is ensured by the surjectivity of φ.

Finally, g̃ ∈ ker(p∗) is equivalent to g̃ ∈ Adj(Q̃)◦ and q̃g̃ = q̃ and
φ(g̃) = 1. This last condition entails the two previous ones: if φ(g̃) = 1
then g̃ ∈ Adj(Q̃)◦ and q̃g̃ = q̃φ(g̃) = q̃, so that g̃ ∈ ker(p∗). We conclude that
ker(p∗) = ker(Adj(p)).

Warning 5.11. For a connected quandle covering p : Q̃� Q the adjoint
group homomorphism Adj(Q̃) � Adj(Q) can have non-trivial kernel, and
so p∗ : π1(Q̃, q̃) → π1(Q, q) is in general not injective. In this respect the
covering theory of quandles differs sharply from coverings of topological
spaces, where p∗ is injective for every covering.

Example 5.12. As in Example 3.5, consider a group G̃ and a conjugacy

class Q̃ ⊂ G̃ such that G̃ = 〈Q̃〉. Assume that Λ ⊂ Z(G̃) is a non-trivial

central subgroup such that Λ · Q̃ = Q̃. The quotient map p : G̃→ G := G̃/Λ
sends Q̃ to a conjugacy class Q = p(Q̃) in G with G = 〈Q〉. We thus obtain

an extension Λy Q̃
p→ Q.

Since Q̃ embeds into a group, the adjoint map Q̃→ Adj(Q̃) is injective.
The group homomorphism h = Adj(p) : Adj(Q̃) → Adj(Q) is not injective
because q̃ and λq̃ with λ ∈ Λr {1} are distinct in Q̃ but get identified in Q.
The element z̃ = adj(q̃)−1 adj(λq̃) in Adj(Q̃)′ is thus contained in ker(h),

and thus in the centre of Adj(Q̃). In particular q̃z̃ = q̃, and so z̃ ∈ π1(Q̃, q̃)
is a non-trivial element that maps to p∗(z̃) = 1 in π1(Q, q).

5.4. The lifting criterion. As for topological coverings, the fundamen-
tal group provides a simple criterion for the lifting over a quandle covering:
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Proposition 5.13 (lifting criterion). Let f : (X,x) → (Q, q) be a
quandle homomorphism, and let p : (Q̃, q̃) → (Q, q) be a quandle cover-
ing. Assume further that (X,x) is connected. Then there exists a lifting
f̃ : (X,x)→ (Q̃, q̃) if and only if f∗π1(X,x) ⊂ p∗π1(Q̃, q̃).

Proof. We already know from Corollary 4.10 that f̃ is unique, and so we
only have to consider existence. Let us begin with the easy case: If a lifting f̃
exists, then f = pf̃ implies f∗ = p∗f̃∗ and thus f∗π1(X,x) = p∗f̃∗π1(X,x) ⊂
p∗π1(Q̃, q̃).

Conversely, assume f∗π1(X,x) ⊂ p∗π1(Q̃, q̃). Since p is a covering, the
group Adj(Q) acts on Q̃ by inner automorphisms. The quandle homomor-
phism f : X → Q induces a group homomorphism f∗ = Adj(f) : Adj(X)→
Adj(Q), and in this way Adj(X) also acts on Q̃. By connectedness, every
element of X can be written as xg with some g ∈ Adj(X)′. We can thus
define f̃ : (X,x)→ (Q̃, q̃) by setting f̃ : xg 7→ q̃g, and our hypothesis ensures
that this is well-defined. By construction, the map f̃ is Adj(X)′-equivariant.
Both maps pf̃ and f are Adj(X)′-equivariant and coincide in x; since X is
connected we obtain pf̃ = f . As in Proposition 4.2, we conclude that f̃ is a
quandle homomorphism.

Definition 5.14. A quandle Q is simply connected if it is connected
and π1(Q, q) = {1}.

Notice that connectedness implies π1(Q, q) ∼= π1(Q, q′) for all q, q′ ∈ Q.
It thus suffices to verify triviality of π1(Q, q) for one base point q ∈ Q; the
property of being simply connected is independent of this choice, and hence
well-defined.

Proposition 5.15. For a quandle Q the following properties are equiv-
alent:

(1) The quandle Q is simply connected.
(2) Every covering p : Q̃ → Q is equivalent to a trivial covering pr1 :

Q× F → Q.
(3) Every quandle homomorphism f : (Q, q)→ (Q̄, q̄) lifts uniquely over

each quandle covering p : (Q̃, q̃)→ (Q̄, q̄).
(4) Every covering p : (Q, q) → (Q̄, q̄) is universal in the category

Cov(Q̄, q̄).

Proof. (1)⇒(2). We choose a base point q ∈ Q and define F := p−1(q).
According to the Lifting Criterion 5.13, for each q̃ ∈ F there exists a unique
quandle homomorphism φq̃ : (Q, q) → (Q̃, q̃) such that p ◦ φq̃ = idQ. Its

image is the connected component of q̃ in Q̃. We thus have a bijection
ψ : π0(Q̃)→ F such that ψ([q̃]) = q̃ for every q̃ ∈ F . Putting this information
together we obtain mutually inverse quandle isomorphisms Φ : Q× F → Q̃,
Φ(x, q̃) = φq̃(x) and Ψ : Q̃→ Q× F , Ψ(x̃) = (p(x̃), ψ([x̃])).
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(2)⇒(3). By hypothesis (2) and Remark 3.3, Q must be connected,
which ensures uniqueness. Existence follows from the pull-back construc-
tion, because f∗p is a covering over (Q, q) and is trivial by hypothesis.

(3)⇒(4). This is clear from Definition 5.1.

(4)⇒(1). The identity idQ : (Q, q)→ (Q, q) is a covering. If it is univer-
sal, then Q must be connected by Remark 3.3. Moreover, (Q, q) must be
isomorphic to the explicit model (Q̃, q̃) of Theorem 5.3 via the projection
map p : (Q̃, q̃) → (Q, q). This implies π1(Q, q) = {1}, whence Q is simply
connected.

Example 5.16. For a long knot L, the knot quandle QL is simply con-
nected by [9, Theorem 30]. The natural quandle projection QL � QK is
thus the universal covering of the knot quandle QK associated to the closed
knot K.

Warning 5.17. For a universal quandle covering p : (Q̃, q̃)→ (Q, q) the
covering quandle Q̃ need not be simply connected. This is another aspect
in which quandle coverings differ from topological coverings, where every
universal covering is simply connected.

Example 5.18. We continue Example 5.12 using the same notation.
The universal covering p̂ : (Q̂, q̂) → (Q, q) of (Q, q) induces a covering p̃ :

(Q̂, q̂) → (Q̃, q̃). This means that Adj(p̂) : Adj(Q̂) � Adj(Q) factors as

Adj(Q̂)
g
� Adj(Q̃)

h
� Adj(Q). We have already found a non-trivial element

z̃ ∈ π1(Q̃, q̃) with h(z̃) = 1 in π1(Q, q). Every preimage ẑ ∈ g−1(z̃) lies in the
centre of Adj(Q̂) and also in the commutator subgroup, and thus provides
a non-trivial element ẑ ∈ π1(Q̂, q̂).

5.5. Galois correspondence. Let (Q, q) be a connected quandle. We
wish to establish a correspondence between the following two categories. On
the one hand, we have the category Cov∗(Q, q) formed by pointed connected
coverings p : (Q̃, q̃)→ (Q, q) and their pointed covering morphisms. On the
other hand, we have the category Sub(π1(Q, q)) formed by subgroups of
π1(Q, q) and homomorphisms given by inclusion. The Galois correspondence
establishes a natural equivalence Cov∗(Q, q) ∼= Sub(π1(Q, q)).

Remark 5.19. In Sub(π1(Q, q)) inclusion defines a partial order on
the set of subgroups. Likewise, in Cov∗(Q, q) each set of covering mor-
phisms Hom(p, p′) is either empty or contains exactly one element (see
Corollary 4.10), which gives a partial preorder.

Lemma 5.20. There is a unique functor Φ : Cov∗(Q, q)→Sub(π1(Q, q))

mapping each covering p : (Q̂, q̂) → (Q, q) to the subgroup p∗π1(Q̂, q̂) ⊂
π1(Q, q).
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Proof. Obviously Φ is well-defined on objects. Every covering morphism
φ from p to p′ entails p∗π1(Q̂, q̂) = p∗φ∗π1(Q̂, q̂) ⊂ p∗π1(Q̂′, q̂′), so that Φ is
indeed a functor.

Lemma 5.21. There is a unique functor Ψ : Sub(π1(Q, q))→Cov∗(Q, q)
mapping each subgroup K ⊂ π1(Q, q) to the quotient Q̃K := K\Q̃ of the
universal covering Q̃.

Proof. We consider the universal covering p : (Q̃, q̃)→ (Q, q) constructed
in Lemma 5.2. Given a subgroup K ⊂ π1(Q, q), we identify K with the corre-
sponding subgroup of Aut(p), via the monodromy action explained in Propo-

sition 5.9. This allows us to define the quotient Q̃K := K\Q̃ with base point
q̃K = [q̃] and projection pK : (Q̃K , q̃K) → (Q, q) given by pK([x̃]) = p(x̃).
The result is the covering Ψ(K) := pK we wish to consider.

Moreover, if K ⊂ L ⊂ π1(Q, q), then the covering pL is a quotient of the
covering pK . We thus have a covering morphism from pK to pL, so that Ψ
is indeed a functor.

Theorem 5.22 (Galois correspondence). Let (Q, q) be a connected
quandle. Then the functors Φ : Cov∗(Q, q) → Sub(π1(Q, q)) and Ψ :
Sub(π1(Q, q)) → Cov∗(Q, q) establish a natural equivalence between the
category of pointed connected coverings of (Q, q) and the category of sub-
groups of π1(Q, q).

Proof. We will first prove that ΦΨ = id. Consider a subgroup K of
π1(Q, q) and the associated covering pK : (Q̃K , q̃K) → (Q, q). By Proposi-
tion 5.10 we know that the image group (pK)∗π1(Q̃K , q̃K) consists of all
g ∈ Adj(Q)′ such that q̃gK = q̃K . Comparing this with the construction of

the universal covering (Q̃, q̃) and its quotient (Q̃K , q̃K) we obtain precisely
the group K we started out with.

Conversely, let us prove that ΨΦ ∼= id. For every connected covering

p : (Q̂, q̂) → (Q, q) the associated group K = p∗π1(Q̂, q̂) defines a covering
pK : (Q̃K , q̃K)→ (Q, q) as above. We already know that (pK)∗π1(Q̃K , q̃K) =

K = p∗π1(Q̂, q̂). The Lifting Criterion 5.13 implies that there exist covering

morphisms f : (Q̃K , q̃K) → (Q̂, q̂) and g : (Q̂, q̂) → (Q̃K , q̃K). By the usual
uniqueness argument (Corollary 4.10) we conclude that f ◦ g = idQ̂ and
g ◦ f = idQ̃K

.

Proposition 5.23 (monodromy and deck transformation group). Con-
sider a connected covering p : (Q̃, q̃) → (Q, q) and the associated subgroup
K = p∗π1(Q̃, q̃) ⊂ π1(Q, q).

(1) The natural right action F × π1(Q, q) → F induces a bijection be-
tween the fibre F = p−1(q) and the quotient set K\π1(Q, q). In par-
ticular, the cardinality of F equals the index of the subgroup K in
π1(Q, q).



Quandle coverings and their Galois correspondence 147

(2) Let N = {g ∈ π1(Q, q) | Kg = K} be the normalizer of K in
π1(Q, q). There exists a covering transformation (Q̃, q̃) → (Q̃, q̂) if
and only if there exists an element g ∈ N such that q̃g = q̂.

(3) We have a natural short exact sequence K ↪→ N � Aut(p). The cov-
ering p is Galois if and only if the subgroup K is normal in π1(Q, q).
In this case the deck transformation group is Aut(p) ∼= π1(Q, q)/K.

Proof. Since Q̃ is connected, π1(Q, q) acts transitively on the fibre F =
p−1(q). The stabilizer of q̃ is precisely the subgroup K (see Proposition 5.10).
Given g ∈ π1(Q, q) there exists a covering automorphism φ : (Q̃, q̃)→ (Q̃, q̃g)
if and only if the subgroups p∗π1(Q̃, q̃) = K and p∗π1(Q̃, q̃g) = Kg coincide
(see the Lifting Criterion 5.13). In this case φ is unique, and so g 7→ φ
defines a surjective group homomorphism N � Aut(p), as in the proof of
Proposition 5.9.

6. Classification of non-connected coverings

6.1. Non-connected covering quandles. In this section we deal with
coverings p : Q̃→ Q where the base quandle Q is connected but the covering
quandle Q̃ can be non-connected. Non-connected base quandles are more
delicate and will be treated in the next section.

Proposition 6.1. Consider a family of quandle coverings pi : Q̃i → Q
indexed by i ∈ I. Let Q̃ =

⊔
i∈I Q̃i×{i} be their disjoint union with projection

p : Q̃→ Q, p(a, i) = pi(a). There exists a unique quandle structure on Q̃ that
extends the one on each Q̃i and turns p into a quandle covering. The result
is called the union of the given quandle coverings over Q, and is denoted by
(Q̃, p) =

⊕
i∈I(Q̃i, pi).

Proof. The point is to define the quandle structure on Q̃. Since each pi
is a covering, the base quandle Q acts on Q̃i such that a ∗ b = a ∗ pi(b)
for all a, b ∈ Q̃i. If there is a compatible quandle structure on Q̃ such that
p : Q̃ → Q becomes a covering, then Q acts on Q̃ and we necessarily have
(a, i) ∗ (b, j) = (a, i) ∗ pj(b, j) = (a ∗ pj(b), i). This shows that there can be

at most one such structure. In order to prove existence, we equip Q̃ with
the operation (a, i)∗ (b, j) := (a∗pj(b), i). If I is non-empty, then it is easily

verified that this definition turns Q̃ into a quandle, and that p becomes a
quandle covering of Q.

Proposition 6.2. Let p : Q̃ → Q be a covering of the connected
quandle Q. We can decompose Q̃ into connected components (Q̃i)i∈I and
define pi : Q̃i → Q by restriction. Then each pi is a covering, and (Q̃, p) =⊕

i∈I(Q̃i, pi) is their union.
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Proof. Notice that each Q̃i is an orbit under the action of Adj(Q) on Q̃,
and each pi is a covering because it is an Adj(Q)-equivariant map. By con-

struction we have the equality of sets and maps, (Q̃, p) =
⊕

i∈I(Q̃i, pi). The
equality of their quandle structures follows from the uniqueness part of the
previous proposition.

6.2. Galois correspondence. Theorem 5.22 above established the cor-
respondence between connected coverings and subgroups of the fundamental
group. In the general setting it is more convenient to classify coverings by
actions of the fundamental group on the fibre.

Definition 6.3 (the category of G-sets). Let G be a group. A G-set is a
pair (X,α) consisting of a set X and a right action α : X×G→ X, denoted
by α(x, g) = xg. A morphism φ : (X,α) → (Y, β) between two G-sets is an
equivariant map φ : X → Y , i.e. φ(xg) = φ(x)g for all x ∈ X and g ∈ G. The
class of G-sets and their morphisms form a category, denoted by Act(G).

Lemma 6.4. There is a canonical functor Φ : Cov(Q)→ Act(π1(Q, q))
mapping each covering p : Q̃ → Q to (F, α) where F = p−1(q) is the fibre
over q, and α : F × π1(Q, q)→ F is the monodromy action.

Proof. Given a covering p : Q̃ → Q, the natural action of Adj(Q) on Q̃
restricts to an action of π1(Q, q) on the fibre F = p−1(q). This defines Φ on
objects.

Every covering morphism φ : Q̃ → Q̂ is equivariant with respect to the
action of Adj(Q). It maps the fibre F = p−1(q) to the fibre F̂ = p̂−1(q),
and the restriction φq : F → F̂ is equivariant with respect to the action of
π1(Q, q). Hence Φ is indeed a functor.

Lemma 6.5. There is a canonical functor Ψ : Act(π1(Q, q))→ Cov(Q)

mapping each action α : F ×π1(Q, q)→ F to the covering pα : Q̃α → Q with

Q̃α = (F × Q̃)/π1(Q, q), where Q̃ is the universal connected covering of Q.

Proof. We start with the universal connected covering p : (Q̃, q̃)→ (Q, q).
According to Proposition 5.9 we have a group isomorphism h : π1(Q, q)
∼−→ Aut(p) such that h(g)q̃ = q̃g for all g ∈ π1(Q, q). Given (F, α) in
Act(π1(Q, q)), we quotient the product F × Q̃ by the equivalence relation
(xg, ã) ∼ (x, h(g)ã) for all x ∈ F , ã ∈ Q̃, and g ∈ π1(Q, q). The quotient

Q̃α := (F × Q̃)/∼ inherits the quandle structure [x, ã] ∗ [y, b̃] := [x, ã ∗ b̃].
The projection pα : Q̃α → Q, pα([x, ã]) := p(ã), is well-defined and is a
quandle covering. As a consequence, the action of Adj(Q) on Q̃α is given by
[x, ã]g = [x, ãg] for all g ∈ Adj(Q).

A morphism φ : (X,α) → (Y, β) of G-sets induces a map φ × id :
X×Q̃→ Y ×Q̃ that descends to a quandle homomorphism on the quotients,
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φ̄ : Q̃α → Q̃β. This turns out to be a covering morphism from pα to pβ, so
that Ψ is indeed a functor.

Theorem 6.6 (Galois correspondence). Let (Q, q) be a connected quandle.
Then the functors Φ : Cov(Q) → Act(π1(Q, q)) and Ψ : Act(π1(Q, q))
→ Cov(Q) establish a natural equivalence between the category of cover-
ings of Q and the category of sets endowed with an action of π1(Q, q).

Proof. Before we begin, let us point out that strictly speaking the com-
positions ΨΦ and ΦΨ are not the identity functors. They are, however, nat-
urally equivalent to the identity functors, in the sense of [25, §I.4], and this
is what we have to show.

We will first prove that ΦΨ ∼= id. Consider an action α : X×π1(Q, q)→ X
and the associated covering pα : Q̃α → Q with fibre Fα := p−1

α (q). Recall
that Aut(p) acts freely and transitively from the left on the fibre p−1(q) of
the universal covering p : (Q̃, q̃)→ (Q, q). The map ψα : X → Fα, x 7→ [x, q̃],
is thus a bijection. Moreover, we find

ψα(xg) = [xg, q̃] = [x, h(g)q̃] = [x, q̃g] = [x, q̃]g = ψα(x)g

for every g ∈ π1(Q, q). This shows that ψα : X → Fα is an equivalence of
π1(Q, q)-sets, as claimed. Naturality in α is easily verified.

Conversely, let us prove that ΨΦ ∼= id. Consider a quandle covering
p̂ : Q̂→Q with fibre F = p̂−1(q) and monodromy action α : F ×π1(Q, q)→F.

The universal property of the covering p : (Q̃, q̃) → (Q, q) ensures that

there exists a unique covering morphism φp̂ : F × Q̃ → Q̂ over Q such
that φp̂(x, q̃) = x for all x ∈ F . More explicitly, this map is given by
(x, (q, g)) 7→ xg for all x ∈ F and g ∈ Adj(Q)′. By construction, this map is
surjective and equivariant with respect to the action of Adj(Q)′.

For g ∈ π1(Q, q) we find φp̂(x
g, ã) = φp̂(x, h(g)ã) for all x ∈ F and

ã ∈ Q̃. This means that φp̂ descends to a covering morphism φ̄p̂ : Q̃α → Q̂.

Conversely, if φp̂(x, ã) = φp̂(y, b̃), then both maps φp̂(x,−) and φp̂(y,−)

have as image the same component of Q̂, which takes us back to the case of
connected coverings. We thus see that (x, ã) and (y, b̃) get identified in Q̃α,
which proves that φ̄p̂ is a covering isomorphism. Naturality in p̂ is easily
verified.

Theorem 6.7. Let Q be a connected quandle with base point q ∈Q and let
Λ be a group. There exists a natural bijection Ext(Q,Λ) ∼= Hom(π1(Q, q), Λ).
If Λ is an abelian group, or more generally a module over some ring R,
then both objects carry natural R-module structures and the bijection is an
R-module isomorphism.

Proof. Every extension E : Λy Q̃
p→ Q induces a group homomorphism

h : π1(Q, q)→ Λ as in Proposition 5.9. Choosing a base point q̃ in the fibre
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F = p−1(q), we can identify Λ with F via the bijection Λ ∼−→ F , λ 7→ λq̃.
The monodromy action of π1(Q, q) then translates to right multiplication
α : Λ× π1(Q, q)→ Λ with (λ, g) 7→ λ · h(g).

Conversely, every group homomorphism h defines a right action α :
Λ × π1(Q, q) → Λ by (λ, g) 7→ λ · h(g). Via Theorem 6.6 the action α
corresponds to a covering pα : Q̃α � Q. Multiplication on the left defines
an action of Λ on Λ× Q̃, which descends to the quotient Q̃α and defines an
extension E : Λy Q̃α

p→ Q.
These constructions are easily seen to establish a natural bijection, as

desired.

7. Non-connected base quandles

7.1. Graded quandles. So far we have concentrated on connected
base quandles. In order to develop a covering theory over non-connected
quandles we have to treat all components individually yet simultaneously.
The convenient way to do this is to index the components by some fixed
set I, and then to deal with I-graded objects throughout. The following
example illustrates the notions that will appear:

Example 7.1. Consider a quandle Q and its decomposition Q =
⊔
i∈I Qi

into connected components. For every covering p : Q̃ → Q the quandle Q̃
is graded, with Q̃i = p−1(Qi), and p is a graded map, with pi : Q̃i → Qi
given by restriction. Every deck transformation φ : Q̃ ∼−→ Q̃ is a graded map
with φi : Q̃i

∼−→ Q̃i. The deck transformation group G = Aut(p) is a graded
group, with Gi acting by covering transformations on Q̃i, and this action
turns Q̃ into a graded G-set.

The following definitions make the notions of this example explicit. In
what follows, we fix an index set I. Whenever the context determines I with-
out ambiguity, the term “graded” will be understood to mean “I-graded”,
that is, graded with respect to our fixed set I.

Definition 7.2 (graded quandles). A graded quandle is a quandle Q =⊔
i∈I Qi partitioned into subsets (Qi)i∈I such that Qi ∗ Qj = Qi for all

i, j ∈ I. This is equivalent to saying that each Qi is a union of connected
components. A grading is equivalent to a quandle homomorphism gr: Q→ I
from Q to the trivial quandle I with fibres Qi = gr−1(i).

A homomorphism φ : Q → Q′ of graded quandles is a quandle homo-
morphism such that φ(Qi) ⊂ Q′i for all i ∈ I, or equivalently gr = gr′ ◦φ.
Obviously, I-graded quandles and their homomorphisms form a category,
denoted QndI .

Definition 7.3 (graded groups). A graded group is a group G=
∏
i∈I Gi

together with the collection of groups (Gi)i∈I that constitute the composi-
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tion of G as a product. A homomorphism of graded groups f : G→ H is a
product f =

∏
i∈I fi of homomorphisms fi : Gi → Hi. Obviously, I-graded

groups and their homomorphisms form a category, denoted GrpI . A graded
subgroup of G =

∏
i∈I Gi is a product H =

∏
i∈I Hi of subgroups Hi ⊂ Gi.

Definition 7.4 (graded G-sets). A graded set is a disjoint union X =⊔
i∈I Xi together with the partition (Xi)i∈I . A graded map φ : X → Y be-

tween graded sets is a map satisfying φ(Xi) ⊂ Yi for all i ∈ I. Graded sets
and maps form a category, denoted SetsI .

A graded (right) action of a graded group G on a graded set X is a
collection of (right) actions αi : Xi × Gi → Xi, denoted by α(x, g) = xg.
This defines an action of G on X via the canonical projections G � Gi.
A graded G-set is a pair (X,α) consisting of a graded set X and a graded
action α of G on X. A morphism φ : (X,α)→ (Y, β) between graded G-sets
is a graded map φ : X → Y satisfying φ(xg) = φ(x)g for all x ∈ X and g ∈ G.
Graded G-sets and their morphisms form a category, denoted by ActI(G).

Remark 7.5. If the index set I = {∗} consists of one single element,
then all gradings are trivial, and the categories of graded quandles, groups,
and sets coincide with the usual (non-graded) notions.

Remark 7.6. As Mac Lane [24, §VI.2] points out, it is often most con-
venient to consider a graded object M as a collection of objects (Mi)i∈I ;
this is usually called an external grading. Depending on the context and the
category in which we are working, this can be reinterpreted as an internally
graded object, say

∏
i∈IMi or

⊔
i∈IMi or

⊕
i∈IMi etc.

For graded sets we use
⊔
i∈I Xi, whereas for graded groups the appropri-

ate structure turns out to be
∏
i∈I Gi. As we have already mentioned, for

quandles the situation is special, because the decomposition Q =
⊔
i∈I Qi is

not simply a disjoint union of quandles Qi: in general we have to encode a
non-trivial action Qi ×Qj → Qi, (a, b) 7→ a ∗ b.

7.2. Graded extensions

Definition 7.7. A graded quandle Q is connected (in the graded sense)
if each set Qi is a connected component of Q. Likewise, a graded covering
p : Q̃ → Q is said to be connected if each set Q̃i = p−1(Qi) is a connected
component of Q̃. The covering p is said to be Galois if, moreover, Aut(p)
acts transitively on the ith fibre p−1(qi) for each i ∈ I.

Remark 7.8. Every Galois covering p : Q̃ → Q comes with the natu-
ral action Λ y Q̃ of the graded deck transformation group Λ = Aut(p)
satisfying the following two axioms:

(E1) (λx̃) ∗ ỹ = λ(x̃ ∗ ỹ) and x̃ ∗ (λỹ) = x̃ ∗ ỹ for all x̃, ỹ ∈ Q̃ and λ ∈ Λ.
(E2) Λi acts freely and transitively on each fibre p−1(x) with x ∈ Qi.
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Axiom (E2) then says that Q̃i → Qi is a principal Λi-covering, in the sense
that each fibre is a principal Λi-set. Notice, however, that we have to con-
sider these actions individually over each component Qi; the groups Λi act
independently and may vary for different i ∈ I.

Definition 7.9. A graded extension E : Λ y Q̃
p→ Q of a graded

quandle Q by a graded group Λ consists of a surjective quandle homomor-
phism p : Q̃→ Q and a graded group action Λ y Q̃ satisfying axioms (E1)
and (E2). They entail that p is a quandle covering, and the action of Λ
defines an injective homomorphism Λ→ Aut(p) of graded groups.

7.3. Universal coverings. As before, we will have to choose base
points in order to obtain uniqueness properties. To this end we equip each
component with its own base point.

Definition 7.10 (pointed quandles). A pointed quandle (Q, q) is a
graded quandle Q =

⊔
i∈I Qi with a base point qi ∈ Qi for each i ∈ I. In

other words, if the partition is seen as a quandle homomorphism gr: Q→ I,
then the choice of base points is a section q : I → Q, gr ◦q = idI . We call
(Q, q) well-pointed if q specifies one base point in each component, that is,
the induced map π0 ◦ q : I → π0(Q) is a bijection between I and the set of
connected components of Q.

A homomorphism φ : (Q, q) → (Q′, q′) between pointed quandles is a
quandle homomorphism φ : Q→ Q′ such that φ◦q = q′. Obviously, I-pointed
quandles and their homomorphisms form a category, denoted Qnd∗I .

Lemma 7.11. Let (Q, q) be a well-pointed quandle with connected com-
ponents (Qi, qi)i∈I . Let Adj(Q)◦ be the kernel of the group homomorphism
ε : Adj(Q)→ Z with ε(adj(Q)) = 1. For each i ∈ I we define

Q̃i :=
{

(a, g) ∈ Qi ×Adj(Q)◦ | a = qgi
}
, q̃i := (qi, 1).

The disjoint union Q̃ =
⊔
i∈I Q̃i becomes a graded quandle with the opera-

tions

(a, g) ∗ (b, h) :=
(
a ∗ b, g · adj(a)−1 · adj(b)

)
,

(a, g) ∗ (b, h) :=
(
a ∗ b, g · adj(a) · adj(b)−1

)
.

The quandle Q̃ comes with a natural augmentation Q̃
ρ→ Adj(Q)

α→ Inn(Q̃),
where ρ(b, h) = adj(b) and α is defined by the action

Q̃i ×Adj(Q)→ Q̃i with (a, g)h :=
(
ah, adj(qi)

−ε(h) · gh
)
.

The subgroup Adj(Q)◦ acts freely and transitively on each Q̃i. As a conse-
quence, the connected components of Q̃ are the sets Q̃i, and so Q̃ is connected
in the graded sense.
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The canonical projection p : (Q̃, q̃) → (Q, q) given by p(a, g) = a is a
surjective quandle homomorphism, and is equivariant with respect to the
action of Adj(Q).

Theorem 7.12. Let (Q, q) be a well-pointed quandle and let (Q̃, q̃) be
defined as above. Then the projection p : (Q̃, q̃) → (Q, q) is the universal
quandle covering of (Q, q).

The verification of this and the following results in the graded case is a
straightforward transcription of our previous arguments for the non-graded
case of connected quandles, and will be omitted.

7.4. Fundamental group and Galois correspondence

Definition 7.13. We call π1(Q, qi) = {g ∈ Adj(Q)◦ | qgi = qi} the
fundamental group of the quandle Q based at qi ∈ Q. For a pointed graded
quandle (Q, q) we define the graded fundamental group to be the product
π1(Q, q) :=

∏
i∈I π1(Q, qi).

Proposition 7.14. For the universal covering p : (Q̃, q̃) → (Q, q) as
above, we obtain a canonical isomorphism φ : π1(Q, q) ∼−→ Aut(p) of graded
groups from the graded left action π1(Q, qi)× Q̃i → Q̃i defined by h · (a, g) =
(a, hg).

Proposition 7.15 (functoriality). Every homomorphism f : (Q, q) →
(Q′, q′) of pointed quandles induces a homomorphism f∗ : π1(Q, q) →
π1(Q′, q′) of graded fundamental groups. We thus obtain a functor π1 :
Qnd∗I → GrpI from the category of I-pointed quandles to the category of
I-graded groups.

Proposition 7.16 (lifting criterion). Let p : (Q̃, q̃)→ (Q, q) be a quandle
covering and let f : (X,x) → (Q, q) be a quandle homomorphism from a
well-pointed quandle (X,x) to the base quandle (Q, q). Then there exists a
lifting f̃ : (X,x)→ (Q̃, q̃), p ◦ f̃ = f , if and only if f∗π1(X,x) ⊂ p∗π1(Q̃, q̃).
In this case the lifting f̃ is unique.

Theorem 7.17 (Galois correspondence for well-pointed coverings). Let
(Q, q) be a well-pointed quandle indexed by some set I. The canonical func-
tors CovI(Q, q) → SubI(π1(Q, q)) and SubI(π1(Q, q)) → CovI(Q, q) es-
tablish a natural equivalence between the category of well-pointed coverings
of (Q, q) and the category of graded subgroups of π1(Q, q).

Theorem 7.18 (Galois correspondence for general coverings). Let (Q, q)
be a well-pointed quandle indexed by some set I. The canonical functors
Cov(Q) → ActI(π1(Q, q)) and ActI(π1(Q, q)) → Cov(Q) establish a nat-
ural equivalence between the category of coverings of (Q, q) and the category
of graded actions of π1(Q, q).
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Theorem 7.19. Let (Q, q) be a well-pointed quandle indexed by some
set I, and let Λ be a graded group. There exists a natural bijection Ext(Q,Λ)
∼= Hom(π1(Q, q), Λ). If Λ is a graded abelian group, or more generally a
graded module over some ring R, then both objects carry natural R-module
structures and the natural bijection is a graded R-module isomorphism.

Example 7.20. The covering theory of non-connected quandles allows
us to complete the discussion of the quandle Qm,n = Zm t Zn begun in
Example 1.6. We set ` = gcd(m,n). From Proposition 2.38 we deduce that

Adj(Qm,n)◦ =


1 −s t

0 1 +s

0 0 1


∣∣∣∣∣∣∣ s ∈ Z, t ∈ Z`

 ⊂ H/〈z`〉.
The matrix shown acts as a 7→ a+ s on a ∈ Zm, and as b 7→ b− s on b ∈ Zn,
which entails π1(Q, a) = mZ × Z` and π1(Q, b) = nZ × Z`. The universal
covering p : Q̃ � Qm,n can be constructed as in Lemma 7.11. After some
calculation this leads to Q` = A t B, where A and B are copies of Z × Z`
with ` = gcd(m,n), and the quandle structure

(a, a′)∗(b, b′) =

{
(a, a′+ b− a) if (a, a′), (b, b′) ∈ A or if (a, a′), (b, b′) ∈ B,

(a+ 1, a′ − b) otherwise.

The quandle Q` has two connected components, A and B, so it is con-
nected in the graded sense. The projection p : Q` � Qm,n is defined by
A → Zm, (a, a′) 7→ a mod m, and B → Zn, (b, b′) 7→ b mod n. This is
the universal covering of Qm,n, and any other covering that is connected in
the graded sense is obtained by quotienting out some graded subgroup of
Aut(p) ∼= π1(Q, a)× π1(Q, b).

Notice that in the special case ` = 1 we obtain the obvious covering
Q0,0 � Qm,n, but even in this toy example the general case would be difficult
to analyze without the classification theorem.

7.5. Application to link quandles. Given an n-component link K =
K1 t · · · t Kn ⊂ S3, we choose a base point qiK ∈ QK for each link com-
ponent Ki. The adjoint group Adj(QK) is isomorphic to the fundamental
group πK = π1(S3 r K), and each element qiK maps to a meridian mi

K =
adj(qiK) ∈ πK . We denote by `iK ∈ πK the corresponding longitude.

The universal covering p : Q̃K � QK can formally be constructed as in
Lemma 7.11. Its geometric interpretation has been studied in [9] in terms
of quandle homology H2(QK) and orientation classes [Ki] ∈ H2(QK). We
are now in a position to go one step further and determine the fundamental
group:

Theorem 7.21. Over each component QiK ⊂ QK the automorphism

group of the universal covering p : Q̃K � QK is given by Aut(p)i =
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π1(QK , q
i
K) = 〈`iK〉. For the graded fundamental group this means that

π1(QK , qK) = Aut(p) =
∏n
i=1〈`iK〉.

Proof. Fixing a link component Ki, we can construct a long link L ⊂ R3

by opening Ki while leaving all other components closed. This is the same as
removing from the pair (S3,K) a point on Ki so as to obtain the pair (R3, L).
In particular, the correspondence (S3,K)↔ (R3, L) is well-defined when we
pass to isotopy classes. The associated quandle QL has two distinguished
elements qL and q∗L, corresponding to the beginning and the end of the open
component, respectively. The natural quandle homomorphism pi : QL � QK
is the quotient obtained by identifying qL and q∗L, both being mapped to
qiK = pi(qL) = pi(q

∗
L).

While pi : QL � QK is in general not an isomorphism between the
quandles QL and QK , the induced map Adj(pi) : Adj(QL) � Adj(QK)
is always an isomorphism between the adjoint groups Adj(QL) = πL =
π1(R3 r L) and Adj(QK) = πK = π1(S3 r K). In particular, this implies
that pi : (QL, qL) � (QK , qK) is a quandle covering, and an isomorphism
over all components except QiK .

Let p̂i : (Q̂K , q̂
i
K) � (QK , q

i
K) be the covering that is universal over QiK

and an isomorphism over all other components. Then one can construct an
isomorphism (QL, qL) ∼−→ (Q̂K , q̂

i
K) of quandle coverings over (QK , q

i
K) as

in [9, Theorem 30]. In particular, we obtain a canonical group isomorphism
Aut(pi) ∼= π1(QK , q

i
k) as in Proposition 7.14.

The longitude `iK satisfies (qiK)`
i
K = qiK , so `iK ∈ π1(QK , q

i
k). Moreover,

(qL)`
i
K = q∗L, so the quotient of QL by the subgroup 〈`iK〉 ⊂ Aut(pi) yields

〈`iK〉\QL = QK . To see this, notice that we have a canonical projection
〈`iK〉\QL � QK as a quotient of the covering QL � QK . Conversely, we have
a canonical map QK � 〈`iK〉\QL by the universal property of the quotient
QK = QL/(qL = q∗L). We conclude that Aut(p)i = Aut(pi) = 〈`iK〉.

A link component Ki ⊂ K is called trivial if there exists an embed-
ded disk D ⊂ S3 with Ki = K ∩ D = ∂D. Using the Loop Theorem of
Papakyriakopoulos [31] we conclude:

Corollary 7.22. For a link K ⊂ S3 the following assertions are equiv-
alent:

(1) The link component Ki ⊂ K is trivial.
(2) The fundamental group π1(QK , q

i
K) is trivial.

(3) The longitude `iK ∈ πK is trivial.

Conversely, if the link component Ki is non-trivial, then the fundamental
group π1(QK , q

i
K) of the quandle QK based at qiK is freely generated by the

longitude `iK .
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Proof. The implications (1)⇒(2)⇔(3) follow from π1(QK , q
i
K) = 〈`iK〉,

established in the previous theorem, while (3)⇒(1) is a consequence of the
Loop Theorem [31]. If K is non-trivial, then `iK is of infinite order, and thus
freely generates π1(QK , q

i
K).

8. Fundamental groupoid of a quandle. As in the case of topological
spaces, the choice of a base point q ∈ Q in the definition of π1(Q, q) focuses
on one connected component and neglects the others. If we do not want to
fix base points, then the fundamental groupoid is the appropriate tool. (See
Spanier [33, §1.7], Brown [4, Chap. 9], and May [27, Chap. 3].) We shall
expound this idea in the present section because it explains the striking
similarity between quandles and topological spaces.

8.1. Groupoids. We recall that a groupoid is a small category in which
each morphism is an isomorphism. In geometric language one considers its
objects as “points” a, b, . . . and its morphisms a → b as “paths” (or, more
frequently, equivalence classes of paths).

Example 8.1. The classical example is the fundamental groupoid Π(X)
of a topological space X: this is the category whose objects are the points
x ∈ X and whose morphisms x→ y are the homotopy classes of paths from
x to y. There exists a morphism x → y if and only if x and y belong to
the same path-component. The group of automorphisms of an object x is
exactly the fundamental group π1(X,x) of X based at x.

Example 8.2. Consider a set Q with a group action Q×G→ Q, denoted
by (a, g) 7→ ag. We can then define the groupoid

Π(Q,G) := { (a, g, b) ∈ Q×G×Q | ag = b }.
Here the objects are given by elements a ∈ Q, and the morphisms from
a to b are the triples (a, g, b) ∈ Π(Q,G). Their composition is defined by
(a, g, b)◦ (b, h, c) = (a, gh, c). There exists a morphism a→ b if and only if a
and b belong to the same G-orbit. The group of automorphisms of an object
a is exactly the stabilizer of a in G.

Definition 8.3. For a quandle Q we call Π(Q,Adj(Q)◦) the fundamen-
tal groupoid of Q.

Remark 8.4 (connected components). Already Joyce noticed some
analogy between quandles and topological spaces when he introduced the
terminology “connected component” of Q to signify an orbit with respect
to the inner automorphism group Inn(Q). (This was probably motivated
by the example of symmetric spaces, where both notions of connectedness
coincide; see Remark 3.15.) This turned out to be a very fortunate and
intuitive wording, and connectedness arguments have played a crucial rôle
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for all subsequent investigations of quandles. The connected components
of the quandle Q are precisely those of the groupoid Π(Q,Adj(Q)◦) (see
Remark 2.34).

Remark 8.5 (fundamental group). According to the previous remark
one can partition a quandle Q into the set π0(Q) of connected components,
and with a little bit of näıveté one could wonder what the fundamental
group π1(Q, q) should be. In the above groupoid we recover the fundamental
group π1(Q, q) = {g ∈ Adj(Q)◦ | qg = q} based at q ∈ Q as the group of
automorphisms of the object q in the category Π(Q,Adj(Q)◦). For base
points q, q′ in the same component of Q, these groups are isomorphic by
a conjugation in Π(Q,Adj(Q)◦). As usual this isomorphism is not unique,
unless π1(Q, q) is abelian.

Remark 8.6 (coverings). There exists an extensive literature on grou-
poids because they generalize and simplify recurring arguments in seemingly
different situations, notably in diverse Galois theories, just as in our setting
of coverings and fundamental groups of quandles. The universal covering
quandle (Q̃, q̃) constructed in Lemmas 5.2 and 7.11 reappears here as the
set of paths based at q (with arbitrary endpoint). This is exactly the path
fibration used to construct the universal covering of a topological space,
or more generally of a groupoid. We refer to the excellent introduction of
May [27, Chap. 3].

In conclusion, the “generic part” of quandle covering theory can be recast
in the general language of groupoid coverings. The initial problem, however,
is to construct the appropriate groupoid. Several groupoid structures are
imaginable, and one cannot easily guess the appropriate one: a priori one
can choose many groups acting on Q, for example Adj(Q), Aut(Q), Inn(Q),
or Inn(Q)◦, but only the choice Adj(Q)◦ yields the groupoid that is dual to
quandle coverings. The difficulty is thus resolved by first analyzing coverings,
which seem to be the more natural notion.

It should also be noted that the unifying concept of groupoids does not
cover the whole theory of quandle coverings. Besides its “generic” aspects,
the latter also has its distinctive “non-standard” features. These have been
pointed out in §1.6 and merit special attention. This is why we have preferred
to present all constructions in detail.

8.2. Combinatorial homotopy. For future reference, let us give here
another derivation how the group Adj(Q)◦ and the associated groupoid
Π(Q,Adj(Q)◦) appear naturally—as the groupoid of combinatorial paths
modulo combinatorial homotopy.

Definition 8.7. Let Q be a quandle. Consider the graph Γ with vertices
q ∈ Q and edges a

b→ c for each triple a, b, c ∈ Q with a∗b = c. A combinato-
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rial path from q to q′ in Γ is a sequence of vertices q = a0, a1, . . . , an−1, an =
q′ ∈ Q and arrows bε11 , . . . , b

εn
n with bi ∈ Q and εi ∈ {±1} for all i, such that

ai−1 ∗ bi = ai for εi = +1 and ai−1 ∗ bi = ai for εi = −1. The sign εi is just
a convenient way to denote the orientation of the ith arrow:

(a
b+−→ a ∗ b) = (a

b→ a ∗ b) and (a
b−−→ a ∗ b) = (a

b← a ∗ b).
Let P (Q) be the category having as objects the elements q ∈ Q and

as morphisms from q to q′ the set of combinatorial paths from q to q′.
Composition is given by juxtaposition:

(a0 → · · · → am) ◦ (am → · · · → an) = (a0 → · · · → am → · · · → an).

Two combinatorial paths are homotopic if they can be transformed into
each other by a sequence of the following local moves and their inverses:

(H1) a
a→ a is replaced by a, or a

a← a is replaced by a.

(H2) a
b→ a ∗ b b← a is replaced by a, or a

b← a ∗ b b→ a is replaced by a.
(H3) a

b→ a ∗ b c→ (a ∗ b) ∗ c is replaced by a
c→ a ∗ c b∗c−→ (a ∗ c) ∗ (b ∗ c).

We denote by Π(Q) the quotient category having as objects the ele-
ments q ∈ Q and as morphisms from q to q′ the set of homotopy classes of
combinatorial paths from q to q′.

a±1

a

b+1

b−1

c

b

c

b ∗ c

1

Fig. 2. Elementary homotopies for paths in P (Q)

Proposition 8.8. The category Π(Q) is a groupoid, that is, every mor-
phism is invertible. Moreover, there exists a natural isomorphism Φ : Π(Q))
∼−→ Π(Q,Adj(Q)◦), given by

[a0
b
ε1
1−→ · · · b

εn
n−→ an] 7→ (a0, g, an) with g = a

−
∑

i εi
0 bε11 · · · bεnn ∈ Adj(Q)◦.

Proof. The homotopy relation (H2) above ensures that Π(Q) is a grou-
poid. It is straightforward to verify that the map Φ is well-defined: a homo-
topy (H1) does not change the element g ∈ Adj(Q)◦ due to the normalization

with a
−

∑
i εi

0 . A homotopy (H2) translates to b±b∓ = 1. A homotopy (H3)
translates to one of the defining relations c ·(b∗c) = b ·c of the adjoint group
Adj(Q). By construction, Φ sends composition in Π(Q) to composition in
Π(Q,Adj(Q)◦), so it is a functor. Obviously Φ is a bijection on objects
q ∈ Q, and it is easy to see that it is also a bijection on morphisms.
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8.3. Classifying spaces. As usual, combinatorial paths and combina-
torial homotopy can be realized by a suitable topological space K: it suffices
to take the graph Γ as 1-skeleton and to glue in a 2-cell for each relation

of type (H1) and (H3). (Relation (H2) is automatic, since both a
b+−→ a ∗ b

and a
b−←− a ∗ b are actually represented by the same edge.) This ensures

that Π(Q) is the edge-path groupoid of the resulting 2-dimensional (cubical)
complex K (see Spanier [33, §3.6] for the simplicial case).

When we go back to the sources of quandle and rack cohomology, we
thus rediscover yet another approach to the fundamental group π1(Q, q) of
a quandle Q, which is entirely topological and has the merit to open up the
way to a full-fledged homotopy theory: Fenn, Rourke, and Sanderson [13]
constructed a classifying space BX for a rack X, which allowed them to
define (co)homology and homotopy groups for each rack. Their construction
can be adapted to quandles Q, so that the resulting classifying space BQ
is a topological model for quandle (co)homology H∗(Q) = H∗(BQ) and
H∗(Q) = H∗(BQ). Our construction of K corresponds precisely to the
2-skeleton of BQ.

The homotopy groups πn(BQ) have not yet played a rôle in the study
of quandles. It turns out, however, that our algebraic fundamental group
π1(Q, q) coincides with the fundamental group of the classifying space,
π1(BQ, q), at least in the case of a connected quandle. Starting from the
algebraic notion of quandle covering, we thus recover and remotivate the
topological construction of Fenn, Rourke, and Sanderson.

8.4. Theft or honest toil? In order to define the fundamental group of
a quandle Q, one could thus take its classifying space BQ and set π1(Q, q) :=
π1(BQ, q). Does this mean that we could entirely replace the algebraic ap-
proach by its topological counterpart? Two arguments suggest that this is
not so:

• Even with an independent topological definition of π1(Q, q), one would
still have to prove that the algebraic covering theory of quandles be-
haves the way it does, and in particular is governed by the fundamental
group so defined, in order to establish and exploit their relationship.
• Quandle coverings differ in some crucial details from topological cov-

erings (§1.6), which means that both theories cannot be equivalent in
any superficial way. It is thus justified and illuminating to develop the
algebraic theory independently.

In conclusion it appears that algebraic coverings are interesting in their
own right, and that the algebraic and the topological viewpoints are com-
plementary.
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9. Extensions and cohomology. Our goal in this final section is to
establish a correspondence between quandle extensions E : Λy Q̃→ Q and
elements of the second cohomology group H2(Q,Λ). For abelian groups Λ
this is classical for group extensions (see for example Mac Lane [24, §IV.4] or
Brown [3, §IV.3]) and has previously been translated to quandle extensions.
This correspondence has to be generalized in two directions in order to apply
to our general setting:

• The usual formulation is most appealing for abelian groups Λ, and
has been independently developed in [6] and [9]. For general Galois
coverings and extension, however, the coefficient group Λ can be non-
abelian.
• For non-connected quandles the notion of extension must be refined

in the graded sense, because different components have to be treated
individually. The corresponding cohomology theory H2(Q,Λ) deals
with a graded quandle Q and a graded group Λ, both indexed by
some fixed set I.

For racks such a non-abelian cohomology theory has previously been
proposed by N. Andruskiewitsch and M. Graña [1, §4]. In the context of
knot invariants, this has been adapted to a non-abelian quandle cohomology
in [5]. We will complete this approach by establishing a natural bijection
between Ext(Q,Λ) and H2(Q,Λ) in the non-abelian graded setting, which
specializes to the previous formulation in the abelian non-graded case.

9.1. Non-abelian graded quandle cohomology. Let Q =
⊔
i∈I Qi

be a graded quandle and let Λ =
∏
i∈I Λi be a graded group. We do not

assume that Λ is abelian and will thus use multiplicative notation.

Remark 9.1. The first cohomology H1(Q,Λ) consists of all graded maps
g : Q → Λ with g(Qi) ⊂ Λi such that g(a) = g(a ∗ b) for all a, b ∈ Q.
These are class functions, i.e. functions that are constant on each connected
component of Q. Notice that the grading of Q =

⊔
i∈I Qi turns H1 into a

graded group, H1(Q,Λ) =
∏
i∈I H

1(Q,Λ)i. If Q is graded connected, i.e.
each Qi is a connected component of Q, then H1(Q,Λ) =

∏
i∈I Λi = Λ.

In order to define H2(Q,Λ) we proceed as follows.

Definition 9.2. The grading of the quandle Q =
⊔
i∈I Qi induces a

grading of the product Q×Q =
⊔
i∈I Qi ×Q. A 2-cochain is a graded map

f : Q×Q→ Λ with f(Qi ×Q) ⊂ Λi such that f(a, a) = 1 for all a ∈ Q. We
say that f is a 2-cocycle if

f(a, b)f(a ∗ b, c) = f(a, c)f(a ∗ c, b ∗ c) for all a, b, c ∈ Q.

We denote by Z2(Q,Λ) the set of 2-cocycles. We say that two cocycles
f, f ′ ∈ Z2(Q,Λ) are cohomologous if there exists a graded map g : Q → Λ
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with g(Qi) ⊂ Λi such that

f(a, b) = g(a)−1f ′(a, b)g(a ∗ b) for all a, b ∈ Q.

This is an equivalence relation on Z2(Q,Λ), and we denote by H2(Q,Λ)
the quotient set. Its elements are the cohomology classes [f ] of 2-cocycles
f ∈ Z2(Q,Λ).

Remark 9.3. Notice that the set C2 of 2-cochains decomposes as C2 =∏
i∈I C

2
i where C2

i consists of maps fi : Qi × Q → Λi. Likewise, we obtain

Z2 =
∏
i∈I Z

2
i and H2 =

∏
i∈I H

2
i .

In the case where Λ is an abelian group, or more generally a module
over some ring R, one can define in every degree n ∈ N an R-module
Cn(Q,Λ) of quandle n-cochains with values in Λ, together with R-linear
maps δn : Cn → Cn+1 satisfying δnδn−1 = 0. Such a cochain complex al-
lows us, as usual, to define the submodule of n-cocycles Zn = ker(δn) and
its submodule of n-coboundaries Bn = im(δn−1), and finally the cohomol-
ogy Hn = Zn/Bn as their quotient module. This construction respects the
I-grading, and so cochains Cn =

∏
i∈I C

n
i , cocycles Zn =

∏
i∈I Z

n
i , cobound-

aries Bn =
∏
i∈I B

n
i , and finally cohomology Hn =

∏
i∈I H

n
i are I-graded

modules.

In the non-abelian case we content ourselves with H1 and H2. Notice
that H1 can be given a group structure by pointwise multiplication. For H2

pointwise multiplication works if Λ is abelian, but it fails in the non-abelian
case. This means that the quotient H2(Q,Λ) is in general only a set. It
has nonetheless a canonical base point, namely the class [1] of the trivial
2-cocycle Q×Q→ {1}, which plays the rôle of the neutral element.

Remark 9.4 (functoriality in Q). Every graded quandle homomorphism
φ : Q′ → Q induces a natural graded map φ∗ : H2(Q,Λ) → H2(Q′, Λ)
mapping the trivial class to the trivial class. More explicitly, φ∗ sends [f ]
to [φ∗f ], where f ∈ Z2(Q,Λ) is mapped to φ∗f ∈ Z2(Q,Λ) defined by
(φ∗f)(a′, b′) = f(φ(a′), φ(b′)).

Remark 9.5 (functoriality in Λ). Every graded group homomorphism
h : Λ → Λ′ induces a natural graded map h∗ : H2(Q,Λ) → H2(Q,Λ′) map-
ping the trivial class to the trivial class. More explicitly, φ∗ sends [f ] to
[φf ], defined by composing f : Q × Q → Λ with the group homomorphism
φ : Λ→ Λ′.

9.2. Classification of extensions. It is a classical result of group co-
homology that central extensions of a group G with kernel Λ are classified by
the second cohomology group H2(G,Λ) (see for example Brown [3, §IV.3], or
Mac Lane [24, §IV.4]). We will now prove that an analogous theorem holds
for quandles and their non-abelian graded extensions.
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Lemma 9.6. Let E : Λ y Q̃ → Q be a graded extension of a graded
quandle Q by a graded group Λ. Each set-theoretic section s : Q→ Q̃ defines
a unique graded map f : Q×Q→ Λ such that s(a) ∗ s(b) = f(a, b) · s(a ∗ b).
This map f is a quandle 2-cocycle; it measures the failure of the section s to
be a quandle homomorphism. Furthermore, if s′ : Q→ Q̃ is another section,
then the associated quandle 2-cocycle f ′ is homologous to f . In this way each
extension E determines a cohomology class Φ(E) := [f ] ∈ H2(Q,Λ).

Proof. Since the action of Λi is free and transitive on each fibre p−1(a)
with a ∈ Qi, the above equation uniquely defines the map f . Idempotency of
Q̃ implies f(a, a) = 0, and self-distributivity implies the cocycle condition:

[s(a) ∗ s(b)] ∗ s(c) = f(a, b)f(a ∗ b, c) s[(a ∗ b) ∗ c],
[s(a) ∗ s(c)] ∗ [s(b) ∗ s(c)] = f(a, c)f(a ∗ c, b ∗ c)s[(a ∗ c) ∗ (b ∗ c)].

Since these terms are equal, we obtain f(a, b)f(a∗b, c) = f(a, c)f(a∗c, b∗c),
as desired, which means that f is a 2-cocycle. If s′ is another section, then
there exists a graded map g : Q → Λ with s′(a) = g(a)s(a). The defining
relation s′(a) ∗ s′(b) = f ′(a, b)s′(a ∗ b) thus becomes g(a)s(a) ∗ g(b)s(b) =
f ′(a, b)g(a ∗ b)s(a ∗ b). Comparing this with s(a) ∗ s(b) = f(a, b)s(a ∗ b) we
find that f(a, b) = g(a)−1f ′(a, b)g(a ∗ b), which means that f and f ′ are
cohomologous. In other words, the cohomology class [f ] is independent of
the chosen section s, and hence characteristic of the extension E.

Conversely, we can associate with each quandle 2-cohomology class [f ] ∈
H2(Q,Λ) an extension of Q by Λ:

Theorem 9.7. Let Q be a graded quandle and let Λ be a graded group.
For each extension E : Λ y Q̃ → Q let Φ(E) be the associated cohomology
class in H2(Q,Λ). This map induces a natural bijection Φ : Ext(Q,Λ) ∼=
H2(Q,Λ). If Λ is an abelian group, or more generally a module over some
ring R, then Ext(Q,Λ) and H2(Q,Λ) carry each a natural R-module struc-
ture, and Φ is an isomorphism of R-modules.

Proof. We first note that Φ is well-defined on equivalence classes of ex-
tensions. If two extensions E1 : Λ y Q1

p1−→ Q and E2 : Λ y Q2
p2−→ Q

are equivalent via a quandle isomorphism φ : Q1 → Q2, then every sec-
tion s1 : Q → Q1 induces a section s2 = φ ◦ s1 : Q → Q2, and by Λ-
equivariance the equation s1(a) ∗ s1(b) = f(a, b) · s1(a ∗ b) is translated
to s2(a) ∗ s2(b) = f(a, b) · s2(a ∗ b), which means that Φ(E1) = [f ] = Φ(E2),
as desired.

To prove the theorem, we will construct an inverse map Ψ : H2(Q,Λ)→
Ext(Q,Λ) as follows. Given a quandle 2-cocycle f : Q × Q → Λ, we define
the quandle Q̃ = Λ ×f Q as the set

⊔
i∈I Q̃i with Q̃i = Λi × Qi equipped
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with the binary operation

(u, a) ∗ (v, b) =
(
uf(a, b), a ∗ b

)
.

Idempotency is guaranteed by f(a, a) = 1, the inverse operation is given by

(u, a) ∗ (v, b) =
(
uf(a ∗ b, b)−1, a ∗ b

)
,

and self-distributivity follows from the cocycle condition:

[(u, a) ∗ (v, b)] ∗ (w, c) =
(
uf(a, b), a ∗ b

)
∗ (w, c)

=
(
uf(a, b)f(a ∗ b, c), (a ∗ b) ∗ c

)
,

[(u, a) ∗ (w, c)] ∗ [(v, b) ∗ (w, c)] =
(
uf(a, c), a ∗ c

)
∗
(
vf(b, c), b ∗ c

)
=
(
uf(a, c)f(a ∗ c, b ∗ c), (a ∗ c) ∗ (b ∗ c)

)
.

The graded left action of Λ on the quandle Q̃ = Λ ×f Q is defined by

λ · (u, a) = (λu, a) for all (u, a) ∈ Q̃i and λ ∈ Λi. It is straightforward
to verify that we thus obtain a graded extension Λ y Λ ×f Q

p→ Q with
projection p(u, a) = a.

Suppose that f, f ′ ∈ Z2(Q,Λ) are cohomologous, that is, there exists
g : Q→ Λ such that f ′(a, b) = g(a)−1f(a, b)g(a∗ b). Then the corresponding
extensions are equivalent via the isomorphism φ : Λ ×f Q → Λ ×f ′ Q de-
fined by φ(u, a) = (ug(a), a). Hence we have constructed a well-defined map
Ψ : H2(Q,Λ)→ Ext(Q,Λ).

To see that ΦΨ = id, let f ∈ Z2(Q,Λ) and consider the section s : Q→
Λ×f Q with s(a) = (1, a). The corresponding 2-cocycle is f , hence ΦΨ = id.

It remains to show that ΨΦ = id. Given an extension E : Λ y Q̃ → Q,
we choose a section s : Q → Q̃ and consider the corresponding 2-cocycle
f ∈ Z2(Q,Λ). The map φ : Λ ×f Q → Q̃ given by φ(u, a) = u · s(a) is then
an equivalence of extensions, which proves ΨΦ = id.

Naturality and the module structure are easily verified.

9.3. The Hurewicz isomorphism. On the one hand, the Galois cor-
respondence establishes a natural bijection between quandle extensions E :
Λ y Q̃ → Q and group homomorphisms π1(Q, q) → Λ (see Theorems 6.7
and 7.19). On the other hand, the preceding cohomology arguments show
that the second cohomology group H2(Q,Λ) classifies extensions (see The-
orem 9.7). We thus arrive at the following conclusion:

Corollary 9.8. For every well-pointed quandle (Q, q) and every graded
group Λ we have natural graded bijections

H2(Q,Λ) ∼= Ext(Q,Λ) ∼= Hom(π1(Q, q), Λ).

If Λ is an abelian group, or more generally a module over some ring R,
then these objects carry natural R-module structures and the bijections are
isomorphisms of R-modules.
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Finally, we want to prove that H2(Q) ∼= π1(Q, q)ab. This is somewhat
delicate if Q has infinitely many components: then the graded group π1(Q, q)
is an infinite product, whereas H2(Q) is an infinite sum of abelian groups.
The correct formulation is as follows:

Theorem 9.9 (Hurewicz isomorphism for quandles). Let (Q, q) be a
well-pointed quandle with components (Qi, qi)i∈I and graded fundamental
group π1(Q, q) =

∏
i∈I π1(Q, qi). Then there exists a natural graded isomor-

phism H2(Q) ∼=
⊕

i∈I π1(Q, qi)ab.

Proof. In §8.3 we have constructed a 2-complex K that realizes the fun-
damental groupoid Π(Q,Adj(Q)◦) of a given quandle Q, and thus the fun-
damental group π1(Q, qi) ∼= π1(K, qi) based at some given point qi ∈ Q.
Notice that the connected components of K correspond to the connected
components of Q.

We deduce an isomorphism H1(K) ∼= H2(Q) as follows. The combina-
torial chain group C1(K) is the free abelian group with basis given by the
edges of the graph Γ , which is the 1-skeleton of K. At the chain level we can
thus define f : C1(K)→ C2(Q) by mapping each edge (a

b→ a ∗ b) ∈ C1(K)
to the 2-chain (a, b) ∈ C2(Q). (For the definition of quandle homology, see [7]
or [9].) It is readily verified that this maps 1-cycles to 2-cycles and induces
the desired isomorphism H1(K) ∼= H2(Q) on homology. We conclude that

H2(Q) ∼= H1(K) ∼=
⊕
i∈I

π1(K, qi)ab
∼=
⊕
i∈I

π1(Q, qi)ab

by appealing to the classical Hurewicz Theorem (see Spanier [33, The-
orem 7.5.5]).

9.4. Application to link quandles. Having the Hurewicz isomor-
phism at hand, we can apply it to complete our study of links K ⊂ S3

and their quandles QK . In particular we obtain an explicit correspondence
between the longitude `iK ∈ π1(QK , q

i
K), as explained in §7.5, and the ori-

entation class [Ki] ∈ H2(QK), as explained in [9, §6.2].

Corollary 9.10. For every choice of base points qiK ∈ QiK , the natural
Hurewicz homomorphism h : π1(QK , qK) → H2(QK) is an isomorphism of
graded groups, mapping each longitude `iK ∈ π1(QK , q

i
K) to the orientation

class [Ki] ∈ H2(QK).

Proof. We know from Theorem 7.21 that π1(QK , qK) =
∏n
i=1〈`iK〉 is

abelian, and so h is an isomorphism. The longitude `iK can be read off
from a link diagram, as explained in [9, Theorem 13], as a word in the
generators of πK = Adj(QK) which corresponds to a path in the complex
associated to the link quandle QK . Likewise, the homology class [Ki] ∈
H2(QK) can be read off from the link diagram, as explained in [9, §6.2],
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which corresponds to a 1-cocycle in the same complex. The construction
of the group homomorphism h in the proof of Theorem 9.9 shows that
h(`iK) = [Ki].

Consider two oriented links K = K1 t · · · tKn and K ′ = K ′1 t · · · tK ′n
in S3, and their respective link quandles QK and QK′ . We have a natural
bijection π0(K) ∼−→ π0(QK). Every quandle isomorphism φ : QK

∼−→ QK′

induces a bijection τ : π0(QK) ∼−→ π0(QK′) as well as a graded isomor-
phism φ∗ : H2(QK) ∼−→ H2(QK′). We also know that for each i the group
H2(QK)i = 〈[Ki]〉 is either trivial or freely generated by [Ki], and the
same holds for its isomorphic image H2(QK)τi = 〈[K ′τi]〉. This means that
φ∗[Ki] = ±[K ′τi] for all i.

Theorem 9.11. Two oriented links K = K1 t · · · t Kn and K ′ =
K ′1 t · · · tK ′n in S3 are ambient isotopic respecting orientations and num-
bering of components if and only if there exists a quandle isomorphism
φ : QK

∼−→ QK′ such that φ∗[Ki] = [K ′i] for all i = 1, . . . , n.

Proof. Obviously, if K and K ′ are ambient isotopic, then the quandles
QK and QK′ are isomorphic. Conversely, consider an isomorphism φ :
QK

∼−→ QK′ in such a way that φ∗[Ki] = [K ′i] for all i = 1, . . . , n. Ac-
cording to the characterization of trivial components in Corollary 7.22, we
can assume that all components of K and K ′ are non-trivial. We number
the components Q1

K , . . . , Q
n
K of QK in such a way that [Ki] ∈ H2(QK) is

supported by QiK . We choose a base point qiK ∈ QiK for each i = 1, . . . , n. In
the adjoint group Adj(QK) this determines group elements mi

K = adj(qiK).
For each i there are two generators (`iK)± ∈ π1(QK , q

i
K) of the fundamental

group, and we choose `iK corresponding to the given class [Ki] ∈ H2(QK)
under the Hurewicz isomorphism. In this way we recover the link group
πK = Adj(QK) together with the peripheral data (mi

K , `
i
K) for each link

component Ki. The quandle isomorphism φ : QK
∼−→ QK′ thus induces a

group isomorphism ψ : πK
∼−→ πK′ respecting the peripheral data. Accord-

ing to Waldhausen’s result [36, Corollary 6.5], there exists an orientation-
preserving homeomorphism f : (S3,K) ∼−→ (S3,K ′) such that f∗ = ψ; for
details see [18, Theorem 6.1.7]. Moreover, f can be realized by an ambient
isotopy.

Acknowledgments. The concept of quandle covering, algebraic fun-
damental group, and Galois correspondence developed in 2001 when I was
working on knot quandles [9]. In this case the fundamental group π1(Q, q)
is abelian, and so H2(Q) captures all information. In the intervening years,
non-abelian extensions have gained interest, and in November 2006 the con-
ference Knots in Washington XXIII on “Quandles, their homology and ap-
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plications” convinced me that covering theory furnishes the missing link.
I thank Józef Przytycki and the organizers for bringing together this meet-
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support is gratefully acknowledged.

References

[1] N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras, Adv.
Math. 178 (2003), 177–243.

[2] E. Brieskorn, Automorphic sets and braids and singularities, in: Braids (Santa Cruz,
CA, 1986), Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988, 45–115.

[3] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York,
1994.

[4] R. Brown, Topology , 2nd ed., Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chich-
ester, 1988.

[5] J. S. Carter, M. Elhamdadi, M. Graña, and M. Saito, Cocycle knot invariants
from quandle modules and generalized quandle homology , Osaka J. Math. 42 (2005),
499–541.

[6] J. S. Carter, M. Elhamdadi, M. A. Nikiforou, and M. Saito, Extensions of quandles
and cocycle knot invariants, J. Knot Theory Ramif. 12 (2003), 725–738.

[7] J. S. Carter, S. Kamada, and M. Saito, Geometric interpretations of quandle ho-
mology , J. Knot Theory Ramif. 10 (2001), 345–386.

[8] V. G. Drinfel′d, On some unsolved problems in quantum group theory , in: Quantum
Groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, 1–8.

[9] M. Eisermann, Homological characterization of the unknot , J. Pure Appl. Al-
gebra 177 (2003), 131–157.

[10] M. Eisermann, Knot colouring polynomials, Pacific J. Math. 231 (2007), 305–336.
[11] P. Etingof and M. Graña, On rack cohomology , J. Pure Appl. Algebra 177 (2003),

49–59.
[12] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory

Ramif. 1 (1992), 343–406.
[13] R. Fenn, C. Rourke, and B. Sanderson, Trunks and classifying spaces, Appl. Categ.

Structures 3 (1995), 321–356.
[14] P. J. Freyd and D. N. Yetter, Braided compact closed categories with applications

to low-dimensional topology , Adv. Math. 77 (1989), 156–182.
[15] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Grad. Stud.

Math. 34, Amer. Math. Soc., Providence, RI, 2001.
[16] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23

(1982), 37–65.
[17] L. H. Kauffman, Knots and Physics, 3rd ed., Ser. Knots Everything 1, World Sci.,

River Edge, NJ, 2001.
[18] A. Kawauchi, A Survey of Knot Theory , Birkhäuser, Basel, 1996.
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