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Finite type invariants for
cyclic equivalence classes of nanophrases

by

Yuka Kotorii (Tokyo)

Abstract. We define finite type invariants for cyclic equivalence classes of nano-
phrases and construct universal invariants. Also, we identify the universal finite type
invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold
basic invariants to signed words are finite type invariants of degree 2, by Fujiwara’s work.
We give another proof of this result and show that those invariants do not provide the
universal one of degree 2.

1. Introduction. Turaev [T1, T2] developed the theory of words based
on the analogy with curves in the plane, knots on the 3-sphere, virtual
knots, etc. A word is a sequence of letters, belonging to a given set, called
an alphabet. Let α be a set. A nanoword over α (defined in [T2]) is a pair
of a word in which each letter appears exactly twice and a map from the set
of letters appearing in the word to α. A nanophrase is a generalization of a
nanoword, defined in [T1].

Vassiliev [V] developed the theory of finite type invariants of knots, which
is conjectured to classify knots. Ito [I1] defined a notion of finite type in-
variants for curves on surfaces, constructed a large family of finite type
invariants, called SCIm, and showed that they become a complete invari-
ant for stable homeomorphism classes. On the other hand, Fujiwara [Fuj]
provided a simple idea to define finite type invariants for cyclic equivalence
classes of signed words by introducing a new type of crossing, called singu-
lar crossing, which plays an intermediate role between an actual and virtual
crossing. Here the signed word is a nanoword over α = {+,−} and it is
known from [T1] that the set of cyclic equivalence classes of signed words
bijectively corresponds to the set of stable homeomorphism classes of curves
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on surfaces. We extend Fujiwara’s finite type invariants to those for cyclic
equivalence classes of nanophrases over a general α not necessarily {+,−}.

The first aim of this paper is to construct universal intervals in Theo-
rem 5.4, by following the approach in [GPV]. In addition, we identify the
universal finite type invariant of degree 1 essentially with the linking matrix.
As a related work, we should mention that Gibson and Ito [GI] extended the
universal finite type invariant for nanophrases under different equivalence
relations, called homotopy and closed homotopy.

To see the second aim, recall that Polyak [P] reconstructed Arnold’s basic
invariants [A1, A2] for isotopy classes of generic curves on the plane or sphere
by using Gauss diagrams and showed that those invariants are finite type in-
variants of degree 1 in his sense. Ito [I1] connected Arnold’s basic invariants
of planar curves with his finite type invariants. On the other hand, Fuji-
wara [Fuj] extended Arnold’s basic invariants of spherical curves to signed
words and showed that those are finite type invariants of degree 2 in his
sense. We give another proof of Fujiwara’s result and show that Fujiwara’s
invariants do not provide the universal invariant of degree 2 in Fujiwara’s
sense.

This paper is organized as follows. In Section 2, following Turaev, we
give formal definitions of words, phrases and so on. In Section 3, following
Fujiwara, we give definitions of singular crossings and singular letters. In
Section 4, we define finite type invariants for cyclic equivalence classes of
nanophrases. In Section 5, we construct the universal finite type invariants
for cyclic equivalence classes of nanophrases. In Section 6, we identify the
universal finite type invariant of degree 1 essentially with the linking ma-
trix. In Section 7, we restrict our discussion to nanowords corresponding to
spherical curves, and clarify the relation between Arnold’s basic invariants
and our finite type invariants.

2. Nanowords and nanophrases. In this section, following Turaev
[T1, T2], we review the formal definitions of words, phrases and so on.

2.1. Words and phrases. An alphabet is a finite set and its elements
are called letters. A word of length m is a finite sequence of m letters.
The unique word of length 0 is called the trivial word and is written ∅. An
n-component phrase is a sequence of n words, called components, separated
by ‘:’. The unique n-component phrase each of whose components is the
trivial word is called the trivial n-component phrase and is denoted by ∅n.
In this paper, we will regard words as 1-component phrases.

2.2. Nanowords and nanophrases. Let α be a finite set. An
α-alphabet is an alphabet A together with an associated map from A to α.
This map is called a projection. The image of any A ∈ A in α will be denoted
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by |A|. An isomorphism f of an α-alphabet A1 to A2 is a bijection such that
|f(A)| is equal to |A| for any letter A in A1. A Gauss word on A is a word
on A such that every letter in A appears exactly twice. Similarly, a Gauss
phrase on A is a phrase which satisfies the same condition. By definition, a
1-component Gauss phrase is a Gauss word.

Let p be a Gauss word or a Gauss phrase. The rank of p is the number
of distinct letters appearing in p. We denote it by rank(p). Note that the
rank of a Gauss word must be half of its length. For example, the rank of
ABCBAC is 3 and the rank of A : B : ∅ : BA is 2.

An n-component nanophrase over α is a pair (A, p) where A is an
α-alphabet and p is an n-component Gauss phrase on A. When n is equal
to 1, we call (A, p) a nanoword.

Let (A1, p1) and (A2, p2) be nanophrases over α. An isomorphism f of a
nanophrase (A1, p1) to (A2, p2) is an isomorphism f of α-alphabets such that
f applied letterwise to the ith component of p1 gives the ith component of
p2 for all i. If such an isomorphism exists, we say that (A1, p1) and (A2, p2)
are isomorphic.

We can define the rank of a nanoword and of a nanophrase similarly to
that of a Gauss word and of a Gauss phrase.

2.3. Shift move on nanowords and nanophrases. Turaev [T1] de-
fined a shift move on nanophrases. Let ν be an involution on α. Suppose p
is an n-component nanophrase over α. A ν-shift move on the ith component
of p is a transformation which produces a new nanophrase p′ as follows. If
the ith component of p is empty or only a single letter, then p′ is p. If not,
we can write the ith component of p as Ax, where x is a word. Then the
ith component of p′ is xA and the other components of p′ are the same as
the corresponding components of p. Furthermore, if we write |A|p for |A|
in p, and |A|p′ for |A| in p′, then |A|p′ equals ν(|A|p) when x contains the
letter A, and otherwise |A|p′ equals |A|p.

3. Singular crossings and singular letters on signed words. Fuji-
wara [Fuj] introduced singular letters on signed words, which are nanowords
over α = {+,−}. In this section, following Fujiwara, we review the defini-
tions of singular crossings and singular letters on signed words.

3.1. Curves and signed words. In this paper, a curve means a generic
immersion from an oriented circle to a closed oriented surface. Here generic
means that the curve has only a finite set of self-crossings which are all
transversally double points, does not have triple points and self-tangencies,
and has a regular neighborhood. A pointed curve is a curve endowed with a
base point away from the double points.
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Let α be the set {+,−} and A an α-alphabet. We then call a nanoword
(A, w) over α a signed word.

We consider a pointed curve on a surface. We label the crossings of the
curve in an arbitrary way by different letters A1, . . . , Am, where m is the
number of crossings. The Gauss word of a curve is obtained by the following.
We start from the base point, move along the curve following the orientation
and finish when we get back to the base point. Then we write down all the
letters of the crossings in the order we meet them. The resulting word w
on the alphabet A = {A1, . . . , Am} contains each letter twice. To make w
a signed word, we consider the crossing of the curve labeled by A. Then
we define the sign of a letter as illustrated in Figure 3.1. When moving
along the curve as above, if we first traverse the crossing labeled by A from
the bottom-left to the top-right, then |A| = −, otherwise |A| = +. Here
the orientation of the ambient surface is counterclockwise. The trivial curve
corresponds to the signed word ∅. If we choose a different choice of the
labeling of the crossing, we get an isomorphic signed word. We assign to
each curve on a surface the isomorphism class of this signed word.

Fig. 3.1. On the left the sign is −, and on the right +.

Two curves are stably homeomorphic if there is an orientation preserv-
ing homeomorphism between their regular neighborhoods which maps one
curve onto the other. Similarly, two pointed curves are pointed stably home-
omorphic if they are stably homeomorphic via a map that sends one base
point to the other.

If we change the curve by a stable homeomorphism, then the associated
signed word does not change, since it is defined by the behavior of the curve
in its regular neighborhood. It is proved in [T1] that the set of isomorphism
classes of signed words bijectively corresponds to the set of stable homeo-
morphism classes of pointed curves on surfaces.

Let ν be an involution on α which maps + to −. The cyclic equivalence
relation on signed words is defined by the relation generated by the ν-shift
move. It is proved in [T1] that the set of cyclic equivalence classes of signed
words bijectively corresponds to the set of stable homeomorphism classes of
curves on surfaces.

3.2. Singular curves and singular signed words. Consider a surface
standardly embedded in R3. When we project a curve on a surface to the
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plane, some crossings which are not crossings on a surface may appear in
the planar curve. We call such a crossing a virtual crossing and denote it by
a crossing with a small circle surrounding it (see Figure 3.2). Such crossings
do not contribute at all to the associated signed word. A virtual crossing is
not just an ordinary graphical vertex, but a non-actual crossing.

Let c be a curve on a surface, and wc a signed word corresponding to c. If
we replace some crossings of a planar curve which come from actual crossings
of c by virtual crossings, we get a new curve on some surface. The signed
word corresponding to the new curve is obtained from c by deleting the
letters assigned to the actual crossing in question.

Fujiwara [Fuj] introduced a new type of crossing called singular crossing,
which is an intermediate notion between an actual crossing and a virtual
crossing, and denoted it by a small box (see Figure 3.2). A singular curve
is a planar curve which may contain singular crossings.

We call a signed word corresponding to a singular curve a singular signed
word. To get signed words corresponding to singular curves, we label actual
and singular crossings by letters such as A and letters with an asterisk such
as A∗, respectively. The A∗ are called singular letters. For a word w without
singular letters, denote by w∗ the word obtained by changing all letters of
w to singular letters keeping signs.

Fig. 3.2. The singular curve corresponding to the signed word A∗BA∗B, where |A∗| = +
and |B| = −

4. Definitions of finite type invariants. Fujiwara [Fuj] defined finite
type invariants for cyclic equivalence classes of signed words. We now extend
this definition to general α.

Let α be any finite set. Let P (α, n) denote the set of isomorphism classes
of n-component nanophrases over α. Let ν be any involution on α. We define
the cyclic equivalence relation over n-component nanophrases as the equiv-
alence relation generated by isomorphisms and ν-shift moves. Let P (α, ν, n)
denote the set of cyclic equivalence classes of n-component nanophrases
over α.

We define α∗ = {a∗ | a ∈ α} and let A be an α ∪ α∗-alphabet. Then the
letter whose projection is contained in α∗ is called a singular letter and is
denoted with an asterisk, say by A∗, for easy distinction. Let Pm(α, n) denote
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the set of isomorphism classes of n-component nanophrases over α∪α∗ with
m singular letters. We call the phrase with singular letters a singular phrase.
By definition, P0(α, n) is the set of non-singular n-component nanophrases
and P0(α, n) = P (α, n).

Given an involution ν over α, we extend ν to α ∪ α∗ as follows. For any
a ∈ α, we define

ν(a∗) = ν(a)∗.

Then let Pm(α, ν, n) denote the set of cyclic equivalence classes of n-compo-
nent nanophrases over α∪α∗ with m singular letters, where m is at least 0.
By definition, P (α, ν, n) = P0(α, ν, n). Put P(α, ν, n) =

⋃
m≥0 Pm(α, ν, n).

An invariant for cyclic equivalence classes of nanophrases is a map u
from the set of n-component nanophrases to an abelian group G, which takes
equal values on nanophrases related by isomorphisms and ν-shift moves. In
other words, it is a map u : P (α, ν, n)→ G.

Given an invariant u : P (α, ν, n) → G, we define its extension û :
P(α, ν, n)→ G by the following rule

û(p) = u(p) if p ∈ P0(α, ν, n),

û(xA∗yA∗z) = û(xAyAz)− û(xyz) if xA∗yA∗z ∈ Pm(α, ν, n) (m ≥ 1),

where A is a non-singular letter such that |A|∗ is equal to |A∗|, and x, y and
z are arbitrary sequences of letters, possibly including ‘:’ or ‘∅’. This map is
well defined because the result does not depend on the order of the singular
letters which we exclude.

Let p and q be n-component nanophrases. A nanophrase q is a subphrase
of p, denoted by q /p, if it is a nanophrase obtained from p by deleting pairs
of letters. Here each letter preserves the value of the projection. We use this
word even if we eliminate no-letters. If the rank of p is k, then p has exactly
2k subphrases.

Example 4.1. Let p = ABA :B. Then the subphrases of p are ABA :B,
AA :∅, B :B and ∅ :∅.

For any nanophrases p and q, we define δ(p, q) by

δ(p, q) = rank(p)− rank(q).

Proposition 4.2. For any n-component nanophrase p in P(α, ν, n) and
any invariant u : P (α, ν, n)→ G,

(4.1) û(p) =
∑

p′′/q/p′

(−1)δ(p
′,q)u(q),

where p′ is the non-singular phrase obtained by replacing all singular letters
of p with the corresponding non-singular letters, and p′′ is the subphrase of
p obtained from p by deleting all singular letters.
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Proof. We use induction on the number k of singular letters. If p does not
have singular letters, then the assertion is trivial. We assume that phrases
with k singular letters satisfy (4.1). If p has k + 1 singular letters, then we
can write p = xA∗yA∗z, where x, y and z are some singular phrases. By the
definition of extension and the induction assumption, we have

û(p) = û(xAyAz)− û(xyz)

=
∑

x′′Ay′′Az′′/q/x′Ay′Az′

(−1)δ(x
′Ay′Az′,q)u(q)−

∑
x′′y′′z′′/q/x′y′z′

(−1)δ(x
′y′z′,q)u(q)

=
∑

x′′y′′z′′/q/x′Ay′Az′

(−1)δ(x
′Ay′Az′,q)u(q),

where x′′, y′′ and z′′ are the phrases obtained from x, y and z by deleting
all singular letters, and x′, y′ and z′ are the non-singular phrases obtained
by replacing all singular letters of x, y and z with the corresponding non-
singular letters, respectively.

A map u : P (α, ν, n) → G is a finite type invariant if there exists a
non-negative integer m such that for any n-component nanophrase p with
more than m singular letters, û(p) is zero. The minimal such m is called the
degree of u.

The map u : P (α, ν, n)→ G is a universal finite type invariant of degree
m if for any finite type invariant v of degree less than or equal to m taking
values in some abelian group H, there exists a homomorphism f from G to
H such that

P (α, ν, n)
u //

v $$

G
�

f
��
H

In particular, if p and q are two n-component nanophrases over α which
can be distinguished by a finite type invariant of degree less than or equal
to m and u is a universal invariant of degree m, then u(p) is not equal to
u(q).

Goussarov, Polyak and Viro [GPV] constructed universal finite type in-
variants of virtual knots and links. Gibson and Ito [GI] constructed universal
finite type invariants for homotopy classes of nanophrases. In a similar way,
we construct universal finite type invariants for cyclic equivalence classes of
nanophrases in the next section.

5. Universal finite type invariants. In this section, following the
approach by Goussarov, Polyak and Viro [GPV] we construct universal finite
type invariants for cyclic equivalence classes of nanophrases over general α.
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Let ZP (α, n) be the additive abelian group freely generated by isomor-
phism classes of n-component nanophrases. Let ZP (α, ν, n) be the additive
abelian group freely generated by P (α, ν, n).

Let G(α, ν, n) be the group obtained from ZP (α, n) by taking the quo-
tient by the following relations:{

w :AxAy :t− w :xByB :t = 0,

w :Az :t− w :zA :t = 0,

where |B| = ν(|A|), x, y and z do not contain ‘:’ and z does not contain A.
The projection from ZP (α, n) to ZP (α, ν, n) is a homomorphism, de-

noted by I.

Proposition 5.1. The homomorphism I induces an isomorphism Î :
G(α, ν, n)→ ZP (α, ν, n).

Proof. It is clear that I is onto and the subgroup generated by the ele-
ment w :AxAy :t−w :xByB :t and w :Az :t−w :zA :t in ZP (α, n) is a subset
of the kernel of I. Conversely, we show that the kernel of I is a subset of the
subgroup in question. For any p in ZP (α, n), there exists a finite subset X
of P (α, n) such that p =

∑
x∈X exx, where ex is an integer. If p is contained

in the kernel of I, we have

0 = I
(∑
x∈X

exx
)

=
∑
x∈X

ex[x] =
∑
x∈X′

( ∑
x∼y, y∈X

ey

)
[x],

where X ′ is a set of representatives. The above equality is true if and only
if for any x ∈ X ′,

∑
x∼y, y∈X ey = 0. Thus we have∑

x∼y, y∈X
eyy =

∑
x∼y, y∈X

eyy −
∑

x∼y, y∈X
eyx =

∑
x∼y, y∈X

ey(y − x).

Therefore
∑

x∼y, y∈X eyy is contained in the above subgroup and so is p.

This proposition means that the abelian group G is isomorphic to the free
abelian group. We then define a homomorphism θn : ZP (α, n) → ZP (α, n)
as follows. For any n-component nanophrase p, θn(p) is the sum of all the
subphrases of p considered as an element of ZP (α, n). We then extend θn
linearly to all of ZP (α, n). Note that for any nanophrase p, θn(p) can be
written as

θn(p) =
∑
q/p

q.

We then define another homomorphism ϕn : ZP (α, n) → ZP (α, n) as
follows. For any n-component nanophrase p,

ϕn(p) =
∑
q/p

(−1)δ(p,q)q.

We then extend ϕn linearly to all of ZP (α, n).
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Proposition 5.2. The homomorphism θn is an isomorphism and its
inverse is given by ϕn.

Proof. For any n-component nanophrase p,

ϕn(θn(p)) = ϕn

(∑
q/p

q
)

=
∑
q/p

∑
r/q

(−1)δ(q,r)r =
∑
r/p

(∑
r/q/p

(−1)δ(q,r)r
)

(5.1)

=
∑
r/p

(δ(p,r)∑
i=0

(
δ(p, r)

i

)
(−1)δ(p,r)−ir

)
= p.

In the first line we take a sum over q satisfying r/q/p. Here i is the difference
between the rank of p and q.

Thus ϕn(θn(p)) = p and so ϕn ◦ θn is the identity map. Similarly,

θn(ϕn(p)) = θn

(∑
q/p

(−1)δ(p,q)q
)

=
∑
q/p

(−1)δ(p,q)
(∑
r/q

r
)

= p.

Thus θn ◦ ϕn is also the identity map. Therefore θn is an isomorphism and
its inverse is given by ϕn.

Proposition 5.3. The map θn induces an isomorphism θ̂n : G(α, ν, n)
→ G(α, ν, n).

Proof. For any w :AxAy :t− w :xByB :t in ZP (α, n), we have

θn(w :AxAy :t− w :xByB :t) =
∑

q/AxAy

w :q :t−
∑

q/xByB

w :q :t(5.2)

=
( ∑
AA/q/AxAy

w :q :t+
∑
q/xy

w :q :t
)

−
( ∑
BB/q/xByB

w :q :t+
∑
q/xy

w :q :t
)

=
∑

AA/q/AxAy

w :q :t−
∑

BB/q/xByB

w :q :t.

The last line of (5.2) can be written as a finite sum of elements of the form
w :AxAy :t−w :xByB :t. Similarly θn(w :Az :t−w :zA :t) can be written as

a finite sum of elements of the form w :Az :t − w :zA :t. Therefore θ̂n is a
homomorphism and so is ϕ̂n. Thus θ̂n is an isomorphism.

For each non-negative integer m, we define a map Om : P (α, n) →
P (α, n) by

(5.3) Om(p) =

{
p if rank(p) ≤ m,

0 otherwise.

We extend Om linearly to all of ZP (α, n).
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We introduce the following relation on G(α, ν, n):

p = 0 if p is an n-component nanophrase with rank(p) > m.

Let Gm(α, ν, n) be the group obtained from G(α, ν, n) by taking the quotient
with the above relation which depends on m. Then Gm(α, ν, n) is generated
by the set of n-component nanophrases with rank m or less. As this set is
finite, Gm(α, ν, n) is a finitely generated abelian group. Clearly Om induces
a homomorphism Ôm : G(α, ν, n)→ Gm(α, ν, n).

Let Γm,n be the composition Ôm ◦ θ̂n ◦ Î−1. It is a homomorphism from
ZP (α, ν, n) to Gm(α, ν, n).

The main theorem of this section is as follows.

Main Theorem 5.4. The map Γm,n : ZP (α, ν, n) → Gm(α, ν, n) is a
universal finite type invariant of degree m for cyclic equivalence classes of
nanophrases.

Corollary 5.5. For any finite type invariant for P (α, ν, n) taking val-
ues in an abelian group G, there is a finite subset H of G such that for any p
in P (α, ν, n), v(p) is represented by a linear combination of elements of H.

We prepare some lemmas for the proof of the theorem.
For any subphrases p1 and p2 of p, let p1 \p p2 be the subphrase of p

obtained from p1 by deleting the letters contained in p2.

Example 5.6. Let p = AADBCBCD, p1 = AABB and p2 = BCBC.
Then p1 \p p2 = AA.

Lemma 5.7. Let p be an n-component nanophrase. The sum of all the
subphrases of p regarded as an element of ZP (α, n) can be written for any
subphrase t of p as follows:

(5.4)
∑
q/p

q =
∑
t/r/p

( ∑
(r\pt)/s/r

s
)
.

Proof. For any subphrase q of p, the right hand side of (5.4) contains q.
In fact, letting r be t

⋃
p q, we have t / r / p and (r \p t) / q / r. For the left

hand side of (5.4), the number of terms is 2rank(p). For the right hand side,
the number of subphrases r such that t / r / p is 2δ(p,t). On the other hand,
the number of subphrases s such that (r \ t)/s/r does not depend on r and
is 2rank(t). Therefore the number of terms on the right hand side of (5.4) is
2rank(p). This yields lemma.

Lemma 5.8. Let p be an n-component nanophrase. For any subphrase t
of p, ∑

t/q/p

(−1)δ(p,q)
(∑
t/r/q

r
)

= p.
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Proof. The proof is similar to that of Proposition 5.2, and we omit it.

Proof of Theorem 5.4. First of all, we prove that Γm,n is a finite type in-

variant of degree less than or equal to m. Let Γ̂m,n : P(α, ν, n)→ Gm(α, ν, n)
be an extension of Γm,n. Let p be an element in Pk(α, ν, n) where k > m.
Let p′ be the non-singular phrase obtained from p by replacing all singular
letters of p with the corresponding non-singular ones, and p′′ the subphrase
of p obtained from p by deleting all singular letters. Then by Proposition 4.2,
the definition of Γm,n and Lemma 5.7, we have

Γ̂m,n(p) = Γm,n

( ∑
p′′/q/p′

(−1)δ(p
′,q)q

)
= Ôm ◦ θ̂ ◦ Î−1

( ∑
p′′/q/p′

(−1)δ(p
′,q)q

)
= Ôm ◦ θ̂

( ∑
p′′/q/p′

(−1)δ(p
′,q)q

)
= Ôm

( ∑
p′′/q/p′

(−1)δ(p
′,q)
(∑
r/q

r
))

= Ôm

( ∑
p′′/q/p′

(−1)δ(p
′,q)
( ∑
p′′/s/q

∑
(s\sp′′)/u/s

u
))
.

Now we define a map g : P (α, ν, n) → ZP (α, ν, n) as follows. We fix a
nanophrase p′′ and then for any s in P (α, ν, n) such that p′′ / s, we set

gp′′(s) =
∑

(s\sp′′)/u/s

u.

We extend g linearly to all of ZP (α, ν, n) and denote it by g again. Thus

(5.5)∑
p′′/q/p′

(−1)δ(p
′,q)
( ∑
p′′/s/q

( ∑
(s\sp′′)/u/s

u
))

=
( ∑
p′′/q/p′

(−1)δ(p
′,q)
( ∑
p′′/s/q

gp′′(s)
)
.

Since g is linear, Lemma 5.8 implies that the right hand side of (5.5) is equal
to

gp′′
( ∑
p′′/q/p′

(−1)δ(p
′,q)
( ∑
p′′/s/q

s
))

= gp′′(p
′) =

∑
(p′\p′p′′)/u/p′

u.

Since p′ \p′ p′′ is a subphrase of p′ which has rank k (> m), each phrase of
the above term has rank more than m. Thus the image of this term under
Ôm is zero.

Secondly, we prove that Γm,n is a finite type invariant of degree m. For
any n-component nanophrase p without singular letters, let p∗ be the phrase
obtained from p by replacing all letters with the corresponding singular ones.
We then have

Γ̂m,n(p∗) = Ôm

(∑
p/s/p

s
)

= Ôm(p) = p.

Therefore Γ̂m,n(p∗) is not equal to zero, and so the degree of Γm,n is m.
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Finally, we prove the universality as follows. For any finite type invariant
v of degree less than or equal tom taking values inH, we will show that there
exists a homomorphism f from Gm(α, ν, n) to H such that v = f ◦Γm,n. We
extend v linearly to all of ZP (α, ν, n) and denote it by v again. We define a
map f as follows. For any n-component nanophrase p,

f(p) = v ◦ Î ◦ θ̂−1n (q),

where q is in G(α, ν, n) and Ôm(q) = p. Note that q is a sum of phrases.
Then f is well defined. In fact, for any q and q′ such that

Ôm(q) = Ôm(q′) = p,

Ôm(q − q′) is equal to zero in Gm(α, ν, n) and so q − q′ consists of phrases
with rank more than m. We then have

v(q∗) = v
(∑
r/q

(−1)δ(q,r)r
)

= v ◦ I ◦ θ̂−1n (q),

where q∗ is the sum of phrases obtained from q by replacing all letters of
each phrase of q with the corresponding singular ones. By the above and the
fact that v is a finite type invariant of degree less than or equal to m,

v ◦ I ◦ θ̂−1n (q − q′) = v(q∗ − q′∗) = 0,

where q′∗ is constructed in the same way as q∗. Therefore f is well defined.
We then obtain

v = f ◦ Ôm ◦ θ̂n ◦ Î−1 = f ◦ Γm,n.

This yields the universality.

For any nanophrase w, we denote by [w] the sum of all isomorphism
classes of the set of nanophrases which are obtained from w by shift moves.
For example, consider the case when α = {±} and ν sends + to −. If
w = XXȲ Ȳ , where X and Ȳ mean a letter X with |X| = + and Y with
|Y | = −, respectively, then [w] = XXȲ Ȳ +Y XXY + Ȳ Ȳ XX + X̄Ȳ Ȳ X̄. If
w = XXY Y , then [w] = XXY Y + Ȳ XXȲ .

For two arbitrary nanophrases w and v, we define 〈 , 〉 by

〈w, v〉 = #{subwords of v isomorphic to w}.

For example, 〈AA,BCBC〉 = 2. We extend 〈 , 〉 bilinearly, so that it is a
map ZP (α, ν, n)× ZP (α, ν, n)→ Z.

Lemma 5.9. For any w in P (α, n), 〈[w], 〉 : P (α, ν, n) → Z is a finite
type invariant of degree rank(w).

Proof. It is easy to check that it is a homomorphism. Suppose that w is
a nanophrase whose rank is m. Let p be an n-component nanophrase with
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more than m singular letters. By Proposition 4.2,

(5.6) 〈[w], p〉 =
∑

p′′/q/p′

(−1)δ(p
′,q)〈[w], q〉,

where p′ is the non-singular phrase obtained by replacing all singular letters
of p with the corresponding non-singular ones, and p′′ is the subphrase of p
obtained from p by deleting all singular letters. For any subphrase r of p′

with rank m, we consider the number of q’s such that r / q and p′′ / q / p′.
Let k be the rank of the phrase p′ \p′ (p′′ ∪ r). Then k ≥ 1. The number of
q’s satisfying r / q and p′′ / q / p′ is

k∑
s=0

(
k

s

)
(−1)s = 0.

So 〈[w], p〉 = 0. Since 〈[w], w∗〉 = 〈[w], w〉 = 1, it is a finite type invariant of
degree m.

Let ϕm,n denote a map

P (α, ν, n)→
⊕

v∈P (α,ν,n), rank(v)≤m

Z〈v〉,

defined as follows: ϕm,n(w) is the direct sum of 〈[v], w〉 for v in P (α, ν, n)
whose rank is less than or equal to m, where Z〈v〉 is an infinite cyclic group
generated by v. We extend ϕm,n linearly to all of ZP (α, ν, n).

Proposition 5.10. There exists an isomorphism

f :
⊕

v∈P (α,ν,n), rank(v)≤m

Z〈v〉 → Gm(α, ν, n)

such that f ◦ ϕm,n = Γm,n.

Proof. We define f as follows. For each v, f sends a in Z〈v〉 to av in
Gm(α, ν, n). The proof is an easy check.

Remark. Fujiwara [Fuj] showed that when α = {+,−}, this finite type
invariant is a complete invariant for cyclic equivalence classes of signed
words, so a complete invariant for stable homeomorphism classes of curves
on closed oriented surfaces.

Remark. We compare Γm,1 with Ito’s SCIm. Let c be a generic im-
mersed curve with n crossings, and wc a signed word corresponding to c.
Ito [I1] defined a map SCIm(c) : Wm → k, where k is a field and Wm is a
k-linear space generated by the isomorphism classes of signed words with
rank m. SCIm(c) has information about all subwords of wc with rank m.
Therefore, we suppose that α is {±}, ν a map from + to −, that is, signed
words. Then Γm,1(w1) = Γm,1(w2) if and only if SCIi(c1) = SCIi(c2) for any
i between 0 and m, for any signed words w1 and w2 corresponding to generic
immersed curves c1 and c2 respectively.
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6. Example. Here is an example of finite type invariants.

Example 6.1. The rank of a nanophrase over α is a finite type invariant
of degree 1.

Example 6.2. Let πij (1 ≤ i < j ≤ n) be a free abelian group generated
by elements in α. Let πii (1 ≤ i ≤ n) be a free abelian group generated by
elements in α with the relations a = ν(a) for all a in α.

For an n-component nanophrase p, the linking matrix of p is defined as
follows. Let Aij(p) (1 ≤ i < j ≤ n) be the set of letters which have one
occurrence in the ith component of p and another occurrence in the jth
component of p. Let Aii(p) (1 ≤ i ≤ n) be the set of letters which have two
occurrences in the ith component of p. For any i and j, define

lij(p) =
∑

A∈Aij(p)

|A| ∈ πij .

Let the linking matrix L(p) be the symmetric n×n matrix with entries lij(p).
It is easy to see that the linking matrix of a nanophrase is an invariant for
cyclic equivalence classes of nanophrases.

We define a map ι : P (α, ν, n) → Z by setting ι(p) = 1 for any p in
P (α, ν, n) and extend the map linearly.

Theorem 6.3. The linking matrix is a finite type invariant of degree 1,
and a direct sum of the linking matrix and ι is a universal finite type invari-
ant of degree 1.

Proof. We first prove that the linking matrix L(p) is a finite type in-
variant of degree 1. Let pA∗B∗ be a nanophrase with two singular letters A∗

and B∗. Let pAB be the nanophrase obtained from p by replacing A∗ and
B∗ with A and B, respectively. Let pA be the nanophrase obtained from p
by replacing A∗ with A and deleting B∗. Let pB be the nanophrase obtained
from p by replacing B∗ with B and deleting A∗. Let p be the nanophrase
obtained from p by deleting A∗ and B∗. Then

L(pA∗B∗) = L(pAB)− L(pA)− L(pB) + L(p).

We show that L(pA∗B∗) is zero. It is sufficient to prove that lij(pA∗B∗) is
zero. We first consider the case i = j. Suppose the letters A and B appear
twice in the ith component. Then

lii(pAB) = lii(p) + |A|+ |B|,
lii(pA) = lii(p) + |A|,
lii(pB) = lii(p) + |B|.

Therefore lii(pA∗B∗) is zero.
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Suppose the letter A appears twice in the ith component and the letter
B does not appear twice in the ith component. Then

lii(pAB) = lii(pA) = lii(p) + |A|, lii(pB) = lii(p).

Hence lii(pA∗B∗) is zero.
Suppose neither A nor B appears twice in the ith component. Then

lii(pAB) = lii(pA) = lii(pB) = lii(p).

Therefore lij(pA∗B∗) is zero.
The same conclusion can be obtained for i 6= j. Let q∗ be a nanophrase

with only one singular letter. If the ith and jth components contain a sin-
gular letter, then lij(q∗) 6= 0. Thus L is a finite type invariant of degree 1.

The proof is completed by showing universality. We show that

G1(α, ν, n) ∼=
⊕

1≤i<j≤n
πij ⊕

⊕
1≤i≤n

πii ⊕ Z.

We note that a nanophrase with rank 1 is of the form ∅ : . . . :∅ :A :∅ : . . .
:∅ :A :∅ : . . . :∅ or ∅ : . . . :∅ :AA :∅ : . . . :∅. Let gija (1 ≤ i < j ≤ n) be the
nanophrase of the form ∅ : . . . :∅ :A :∅ : . . . :∅ :A :∅ : . . . :∅ where A appears in
both the ith and jth components and |A| = a in α, and giia (1 ≤ i ≤ n)
be the nanophrase of the form ∅ : . . . :∅ :AA :∅ : . . . :∅ where A appears in
the ith component and |A| = a in α. Then the generators of G1(α, ν, n) are
gija (1 ≤ i ≤ j ≤ n) and ∅n. Since the ν-shift move sends giia to giiν(a)
and gija to itself, the relations of G1(α, ν, n) are giia = giiν(a) for any i
and a. Thus G1(α, ν, n) is isomorphic to the abelian group generated by gija
(1 ≤ i ≤ j ≤ n) and ∅n with the relations giia = giiν(a) for all a in α and
1 ≤ i ≤ n. This abelian group is isomorphic to⊕

1≤i<j≤n
πij ⊕

⊕
1≤i≤n

πii ⊕ Z,

by a direct sum f of maps sending a in πij to gija for any i and j, and
sending 1 in Z to 1 in Z〈∅n〉, and so f ◦ (L⊕ ι) = Γ1,n.

Remark. This linking matrix differs from Fukunaga’s [Fuk] on diagonal
components. Fukunaga’s linking matrix is a universal finite type invariant
for homotopy classes of nanophrases (see [GI]). But his linking matrix is not
a universal finite type invariant for cyclic equivalence classes of nanophrases.

7. Finite type invariants for spherical curves. From now on, we
work only with the set P (α, ν, 1), where α = {±} and ν is the map which
sends + to −, that is, with signed words.

Let P (α, 1)s be a subset of P (α, 1), each of which has the corresponding
generic curve on a sphere. Let P (α, ν, 1)s be the union of the set of cyclic
equivalence classes of P (α, 1)s and P (α, 1) \ P (α, 1)s. Note that according
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to our definition of finite type invariants, when we extend an invariant u
to û, we must extend the domain to P (α, ν, 1)s. Therefore we consider not
the set of cyclic equivalence classes of P (α, 1)s but P (α, ν, 1)s.

Ito [I2] introduced regular homotopy moves on signed words. We review
this definition.

Definition 7.1 (Regular homotopy moves on signed words). Three reg-
ular homotopy moves on signed words are defined as follows.

A first regular homotopy is (A, xyz) → (A ∪ {A,B}, xA±B∓yA±B∓z),
where x, y and z are words.

A second regular homotopy is (A, xyz)→ (A∪{A,B}, xA±B∓yB∓A±z),
where x and y are words.

A third regular homotopy is

(A, xA±B±yA±C±zB±C±t)→ (A, xB±A±yC±A±zC±B±t),
where x, y, z and t are words.

These moves correspond to moves of curves illustrated in Figure 7.1.

Fig. 7.1. Regular homotopy moves

Arnold’s basic invariants J+
s , J−s and Sts are defined by their behavior

under the moves and the inverse moves in Figure 7.1. Fujiwara [Fuj] extended
Arnold’s basic invariants of spherical curves to invariants on signed words
(see [P]). We review these definitions.

Definition 7.2 (Arnold’s basic invariants on signed words). J+
s de-

creases (respectively increases) by 2 under the first regular homotopy move
(respectively inverse move), and does not change under the other moves.

J−s increases (respectively decreases) by 2 under the second regular ho-
motopy move (respectively inverse move), and does not change under the
other moves.

Sts increases (respectively decreases) by 1 under the third regular ho-
motopy move (respectively inverse move), and does not change under the
other moves.
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Normalized conditions for Arnold’s basic invariants are as follows. Let
wi be a signed word A1A1A2A2 . . . AiAi (or Ā1Ā1Ā2Ā2 . . . ĀiĀi). Then

J+
s (wi) =

(i− 1)2

2
, J−s (wi) =

(i− 2)2

2
− 3

2
, Sts(wi) = −(i− 1)2

4
.

By using Polyak’s formulation of Arnold’s basic invariants [P], we extend
Arnold’s basic invariants to maps P (α, ν, 1)s → Z defined by

J+
s (w) = 〈〈AABB −ABBA− 3ABAB,w〉〉 − 1

2〈[AA], w〉+ 1
2 ,

J−s (w) = 〈〈AABB −ABBA− 3ABAB,w〉〉 − 3
2〈[AA], w〉+ 1

2 ,

St(w) = 1
2〈〈−AABB +ABBA+ABAB,w〉〉+ 1

4〈[AA], w〉 − 1
4 ,

where 〈〈 , 〉〉 is defined as follows. For any Gauss word v and signed word w,
we define

〈〈v, w〉〉 =
∑

w′/w,w′∼=v

∏
A inw′, |A|=−1

(−1),

where ∼= means isomorphic as Gauss words. We extend the map bilinearly.

Theorem 7.3. Arnold’s basic invariants are finite type invariants of
degree 2, but they do not provide a universal finite type invariant of degree 2.

Proof. It is easy to see that 〈〈AABB − ABBA, 〉〉 is an invariant for
P (α, ν, 1)s. From [P] we see that 〈〈ABAB, 〉〉 is also an invariant for
P (α, ν, 1)s. Thus J+

s , J−s and St are invariants for P (α, ν, 1)s. Similar to
Lemma 5.9, we have finite type invariants of degree 2.

We compare a signed word AAB̄B̄CC with ĀĀB̄B̄CC.

Fig. 4

J+
s (AAB̄B̄CC) = −2 = J+

s (ĀĀB̄B̄CC),

J−s (AAB̄B̄CC) = −5 = J−s (ĀĀB̄B̄CC),

Sts(AAB̄B̄CC) = 1 = Sts(ĀĀB̄B̄CC).

On the other hand, because ϕ2,1 is an invariant for P (α, ν, 1), ϕ2,1 is also an
invariant for P (α, ν, 1)s, and we have

ϕ2,1(AAB̄B̄CC) 6= ϕ2,1(ĀĀB̄B̄CC).

Therefore the triple J+
s , J−s and St does not provide the universal finite

type invariant of degree 2.

Remark. Since 〈[AABB], 〉, 〈[AAB̄B̄], 〉, 〈[ĀĀB̄B̄], 〉, 〈[ABAB], 〉,
〈[AA], 〉, 〈∅, 〉 and 〈〈ABAB, 〉〉 are independent, the linear space generated
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by finite type invariants of degree at most 2 for spherical curves has dimen-
sion 7 or more.
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