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Abstract. The theory of covering spaces is often used to prove the Nielsen–Schreier
theorem, which states that every subgroup of a free group is free. We apply the more gen-
eral theory of semicovering spaces to obtain analogous subgroup theorems for topological
groups: Every open subgroup of a free Graev topological group is a free Graev topological
group. An open subgroup of a free Markov topological group is a free Markov topological
group if and only if it is disconnected.

1. Introduction. A well-known application of covering space theory is
the Nielsen–Schreier theorem [21], which states that every subgroup of a
free group is free [6, 13]. The corresponding situation for topological groups
is more complicated since it is not true that every closed subgroup of a free
topological group is free topological [7, 9, 11, 15]. The purpose of this paper
is to use the theory of semicovering spaces developed in [3] to prove the
following theorem.

Theorem 1.1. Every open subgroup of a free Graev topological group is
a free Graev topological group.

Free topological groups are important objects in the general theory of
topological groups and have an extensive literature dating back to their in-
troduction by A. A. Markov [17] in the 1940s. Markov first defined the free
topological group FM (X) on a space X and Graev [11] later introduced
the free topological group FG(X, ∗) on a space X with basepoint ∗ ∈ X.
For any space X, the existence of the groups FG(X, ∗) and FM (X) follows
abstractly from categorical considerations [20]. Moreover, FM (X) is isomor-
phic to the free Markov topological group on the completely regular image
of the canonical injection σ : X → FM (X) (and similarly for Graev topo-
logical groups). Thus one may assume without loss of generality that X is
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completely regular. Since the methods of the current paper are categorical in
nature, neither the spaces nor the groups in question are required to satisfy
any separation axioms. For more on the theory of free topological groups,
we refer the reader to [1, 22, 23].

Topological versions of the Nielsen–Schreier theorem have appeared for
both abelian and non-abelian free topological groups. Morris and Pestov
prove in [18] that every open subgroup of a free abelian topological group is a
free abelian topological group. In the non-abelian case, Brown and Hardy [8]
(see also [19]) consider free topological groups on Hausdorff kω-spaces, i.e.
spaces which are the inductive limit of a sequence of compact subspaces.
In particular, it is shown that a subgroup of a free Graev topological group
which admits a continuous Schreier transversal is free Graev topological. As
a special case, it follows that every open subgroup of a free Graev topological
group on a Hausdorff kω-space is free Graev topological. In the current
paper, we extend this open subgroup theorem to all free topological groups.

Covering-theoretic proofs of the algebraic Nielsen–Schreier theorem typ-
ically require the use of covering spaces and fundamental group(oid)s of
graphs. Our proof of Theorem 1.1 generalizes this approach by replacing cov-
ering theory with the theory of semicoverings [3], graphs with Top-graphs
(i.e. topological graphs with discrete vertex spaces), and the fundamen-
tal groupoid (fundamental group) with the fundamental Top-groupoid [3]
(topological fundamental group [4]). Our application of the classification of
semicoverings uses the fact that the theory applies naturally to certain non-
locally path connected spaces, called locally wep-connected spaces, which
are not included in the traditional classification of covering spaces.

This paper is structured as follows. In Section 2, we recall the basic
theory of free topological groups and include a general comparison of the
two notions of free topological groups (those in the sense of Graev and those
in the sense of Markov). Using Theorem 1.1, we obtain a structure theorem
for open subgroups of free Markov topological groups (Theorem 2.5): An
open subgroup of a free Markov topological group is a free Markov topological
group if and only if it is disconnected.

In Section 3, we extend the usual notion of an algebraic graph by allowing
edge spaces to have non-discrete topologies; the resulting objects are called
Top-graphs. We then present some universal constructions of topologically
enriched categories and groupoids to be used in the computations of the
next section. In Section 4, we show that the fundamental Top-groupoid
(respectively, topological fundamental group) of a Top-graph is a free Top-
groupoid (respectively, free Graev topological group). Finally, in Section 5,
semicovering theory is applied to Top-graphs. In analogy to the fact that a
covering of a graph is a graph, we find that a semicovering of a Top-graph
is a Top-graph. The paper concludes with a proof of Theorem 1.1.
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2. Free topological groups

Definition 2.1. Let X be a topological space. The free Markov topolog-
ical group on X is the unique (up to isomorphism) topological group FM (X)
equipped with a map σ : X → FM (X), universal in the sense that every
map f : X → G to a topological group G induces a unique, continuous
homomorphism f̂ : FM (X)→ G such that f̂σ = f .

The existence of free Markov topological groups is guaranteed by the
General Adjoint Theorem [20]. In particular, if Top is the category of topo-
logical spaces and TopGrp is the category of topological groups, then FM :
Top → TopGrp is left adjoint to the forgetful functor TopGrp → Top.
Algebraically, FM (X) is the free group on the underlying set of X and
σ : X → FM (X) is the canonical injection of generators.

Definition 2.2. Let X be a space with a basepoint ∗ ∈ X. The free
Graev topological group on (X, ∗) is the unique (up to isomorphism) topolog-
ical group FG(X, ∗) equipped with a map σ∗ : X → FG(X, ∗) such that σ∗(∗)
is the identity element of FG(X, ∗) and universal in the sense that every map
f : X → G to a topological group G which takes ∗ to the identity element
of G induces a unique, continuous homomorphism f̃ : FG(X, ∗) → G such

that f̃σ∗ = f .

Similarly to the unbased case, if Top∗ is the category of based topological
spaces, then FG : Top∗ → TopGrp is left adjoint to the forgetful functor
TopGrp→ Top∗. Here, the basepoint of a topological group is the identity
element. Algebraically, FG(X, ∗) is the free group on the set X\{∗}, however,
it is not necessarily isomorphic to FM (X \ {∗}) as a topological group. On
the other hand, FM (X) is isomorphic to the free Graev topological group
FG(X+, ∗) where X+ = X t {∗} has an isolated basepoint, and FG(X, ∗)
is isomorphic to the quotient topological group FM (X)/N where N is the
conjugate closure of {∗}.

Graev shows in [11, Theorem 2] that the isomorphism class of FG(X, ∗)
as a topological group does not depend on the choice of basepoint, i.e. given
any other point ∗′ ∈ X there is an isomorphism FG(X, ∗) → FG(X, ∗′) of
topological groups. The following lemma, also due to Graev [11], identifies
when FG(X, ∗) is isomorphic to the free Markov topological group FM (Y )
on some space Y . For the sake of completion, we prove the lemma without
any assumptions on the spaces or groups in question.

Lemma 2.3. If X is the disjoint union X = A1 tA2 of non-empty open
sets Ai ⊂ X and ei ∈ Ai, then FG(X, e1) is isomorphic to the free Markov
topological group FM (A1 ∨A2) on the wedge sum A1 ∨A2 = X/{e1, e2}.

Proof. Let q : X → A1 ∨A2 be the quotient map making the identifica-
tion q(e1) = z = q(e2). Define a map f : X → FM (X) by
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f(a) =

{
ae−12 if a ∈ A1,

a if a ∈ A2,

where ae−12 is the product in FM (X). Let FM (q) : FM (X)→ FM (A1∨A2) be
the continuous homomorphism induced by q. Since FM (q)(e1) = FM (q)(e2),
the composition ψ = FM (q)f : X → FM (A1 ∨ A2) takes e1 to the identity

of FM (A1 ∨ A2) and induces a continuous homomorphism ψ̃ : FG(X, e1)→
FM (A1 ∨A2). Note that ψ̃(e2) = z.

Now consider the map g : X → FG(X, e1) given by

g(a) =

{
ae2 if a ∈ A1,

a if a ∈ A2,

where ae2 is the product in FG(X, e1). Since e1 is the identity in FG(X, e1),
we have g(e1) = e1e2 = e2 = g(e2). Therefore, we obtain a continuous map
φ : A1 ∨ A2 → FG(X, e1) on the quotient such that φ(z) = e2 and which

induces a continuous homomorphism φ̂ : FM (A1 ∨A2)→ FG(X, e1).

A direct check shows that φ̂ψ̃ is the identity homomorphism of FG(X, e1)

and ψ̃φ̂ is the identity of FM (A1 ∨A2). In particular, if a ∈ A1 \ {e1}, then

φ̂ψ̃(a) = φ̂(ae−12 ) = φ̂(a)φ̂(e2)
−1 = (ae2)e

−1
2 = a and ψ̃φ̂(a) = ψ̃(ae2) =

ψ̃(a)ψ̃(e2) = ae−12 e2 = a. The other cases are straightforward and left to the
reader.

Theorem 2.4. For any space X, the following are equivalent:

(1) X is connected,
(2) FG(X, ∗) is connected,
(3) FG(X, ∗) is not isomorphic to a free Markov topological group.

Proof. (1)⇒(2) Suppose X is connected and let C be the connected
component of the identity in FG(X, ∗). Since σ∗ : X → FG(X, ∗) is con-
tinuous, the generating set σ∗(X) is a connected subspace of FG(X, ∗) con-
taining ∗, and is therefore contained in C. The connected component of the
identity element in a general topological group is a subgroup [1, 1.4.26].
Therefore C = FG(X, ∗).

(2)⇒(3) Every free Markov topological group is disconnected since the
canonical map X → ∗ collapsing X to a point induces a continuous ho-
momorphism FM (X) → FM (∗) = Z onto the discrete group of integers.
Therefore, if FG(X, ∗) is connected, FG(X, ∗) cannot be isomorphic to a free
Markov topological group.

(3)⇒(1) This follows directly from Lemma 2.3.

Combining Theorems 1.1 and 2.4 and the fact that every free Markov
topological group is a free Graev topological group, we obtain a structure
theorem for open subgroups of free Markov topological groups. This re-
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sult generalizes that in [8] for free Markov topological groups on Hausdorff
kω-spaces.

Theorem 2.5. An open subgroup of a free Markov topological group is
a free Markov topological group if and only if it is disconnected.

3. Topologically enriched graphs and categories. The rest of this
paper is devoted to a proof of Theorem 1.1.

3.1. Top-graphs. A Top-graph Γ consists of a discrete space of ver-
tices Γ0, an edge space Γ , and continuous structure maps ∂0, ∂1 : Γ → Γ0.
For convenience, we often let Γ denote the Top-graph itself. The set of
composable edges in Γ is the pullback Γ ×Γ0 Γ = {(e, e′) | ∂1(e) = ∂0(e

′)}.
For each pair of vertices x, y ∈ Γ0, let Γx = ∂−10 (x), Γ y = ∂−11 (y),

and Γ (x, y) = Γx ∩ Γ y. Since we require the vertex space of a Top-graph
to be discrete, the edge space decomposes as the topological sum Γ =∐

(x,y)∈Γ0×Γ0
Γ (x, y) over ordered pairs of vertices.

Since it is possible that both Γ (x, y) and Γ (y, x) are non-empty, we
are motivated to make the following construction. Let Γ (x, y)−1 denote a
homeomorphic copy of Γ (x, y) for each pair (x, y) ∈ Γ0 × Γ0. Here e ∈
Γ (x, y) corresponds to e−1 ∈ Γ (x, y)−1. Define a new Top-graph Γ± to
have vertex space Γ0 and Γ±(x, y) = Γ (x, y)tΓ (y, x)−1. In particular, note
that Γ±(x, x) = Γ (x, x) t Γ (x, x)−1.

A morphism f : Γ → Γ ′ of Top-graphs consists of a pair of continuous
functions (f0, f) : (Γ0, Γ ) → (Γ ′0, Γ

′) such that ∂′if = f0∂i, i = 1, 2. Such
a morphism is said to be quotient if f0 and f are quotient maps of spaces
(note f0 only needs to be surjective to be quotient). There is also an obvious
notion of sub-Top-graph S ⊆ Γ . We say such a sub-Top-graph is wide if
S0 = Γ0. The category of Top-graphs is denoted TopGraph.

Definition 3.1. The geometric realization of a Top-graph Γ is the
topological space

|Γ | = Γ0 t (Γ × [0, 1])/∼ where ∂i(α) ∼ (α, i) for i = 0, 1.

A Top-graph Γ is connected if |Γ | is path connected, or equivalently, if for
each x, y ∈ Γ0, there is a sequence of vertices x = a1, a2, . . . , an = y such
that Γ±(aj , aj+1) 6= ∅ for j = 1, . . . , n− 1.

In many instances, we use the term “Top-graph” to refer to the geometric
realization |Γ |, and say a space X is a “Top-graph” if X ∼= |Γ | for some
Top-graph Γ . We typically assume that Top-graphs are connected.

Remark 3.2. For any 0 < r < 1, the image of Γx× [0, r] in the quotient
|Γ | is homeomorphic to the cone CΓx on Γx. Similarly, if Z = Γ (x, y) t
Γ (y, x), then the image of Z × [0, 1] in |Γ | is the unreduced suspension SZ.
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Finally, note that

|Γ | \ Γ0 =
∐
(x,y)

(Γ (x, y)× (0, 1)).

Fig. 1. The realization of a Top-graph Γ with four vertices. Here Γ (z, x), Γ (w, z), and
Γ (z, w) are all empty.

Remark 3.3. It is unfortunate that |Γ | need not be first countable at
its vertices, however, it is possible to change the topology on |Γ | without
changing its homotopy type and so that each vertex has a countable neigh-
borhood base. The vertex neighborhood of x ∈ Γ0 of radius r ∈ (0, 1) is the
image of

(Γx × [0, r)) ∪ (Γ x × (1− r, 1])

in |Γ | and is denoted B(x, r). An edge neighborhood of a point (e, t) ∈
Γ (x, y)× (0, 1) is the homeomorphic image of a set U × (a, b) where U is an
open neighborhood of e in Γ (x, y) and 0 < a < t < b < 1. The basis con-
sisting of vertex and edge neighborhoods is closed under finite intersection
and generates a topology which can be strictly coarser than the quotient
topology (but only at vertices). Note that each vertex neighborhood B(x, r)
is contractible onto x and the set {B(x, 1/n) | n ≥ 1} is a countable neigh-
borhood base at x.

From now on, we assume |Γ | has the coarser topology generated by
vertex and edge neighborhoods.

Example 3.4. If Γ is a Top-graph with a single vertex, then |Γ | is the
generalized wedge of circles Σ(Γ+) (where Σ denotes reduced suspension)
studied in detail in [2]. When Γ0 = {x0, x1} and the structure maps are the
two constant maps ∂i : Γ → Γ0, ∂i(α) = xi (equivalently, Γ = Γ (x0, x1)),
then |Γ | is the unreduced suspension SΓ of the edge space. Thus, unlike a
discrete graph, a Top-graph may be simply connected but not contractible,
e.g. if Γ0 = {x0, x1} and Γ = S1, then |Γ | = SΓ = S2 is the 2-sphere.
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Remark 3.5. Later on we will make use of the following construction
on Top-graphs: The path component space of a topological space X is the
quotient space π0(X) where each path component is identified to a point. If
Γ is a Top-graph, then π0(Γ ) is the Top-graph with vertex space Γ0 and
π0(Γ )(x, y) = π0(Γ (x, y)). The canonical quotient morphism q : Γ → π0(Γ )
of Top-graphs is the identity on vertices and takes an edge e to its path
component [e].

Remark 3.6. Another useful construction is a section to the path com-
ponent functor π0 : TopGraph → TopGraph. Given any space X, there
is a (paracompact Hausdorff) space h(X) and a natural homeomorphism
π0(h(X)) ∼= X ([12]). Thus for any Top-graph Γ , we define h(Γ ) to have
object space Γ0 and h(Γ )(x, y) = h(Γ (x, y)), so that π0(h(Γ )) ∼= Γ .

3.2. Top-categories and qTop-categories. Our use of enriched cat-
egories aligns with that in [16] but is restricted to small categories. If a
Top-graph C comes equipped with continuous composition map C×C0 C → C
making C a category in the usual way, then C is a Top-category (or a cat-
egory enriched over Top). Since Ob(C) = C0 is discrete, C ×C0 C decom-
poses as a topological sum of products C(x, y) × C(y, z). Thus to specify a
Top-category one only need specify the hom-spaces C(x, y) and continuous
composition maps C(x, y) × C(y, z) → C(x, z). If the composition maps are
only continuous in each variable, then C is an sTop-category (the “s” is for
“semitopological” as in [1]). A Top-functor F : C → D of Top-categories
is a functor such that each function Fx,y : C(x, y) → D(F (x), F (y)) is
continuous. The category of Top-categories and Top-functors is denoted
TopCat.

An involution on a small category C is a function C → C defined by
functions C(x, y)→ C(y, x), f 7→ f∗, such that (f∗)∗ = f , (fg)∗ = g∗f∗, and
(idx)∗ = idx. A Top-category (respectively, an sTop-category) equipped
with a continuous involution is an Top-category with continuous involu-
tion (respectively, a qTop-category). If G is a Top-category (respectively,
sTop-category) whose underlying category is a groupoid and the involution
determined by the inversion functions G(x, y)→ G(y, x) is continuous, then
G is a Top-groupoid (respectively, qTop-groupoid).

A functor F : C → D of categories with involution preserves involution if
F (f∗) = F (f)∗. In particular, a qTop-functor F : C → D of qTop-categories
is an involution preserving functor which is continuous on hom-spaces.

The notion of qTop-groupoid is particularly relevant and is studied in [3,
Section 4]. The following lemma is a useful fact asserting that the category
TopGrpd of Top-groupoids is a full reflective subcategory of the category
qTopGrpd of qTop-groupoids.
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Lemma 3.7 ([3, Lemma 4.5]). The forgetful functor TopGrpd →
qTopGrpd has a left adjoint τ : qTopGrpd → TopGrpd which is the
identity on the underlying groupoids and functors.

Remark 3.8. The free Top-category generated by a Top-graph Γ is the
Top-category C (Γ ) with object space Γ0 and in which morphisms are finite
sequences e1 . . . en of composable edges ei ∈ Γ . In particular, the hom-space
C (Γ )(x, y) is topologized as the topological sum

∐
Γ (x, a1) × Γ (a1, a2) ×

· · ·×Γ (an, y) where the sum ranges over all finite sequences a1, . . . , an in Γ0.
Composition is given by concatenation of sequences and, in order to ob-
tain a true category, we add an isolated identity morphism {idx} to each
space C (Γ )(x, x). Note this construction yields a functor C : TopGraph→
TopCat left adjoint to the forgetful functor TopCat→ TopGraph.

The construction of C (Γ ) is easily modified to include a continuous
involution. Recall the Top-graph Γ± described in the previous section.
The free Top-category with (continuous) involution on Γ is the category
C±(Γ ) = C (Γ±) where non-identity morphisms are sequences eδ11 . . . eδnn ,
δi ∈ {±1}, of composable edges, and which comes equipped with the con-
tinuous involution eδ11 . . . eδnn 7→ e−δnn . . . e−δ11 .

Remark 3.9. The construction of the path component Top-graph π0(Γ )
also applies to Top-categories. Recall that for spaces X,Y , there is a canon-
ical, continuous bijection ψ : π0(X ×Y )→ π0(X)×π0(Y ) which is not nec-
essarily a homeomorphism [2]. Consequently, if Γ is a Top-category (with
continuous involution), then π0(Γ ) naturally inherits the structure of an
sTop-category (qTop-category) but is not always a Top-category (with
continuous involution). While it is possible to avoid this difficulty by re-
stricting to a Cartesian closed category of spaces, we remain in the usual
topological category in order to prove Theorem 1.1 in full generality.

The observation on products in the previous remark immediately extends
to the following lemma.

Lemma 3.10. Given a Top-graph Γ , there is a canonical morphism
ψ : π0(C (Γ )) → C (π0(Γ )) of sTop-categories given by ψ([e1 . . . en]) =
[e1] . . . [en], which is a natural isomorphism of the underlying categories.

As an important case of Lemma 3.10, note that for the Top-graph Γ± we
obtain the natural qTop-functor (and isomorphism of underlying categories)

ψ : π0(C
±(Γ )) = π0(C (Γ±))→ C (π0(Γ

±)) = C (π0(Γ )±) = C±(π0(Γ ))

given by ψ([eδ11 . . . eδnn ]) = [e1]
δ1 . . . [en]δn .

Remark 3.11. Given a Top-graph Γ , the free Top-groupoid gener-
ated by Γ is denoted F (Γ ) and is characterized by the following uni-
versal property: If G is a Top-groupoid, then any Top-graph morphism
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f : Γ → G extends uniquely to a Top-functor f̂ : F (Γ ) → G. In other
words, F : TopGraph→ TopGrpd is left adjoint to the forgetful functor
TopGrpd→ TopGraph.

The underlying groupoid of F (Γ ) is simply the free groupoid gener-
ated by the underlying algebraic graph of Γ , i.e. Ob(F (Γ )) = Γ0 and a
morphism is a reduced word eδ11 . . . eδnn ∈ C±(Γ ) of composable edges. (See
[6, 14] for more on free groupoids.) The topological structure of F (Γ ) is
characterized as follows: Let FR(Γ ) be the free groupoid on the underlying
algebraic graph of Γ which is the quotient of C±(Γ ) with respect to the
word reduction functor R : C±(Γ )→ FR(Γ ). It is straightforward to check
that FR(Γ ) is a qTop-groupoid. The free Top-groupoid is the τ -reflection
(recall Lemma 3.7)

F (Γ ) = τ(FR(Γ )).

One can verify the universal property as follows: If G is a Top-groupoid
and f : Γ → G is a morphism of Top-graphs, it suffices to check that the
unique functor F : F (Γ )→ G extending f to the algebraic free groupoid is
a Top-functor. The induced Top-functor g : C±(Γ )→ G (since G is a Top-
category) factors as g = F ◦R, where R is the word reduction function. Since
R : C±(Γ ) → FR(Γ ) is quotient, F : FR(Γ ) → G is a qTop-functor. It
follows that the adjoint F : τ(FR(Γ ))→ G is a morphism of Top-groupoids.

In the case that Γ has a single vertex [2], C±(Γ ) is the free topological
monoid with continuous involution on Γ and F (Γ ) is the free topological
group FM (Γ ) = FG(Γ+, ∗) .

3.3. Vertex groups and free topological groups. We now show
each vertex group of a free Top-groupoid is a free Graev topological group.

Definition 3.12. If Γ is a Top-graph, we say a sequence eδ11 . . . eδnn in
Γ±(a0, a1) × Γ±(a1, a2) × · · · × Γ±(an−1, an) ⊂ C±(Γ )(a0, an) is a simple
path if the vertices a0, a1, . . . , an are all distinct. A Top-graph T is a tree if
for any pair of distinct vertices x, y ∈ Γ0 there is a unique simple path from
x to y.

If Γ is a Top-graph, a tree T ⊆ Γ is maximal in Γ if T0 = Γ0. A tree
groupoid is a groupoid G such that each set G(x, y) has exactly one element.

The above definition of “tree” is the classical definition, but we note
that a tree T is equivalently a discrete Top-graph such that |T | is simply
connected. Moreover, note that if T is a tree, then F (T ) is a discrete tree
groupoid.

The standard argument that every connected graph contains a maximal
tree is the same for Top-graphs.

Lemma 3.13. Every connected Top-graph contains a maximal tree.
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Fix a Top-graph Γ , a maximal tree T ⊆ Γ , and a vertex v ∈ Γ0. Let
F (Γ )(v) = F (Γ )(v, v) be the vertex topological group at v. Recall that
if Γ has a single vertex v, then F (Γ ) = F (Γ )(v) ∼= FM (Γ ) ∼= FG(Γ+, ∗).
Therefore, we restrict to the case when Γ has more than one vertex. In this
case, T has non-empty edge space.

For vertex x ∈ Γ0, let γv,x be the unique element of F (T )(v, x). Define
a retraction rT : F (Γ )→ F (Γ )(v) of groupoids so that if α ∈ F (Γ )(x, y),
then rT (α) = γv,xαγy,v. By definition, if i : F (Γ )(v) → F (Γ ) is the in-
clusion of the vertex group, then rT i is the identity of F (Γ )(v). Moreover,
since composition in F (Γ ) is continuous, rT is a Top-functor.

Lemma 3.14. rT : F (Γ )→ F (Γ )(v) is a retraction of Top-groupoids.

Let σ : Γ → F (Γ ) be the canonical Top-graph morphism. It is known
that the underlying group of F (Γ )(v) is freely generated by the set
rTσ(Γ \ T ) (see, for instance, [6, 8.2.3]).

Note that if γ ∈ Γ , then rTσ(γ) is the identity element of the group
F (Γ )(v) if and only if γ ∈ T . Let Γ/T be the quotient of the edge space
Γ where the subspace T is collapsed to a point. Let q : Γ → Γ/T be
the resulting quotient map, and choose the basepoint ∗ ∈ Γ/T to be the
image of T under q. The function rTσ : Γ → F (Γ )(v) induces a continuous
injection s : Γ/T → F (Γ )(v) such that sq = rTσ and where s(∗) is the
identity element of F (Γ ). Since rTσ(Γ \ T ) freely generates F (Γ )(v), the
continuous group homomorphism s̃ : FG(Γ/T, ∗) → F (Γ )(v) induced by s
is an isomorphism of groups.

Theorem 3.15. If Γ has more than one vertex and T ⊆ Γ is a max-
imal tree, then the vertex group F (Γ )(v) is isomorphic to the free Graev
topological group FG(Γ/T, ∗).

Proof. It suffices to show that the inverse of s̃ : FG(Γ/T, ∗) → F (Γ ) is
continuous. Let σ∗ : Γ/T → FG(Γ/T, ∗) be the inclusion of generators. The
composition g = σ∗q : Γ → FG(Γ/T, ∗) may be viewed as a morphism of
Top-graphs taking all vertices of Γ to the unique vertex of FG(Γ/T, ∗). Since
FG(Γ/T, ∗) is a Top-groupoid, there is a unique Top-functor ĝ : F (Γ ) →
FG(Γ/T, ∗) such that ĝσ = g. If i : F (Γ )(v)→ F (Γ ) is the inclusion of the
vertex group, the composition ĝi : F (Γ )(v) → FG(Γ/T, ∗) is continuous.
We check that ĝi is the inverse of s̃.

Recall that sq = rTσ. Therefore

s̃ĝσ = s̃g = s̃σ∗q = sq = rTσ.

Uniqueness of extensions then gives s̃ĝ = rT .
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Γ
σ

xx

q

&&
g

��
F (Γ )

ĝ //

rT

&&

FG(Γ/T, ∗)

s̃
��

Γ/T
σ∗oo

s
yy

F (Γ )(v)
i

ff

It is now clear that s̃ĝi = rT i = id. Finally, since s̃ĝis̃ = rT is̃ = s̃ and s̃ is
injective, we have ĝis̃ = id.

4. The fundamental Top-groupoid of a Top-graph

4.1. Path spaces and the fundamental Top-groupoid. For a given
space X, let PX be the space of paths [0, 1] → X with the compact-open
topology generated by subbasis sets 〈C,W 〉 = {α | α(C) ⊆ W} where
C ⊆ [0, 1] is compact andW ⊆ X is open. For a closed subintervalK ⊆ [0, 1],
let LK : [0, 1] → K be the unique, increasing, linear homeomorphism. If
α : [0, 1] → X is a path, let αK = α|K ◦ LK be the restricted path of α
to K. If K = {t} ⊆ [0, 1], take αK to be the constant path cα(t) at α(t).
The concatenation α = α1 · . . . ·αn of paths αj satisfying αj+1(0) = αj(1) is
given by letting α[(j−1)/n,j/n] = αj . Let α(t) = α(1 − t) denote the reverse
path of a given path α ∈ PX.

Consider a basic open neighborhood U =
⋂n
j=1〈Cj , Uj〉 of a path α,

and any closed interval K ⊆ [0, 1]. Then UK =
⋂
K∩Cj 6=∅〈L

−1
K (K ∩ Cj), Uj〉

is an open neighborhood of αK . If K = {t} is a singleton, let UK =
〈[0, 1],

⋂
t∈Cj

Uj〉. On the other hand, if βK =α, then UK =
⋂n
j=1〈LK(Cj), Uj〉

is an open neighborhood of β. If K = {t} so that α = cα(t), let UK =⋂n
j=1〈{t}, Uj〉.

Lemma 4.1. Let U =
⋂n
j=1〈Cj , Uj〉 be an open neighborhood in PX such

that
⋃n
j=1Cj = [0, 1]. Then

(1) For any closed interval K ⊆ [0, 1], we have (UK)K = U ⊆ (UK)K .
(2) If 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1, then U =

⋂n
j=1(U[tj−1,tj ])

[tj−1,tj ].

In the case that X is a Top-graph, i.e. X = |Γ | for some Top-graph Γ ,
recall that vertex neighborhoods B(x, r) and edge neighborhoods U × (a, b)
(as in Remark 3.3) form a basis BΓ for the topology of |Γ | which is closed
under finite intersection. Thus sets of the form

⋂n
j=1〈[(j − 1)/n, j/n], Uj〉,

where Uj ∈ BΓ , give a basis for the topology of P|Γ | which is convenient
for our purposes. A basic open set of this form is said to be standard.

We now recall the topologically enriched version of the usual fundamen-
tal groupoid used in [3]. For a topological space X, let PX denote the
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Top-graph whose vertex space is X with the discrete topology and such
that PX(x, y) is the subspace of PX consisting of all paths from x to y.
Though concatenation of paths gives a continuous operation PX(x, y) ×
PX(y, z) → PX(x, z), PX is not a Top-category because concatena-
tion is not strictly associative. Note also that the compact-open topol-
ogy of the path space PX is coarser than the topology of the edge space
PX =

∐
(x,y)∈X×X PX(x, y).

Definition 4.2 ([3]). The fundamental qTop-groupoid of a space X is
the qTop-groupoid πqtopX = π0(PX) with discrete object space X and
where πqtopX(x, y) is the quotient space π0(PX(x, y)) of path components
of paths from x to y. The canonical quotient morphism is denoted π : PX →
πqtopX. The fundamental Top-groupoid of X is the τ -reflection πτX =
τ(πqtopX).

Note that two paths α, β ∈PX(x, y) lie in the same path component if
and only if they are homotopic relative to their endpoints. Thus the underly-
ing groupoid of both πqtopX and πτX is the usual fundamental groupoid πX.

In the case that X = |Γ | is a Top-graph, we only wish to consider paths
between vertices. Therefore we provide a separate definition of the funda-
mental Top-groupoid of a Top-graph. If Γ is a Top-graph, let PΓ ⊂P|Γ |
be the Top-graph with object space Γ0 and where PΓ (x, y) = P|Γ |(x, y)
is the space of paths from vertex x to vertex y.

Definition 4.3. The fundamental qTop-groupoid of a Top-graph Γ is
the qTop-groupoid πqtop(Γ, Γ0) = π0(PΓ ) with object space Γ0 and where
πqtop(Γ, Γ0)(x, y) is the quotient space π0(PΓ (x, y)) of homotopy classes
of paths from x to y. The canonical quotient morphism is also denoted
by π : PΓ → πqtop(Γ, Γ0). The fundamental Top-groupoid of Γ is the
τ -reflection πτ (Γ, Γ0) = τ(πqtop(Γ, Γ0)).

The underlying groupoid of both πqtop(Γ, Γ0) and πτ (Γ, Γ0) is the famil-
iar fundamental groupoid π(|Γ |, Γ0) with set of basepoints Γ0 ([6]).

4.2. πτ (Γ, Γ0) is a free Top-groupoid. Throughout this section, let
Γ be a Top-graph.

Definition 4.4. A path α : [0, 1] → |Γ | is an edge path if α−1(Γ0) =
{0, 1}. An edge path α is trivial if it is a null-homotopic loop. Equivalently,
an edge path is non-trivial if its endpoints are distinct or if it traverses a
generalized wedge of circles Σ(Γ (x, x)+) ⊂ |Γ | at some vertex x ∈ Γ0. Let
E Γ denote the wide sub-Top-graph of PΓ consisting of non-trivial edge
paths.

Note that for each edge e ∈ Γ (x, y), there is a canonical non-trivial edge
path αe : [0, 1] → |Γ | where αe(t) is the image of (e, t) ∈ Γ (x, y) × [0, 1]
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in |Γ |. The following lemma is a straightforward application of the existence
of Lebesgue numbers.

Lemma 4.5. If V is an open neighborhood of an edge path α ∈ E Γ (x, y),
then there is a standard neighborhood A =

⋂n
j=1〈[(j − 1)/n, j/n], Uj〉, n > 2,

of α in P|Γ | such that A ∩ E Γ (x, y) ⊆ V, U1 and Un are vertex neighbor-
hoods, and U2, . . . , Un−1 are edge neighborhoods.

For the following lemma, observe that on the free Top-category C (E Γ ),
there is a continuous involution C (E Γ ) → C (E Γ ) given by α1 . . . αn 7→
αn . . . α1. Consequently, π0(C (E Γ )) naturally inherits the structure of a
qTop-category.

Lemma 4.6. For any Top-graph Γ , there is a canonical embedding
Γ± → E Γ of Top-graphs which induces a natural isomorphism π0(C±(Γ ))
→ π0(C (E Γ )) of qTop-categories.

Proof. The embedding j : Γ± → E Γ is the identity on objects and
defined on edges as j(e) = αe for e ∈ Γ (x, y) and j(e−1) = αe for e−1 ∈
Γ (y, x)−1. We claim the qTop-functor J : π0(C±(Γ )) = π0(C (Γ±)) →
π0(C (E Γ )) induced by j is the desired isomorphism of qTop-categories.

To construct an inverse, first note that if α ∈ E Γ (x, y) is any edge path,
then α(1/2) is the image of a unique point (d, s) ∈ (Γ (x, y) t Γ (y, x))×(0, 1)
in |Γ |. If d ∈ Γ (x, y), then α is homotopic to αd, and if d ∈ Γ (y, x), then α
is homotopic to αd. Define a Top-graph morphism k : E Γ → Γ±, which is
the identity on objects, as follows:

k(α) =

{
d if d ∈ Γ (x, y),

d−1 if d ∈ Γ (y, x).

In the case x = y and α(1/2) = (d, s) ∈ Γ (x, x)× (0, 1), we set k(α) = d if α
is homotopic to αd, and k(α) = d−1 if α is homotopic to αd. We now show
that the qTop-functor K : π0(C (E Γ )) → π0(C±(Γ )) induced by k is the
inverse of J .

Consider the Top-graph morphisms j′ : π0(Γ
±) → π0(E Γ ) and k′ :

π0(E Γ )→ π0(Γ
±) induced by j and k respectively. It is straightforward to

check that these are inverse isomorphisms of Top-graphs. Consequently, j′

induces an isomorphism

j′′ : C±(π0(Γ )) = C (π0(Γ )±) = C (π0(Γ
±))→ C (π0(E Γ ))

of Top-categories. Moreover, it is clear that j′′ preserves involution. Note
that the inverse k′′ : C (π0(E Γ )) → C±(π0(Γ )) is induced by k′. Recall
the natural morphism ψ of sTop-categories from Lemma 3.10, which is an
isomorphism of underlying categories. The naturality of ψ guarantees the
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commutativity of the following squares:

π0(C (E Γ ))

ψ

��

K // π0(C±(Γ ))

ψ

��

J // π0(C (E Γ ))

ψ

��

K // π0(C±(Γ ))

ψ

��
C (π0(E Γ ))

k′′ // C±(π0(Γ ))
j′′ // C (π0(E Γ ))

k′′ // C±(π0(Γ ))

Each functor in the diagram preserves involution and thus each arrow is
a qTop-functor. On the level of underlying categories with involution, j′′

and k′′ are inverse isomorphisms. It follows that J and K are inverse
isomorphisms of the underlying categories with involution. Moreover, since
J and K are qTop-functors, we conclude that J is an isomorphism of
qTop-categories.

Since concatenation (α, β) 7→ α · β of paths is continuous, the inclusion
E Γ →PΓ gives rise to a Top-graph morphism C (E Γ )→PΓ , α1 . . . αn 7→
α1 · . . . · αn, on the free Top-category. Application of the path component
space functor gives a qTop-functor φ : π0(C (E Γ ))→π0(PΓ )=πqtop(Γ, Γ0),
φ([α1 . . . αn]) = [α1 · . . . · αn], to the fundamental qTop-groupoid.

Lemma 4.7. The qTop-functor φ : π0(C (E Γ )) → πqtop(Γ, Γ0) is quo-
tient.

Proof. Consider any path α ∈ PΓ (x, y) in |Γ | connecting vertices x
and y. There exists a unique n ≥ 0 and a1, b1, . . . , an, bn satisfying 0 ≤ a1 <
b1 ≤ · · · ≤ an < bn ≤ 1, and such that the restriction αi = α[ai,bi] is a
non-trivial edge path. If n = 0, then no restriction of α is a non-trivial edge
path and α must be a null-homotopic loop based at x = y.

Define a morphism D : PΓ → C (E Γ ) of underlying algebraic graphs
(which is the identity on vertices) using the above decomposition of α: If
n = 0, let D(α) be the identity idx of the vertex at which α is based. If
n > 0, let D(α) be the word α1 . . . αn in C (E Γ ) whose letters are the re-
stricted non-trivial edge paths. The “decomposition” morphism D is a direct
generalization of the decomposition function in [2, p. 793]; it is important
to note that D is only a morphism of underlying algebraic graphs since it is
not continuous on edge spaces.

With D defined, we have the following factorization of π:

C (E Γ )

q

��

PΓ
Doo

π

��
π0(C (E Γ ))

φ // πqtop(|Γ |, Γ0)

where q is the canonical quotient qTop-function. Since α and α1 · . . . · αn
are homotopic paths (when n > 0), the diagram commutes.
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Given x, y ∈ Γ0, suppose U ⊆ πqtop1 (Γ, Γ0)(x, y) is such that φ−1(U)
is open in π0(C (E Γ ))(x, y). Since π is quotient, it suffices to show that
π−1(U) = D−1(q−1(φ−1(U))) is open in PΓ (x, y). Suppose α ∈ π−1(U) is
a fixed path with decomposition (n and a1, b1, . . . , an, bn) described above.
Note that q−1(φ−1(U)) is an open neighborhood of D(α) in C (E Γ )(x, y).

If n = 0, then D(α) = idx for some x and the image of α lies in the
contractible vertex neighborhood B(x, 1). The neighborhood

{β ∈PΓ (x, x) | Im(β) ⊆ B(x, 1)}
of α contains only null-homotopic loops and is therefore contained in π−1(U).
Thus we may assume that n > 0.

If n > 0, then D(α) = α1 . . . αn ∈ q−1(φ−1(U)) where αi ∈ E Γ (xi, xi+1).
We construct a neighborhood of α contained in π−1(U). For convenience,
rename the sets [0, a1], [b1, a2], . . . , [bn−1, an], [bn, 1] (some of which may be
singletons) as K1,K2, . . . ,Kn,Kn+1. Note that each restricted path αKi is
a trivial loop based at a vertex xi with image in some vertex neighborhood
B(xi, ri). In particular, x = x1 and xn+1 = y.

Recall that Bi = 〈[0, 1], B(xi, ri)〉 is a neighborhood of αKi , and thus

BKi
i is a neighborhood of α, for each i = 1, . . . , n + 1. Since C (E Γ ) is a

Top-category, there are open neighborhoods Vi of αi in E Γ (xi, xi+1) such
that the product V1 . . . Vn is contained in q−1(φ−1(U)). By Lemma 4.5, there
is a standard neighborhood Ai =

⋂mi
j=1〈[(j − 1)/mi, j/mi], U

i
j〉, mi > 2, of

αi in P|Γ | such that

(1) Ui = Ai ∩ E Γ (xi, xi+1) ⊆ Vi,
(2) U i1 and U imi

are vertex neighborhoods, and
(3) U i2, . . . , U

i
mi−1 are edge neighborhoods.

We may also choose the Ai so that U1
1 ⊂B(x1, r1), U

i
mi
∪U i+1

1 ⊆B(xi+1, ri+1)
for i = 1, . . . , n− 1, and Unmn

⊂ B(xn+1, rn+1).

Now

W =

n⋂
i=1

A[ai,bi]
i ∩

n+1⋂
i=1

BKi
i ∩PΓ (x, y)

is an open neighborhood of α in PΓ (x, y).

Suppose that β ∈ W. We clearly have β(Ki) ⊂ B(xi, ri) for each i =
1, . . . , n + 1, however if xi = xi+2, it is possible that β[ai,bi+1] does not hit
the vertex xi+1. To deal with this possibility, we replace “small” portions
of β without changing the homotopy class. For each i = 2, . . . , n, let si =
L[ai−1,bi−1](1 − 1/mi−1) and ti = L[ai,bi](1/mi) so that Ki = [bi−1, ai] ⊂
[si, ti]. Now define a path γ to equal the path β with the following exceptions:
replace the portion of β from si to bi−1 with the canonical arc from β(si) to
xi, take γ to be the constant path at xi on [bi−1, ai], and replace the portion
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of β from ai to ti with the canonical arc from xi to β(ti). Since γ is given
by changing β only in the contractible neighborhoods B(xi, ri), γ and β are
homotopic paths, i.e. π(β) = π(γ). Moreover, γi = γ[ai,bi] is an edge path
for each i contained in Ui. Thus

D(γ) = γ1 . . . γn ∈ U1 . . .Un ⊆ V1 . . . Vn ⊆ q−1(φ−1(U)).

Finally, we see that

π(β) = π(γ) = φ(q(D(γ))) ∈ U,
giving the inclusion W ⊆ π−1(U).

Theorem 4.8. The fundamental Top-groupoid πτ (Γ, Γ0) is naturally
isomorphic to the free Top-groupoid F (π0(Γ )).

Proof. The embedding Γ →PΓ given by e 7→ αe induces a Top-graph
morphism π0(Γ )→ π0(PΓ ) = πqtop(Γ, Γ0). Additionally, the identity func-
tor πqtop(Γ, Γ0)→ πτ (Γ, Γ0) is a morphism of qTop-groupoids. The compo-
sition σ : π0(Γ )→ πτ (Γ, Γ0) of these two is a morphism of Top-graphs which
induces a Top-functor σ̂ : F (π0(Γ ))→ πτ (Γ, Γ0) on the free Top-groupoid.
A straightforward generalization of [4, 3.14] to Top-graphs with more than
one vertex shows that σ̂ is an isomorphism of the underlying groupoids.
Therefore, it suffices to check that the inverse σ̂−1 : πτ (Γ, Γ0)→ F (π0(Γ ))
is a Top-functor.

Consider the following commutative diagram. The upper horizontal func-
tors are the qTop-isomorphism from Lemma 4.6 and the canonical qTop-
functor ψ : π0(C±(Γ ))→ C±(π0(Γ )) from Lemma 3.10. The vertical functor
R is the quotient qTop-functor given by word reduction (see Remark 3.11)
and φ is the quotient qTop-functor of Lemma 4.7.

π0(C (E Γ ))

φ
��

∼= // π0(C±(Γ ))
ψ // C±(π0(Γ ))

R

��
πqtop1 (Γ, Γ0)

σ̂−1
// FR(π0(Γ ))

Since the top composition is a qTop-functor and φ is quotient, σ̂−1 :
πqtop(Γ, Γ0) → FR(π0(Γ )) is continuous on hom-spaces (by the universal
property of quotient spaces), and is therefore a qTop-functor. Applying the
τ -reflection implies that

σ̂−1 : πτ (Γ, Γ0) = τ(πqtop(Γ, Γ0))→ τ(FR(π0(Γ ))) = F (π0(Γ ))

is a Top-functor.

The topological group πτ (Γ, Γ0)(v) at a vertex v ∈ Γ0 is, by definition,
the topological fundamental group πτ1 (|Γ |, v), as defined in [3, 4]. In light of
Theorem 3.15, we have the following corollary.
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Corollary 4.9. The topological fundamental group πτ1 (|Γ |, v) of a
Top-graph Γ is a free Graev topological group. In particular, if Γ has more
than one vertex and T ⊂ π0(Γ ) is a maximal tree, then πτ1 (|Γ |, v) ∼=
FG(π0(Γ )/T, ∗). If Γ has a single vertex, then πτ1 (|Γ |, v) ∼= FG(π0(Γ )+, ∗) ∼=
FM (π0(Γ )).

Corollary 4.10. Every free Top-groupoid is the fundamental Top-
groupoid of some Top-graph.

Proof. According to Remark 3.6, a given Top-graph Γ is isomorphic to
π0(h(Γ )) for some Top-graph h(Γ ). By Theorem 4.8,

πτ (h(Γ ), h(Γ )0) ∼= F (π0(h(Γ ))) ∼= F (Γ ).

5. Semicoverings and a proof of Theorem 1.1. We recall the theory
of semicovering spaces introduced in [3], and apply it to Top-graphs. Given
a space X and a point x ∈ X, let (PX)x and (ΦX)x be respectively spaces
of paths and homotopies (rel endpoints) of paths starting at x with the
compact-open topology. Recall that PX(x, x′) is the subspace of (PX)x
consisting of paths ending at x′. In particular, PX(x, x) = Ω(X,x) is the
space of based loops.

Definition 5.1. A semicovering map is a local homeomorphism p :
Y → X such that for each y ∈ Y , the induced map Pp : (PY )y → (PX)p(y)
is a homeomorphism. The space Y is called a semicovering (space) of X. If
α is a path starting at p(y), then α̃y denotes the unique lift of α starting
at y ∈ Y .

Remark 5.2. The above definition of a “semicovering map” p : Y → X
is slightly simpler than, but equivalent to, the original definition given
in [3]. The exponential law for mapping spaces and the condition that
Pp : (PY )y → (PX)p(y) is a homeomorphism imply the induced map
Φp : (ΦY )y → (ΦX)p(y) of homotopies of paths is a homeomorphism. In

particular, if p is a semicovering, then every map f : (D2, (1, 0))→ (X, p(y))
from the unit disk D2 has a unique lift f̃y : (D2, (1, 0)) → (Y, y) such that

p ◦ f̃y = f . This observation first appeared in [5, Remark 2.5].

Every covering (in the classical sense) is a semicovering, however, if X
does not have a simply connected covering (e.g. the Hawaiian earring), a
semicovering of X need not be a covering [3, 10]. Of particular importance
to the current paper is the fact that a semicovering p : Y → X induces an
open covering morphism πτp : πτY → πτX of fundamental Top-groupoids.
That is, for each y1, y2 ∈ Y , p(yi) = xi, the induced map p∗ : πτY (y1, y2)→
πτX(x1, x2) is an open embedding of spaces (or topological groups when
y1 = y2). Just as in classical covering theory, if β is a path from x1 to x2,

then β̃y1(1) = y2 if and only if [β] lies in the image of the embedding p∗.
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Thus, since the image of p∗ is open and π : PX(x1, x2) → πτX(x1, x2) is
continuous, {β | β̃y1(1) = y2} is an open subspace of PX(x1, x2).

Since a Top-graph |Γ | can fail to be locally path connected, the usual
classification of covering spaces does not apply. We use the fact that semi-
covering theory applies to certain non-locally path connected spaces [3, Def-
inition 6.4].

Definition 5.3. Let X be a space.

(1) A path α : [0, 1]→ X is well-targeted if for every open neighborhood
U of α in (PX)α(0) there is an open neighborhood V1 of α(1) such
that for each b ∈ V1, there is a path β ∈ U with β(1) = b.

(2) A path α : [0, 1]→ X is locally well-targeted if for every open neigh-
borhood U of α in (PX)α(0) there is an open neighborhood V1 of
α(1) such that for each b ∈ V1, there is a well-targeted path β ∈ U
with β(1) = b.

A space X is locally wep-connected if for every pair of points x, y ∈ X, there
is a locally well-targeted path from x to y.

We refer the reader to [5, Remark 2.20] for an explanation of the use of
the letters “wep” in the definition of “locally wep-connected space”.

Clearly, every locally path connected space is locally wep-connected.
There are also many locally wep-connected spaces which are not locally
path connected. For example, if Γ is a Top-graph with a single vertex,
the generalized wedge of circles |Γ | = Σ(Γ+) is locally wep-connected [3,
Proposition 6.7], but is only locally path connected if the edge space Γ is
locally path connected. The following lemma generalizes this special case to
arbitrary Top-graphs.

Lemma 5.4. The space |Γ | is locally wep-connected for any Top-graph Γ .

Proof. Since |Γ | is locally path connected at each vertex, it suffices to
find a locally well-targeted path from a vertex to each point z ∈ |Γ | \ Γ0.
Suppose z is the image of (e, t) in Γ (x, y)× (0, 1). Any path α : [0, 1]→ |Γ |
such that α(0) = x, α(1) = z, and having image on the edge {e} × [0, 1) ⊂
|Γ | is locally well-targeted. The argument that α is locally well-targeted is
identical to that in [3, Proposition 6.7].

Since Top-graphs are locally wep-connected, we call upon the classifica-
tion of semicoverings to obtain the following lemma, which will be used in
the proof of Theorem 1.1.

Lemma 5.5 ([3, Corollary 7.20]). If Γ is a Top-graph, x ∈ Γ0 is a vertex,
and H is an open subgroup of the topological fundamental group πτ1 (|Γ |, x),
then there is a semicovering p : Y → |Γ |, p(y) = x, such that the induced
homomorphism p∗ : πτ1 (Y, y)→ πτ1 (|Γ |, x) is a topological embedding onto H.
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5.1. A semicovering of a Top-graph is a Top-graph. The following
theorem generalizes the fact that a covering (in the classical sense) of a graph
is a graph, and provides the last ingredient for our proof of Theorem 1.1.

Theorem 5.6. If Γ is a Top-graph and p : Y → |Γ | is a semicovering

map, then there is a Top-graph Γ̃ such that Y ∼= |Γ̃ |.

Proof. It suffices to assume that the Top-graph and semicovering in
question are connected. Since Γ0 is a discrete subspace of |Γ | and p is a
local homeomorphism, p−1(Γ0) is a discrete subspace of Y . Define the vertex

space Γ̃0 = p−1(Γ0). For y1, y2 ∈ Γ̃0 such that xi = p(yi), define

Γ̃ (y1, y2) = {e ∈ Γ (x1, x2) | (̃αe)y1(1) = y2}

with the subspace topology of Γ (x1, x2).

Define a map h : |Γ̃ | → Y as follows: The restriction of h to Γ̃0 is

the identity. The map hy1,y2 : Γ̃ (y1, y2) × [0, 1] → Y given by hy1,y2(e, t) =

(̃αe)y1(t) is continuous since Γ (x1, x2)→PΓ (x1, x2), e 7→ αe, is continuous,
Pp : (PY )y1 → (PX)x1 is a homeomorphism, and evaluation (PY )y1 ×
[0, 1]→ Y , (β, t) 7→ β(t), is continuous. The maps hy1,y2 induce the function

h on the image of Γ̃ (y1, y2)× [0, 1] in |Γ̃ |. It follows from Lemma 5.7 below
that h is bijective, and from Lemma 5.10 that h is continuous and open.

To prove the following lemmas, we first make some observations about
the edge spaces Γ̃ (y1, y2). Let A = {αe ∈ PΓ (x1, x2) | e ∈ Γ (x1, x2)}, and

recall that B = {β ∈ PΓ (x1, x2) | β̃y1(1) = y2} is open in PΓ (x1, x2). It

is now clear that A ∩ B is open in A and is the image of Γ̃ (y1, y2) under

the homeomorphism Γ (x1, x2)→ A, e 7→ αe. Therefore, Γ̃ (y1, y2) is an open
subspace of Γ (x1, x2). It follows that whenever p(y1) = x1,

• Γ̃y1 = Γx1 and Γ̃ y1 = Γ x1 , and

• Γ (x1, x2) decomposes as the topological sum
∐
p(y2)=x2

Γ̃ (y1, y2).

Lemma 5.7. h : |Γ̃ | → Y is a bijection.

Proof. First, we show that h is surjective. It suffices to consider a point

y ∈ Y \ Γ̃0. Note p(y) is the image of a pair (e, t) ∈ Γ (x1, x2)× (0, 1) in |Γ |.
Fix x0 ∈ Γ0 and y0 ∈ p−1(x0), and let β be a path from y0 to y in Y . There
is a point 0 ≤ s < 1 such that p◦β(s) ∈ {x1, x2}. Without loss of generality,
we may assume p◦β(s) = x1. Let η = (p◦β)[0,s], and define y1 = η̃y0(1) and

y2 = (̃αe)y1(1). Note p(yi) = xi for i = 1, 2. Now the lift of (αe)[0,t] starting

at y1 ends at h(e, t) = (̃αe)y1(t) = y.
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For injectivity, suppose z, z′ ∈ |Γ̃ |. If one of z or z′ is a vertex and

h(z) = h(z′), then z, z′ ∈ Γ̃0 and it follows that z = z′. Therefore it suffices

to check that h is injective on |Γ̃ | \ Γ̃0. Suppose z is the image of (e, t) ∈
Γ̃ (y1, y2) × (0, 1) and z′ is the image of (f, u) ∈ Γ̃ (y3, y4) × (0, 1) under h.

If h(z) = (̃αe)y1(t) = (̃αf )y3(u) = h(z′), then αe(t) = αf (u) in |Γ |, however,

this only occurs if e = f and t = u, and thus z = z′.

The main difficulty in showing that h is a homeomorphism is identifying
a basis of open neighborhoods in Y .

Lemma 5.8. Let x0 ∈ Γ0, y0 ∈ p−1(x0), and r > 0. The subset

V (y0, r) = {(̃αe)y0(t) ∈ Y | 0 ≤ t < r, e ∈ Γx0}

∪ {(̃αf )y0(t) ∈ Y | 1− r < t ≤ 1, f ∈ Γ x0}

is open in Y . Moreover, p maps V (y0, r) homeomorphically onto the vertex
neighborhood B(x0, r) of |Γ |.

Proof. By the uniqueness of path lifting, it is clear that p maps V (y0, r)
bijectively onto B(x0, r). Since p is an open map, it will follow that p maps
V (y0, r) homeomorphically onto B(x0, r) once we show that V (y0, r) is open.

By Lemma 5.4, |Γ | is locally wep-connected and therefore Y is locally
wep-connected [3, Corollary 6.12]. Consequently, the evaluation map ev1 :
(PY )y0 → Y , ev1(β) = β(1), is quotient [3, Proposition 6.2]. Additionally,
Pp : (PY )y0 → (P|Γ |)x0 has a continuous inverse L : (P|Γ |)x0 → (PY )y0 .

Thus the composition ev1 L : (P|Γ |)x0 → Y , β 7→ β̃y0(1), is quotient.

Since ev1 L is quotient, it suffices to show that L−1(ev−11 (V (y0, r))) is

open in (P|Γ |)x0 . If β ∈ L−1(ev−11 (V (y0, r))), then β̃y0(1) ∈ V (y0, r), and
thus β(1) ∈ B(x0, r). Let γ be the canonical arc from x0 to β(1) in B(x0, r),

and observe that Im(γ̃y0) ⊂ V (y0, r). Thus (̃β · γ)y0 is a loop based at y0. It
follows that [β · γ] lies in the open subgroup p∗(π

τ (Y, y0)) of πτ (|Γ |, x0).
Since π : Ω(|Γ |, x0) → πτ (|Γ |, x0) is continuous, there is a basic open
neighborhood U =

⋂n
j=1〈[(j − 1)/n, j/n], Uj〉 of β · γ in P|Γ | such that

U ∩ Ω(|Γ |, x0) ⊆ π−1(p∗(π
τ (Y, y0))). Since B(x0, r) is contractible, we may

assume that

(1) n is even,
(2) U1 = B(x0, r), and
(3) Uk = B(x0, r) for k ≥ n/2.

Now V = U[0,1/2] ∩ (P|Γ |)x0 is an open neighborhood of β in (P|Γ |)x0 which

we claim is a subset of L−1(ev−11 (V (y0, r))). Suppose that β′ ∈ V. Then
β′(1) ∈ Un/2 = B(x0, r) and, if γ′ is the canonical arc from x0 to β′(1), then
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β · γ′ ∈ U ∩ Ω(|Γ |, x0) ⊆ π−1(p∗(π
τ (Y, y0))). Thus (̃β · γ′)y0(1) = y0. Since

γ̃′y0 has image in V (y0, r), we have

ev1 L(β′) = (̃β′)y0(1) = (̃γ′)y0(1) ∈ V (y0, r).

It follows that L−1(ev−11 (V (y0, r))) is open in (P|Γ |)x0 .

Since p is a local homeomorphism onto |Γ |, it follows that the sets
V (y0, r), r > 0, form a neighborhood base at the point y0 in Y .

For the following lemma, recall that if p(yi) = xi, then Γ̃ (y1, y2) is an

open subset of Γ (x1, x2). Thus if U is an open subset of Γ̃ (y1, y2) and 0 <
a < b < 1, then U × (a, b) is an edge neighborhood in |Γ |.

Lemma 5.9. Let y1, y2 ∈ Γ̃0, p(yi) = xi, U ⊂ Γ̃ (y1, y2) be an open set,
and 0 < a < b < 1. Then the subset

E = {(̃αe)y1(t) ∈ Y | (e, t) ∈ U × (a, b)}

is open in Y . Moreover, p maps E homeomorphically onto the edge neigh-
borhood U × (a, b) of |Γ |.

Proof. It is clear that p maps E bijectively onto U × (a, b) ⊂ |Γ |. Since p
is an open map, it suffices to show that E is open. Similarly to the previous
lemma, we use the fact that ev1 L : (P|Γ |)x1 → Y , β 7→ β̃y1(1), is quotient
by showing that L−1(ev−11 (E)) is open in (PX)x1 .

If β ∈ L−1(ev−11 (E)), then β̃y1(1) = (̃αe)y1(t) ∈ E for some (e, t) in

U × (a, b). Let γ = (αe)[0,t]. Since (̃β · γ)y1 is a loop based at y1, we have

β · γ ∈ π−1(p∗(π1(|Γ |, x1))) ⊂ Ω(|Γ |, x1).

Take a basic open neighborhood U =
⋂n
j=1〈[(j − 1)/n, j/n],Wj〉 of β · γ in

P|Γ | such that U ∩Ω(|Γ |, x1) ⊆ π−1(p∗(πτ (|Γ |, x1))). In particular, we may
assume that

(1) n is even,
(2) W1 = Wn = B(x1, r) is a vertex neighborhood,
(3) when n/2 ≤ k < n, then Wk is an edge neighborhood of the form

A× (rk, sk) for a fixed open set A ⊆ U , and
(4) (rn/2, sn/2) = (rn/2+1, sn/2+1) ⊆ (a, b).

Now V = U[0,1/2] ∩ (P|Γ |)x1 is an open neighborhood of β in (P|Γ |)x1 . Note
that β(1) ∈ A× (rn/2, sn/2).

We check that V ⊆ L−1(ev−11 (E)). If β′ ∈ V, then β′(1) ∈ A×(rn/2, sn/2)
⊆ U×(a, b) ⊂ |Γ |. If β′(1) is the image of (f, u) ∈ A×(rn/2, sn/2) ⊆ U×(a, b)
in |Γ |, then αf (u) = β′(1). Let γ′ be any reparameterization of (αf )[0,u] so
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that β′ · γ′ ∈ U ⊆ π−1(p∗(π1(|Γ |, x1))). Since [β′ · γ′] ∈ p∗(π1(|Γ |, x1)), we
have

ev1 L(β) = (̃β′)y1(1) = (̃γ′)y1(1) = (̃αf )y1(u) ∈ E.

Thus V ⊆ L−1(ev−11 (E)).

Lemma 5.10. h : |Γ̃ | → Y is continuous and open.

Proof. Since h is induced by continuous maps hy1,y2 : Γ̃ (y1, y2) × [0, 1]

→ Y , h is clearly continuous when |Γ̃ | has the quotient topology. Since we
are using the coarser topology of vertex and edge neighborhoods, it suffices
to show that h is continuous at each vertex of |Γ̃ |.

Fix a vertex y0 ∈ Γ̃0, let p(y0) = x0, and let B̃(y0, r) denote the vertex

neighborhood at y0 in |Γ̃ |. Recall that B̃(y0, r) is the image of (Γ̃y0× [0, r))t
(Γ̃ y0 × (1 − r, 1]) in |Γ̃ |. Since Γ̃y0 = Γx0 and Γ̃ y0 = Γ x0 , h maps B̃(y0, r)
bijectively onto the basic open set V (y0, r) defined in Lemma 5.8. Since the
sets V (y0, r) form a neighborhood base at y0 in Y and h is bijective, h is

continuous at y0 ∈ Γ̃0.
To see that h is an open map, first recall that we have already shown that

the image h(B̃(y0, r)) = V (y0, r) of a vertex neighborhood B̃(y0, r) is open

in Y . Fix an open set U ⊂ Γ̃ (y1, y2) and 0 < a < b < 1 so that U × (a, b) is

an edge neighborhood in |Γ̃ |. By definition, h maps this edge neighborhood
bijectively onto the open set E defined in Lemma 5.9. Thus h is an open
map.

5.2. A proof of Theorem 1.1. We conclude with a proof of Theo-
rem 1.1.

Suppose X is a space with basepoint ∗ ∈ X, and H is an open sub-
group of the free topological group FG(X, ∗). Let h(X) be a space such that
π0(h(X)) = X (see Remark 3.6) and Γ be the Top-graph with Γ0 = {a, b}
(i.e. two vertices), Γ (a, b) = h(X), and Γ (b, a) = ∅. Note that the edge space
of π0(Γ ) is precisely X. By Theorem 4.8, πτ (Γ, Γ0) is isomorphic to the free
Top-groupoid F (π0(Γ )). A tree T ⊆ π0(Γ ) is given by taking T0 = {a, b}
with the edge space T = {∗}. Note π0(Γ )/T ∼= X as based spaces. Theo-
rem 3.15 gives the middle isomorphism in

πτ1 (|Γ |, a) = πτ (Γ, Γ0)(a) ∼= FG(π0(Γ )/T, ∗) ∼= FG(X, ∗).

By Lemma 5.5, there is a semicovering p : Y → |Γ |, p(y) = a, such that the
induced homomorphism πτ1 (Y, y) → πτ1 (|Γ |, a) ∼= FG(X, ∗) is a topological
embedding onto H. According to Theorem 5.6, the semicovering space Y
is a Top-graph, i.e. Y ∼= |Γ̃ | for some Top-graph |Γ̃ |. Now Corollary 4.9
applies to Y to show that πτ1 (Y, y) ∼= H is a free Graev topological group.
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