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Amenability and unique ergodicity
of automorphism groups of Fraissé structures

by

Andy Zucker (Pittsburgh, PA)

Abstract. In this paper we consider those Fraissé classes which admit companion
classes in the sense of [KPT]. We find a necessary and sufficient condition for the au-
tomorphism group of the Fraissé limit to be amenable and apply it to prove the non-
amenability of the automorphism groups of the directed graph S(3) and the boron tree
structure T. Also, we provide a negative answer to the Unique Ergodicity-Generic Point
problem of Angel-Kechris-Lyons [AKL]. By considering GL(V ), where V is the count-
ably infinite-dimensional vector space over a finite field Fy, we show that the unique in-
variant measure on the universal minimal flow of GL(V ) is not supported on the generic
orbit.

1. Introduction. Let G be a Hausdorff topological group. G is said to
be amenable if every jointly continuous action on a compact Hausdorff space
X (often called a G-flow) supports an invariant Borel probability measure.
It is normally quite difficult to determine whether a given topological group
G is amenable or not. However, there are some observations we can make
to simplify our discussion. If X is a G-flow, a subflow Y C X is a compact
subspace which is invariant under G-action. Using Zorn’s lemma, we see
that each G-flow contains a minimal subflow. Therefore to show that G
is amenable, it is enough to show that every minimal G-flow supports an
invariant Borel probability measure. We can simplify things even further; if
X and Y are G-flows, we say that 7 : X — Y is a G-map if 7 is continuous
and 7(g-x) = g - n(x) for each z € X. It is a fact that each topological
group G admits, up to isomorphism, a universal minimal flow M(G), a flow
which is minimal and such that for any other minimal G-flow X, there is a
G-map 7 : M(G) — X (see [A] for further reading). Hence by push forward,
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G is amenable if and only if the flow M(G) supports an invariant Borel
probability measure.

Kechris, Pestov, and Todorcevic [KPT] provided a way of explicitly de-
scribing M (G) in many instances where G is the automorphism group of a
Fraissé structure. We will discuss this in much more detail in Section 2. In
particular, having a concrete representation of M (G) allows one to address
questions of amenability. Kechris and Sokié¢ [KS| take advantage of this to
show that the automorphism groups of the random poset and the random
distributive lattice are not amenable.

Indeed, amenability is not the only property of topological groups G for
which it is sufficient to verify a property only for the flow M (G). The group
G is said to be uniquely ergodic if each minimal G-flow supports a unique
invariant Borel probability measure, and G is said to have the generic point
property if for each minimal flow X, there is x € X with G-z comeager in X.
It is worth noting that any comeager orbit must be unique since the inter-
section of two comeager sets is comeager, hence non-empty. As promised,
G is uniquely ergodic iff M (G) supports a unique invariant Borel probabil-
ity measure, and G has the generic point property iff there is z € M(G)
with G - x comeager. These two definitions provide us with two notions of
a canonical choice of “large” subset of M(G), namely the support of the
unique measure and the comeager orbit. In all examples of groups previ-
ously shown to be uniquely ergodic and to have the generic point property,
the measure was in fact supported on the generic orbit. Angel, Kechris, and
Lyons [AKL] asked whether this phenomenon holds generally.

This paper is divided into two main parts. The first half generalizes the
methods in [KS] and finds a necessary and sufficient condition for those
groups whose universal minimal flows can be described using the methods
of [KPT] to be amenable. Armed with this condition, we consider the ul-
trahomogeneous directed graph S(3) and the boron tree structure T, which
are defined in Sections 4 and 5, respectively. We show that:

THEOREM 1.1. The groups Aut(S(3)) and Aut(T) are not amenable.

The second half answers in the negative the question of Angel, Kechris,
and Lyons by exhibiting the following counterexample; fix a finite field F,
and let V, be the countably infinite vector space over Fy. In Section 6, we
prove:

THEOREM 1.2. The unique invariant measure on M(Aut(Vy)) is not
supported on the generic orbit.

Of course, after asserting where the unique measure in this example is
not supported, it is natural to ask where it is supported. This is the focus
of Sections 7 and 8.
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2. Background. This section describes the necessary model-theoretic
background as well as a brief summary of the material from [KPT].

A language L = {R;}icr U {f;j}jes U {ck}trer is a set of relation, func-
tion, and constant symbols. Each relation and function symbol has an arity
n(i),m(j) € NT for i € I, j € J. In this paper, all languages are assumed
to be countable. An L-structure A = (A, {RA}ies, {fjA}jGJ, {cA}pex) con-
sists of a set A # () called the universe of A, RA C A, fJA AU 5 A,
and C? € A. An embedding/isomorphism w : A — B of L-structures is an
injective/bijective map which preserves structure:

R;A(ala s an(i)) g RiB(Tr(al)v cee )ﬂ—(a’n(i)))v

W(fJA(ah ce )am(j))) = ij(Tr(al)v s 77T(am(j)))’
m(ep) = -

We write A < B if there is an embedding from A into B, and we write
A = B if there is an isomorphism between the two. We say A is a substruc-
ture of B, written A C B, if A C B and A is closed under the functions fJB.
If Lo C L and A is an L-structure, we write A|r, for the structure obtained
by taking A and ignoring the interpretations of relation, function, and con-
stant symbols in L \ Ly. Similarly, if K is a class of L-structures, we write
K|, for the class {A|r, : A € K}.

Let K be a class of finite L-structures closed under isomorphism with
countably many isomorphism types and such that there are structures in C
of arbitrarily large finite cardinality. We call IC a Fraissé class if the following
items hold:

e Hereditary Property (HP): If B € K and A < B, then A € K.

e Joint Embedding Property (JEP): If A,B € K, then there is C € K
such that A, B < C.

e Amalgamation Property (AP): If A)B,C € K, and f : A — B and
g : A — C are embeddings, then there is D € K and embeddings
r:B—Dands:C— Dsuchthat rof=s0g.

A Fraissé structure is a countably infinite, locally finite (finitely generated
substructures are finite) L-structure K which is ultrahomogeneous, i.e. any
isomorphism between finite substructures extends to an automorphism of K.
An equivalent definition is that a Fraissé structure satisfies the Extension
Property: for any A C B, A,B € K and any embedding f : A — K, there
is an embedding g : B — K extending f. For any infinite structure X,
let Age(X) denote the class of finite substructures which embed into X.
Fraissé’s theorem states that there is a one-to-one correspondence between
Fraissé classes and Fraissé structures: the age of each Fraissé structure is a
Fraissé class, and each Fraissé class is the age of a Fraissé structure unique
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up to isomorphism. For such a class IC, we write Flim(K) for the associated
structure, called the Fraissé limit of K. See Hodges [Ho| for a more detailed
exposition.

For finite structures A < B, let (E) denote those substructures of B
which are isomorphic to A. A class K of finite structures satisfies the Ramsey
Property (RP) if for any A < B € K and any k > 2, thereis C € K, B< C
such that for any coloring c : (g) — k, there is Bg € (g) for which ¢
is constant on (]jio). In [KPT], it is shown that for a Fraissé structure K,
Age(K) has the RP and consists of rigid structures (having no non-trivial
automorphisms) if and only if M (Aut(K)) consists of a single point; such
groups are said to be extremely amenable. It should be noted that we regard
Aut(K) as a topological group with the pointwise convergence topology;
a neighborhood basis at the identity is given by subgroups of the form
Uz := {9 € Aut(K) : g(a;) = a; for each a; € a} for finite a C K.

Let £ and K* be Fraissé classes with limits K and K* in languages L
and L* = LU{Ry,...,R,}, with each R; a relation not in L, such that
K*|r, = K. We say the pair (IC, K*) is reasonable if for any A* € K*, B € K,
and embedding f : A*|, — B, there is B* € K* with B*|, = B and
f : A* — B* also an embedding. For (K, K*) reasonable, we have K*|1,
>~ K. In this case, Aut(K) acts on the compact, metrizable space Xy of
all relations (Ry,..., R,) on K with Age((K, Ry, ..., R,)) C K*. The basic
neighborhoods of Xy« are given by open sets of the form N g, . s,) =
{(R1,...,Rp) € X+ : RilJa = Si;, 1 < i <n}for ACK, A €K, and
(A, Sy,...,8,) € K~

The pair satisfies the Fapansion Property if for each A € K, there is
B € K such that for any A*, B* € K with A*|, = A, B*|, = B, we have
A* < B*. If (K,K*) is a reasonable pair, then the Expansion Property is
equivalent to Xj» being a minimal flow. Pairs of Fraissé classes which are
reasonable satisfy the Expansion Property, and with K* satisfying the RP
are called excellent. In this case we call £* a companion of K. In [KPT], and
later in the generality presented here in work of Nguyen Van Thé [NVT], it
is shown that given an excellent pair, Xy» is the universal minimal flow of
Aut(K).

Let us show that for such K, Aut(K) has the generic point property
as witnessed by any point (Si,...,S,) € X+ with (K, Sq,...,S5,) & K*.
Notice that Aut(K) - (S1,...,5,) = {(R1,...,Rn) € Xi= : (K, R1,...,Ry)
=~ K*}; we need to show that this is G5 (since Xic~ is minimal, we know
that the orbit is dense). So fix A* C B* € £* with A*|, = A, B*|, = B,
and let f : A — K be an embedding. Let Nt o+cp~ denote those expansions
(Ry,...,Ry) € X~ for which f embeds A* into (K, Ry,...,R,) and can
be extended to an embedding g : B* — (K, Ry,...,Ry). Then Ny p«cp- is
open and represents a single instance of the Extension Property. Recall that
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structures isomorphic to K* are exactly those which satisfy all instances of
Extension Property; as there are countably many triples f, A*, B*, we see
that Aut(K) - (S1,...,5n) is Gs.

3. Amenability. Let (I,K*) be an excellent pair with limits K, K*.
Define Fin(K) to be the set of all finite substructures of K. Compare this
notion to Age(K) = K; the latter consists of all structures isomorphic to
structures in Fin(K). For each A € Fin(K), let

K*(A) = {{A,(S1,...,5,)) € K},
and define
2= J KA.
AcFin(K)
Though the elements of {2 are structures, for neatness we will often denote
elements of {2 with variable names, such as x, y, etc. Form Q{2, the vector
space over Q with basis 2.

Let A,B € Fin(K), and let 7 : A — B be an embedding. For each
A* € K*(A), define
K*(A*,B,7):={(B,(T1,...,T,,)) € K" :

m: (A, S1,...,S,) = (B,T1,...,T,) is an embedding}.

Let S C Qf2 be the set of all elements of the form

x — Z Y
yeKX* (z,B,m)

for some A,B € Fin(K), z € K*(A), and 7: A — B an embedding. Let
V be the subspace generated by S. We are now able to state the first main
theorem.

THEOREM 3.1. Aut(K) is amenable if and only if for all non-zerov € V,
V=1 cnCa, there are x,y € £2 with ¢, >0, ¢, < 0.

It should be noted that only the forward direction will be needed in
Sections 4 and 5.

Proof. (=) Suppose p is an invariant measure on Xy-. Recall that the
topology on X« is given by basic neighborhoods of the form

Ny ={(S1,...,5.)" € Xxc= : (S1,...,5.)"|a = (S1,...,5.)}
for . = (A, (S1,...,5n)). Define pg : Rf2 — R by

lm( Z sz) = Z Copt(Ng).

zEe zeN

We see that for v € V, we must have pgn(v) = 0. As Xg» is minimal,
po(r) = u(Ng) > 0 forallx € 2. 1f 0 #v € V with v = ), c.z and
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without loss of generality c, > 0 for all x € (2, then for some =z we have
¢z > 0. But then po(v) > 0, a contradiction.

(<) Suppose the conditions of Theorem 3.1 hold. As noted by Kechris
(private communication), it is sufficient to show that for B € Fin(K), there
exists a consistent probability measure ug on £*(B), i.e. a probability mea-
sure such that for A € Fin(K), = € K*(A), and any two embeddings
7,2 : A — B, we have ug(K*(z,B,m1)) = pug(K*(z,B,m2)). Indeed,
if this is the case, let A; C Ay C --- C K be finite substructures with
Us2i An = K, and for each n let p,, be a consistent probability measure
on K*(A,). We will create an invariant measure on Xy« as follows: let
A € Fin(K) and x € K*(A); note that A C A,, for large enough n. Set
pu(Ny) = limy, 0 pn (K* (2, Ay, ia)), where U is a non-principal ultrafilter
on N and ¢4 is the inclusion embedding. Extend to Xy by additivity. To
see that this is invariant, let g € Aut(K); find B € Fin(K) and 7 : A — B an
embedding such that 7 = g|a. Let n be sufficiently large so that A,B C A,,.
Now we have

Mn(IC*(x7An7iA)) = Mn(K*(x7AnviB © 7T))
= un< | ] /C*(y,An,iB)),

yeX* (z,B,m)
so that
H(Ne) = T pin (K (2, A, ia)) = im0 (K" (y, A, 7))
yeK*(z,B,m)
= ) Ny =p(g(N))

yeK*(z,B,m)
Let Sg C V consist of all elements of Rf2 of the form

> v X )

yeX*(z,B,m1) z€K*(z,B,m2)
L ) )
z€K*(z,B,m2) yek* (z,B,m1)
for some A € Fin(K), x € K*(A), and embeddings 71,7 : A — B. Con-
sider the following system of inequalities and equalities in real variables g,
xr € K*(B), where for v =} _,c,x € R2, welet ¢, = > ) Caa:
(1) qs = 0 (S S SB),
(2) 7: >0 (ze€K(B)),

(3) Z gz = 1.

z€K*(B)
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If this system has a solution, the solution is the consistent probability
measure we seek, with ug(z) = ¢,. Note that the system (1)—(3) has a so-
lution when the system (1)—(2) has a solution. Now we can use the rational
form of Stiemke’s theorem [S] (see also Border [B]), which states that for
a rational-valued matrix A, the equation Ax = 0 has a rational solution
with x > 0 (each entry € x has z > 0), or the equation y’' A > 0 has a
rational solution (each entry z € y7 A has z > 0, and at least one entry has
z > 0).

Let A be the matrix of coefficients from (1). A solution to the system (1)—
(2) is a vector x whose entries are exactly the g,. Hence, if there is no solution
to Ax > 0, let y = {ys : s € Sg} be a solution to y’ A > 0. Consider the
element v = > o yss € V. Write v = erlc*(B) cz. Stiemke’s theorem
tells us that ¢, > 0 for all x € £*(B) and that for some x we have ¢, > 0.
This contradicts the assumptions of Theorem 3.1. »

4. Application: Aut(S(3)) is not amenable. The directed graph S(3)
has vertex set {4 : ¢ € Q}; for vertices a = €', b = €%, a — b, when
there is m € Z with ¢ — q1 € (2rm, 2mm + 27/3), i.e. b is less than 27/3
radians counterclockwise from a. We will write (a, b) for those points lying
in the interval counterclockwise from a to b. Let L = Age(S(3)). The ap-
propriate companion class with the Expansion and Ramsey Properties is
K* = Age(S(3)*), where S(3)* = (S(3), Py, P1, P»), and the P; are unary
relations with P;(a) when a is between 27i/3 and 27 (i + 1) /3 radians coun-
terclockwise from the top of the circle (see [NVT]). For a € A* € K*, we
will write P(a) =i when P;(a) holds.

PO P2

P1
We will use Theorem 3.1 to show:
THEOREM 4.1. Aut(S(3)) is not amenable.

Proof. Let A € Fin(K) be a directed graph consisting of two vertices a
and b with no edge between them. Let B € Fin(K) be a directed graph with
vertices w, x, ¥, and z, and with edges w — x, * — y, and y — z.
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z

Consider £*(B); we list all 12 expansions of B below, where (i, 7, k, 1)
stands for (B, (P, P>, P3)) € K*(B) with P;(w), Pj(z), P ( ), P(2).
K*(B) = {(O, 1,1,2),(0,1,2,2),(1,1,2,2),(1,1,2,0),

(1,2,2,0), (1,2,0,0),(2,2,0,0),(2,2,0,1),

(2,0,0,1),(2,0,1,1),(0,0,1,1),(0,0,1,2) }.
To arrive at the above, first observe that we can have neither P(w) = P(x) =
P(y) nor P(x) = P(y) = P(z), as this would require w — y or x — z,
respectively. Also observe that modulo 3, we cannot have any of P(w) =
P(z)+ 1, P(z) = P(y) + 1, nor P(y) = P(z) + 1; this is because for any
a,b € S(3)*, we have a — b = P(a) # P(b) + 1. Lastly, we may not have
P(w) = P(z), as this would imply z — w or w — z. Now without loss of
generality fix w € P;. There are exactly four possible expansions meeting
the necessary conditions, and all four are easily realized. The other eight
expansions are then given by adding 1 or 2 modulo 3 to each coordinate.

Let x € K*(A) denote the expansion with Py(a), Pi(b). Let 71 : A — B

denote the embedding 7 (a) = w, m1(b) = y. Let my : A — B denote the
embedding m2(a) = w, ma(b) = z. Now we have

K*(z,B,m)=1{(0,1,1,2),(0,0,1,1),(0,0,1,2)},
K*(z,B,m2) = {(0,0,1,1)}.
Forming the spaces R{2, V' as above, we have
[(0,1,1,2) + (0,0,1,1) + (0,0,1,2)] — [(0,0,1,1)] € V,
so (0,1,1,2)4+(0,0,1,2) € V.
Hence Aut(S(3)) is not amenable. =

5. Application: boron trees. A boron tree is a graph-theoretic un-
rooted tree where each vertex has degree 1 or 3. It is possible to interpret
boron trees as a model-theoretic structure such that the class of finite boron
trees forms a Fraissé class; we will closely follow the exposition of Jasinski [J].
For a boron tree T, let (T') = (L7, R) be the structure with universe L,
the leaves of T', and R a 4-ary relation defined as follows: for leaves a, b, ¢,
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and d, we have R(a,b,c,d) if a, b, ¢, d are distinct and there are paths from
a to b and from ¢ to d which do not intersect. It is known that for finite
boron trees T' and U, we have T'= U if and only if (T') = (U).

Let B(n) be the boron tree structure defined as follows: Its universe is
B, =2" = {f :n — 2}. For any two leaves a and b, let d(a,b) = max(k :
alr = bli). Define [a,b] = {a| : k € [6(a,b),n]} U{b| : k € [6(a,b),n]}. For
distinct a, b, ¢, d, set R(a,b,c,d) if [a,b] N [c,d] = (. The associated tree has
vertices 25"\ (); vertices u : k — 2 and v : k+ 1 — 2 are adjacent if v = u,
and additionally the vertices xg,z; : 1 — 2 with x¢(0) = 0, z1(0) = 1 are
adjacent.

B(3)
011 111
010 110
001 101
000 100

On each B(n), let <; be the lexicographic linear ordering of the leaves;
a <; bif a(0) < b(0) or a(0) = b(0) and a(1) < b(1) or etc. Also, for any
function f: k — 2, k <n, let B¢(n) consist of a € B(n) with al; = f.
Let B be the class of finite boron tree structures. Then the set {B(n) :
n € N} is cofinal in B: for each A € B, there is an n for which there is an
embedding 7 : A — B(n). We will use this in defining the companion class
B* such that (B, B*) is an excellent pair. Let A € B, andlet 7 : A — B(n) be
an embedding for some n. Define the structure o(A, 7) = (A, S) as follows: S
is a 3-ary relation where for a, b, c € A, we have S(a, b, ¢) if 7(a), 7(b) <; 7(c)
and d(7m(a), (b)) > d(w(b),m(c)). We can rephrase this condition in a way
somewhat easier to grasp: for x,y € B(n), let M (z,y) € B(n) be as follows:
: z(j) it j <d(x,y),
M) = {7 T
Now we have S(a,b,c) exactly when M (7w(a),n(b)) <; m(c). Note that
S(a,b,c) holds whenever S(b,a,c) does. Let B* be the class of all such
o(A, 7). Then (B,B*) is an excellent pair (see [J]), with limits T and T*.
We will show:

THEOREM 5.1. Aut(T) is not amenable.
Proof. We begin with the following proposition.

PROPOSITION 5.2. Let o(A, ) € B*, with m : A — B(n), and |A| = 1.
Then there exists an embedding ¢ : A — B(l — 1) with o(A,7) = o(A, ¢).
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Proof. Suppose that there exists k € {0,1,...,n — 1} such that for any
a,b € A, we have 7(a)|r = 7(b)|x = 7(a)|k+1 = 7(b)|k+1, or equivalently
for no a,b € A do we have d(w(a), (b)) = k. We will show that there is an
embedding ¢ : A — B(n — 1) with o(A,¥) = o(A, ). For a € B(n), define
the map f : B(n) — B(n — 1) as follows:

. a(j) if j <k,
nmxn—{au+n o

Define ¢ : A — B(n — 1) by ¢ = f o 7. First let us show that v is an
embedding A — B(n — 1). It will be useful to note that

[ o(n(a),m(b)) if 0(m(a), w(b)) < k,
o(w(a), p(b)) = {(5(7r(a),7r(b)) ~ 1 if §(x(a), 7(b) > k.

Let a,b,c,d € A be distinct, and suppose R(a,b,c,d). As 7 is an em-
bedding, we have [r(a),m(b)] N [w(c), 7(d)] = 0. Suppose, without loss of
generality and for the sake of contradiction, that

(a)lm = ¥(c)|lm € [¥(a), ()] N [P(c), ¥(d)].

If m < k, we have

m(a)|lm = 7(c)|m € [w(a), 7 ()] N [x(c), w(d)],
a contradiction. If m > k, then m(a)|m+1 € [7(a),n(b)] and 7(c)|m+1 €
[7(c), m(d)]. Therefore we must have m(a)|m+1 7# 7(¢)|m+1. However, this is
only possible if 7(a)(k) # 7(c)(k). As w(a)|r = 7(c)|k, this is a contradiction.

Therefore we have R(v(a),(b),¢(c),¥(d)).
If =R(a,b,c,d), we may suppose
7(a)lm = 7()[m € [m(a), w(b)] N [7(c), 7 (d)].
If m < k, then

U(a)lm = ¥(c)|lm € [W(a), ()] N [P(c), ¥(d)].
If m > k, then

P(a)lm—1 = Y(c)lm-1 € [¥(a), P(0)] N [P(c), (d)].

Hence we have - R(¢(a), ¥ (b), ¥ (c), ¥(d)).

Now we will show that o(A, ) = o(A, 7). Suppose S™(a, b, ¢), or equiva-
lently M (r(a), 7(8)) <; 7(c). Note that M(i(a), (b)) = fi(M(r(a), 7(5)))-
Now if ¢(c) <; M(¢(a),(a)), we must have 7(c)|x = M(mw(a),n(b))|x; it
follows that é(m(a), w(b)) > k. Let m be least such that w(c)(m) # 7(a)(m).
Then we must have £ < m < §(w(a),7(b)). Thus m — 1 is least such that
Y(c) # (a), and m — 1 < 5(zp(a),(c)). Hence S¥(a,b,c).

Now suppose S¥(a,b,c). Let m be least such that ¢(c)(m) # (a)(m).
Then m < §(¢p(a),(b)) < d(w(a),n(b)). Now if m < k, then m is least
such that m(c)(m) # w(a)(m). If m > k, then m + 1 is least such that
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w(c)(m + 1) # w(a)(m + 1), and m + 1 < §(w(a),w(b)). Hence S™(a,b, c),
and o(A, 1) = o(A, ).

Now suppose no such k exists. We will show that |A| > n + 1. More
precisely, we will show that for any m and embedding ¢ : A — B(m), the
map 6, : A X A — m+ 1 with d,(a,b) = d(¢(a), p(b)) has [0,(A x A)| < n.
For n = 1 this is clear. Assume the result is true for n = [, and suppose
|A| =1+ 1. Fix a € A, and let b # a be such that d,(a,b) is maximal. Let
c € A with ¢ # a and ¢ # b. Then

5 B dp(a,b) if 6,(b,c) > d,(a,b),
”W@_(Mmgﬁ@@@<@@m

We see that [0,(A x A)| =[6,(A\ax A\ a)U{d,(a,b)} <I+1 =

With this result, we can now compute B*(A) for A € Fin(T); we will
exhibit an element of V' C R{2 showing that Aut(T) is not amenable.
Let A € Fin(T) be a boron tree with three leaves a,b,c. We list the
12 expansions in B*(A) below; we will denote an element of B*(A) by
a1 < -+ < ag; (z1,Y91,21), - -+, (21,41, 21)], where we have S(a;, ai, a;) for
i < j,and S(x;,y;,2;) and S(y;, x4, 2;) for 1 <i <.

B*(A)={la<b<c0,la<c<b; 0],[b<a<c,
b<c<a;0,[c<a<b;,c<b<a;l),
la <b<c¢(a,bc)],[a<c<b; (a,cb)[b<a<c(ba,c),
[b<c<a;(bca)lc<a<b; (ca,b)[c<b<a;(cba)}.

Now consider B(2) € Fin(T), where B(2) = {w = 00,z = 01,
y = 10, z = 11}; this structure has 40 expansions. These can be split into

five types, each of which has eight expansions. All expansions are of the form
o(B(2),); the type depends on the nature of 7.

(1) Type A: w: B(2) — B(2). Below, (s, t,u, v) stands for the expansion
[s <t<u<w; (s, t,u),(stv)].
A:{a17"'7a/8}:{<w7$7y7 ) (wxzy>7($7w7y7 ) (:Cw zy)7
(y,Z,U],ﬁ) (y,zmw),(z yawl‘ Zy,JUw}-
(2) Type B: 7 :B(2) — B(3) with |By(3)N7w(A4)| =1 = |B1o(3)N7(A4)].
Below, (s,t,u,v) stands for the expansion [s < t < u < v; (].
B = {bla---abS} = {(w,az,y,z),(w,a:,z,y),(a:,w,y, ) (33‘ w, z, y)a
(y,z,w,x),(y,z,x,w) (Z Yy, w, ‘T Z y Yy Ty w }

(3) Type C: 7: B(2) — B(3) with |Bo(3)N7(A)| =1 = ]Bn( YN (A)].
Below, (s,t,u,v) stands for the expansion [s < t < u < v; (t,u,v)].
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C == {017 AR 768} - {(w7 y7 Z7 x)’ (w7 27 y7 x)? (','137 y7 Z’ w))? (x’ Z? y7 w)’
(y, w2, 2), (y, ,w, 2), (2,0, 2,9), (2,2, w,y) } .
(4) Type D: «w: B(2) — B(3) with |B1(3)N7(A)| =1 = |Boo(3)N7(A4)|.
Below, (s,t,u,v) stands for the expansion [s < t < u < v;(s,t,v),
(s,u,v), (t,u,v)].
D = {d17 AR 7d8} = {(w7 y? Z? 4’1:)7 (w7 Z? y7 "'U)’ (x7 y’ Z7 w))7 (x7 Z? y’ w)7
(y7 w’ x? Z)? (y7 a’"? w? Z)7 (27 w? :B? y)? (Z7 :B? w? y)}'
(5) Type E: 7 : B(2) — B(3) with |B1(3) N 7(A4)] = 1 = |Bnui(3) N
w(A)|. Below, (s,t,u,v) stands for the expansion [s < t < u < v;
(S? t’ u)’ (87 t7 v)? (57 u7 ’U)7 (t7 u7 ’U)]'
E = {617 s 768} = {(w7m7y7 2)7 (w,x, Zvy)7 (x7w7y7 2)7 (JI,'IU, Zay)7
(y,z,w,2), (y, 2,2, w), (z,y, w, x), (2,9, x,w) }.
Now set z = [a < b < ¢; (a,b,c)] € B*(A). Let w1, m : A — B(2) with
mi(a,b,c) = (w,z,y), m2(a,b,c) = (w,y,z). We see that B*(z,B(2),m) =
{a1, a2, c7,d7,e1,e2} and B*(z,B(2), m2) = {e1, e3}. Thus in R,

a1 +as+cr+dr+e—ez V.

Now let 1,92 : B(2) — B(2) be defined by ¢1(w,z,y,2) = (w,z,y, 2)
and po(w, z,y,2) = (z,w, z,y). Then we have B*(e2, B(2), 1) = {e2}, and
B*(e2,B(2), p2) = {es}. In R2,

eo—e3 €V, so ay+ay+cr+dreV.

Therefore Aut(T) is not amenable. =

6. Proof of Theorem 1.2. For the remainder of this paper, we shift
our focus to the class K, the class of finite-dimensional vector spaces over
a fixed finite field F,, which has companion K*, the class of such vector
spaces equipped with a natural linear ordering, an ordering induced antilex-
icographically by some choice of ordered basis and a fixed ordering of Fj
with 0 < 1 the least elements. This is to say that if by > --- > b,_1 is the
ordered basis we have chosen and x;,y; € Fy, then xobg + -+ - + p_1bp—1 >
yobo + - - + Yn—1bn—1 if 2y > yy, where £ is the least index where x; # yy. In
particular, notice that there is a one—to-one correspondence between ordered
bases and natural orderings. In what follows, all vector spaces are assumed
to be over Fy,. Set Flim(K) = V, the countably infinite-dimensional vector
space over Fy, and Flim(KC*) = V. It is shown in [AKTJ that Aut(V) is
uniquely ergodic. The unique measure is just the uniform measure: for any
finite V' C V,, there are |GL(V')| admissible expansions, each of which has
measure 1/|GL(V')|. Another way to see this is to notice the following: if
U is finite-dimensional, V, W C U have the same dimension, and <y, <y
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are natural linear orderings on V', W, then there is an automorphism of U
sending (V, <y) to (W, <w).

Given any vector space V with any ordering <, say that (V, <) has the
Finite Lex Property (FLP) if for any finite-dimensional subspace U C V,
< |y is a natural ordering. In particular, a finite-dimensional, ordered vector
space has the FLP iff that ordering is natural (see Thomas [Th]), and (V,
<) has the FLP iff < € Xjc«. Given v € V, v # 0, say that v is minimal in
its line if v < cv for all ¢ € F;\ {0}. Given u,v € V, define the relation u <
v cu < dvfor all ¢,d € Fy \ {0}. Also define u ~ v & (u L v) A (v €L u).
For ¢ = 2, we need to tweak these definitions a bit. We define u ~ v to hold
when u 4+ v < min(u,v). We have u < v if u < v and u » v. Note that if
u ~ v, then cu ~ dv for all ¢,d € Fy, \ {0}. Also, if u,v € (V,<|y) C (U, <),
then u <Ky v u<Kyvand u~y v& u~y v,

When (V, <) is finite-dimensional, ~ has a simple characterization. Say
< is given by ordered basis Z = {zg > -+ > z,_1}. For v € V' \ {0}, write
v =920+ + Up_12n_1, and suppose [ is least with v; non-zero. Then for
U = ugzg + - + Un—12n—1, We have u ~ v exactly when [ is also least with
U] NON-ZETO.

LEMMA 6.1. For (V,<) with the FLP, ~ is an equivalence relation.

Proof. Suppose that u ~ v and v ~ w. Form (u,v,w) =: U, and
let {zg > --->x;} be the basis of U inducing <|y, { < 2. Then write
u = upxo + -+ + wx, u; € Fy; likewise for v, w. Observe that one of
ug, Vg, Wo is non-zero; as u ~ v and v ~ w, all three must be non-zero. It
follows that u ~ w. =

Observe that V/~, the set of non-zero equivalence classes, is also linearly
ordered by A < B< a < bforalla e A, b e B. We will denote by </~ the
order type of this linear ordering. It will be useful to introduce a standard
notation for the n non-zero equivalence classes of an n-dimensional, naturally
ordered vector space (V, <). Call these classes [V, <],—1 < --- < [V, <]o; note
that v € [V, <]; exactly when [ is least with v; non-zero.

Fix Vi C V4 a l-dimensional subspace. Given < € Xix, observe that
for any u,v € Vi \ {0} we have u ~ v. Call this equivalence class [V, <].
Define

Ni = {< € Xg+ : [Vi,<] < [u] for at most k
equivalence classes [u] € Vo /~}.
Note that N{}l C N‘l/1 when k& < [. Let Nﬁln = Uken N"}l.
PROPOSITION 6.2. For any < € N‘f}ln, (Voo, <) is not a Fraissé structure.

Proof. We will show that the extension property does not hold for
(Voo, <). To see this, let (V,<|y) C (U,<) € K*, where U is k + 2-
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dimensional, < on U is given by an ordered basis ug > --- > ug+1, and
V = (ugt+1). Now given < € Xg-, let m @ (V,<|y) = (V,<) with
m(V) = Vi. There are at most k equivalence classes greater than [V, <]
in Vo, but k£ + 1 equivalence classes greater than [V, <] = [U, <41 in U.
It follows that there is no 7’ : (U, <) = (Voo, <) extending 7. m

Somewhat conversely, if there are at least k4 1 equivalence classes above
[Vi,<] in (Vo, <), then 7 as in the proof of Proposition 6.2 does admit an
extension 7’. We can see this as follows: Choose representatives w;, 0<i <k,
from k + 1 equivalence classes [wg] > - -+ > [wg], where [wg] > [V1, <]. Let
W = (wp,...,wg, V1) C V. Then W is a k + 2-dimensional space; let
{z¢p > -+ > x41} be the basis which gives the ordering < |y . Then we see
that (xp11) = Vi, and an extension 7’ is given by letting 7’(u;) = ;.

Let W C V4 be a finite-dimensional subspace with V3 C W, and let
< € Xi=. Define (NW)"Z1 to be those < € X+ for which [Vi, <|w] > [W,
<|w]k, i-e. those orderings for which there are at most k equivalence classes
of W/~ greater than [Vi, <|w]; if Vi ¢ W, set (Nw)¥. = Xg-. Note that
(NU)"“/1 - (NW)@1 for W C U. Hence

N";I = ﬂ (NW)€/17
WeFin(Vso)
where Fin(K) denotes the set of finite substructures of K. In particular, if
Vi = Wi C W C -+ where each W, is n-dimensional and Vo = (o2 Wy,
we have N\IZ = ﬂfLozl(NWn){g,l. Whether or not < € (NW)€/1 depends only
on <|w; each (]\TW)’{“/1 is a union of basic open sets of the form
Niw,<py =< € X <|w = <w}.
Let us compute ,LL((NW)]‘f/I). We have
#(<w on W with [Vi, <w] > [W, <w]k)
u(Nw),) = .
#(<w on W)

Fix v € V4 \ {0}. For vy, ...,vm_1 € Fy not all zero, let

y ={<w : <w is given by ordered basis by >w --- >w bm—1

----- Um—1

and v = vgbg + -+ * + Vm—1bm—1}.

First let us show that |N(u0 ..... um71)| = |]\f(v()’_“,vm71
(ui)i"if)l and (vi)?;_ol. Let [ be least with v; non-zero. Select by, ..., bj_1,b;11,

.., by, 1 arbitrarily such that they are linearly independent and do not
span V. There are (¢™ — q)(¢™ — ¢*) -+~ (¢™ — ¢™ ') ways to do this. Now
set

y| for any two non-zero

—1
bi=v; (v—wvobo — -+ —v_1bj—1 —vip1bip1 — - — Um—1bim1).
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This ordered basis gives some <y € Ny . 4,._,), and certainly each <y

can be uniquely produced in this manner. Hence we have ’N(vo,...,vm_ﬂ‘ =

(@™ =) (g™ —¢*) - (g™ — g™ ). Now,
H((Nw)k )= > UNwo, o) - (vi)?;—(Jl?é() and there is | <k with v;#0}
V)= o
1 Z {‘N(voy'--avm—l)‘ : (’Ui)izol 7‘é 0}

_ qm _ qm—k—l _ 1— q_k’_l

gm—1 1—qg™ ’
Now

1— q—k—l

p(NY,) = lim

m—oo 1 — q ™

=1-1/¢""

Letting k — oo, we have M(N‘f}f) = 1. This proves Theorem 1.2. =

As there are countably many 1-dimensional subspaces of V,, we obtain
the following immediate corollary.

COROLLARY 6.3. Let N = {< € Xi» : </~ =w*}. Then u(N,+) = 1.

Proof. We will show that N« = (\,ev_\j0} Ng}r; The inclusion C is
clear. To show the other one, note that if < € X+ with </~ # w*, then
there are [u], [v;] € Voo /~, i € N, with [v;] # [v;] if © # j and [u] < [v;] for
each i. Pick u € [u]. Then < ¢ N(ﬁu‘; n

7. Matrices of ordered inclusion. In this section we develop some of
the tools we will need to prove Theorem 8.3 below. Define a chain to be a
sequence of subspaces Vi C Vo C -+ with Vj, n-dimensional and J,,~; Vin
= V. Given a chain and an ordering < € X+, we will write <,, = <|y,,.
We will write B,, = {b(()") > 00> bq(ln_)l} for the least basis of <, in V,,, i.e.
the basis which induces the antilexicographic ordering.

Let (V;);en be a chain and < € Xg=+. For m > n, we may represent the
inclusion map @ : (V,,, <) <> (Vin, <m) via the change of basis matrix M,, ;.
Writing M, . = (myj), 0 <i <m, 0 < j <n, we have

n—1
1=0

We will call M, ., as above the matriz of ordered inclusion; we will use the
shorthand M,, = M,, ,+1 when there is no confusion. We see that M, ,, =
M,,—1 -+ M,. This leads us to ask the following;:

QUESTION 7.1. For which m xn matrices M is there < € Xy such that
M =M, .,?
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First observe that if < € X+, then the following must hold:

(1) For i < j, we have bg«n) <m bgn).
(2) For any bgn) € By, we have Yu € V,, (u <, b™ = 4 <m b(n)).

3 K3

PROPOSITION 7.2. Let B,,, B, be any ordered bases of Vi, Vi, inducing
orderings <n, <m. Let M be the matrixz of inclusion with respect to these
bases. If (1) and (2) hold, then <, extends <.

Proof. Let Z = {zy > -+ > z,_1} be the least basis of (V,,, <m|v,)-
Consider the following subset of V,:

X ={weVy,:YueV, (u<mv=u<y,v)}

We see that Z C X and B,, C X. However, we also see that for x1 # x5 € X,
we have x1 = x9. Hence | X| < n, and Z = B,,. It follows that bgn) = 2z,
0<i<n. =

Call an m x n matrix M wvalid if M = M, ,, for some < € X+ and
some chain. Write M = (m;;), 0 < i < m, 0 < j < n. For each column
J of M, let m; denote the least row number with my,;; non-zero. If M is
valid, witnessed by < € Xy~ and some chain, then the following must hold:

e For k < [, we have mj, < my since bl(n) <m b,(cn).

e For each k, we have m,,,, = 1, as each b € B,, is minimal in its line.

e For [ # k, we have m,,,; = 0. For [ > k, this is clear. For | < k, it is
because we have bl(n) <m b;n) + cbén) for all ¢ € Fy \ {0}.

The necessary conditions amount to saying that M is the transpose of a
matrix in reduced row echelon form with rank n. These conditions are also
sufficient; let M satisfy the above, and let (V;);en be a chain. Fix an ordered
basis B,, of V,,, and choose an ordered basis B,, such that M is the matrix
of inclusion with respect to these bases; we may do this as M has rank n.
We will show that the two conditions of Proposition 7.2 are satisfied. The

(n) € B, suppose u € V,, with u <, bgn). Write

first is clear. Now, for b;

U= uob(()n) 4+ +un_1b£ﬁ)1, and suppose k is least with ug # 0; we are done

if we can show that k > 4. In the basis B,,, we have

=5 (o (S ™)) = 2

We see that my, is least with p,,, # 0, so we must have & > i. Suppose
k =1i. Then u;, = 1. Let

v =u—b" =b{” 4+ 2n 10| = x0bI™ + -+ X 1d

(2 n— m
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and let j be least with z; # 0. We have j > 4. Then m is least with x,,;, # 0.

But my;; = 0, from which it follows that u >, bl(»n), a contradiction.

The case m = n + 1 will be of special interest, so let us introduce some
terminology specific to this case. For M a valid matrix, the map ¢ — m; has
range which excludes a single number &, 0 < k < n. Call such a matrix type k.
Denote the type of matrix M by ¢(M). A natural question to ask is how many
valid (n 4 1) x n matrices M have t(M) = k. By the necessary conditions
above, we see that m;; is determined except for those pairs (7,j) with both
i = k and j < k; for these values of 7 and j, any choice of m;; € Fj gives
us a valid M. Hence there are ¢* valid matrices M of type k. Observe that
Vs <nlk C [Vast, <nsalp if t(My) > k, and [Vy,, <nli C [Vat1, <nsilir if
t(M,) < k. In particular, t(M,) = k iff [V11, <pt1]x N Vo = 0.

Let M,, be the set of valid (n+ 1) x n matrices, which we will equip with
the uniform probability measure p,,. Let M = [], .y My, and let p be the
product measure. Fix a chain (V;);en. There is a surjection 7 : Xg» — M
as follows: for any < € Xy, let (<) = (M;);en, where M; is the matrix of
inclusion for the chain (V;);en and the ordering <.

PROPOSITION 7.3. Let p be the unique measure on Xy~. Then p = mypu.

Proof. Let <,, be a natural order on V,,, and let M € M, First let
us show that the number of natural <,4+1 on V,,41 extending <,, such that
the matrix of ordered inclusion is M does not depend on M or <,. Write
M = (my;),0 <i<n+1,0 < j < n. Pick n linearly independent rows of M;
without loss of generality assume that rows 0 < ¢ < n are independent. We
now have the following procedure for producing <, 1 extending <,: First

n-+1

pick b%nH) from among the ¢"" — ¢" vectors in V;, 11\ V,,. Now set the other

bgnﬂ) to be the unique solution to the system of equations

Z b = b — gD (0 < < ).
=0

This procedure can produce any natural <,;; extending <, with matrix
of ordered inclusion M. Moreover, we see that there are ¢"*' — ¢" such
extensions.

Let U(S1,...,Sk) = S1x - x Sk x [[,,o1, My be a basic open set in M.
Note that whether or not an ordering < is in 7—!(U) depends only on <|y; i
Now we have
Tept((U)) = mepu(U(S1) NU(My, S2) N --- N UMy, ..., M1, Sk))

= W*H(U(Sl))*ﬂ—*u(U(Mly SQ))* : '*W*M<U(M17 s 7Mk717 Sk))
= ([Sal/IMa]) -5 ([Skl/[M]) = p(U(S1, -+ k) m



58 A. Zucker

8. A representation of ;. To conclude the paper, we give a more con-
crete representation of the measure . First, we need a few general lemmas.

LEMMA 8.1. Let (V,<) have the FLP, and fir v € V. Suppose that
u,w € V \ {0} are minimal in their lines with v ~ w. Let v, € F, be
such that v — vyu < v — du for d # ¢y, and likewise for w. Then vy, = V.

Proof. Form U = (u,v,w), and let <|yy be induced by basis {xo, ..., x;},
[ < 2. Write u = ugxg + - - + uix;, etc. Let k be the least number with
up non-zero. Then k is also the least number with wj; non-zero. We have
up = wi = 1; we see that ¢, = ¢, = V. »

It now makes sense to define v, as in Lemma 8.1 for v € V, [u] € V/~.

LeEMMA 8.2. For any u,v,w € V \ {0} and d € F, \ {0}, we have
U] + V] = (u+ U)[w] and (du)[w] = d(U[w])

Proof. Let u,v € V. Form U = (u,v,w), and let <|yy be induced by a
basis {xo, ..., 2}, | < 2. Write u = upzg + - - - + wxy, etc. Let k be the least
number with wy non-zero. Then w; = 1; we see that U] = Uk V[y] = Vks
(u+ ) = (u+v)g = ug + vg, and (du)y = dug = d(up,)). =

We may now injectively map (V, <) to a subspace of (qu / ~, <), where
< is a partial ordering with a < g iff for some [u] in V/~, we have a([u]) <
B([u]) and a([v]) < B([v]), for all [v] > [u]. We will be most interested in
the case V/~ = w*; in this case < is a linear order, as V/~ has no infinite
ascending chains. For a fixed < € N+, enumerate Vo, /~ by ap > a3 > - --.
Now for any < € N+ and v € V4, we may identify v € Fé“*. To make
this identification explicit, pick w; € «; minimal in their lines, and define
Y<: (Voo, <) — <F(;’J*, <) via o< (v) = (vi)icwr, Where v; = vp,,).

Fix any basis B = {bg,b1,...} of V. Define ¢ : N+ — (F;’*)"J* by
setting (<) = (p<(b;))iew- Note that ¢ is a Borel map. Equip (F&" )+
with the product measure o.

THEOREM 8.3. The map ¢ is injective and a.e. surjective. Moreover,

0 = Yult, giving a modulo zero isomorphism of (Xy«,p) and ((Fg’*)“’ ,0).

Proof. To see injectivity, note that for any 8 € Im(y) and < € p=1(B),
the map ¢ is completely determined, which in turn determines <.

To show that ¢ is a.e. surjective, consider 8 = (B;)icor € (F¥")¥".
Certainly 8 € Im(yp) if the following hold:

(1) The B; are linearly independent.

(2) For each k > 0, there is an ¢ with ;| =0"---"0"¢, ¢ # 0.

The second condition is easily seen to be the countable intersection of mea-
sure 1 conditions. For the first condition, observe that this is the countable
intersection of conditions coB;,+- - -+cxB;, # 0, each of which has measure 1.
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To show that o = @, pu, it suffices to prove the next lemma.
LEMMA 8.4. Forwv; € V and s; € F(f, 0 <i<n, define
N(vo, 80y -+, Un—1,5n-1) = {< € Ny : v; = s;" f; for some (; € Fg"*}

Then we have (N (vg, 80, .., Un_1,5n-1)) = ¢ for linearly independent
Voy+ -y Un—1-

Proof. Fix < € N+ and a chain (V;);cn, and let 7 be as in Proposition 5.
First we consider the case where the s; are linearly independent. The prob-
ability that v; = s;°5; for 0 < i < n is bounded below by the probability
that the following both occur for some [ with vg,...,v,—1 € V:

(1) Let <; on V; be given by a basis {zo,...,z;_1}. Write v; = alxo +

R a}!lxl_l. Then af)“ e Aa}%fl = ;.

(2) Now suppose 7(<) = (M;)ien € M. Then t(M;) > k for i > .

Call the first event A (1) and the second Ay (l); these events are independent.
For linearly independent (af),...,a} ;), 0 < i < n, the number of ordered
bases Y = {yo,...,y—1} with v; = afyo + -+ al_;y-1, 0 < i < n, does
not depend on which particular linearly independent (aj, . . ., a}'_l) are being
considered. Therefore,

#(linearly independent (af),...,al ;) with a}”---"al_, =s;)

P(A (1) = ] '
(41(D)) #(linearly independent (ag,...,a}_;))

qn(l—k)
(¢ =" —q)- (¢ —g"1)
Now for i > [, let B;(k) be the event that ¢(M;) > k. Then P(B;(k)) =
(¢ — ¢*) /(¢! — 1). The events B;(k) are mutually independent, hence

P(Ax(D) = lim [T P(Bi(k))

I<i<m

(m=0(k)(,l—k+1 _ (Al
~ i 4 (q 1)---(¢ —1)
m—oo (gL —1)..- (g™ —1)

Now we have

> (1 _ qk—l—l)k'

lim P(A;(1)) - P(Ay(1)) = ¢ ™.
l—00
It follows that (N (v, S0, - - -, Vn—1,5n—1)) > ¢~ ™.
When the s; are not linearly independent, let
L™ ={(to,...,th—1) : t; € F;" and the t; are linearly independent}.
We have the lower bound

/’L(N(v()aso"--avn—lvsn—l))z Z N(UOaSOAtON"7vn—17$n—1Atn—1)~
(to,‘..,tnfl)GL"”
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Since |L™| = (¢™ — 1)(¢™ — q) - -+ (¢™ — ¢" 1), we obtain

for any m. Letting m — oo, we see that (N (vg, 50, .., Un_1,5n-1)) > ¢ "F.

So (N (vo, 50+, Vn_1,50-1)) > ¢ " for all sg,...,8,_1 € F’;. To
get equality, note that whenever (to,...,tn—1) # (So,...,5n—1), the sets
N(vo, 80, -+, Un—-1,8n—1) and N (v, tg,...,Un—_1,tn—1) are disjoint. m

M(N(007SO7'"7Un—178n—1)) Z qi nil)

9. Questions and further work. Our investigations above lead to a
number of open questions:

QUESTION 9.1. Are there other examples where Theorem 3.1 can be used
to show non-amenability? Are there any erxamples where Theorem 3.1 can
be used to show amenability?

QUESTION 9.2. Assume the Fraissé class K admits a companion IC*.
Let K be the Fraissé limit of IC. If Aut(K) is uniquely ergodic, what are
necessary and sufficient conditions for the unique measure on any minimal
flow to be supported on the generic orbit?

Pongrécz [P] has given a partial answer to Question 8.2. Let L* =
LU {<}, for < a symbol for a linear ordering and L relational. Let (I, K*)
be an excellent pair of Fraissé classes in L and L*. Suppose K* is order for-
getful, i.e. for (A, <), (B,<’) € K*, wehave A 2B & (A, <) = (B, <’). We
see that Aut(K), if amenable, is uniquely ergodic, and the measure satisfies
p(Na,<y) = 1/ka (see the Introduction). Pongrdcz has shown that in this
case, i is supported generically. Note that this does not contradict Theo-
rem 1.2; every hypothesis of Pongracz’s theorem is satisfied except that the
language of vector spaces contains function symbols. His calculations also
shed some light on the role that functions play in our calculations for V.,
and they also suggest that we may be able to find relational examples with
L* = LU{Si, ..., Sy} with the measure 1 as above not supported generically.

QUESTION 9.3. When the unique measure is not supported generically,
where is it supported?

To make Question 9.3 more precise, consider what was shown in Sec-
tions 7 and 8. Though no single orbit has positive measure, it seems that
by taking a suitable completion of V., the unique measure concentrates on
the isomorphism type of F;’* ordered lexicographically. In what sense can
this be made precise and generalized to other structures?
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