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Measure-theoretic unfriendly colorings
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Clinton T. Conley (Ithaca, NY)

Abstract. We consider the problem of finding a measurable unfriendly partition of
the vertex set of a locally finite Borel graph on standard probability space. After isolating
a sufficient condition for the existence of such a partition, we show how it settles the
dynamical analog of the problem (up to weak equivalence) for graphs induced by free,
measure-preserving actions of groups with designated finite generating set. As a corollary,
we obtain the existence of translation-invariant random unfriendly colorings of Cayley
graphs of finitely generated groups.

1. Introduction. Given a graph G on a (possibly infinite) vertex set X,
we say that a partition X = X1 tX2 is unfriendly if every vertex in Xi has
at least as many neighbors in X3−i as it has in Xi. A straightforward com-
pactness argument grants the existence of unfriendly partitions for locally
finite graphs, that is, graphs in which every vertex has finite degree; see
[1] for a more general result allowing for finitely many vertices of infinite
degree. On the other hand, by [6] there is a graph on an uncountable vertex
set admitting no such partition. (The general case on a countable vertex set
remains open.) In this paper we consider measure-theoretic analogs of the
former result.

Using now a standard Borel space X as our vertex set, we say that a
graph G on X is Borel if it is Borel as a (symmetric, irreflexive) subset
of X2. It will be more convenient to use the language of colorings rather
than that of partitions. Towards that end, given n ∈ N+ and α ∈ [0, 1], we
say that c : X → n is an (n, α)-coloring of a locally finite graph G on X if
for all x ∈ X we have |c−1(c(x)) ∩ Gx| ≤ α|Gx|, where Gx denotes the set
of neighbors of x. So an (n, 0)-coloring is what is normally called a proper
n-coloring, i.e., no two adjacent vertices receive the same color. Furthermore,
c is a (2, 1/2)-coloring iff c−1(0) t c−1(1) forms an unfriendly partition.
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If moreover µ is a Borel probability measure on X, we define (n, α, µ)-
colorings to be those functions satisfying the condition |c−1(c(x)) ∩ Gx| ≤
α|Gx| on a µ-conull set of x ∈ X. Our focus in this paper is on the existence
of Borel (n, α, µ)-colorings for various classes of Borel graphs on X. Note
that (using the axiom of choice) the existence of a Borel (n, α, µ)-coloring is
equivalent to the existence of a µ-measurable (n, α)-coloring.

In particular, suppose that Γ is a group with finite, symmetric generating
set S (which we always assume does not contain the identity). Associated
with any free, µ-preserving Borel action of Γ on (X,µ) is a graph relating
distinct points of X if and only if an element of S sends one to the other.
We then have (see Section 3 for a definition of weak equivalence), appearing
as Theorem 3.4 in the text,

Theorem. Suppose that (X,µ) is a standard probability space, n ∈ N+,
and Γ is a group with finite, symmetric generating set S. Then any free,
µ-preserving Borel action of Γ on (X,µ) is weakly equivalent to one whose
associated graph admits a Borel (n, 1/n, µ)-coloring.

Recall that the (right) Cayley graph Cay(Γ, S) of a group Γ with des-
ignated generating set S has vertex set Γ and edges (γ, γs) for γ ∈ Γ and
s ∈ S. We may view the space of (n, α)-colorings of Cay(Γ, S) as a subset
of nΓ which is closed in the product topology, so a compact Polish space
in its own right. Then Γ acts by (left) translations on the space of (n, α)-
colorings by (γ · c)(δ) = c(γ−1δ). Appearing as Corollary 4.1 in the text, we
obtain

Corollary. Suppose that Γ is a group with finite, symmetric generat-
ing set S. Then there is a translation-invariant Borel probability measure on
the space of (n, 1/n)-colorings of the Cayley graph Cay(Γ, S).

Such a measure may be interpreted as a (translation-invariant) random
(n, 1/n)-coloring of Cay(Γ, S). In particular, in the case n = 2 we obtain a
random unfriendly partition of the Cayley graph.

2. Minimizing friendliness. We fix a standard probability space
(X,µ); we denote by ∆(X) the set {(x, x) : x ∈ X} ⊆ X2. We say that a lo-
cally countable Borel graph G on X is µ-preserving if there are µ-preserving
Borel automorphisms Ti, i ∈ ω, of X such that G ∪∆(X) =

⋃
i graph(Ti).

This is the same as saying that the connectedness equivalence relation of
G arises as the orbit equivalence relation of a µ-preserving group action.
For convenience we restrict our attention to Borel graphs G with bounded
degree, in the sense that there is some d ∈ N such that for all x ∈ X,
deg(x) ≤ d. The results of this section actually hold under the somewhat
weaker assumption that

	
deg(x) dµ(x) is finite, but the bounded-degree case
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suffices for later sections. For A ⊆ X we define the restriction of G to A,
written G�A, by G ∩A2. We say that A is G-independent if G�A = ∅.

Fixing now a bounded-degree µ-preserving Borel graph G on the stan-
dard probability space (X,µ), for each Borel function c : X → n we will
define a parameter Friendn(c) recording the (n-)friendliness of the func-
tion. First let ν be the product µ × (counting) measure on G, that is, for
A ⊆ G Borel, we have ν(A) =

	
|Ax| dµ. The hypothesis that G has bounded

degree ensures that ν is a finite measure. Next for each c : X → n define an
auxiliary graph Gc ⊆ G by x Gc y if x G y and c(x) = c(y). Finally,

Friendn(c) = ν(Gc) =
∑
i<n

ν(G�c−1(i)).

We also define the (n-)friendliness Friendn(G) of the graph G as the
infimum of Friendn(c) over all Borel c : X → n. Note that 2-friendliness may
be viewed as a measure-theoretic analog of the size of a maximal cut.

Proposition 2.1. Suppose that G is a bounded-degree µ-preserving Borel
graph on the standard probability space (X,µ) and n ∈ N+. Suppose more-
over that c : X → n is a Borel function satisfying Friendn(c) = Friendn(G).
Then c is an (n, 1/n, µ)-coloring of G.

Proof. Suppose towards a contradiction that c is not an (n, 1/n, µ)-
coloring, i.e., that the set Y = {x ∈ X : |c−1(c(x)) ∩ Gx| > n−1|Gx|}
has positive measure. Since G is locally finite, [5, Proposition 4.5] ensures
that G has countable Borel chromatic number. In particular, there is a
G-independent set Y ′ ⊆ Y of positive measure. By the pigeonhole prin-
ciple applied to Gx, for each x ∈ Y ′ there is a least d(x) ∈ n such that
|c−1(d(x))∩Gx| < n−1|Gx|. Note of course that the assignment x 7→ d(x) is
Borel. Then note that the coloring c′ : X → 2 defined by

c′(x) =

{
c(x) if x ∈ X \ Y ′,
d(x) if x ∈ Y ′,

satisfies Friend(c′) ≤ Friend(c) − 2µ(Y ′) < Friend(c) = Friend(G), contra-
dicting the definition of Friend(G).

Remark 2.2. While the minimization of 2-friendliness is sufficient for
a coloring to induce an unfriendly partition, it is far from necessary. For
instance, for fixed irrational α ∈ (0, 1) consider the graph Gα on [0, 1),
where x Gα y iff x − y = ±α mod 1. Then Friend2(Gα) = 0, but it is not
hard to show that Friend2(c) > 0 for each Borel c : [0, 1)→ 2. Nevertheless,
the 2-regularity of Gα makes it straightforward to find a Borel unfriendly
partition for Gα: indeed, by [5, Proposition 4.2] there is a maximal Gα
independent set which is Borel, so it and its complement form an unfriendly
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partition. In the interest of full disclosure, we actually do not know whether
every locally finite Borel graph admits a Borel unfriendly partition.

Question 2.3. Suppose that G is a locally finite Borel graph on a stan-
dard Borel space X and n ∈ N+. Does G admit a Borel (n, 1/n)-coloring?

There is a natural measure-theoretic weakening of Question 2.3 which
also remains open.

Question 2.4. Suppose that G is a locally finite, µ-preserving graph
on a standard probability space (X,µ) and n ∈ N+. Does G admit a Borel
(n, 1/n, µ)-coloring?

The results of the next section rule out certain possible counterexamples
arising from combinatorial information invariant under weak equivalence of
group actions.

3. Group actions. We next narrow our focus to graphs arising from
countable groups acting by free µ-preserving automorphisms on (X,µ).
Given a countable group Γ with symmetric generating set S and such an
action a of Γ on (X,µ), we define the graph G(S, a) on the vertex set X
with edge (x, y) iff x 6= y and ∃s ∈ S (y = s · x). By freeness of the action
(and assuming that S does not contain the identity element of the group),
each vertex has degree |S|, so if S is a finite generating set, the graph is
locally finite (and in fact has bounded degree). Combinatorial parameters
associated with G(S, a) reflect various dynamical properties of the action a;
for more see [2].

Recall that we may equip the space Aut(X,µ) of µ-preserving Borel auto-
morphisms of the standard probability space (X,µ) with the weak topology,
the weakest topology rendering for each Borel A ⊆ X the map T 7→ T (A)
continuous. This topology makes Aut(X,µ) a Polish group. Then, following
[4, II.10] we equip the space A(Γ,X, µ) of µ-preserving actions of Γ on X
with its own weak topology inherited as a (closed, thus Polish) subset of
Aut(X,µ)Γ . We let FR(Γ,X, µ) denote the subset of µ-a.e. free actions.

We also recall the notion of weak containment among the elements of
A(Γ,X, µ). We say that a is weakly contained in b, denoted by a ≺ b, if for
any ε > 0, any finite sequence (Ai)i≤n of Borel subsets of X and any finite
F ⊆ Γ , there is a finite sequence (Bi)i≤n of Borel subsets of X such that
for all i, j ≤ n and γ ∈ F ,

|µ(Ai ∩ γa ·Aj)− µ(Bi ∩ γb ·Bj)| < ε.

Equivalently, a ≺ b exactly when a is in the weak closure of the set of actions
in A(Γ,X, µ) conjugate to b. Finally, a and b are weakly equivalent, written
a ∼ b, if a ≺ b and b ≺ a.
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In [2, Corollary 4.2 and Theorem 4.3] and [3, Proposition 5.1] it is shown
that many measure-theoretic combinatorial parameters of G(S, a) respect
weak containment. We next see that friendliness is another such parameter.

Proposition 3.1. Suppose that Γ is a group with finite, symmetric gen-
erating set S, and a, b ∈ FR(Γ,X, µ) with a ≺ b. Then

Friendn(G(S, a)) ≥ Friendn(G(S, b)).

Proof. Fix ε > 0, and choose a Borel function c : X → n with Friendn(c)
< Friendn(G(S, a))+ε. For each i < n setAi = c−1(i). By weak containment,
we may find Borel sets Bi ⊆ X such that for all γ ∈ S ∪ {1Γ } and i, j < n,
|µ(Ai ∩ γa ·Aj)− µ(Bi ∩ γb ·Bj)| < ε. Note in particular that for i 6= j, the
disjointness of Ai and Aj implies µ(Bi∩Bj) < ε. Let d : X → n be any Borel
function satisfying d(x) = min{i < n : x ∈ Bi} for x ∈

⋃
iBi. Note that the

above considerations show for each i < n that µ(Bi 4 d−1(i)) < 2nε. By
aiming for a smaller ε, we may assume that in fact µ(Bi 4 d−1(i)) < ε to
clean up some inequalities.

We now estimate the n-friendliness of d with respect to G(S, b). For each
i < n, we have

ν(G(S, b)�d−1(i)) =
∑
s∈S

µ(d−1(i) ∩ sb · d−1(i))

<
∑
s∈S

(µ(Bi ∩ sb ·Bi) + 2ε)

<
∑
s∈S

(µ(Ai ∩ sa ·Ai) + 3ε)

= ν(G(S, a)�Ai) + 3|S|ε.

Consequently,

Friendn(d) =
∑
i<n

ν(G(S, b)�d−1(i)) <
∑
i<n

ν(G(S, a)�Ai) + 3|S|ε

= Friendn(c) + 3n|S|ε < Friendn(G(S, a)) + (3n|S|+ 1)ε.

As ε may be chosen to be arbitrarily small, we see that Friendn(G(S, a))
≥ Friendn(G(S, b)), as desired.

Corollary 3.2. Suppose that Γ is a group with finite, symmetric gen-
erating set S, and a, b ∈ FR(Γ,X, µ) with a ∼ b. Then

Friendn(G(S, a)) = Friendn(G(S, b)).

Next, we record a version of [3, Theorem 5.2] allowing us to realize the
infimum in the definition of friendliness within any weak equivalence class.
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Proposition 3.3. Suppose that Γ is a group with finite, symmetric gen-
erating set S. For any a ∈ FR(Γ,X, µ), there is an action b ∈ FR(Γ,X, µ)
with b ∼ a and a µ-measurable function c : X → n such that

Friendn(G(S, b)) = Friendn(c).

Proof. We use the notation of [3]. Let U be a nonprincipal ultrafilter
on N. We obtain the action b as an appropriately chosen factor of the
ultrapower action aU on (XU , µU ). First, for each k ∈ N fix Borel func-
tions ck : X → n satisfying Friendn(ck) ≤ Friendn(G(S, a)) + 1/k. For each
i < n set Ci = [(c−1k (i))k]U . Then {Ci : i < n} form a µU -a.e. parti-
tion of XU . Defining c : XU → n so that x ∈ Cc(x) µU -a.e., we see that
Friendn(c) = Friendn(G(S, a)) (as computed by µU ). Restricting to a suffi-
ciently large countably generated nonatomic, Γ -invariant subalgebra of the
ultrapower measure algebra containing Ci and a countable collection of sub-
sets of X generating its Borel σ-algebra, we obtain (up to isomorphism) an
action b ∈ FR(Γ,X, µ). Then [3, §4(B)] implies that b ∼ a, and hence, by
Corollary 3.2, Friendn(G(S, b)) = Friendn(G(S, a)).

Theorem 3.4. Suppose that Γ is a group with finite, symmetric gen-
erating set S. For any a ∈ FR(Γ,X, µ) there is an action b ∈ FR(Γ,X, µ)
with b ∼ a such that G(S, b) admits a Borel (n, 1/n, µ)-coloring.

Proof. By Proposition 3.3, there is a b ∈ FR(Γ,X, µ) with b ∼ a such
that the infimum in the definition of Friend(G(S, b)) is attained. Then
Proposition 2.1 implies that any function attaining that infimum is an
(n, 1/n, µ)-coloring of G(S, b).

Question 3.5. For a group Γ with finite generating set S, consider the
Bernoulli shift action s of Γ on [0, 1]Γ with product Lebesgue measure µ de-
fined by (γ·x)(δ) = x(γ−1δ). Does G(S, s) admit a Borel (n, 1/n, µ)-coloring?
An affirmative answer, in conjunction with [7, Corollary 1.6], would provide
an alternate proof of Theorem 3.4.

Remark 3.6. Theorem 3.4 rules out various approaches to producing a
counterexample for Question 2.4. In particular, analysis of any combinatorial
quantity of group actions invariant under weak equivalence cannot establish
the inexistence of a Borel (n, 1/n, µ)-coloring of G(S, a). This is in contrast
to [2, Theorem 4.17], in which an analysis of the norm of the averaging
operator ruled out various proper colorings in the measure-theoretic context
(or (n, 0, µ)-colorings in the current vernacular).

4. Random colorings of Cayley graphs. Given a group Γ with
generating set S, a positive natural number n, and α ∈ [0, 1], we may
view the space Col(Γ, S, n, α) of (n, α)-colorings of the (right) Cayley graph
Cay(Γ, S) as a closed (thus Polish) subset of nΓ . The action of Γ by left
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translations on Cay(Γ, S) induces an action on Col(Γ, S, n, α). A translation-
invariant random (n, α)-coloring of Cay(Γ, S) is a Borel probability measure
on Col(Γ, S, n, α) which is invariant under this Γ action.

In particular, a translation-invariant random (2, 1/2)-coloring may be
viewed as a random unfriendly partition of the Cayley graph, where the
translation invariance means that the likelihood of choosing a partition is
independent of the selection of a vertex of the Cayley graph as the identity.

Corollary 4.1. Suppose that Γ is a group with finite, symmetric gen-
erating set S, and n ∈ N+. Then there is a translation-invariant random
(n, 1/n)-coloring of Cay(Γ, S).

Proof. Fix a nonatomic standard probability space (X,µ). By Theo-
rem 3.4, there is some b ∈ FR(Γ,X, µ) such that G(S, b) admits a Borel
(n, 1/n, µ)-coloring c : X → n (in fact b may be chosen from any weak
equivalence class). Define π : X → Col(Γ, S, n, 1/n) by (π(x))(γ) = c(γ−1·x).
Then π∗µ is a translation-invariant random (n, 1/n)-coloring, where as usual
π∗µ(A) = µ(π−1(A)).

We close with a question which is essentially a probabilistic version of
Question 3.5.

Question 4.2. Can such a translation-invariant random (n, 1/n)-color-
ing be found as a factor of IID?
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