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The automorphism group of the random lattice
is not amenable

by

Maciej Malicki (Warszawa)

Abstract. We prove that the automorphism group of the random lattice is not
amenable, and we identify the universal minimal flow for the automorphism group of
the random distributive lattice.

1. Introduction. In this note we answer a question posed by A. Kechris
and M. Sokić [6], who asked whether the automorphism group Aut(L∞) of
the random lattice L∞ is amenable. Recall that a topological group G is
amenable if every G-flow, that is, a continuous action of G on a non-empty
compact Hausdorff space, has an invariant Borel probability measure. We
show that Aut(L∞) is not amenable. We also identify the universal mini-
mal flow for the automorphism group Aut(D∞) of the random distributive
lattice D∞. This has been first done in [6, Theorem 5.1] using a different
approach.

Let L be a countable first-order language. A class K of finite L-structures
is called a Fraïssé class if it contains structures of arbitrarily large finite size,
is countable (in the sense that it contains only countably many isomorphism
types) and satisfies the following:

(1) Hereditary Property (HP): If A1 ∈ K and A0 can be embedded in
A1, then A0 ∈ K.

(2) Joint Embedding Property (JEP): If A0,A1 ∈ K, there is A2 ∈ K
such that A0,A1 can be embedded in A2.

(3) Amalgamation Property (AP): If A0,A1,A2 ∈ K and f : A0 → A1

and g : A0 → A2 are embeddings, there is A3 ∈ K and embeddings
r : A1 → A3 and s : A2 → A3 such that r ◦ f = s ◦ g.
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If (3) holds with the extra property that r[A1] ∩ s[A2] = r ◦ f [A0], we
say that K has the Strong Amalgamation Property (SAP).

For every Fraïssé class K there is a unique, up to isomorphism, count-
ably infinite structure K∞ which is locally finite (i.e., finitely generated
substructures are finite), ultrahomogeneous (i.e., isomorphisms between fi-
nite substructures can be extended to automorphisms of the structure) and
is such that, up to isomorphism, its finite substructures are exactly those
in K. We call this the Fraïssé limit of K.

For a language L and a class K of finite L-structures, a class K∗ of
structures in the language L∪{≺} is called an order expansion of K if every
A∗ ∈ K∗ is of the form 〈A,≺〉, where A ∈ K and ≺ is a linear ordering of A.
A linear ordering ≺ on A ∈ K is called admissible if 〈A,≺〉 ∈ K∗. Similarly,
if K is a Fraïssé class and K∞ is its Fraïssé limit, then a linear ordering ≺ on
K∞ is admissible if 〈A,≺�A〉 ∈ K∗ for every finite substructure A ⊆ K∞.
We denote the compact space of all admissible orderings on K∞ by XK∗ .

We will say that an order expansion K∗ of K is reasonable if for every
〈A0,≺0〉 ∈ K∗ and A1 ∈ K, and for every embedding i : A0 → A1, there
exists an ordering ≺1 of A1 such that ≺1 extends the image of ≺0 in A1, and
〈A1,≺1〉 ∈ K∗. A crucial property of reasonable order expansions is that if
K∗ is reasonable then XK∗ is non-empty (see [6, Section 2]).

A lattice is a partially ordered set 〈L,<〉 with unique greatest lower
bounds and least upper bounds. However, in this paper we will view lattices
as structures L = 〈L,∧,∨〉, where ∧ is the greatest lower bound operation
and ∨ is the least upper bound operation. Then the ordering < can be
reconstructed from L because

x < y ⇔ x ∧ y = x ⇔ x ∨ y = y

for every x, y ∈ L with x 6= y.
A semilattice is a partially ordereded set with unique least upper bounds.

We will view semilattices as structures S = 〈S,∨〉 with the least upper bound
operation ∨.

A distributive lattice is a lattice D satisfying

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
for every x, y, z ∈ D. Finally, a Boolean lattice is a complemented distribu-
tive lattice, that is, a distributive lattice B which has the smallest element 0,
the largest element 1, and for every x ∈ B there exists a unique y ∈ B such
that

x ∧ y = 0, x ∨ y = 1.

It is known (see [4]) that the class L of all finite lattices, the class S of
all finite semilattices, and the class D of all finite distributive lattices, are
all Fraïssé classes, and that the classes L and S satisfy SAP. Let L∗ be an
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order expansion of L defined as the set of all structures of the form 〈L,≺〉,
where L ∈ L and ≺ is a linear ordering extending the lattice ordering of L,
that is, the ordering induced by the meet operation (equivalently, the join
operation) in L.

We denote by L∞ the Fraïssé limit of L, by D∞ the Fraïssé limit of D,
and by S∞ the Fraïssé limit of S. The lattice L∞ is often called the ran-
dom lattice, D∞ is the random distributive lattice, and S∞ is the random
semilattice.

2. The automorphism group of the random lattice

Lemma 2.1. The class L∗ is a reasonable Fraïssé expansion of L.

Proof. Fix 〈A0,≺0〉 ∈ L∗,A1 ∈ L, and an embedding i : A0 → A1. Then
the image of ≺0 under i is a linear ordering on i[A0] which extends the lattice
ordering on i[A0]. By [7, Lemma 14] (see the algorithm presented in the proof
of the lemma), there exists a linear ordering ≺1 on A1 which extends the
image of ≺0 and the lattice ordering on A1. Thus L∗ is reasonable.

In a similar way we can prove that L∗ is a Fraïssé class. The property
HP is obvious. In order to show AP, fix 〈A0,≺0〉, 〈A1,≺1〉, 〈A2,≺2〉 ∈ L∗
and embeddings i1 : 〈A0,≺0〉 → 〈A1,≺1〉 and i2 : 〈A0,≺0〉 → 〈A2,≺2〉.
Without loss of generality we can assume that A1 ∩ A2 = A0, and i1, i2
are the identity embeddings. Using SAP for the class of finite lattices, find
a lattice A3 such that

A1 ∪A2 ⊆ A3.

Now extend the orderings ≺1, ≺2 on A1,A2, respectively, to a linear
ordering ≺′ on A1 ∪ A2 using the well-known fact that the class of finite
linear orderings has SAP. Finally, extend the ordering ≺′ to a linear ordering
≺3 which extends the lattice ordering on A3, using [7, Lemma 14].

The same argument with A0 = ∅ shows that L∗ has JEP. Thus, L∗ is a
Fraïssé class which is a reasonable expansion of L.

Theorem 2.2. The group Aut(L∞) is not amenable.

Proof. Since L∗ is reasonable, the compact space XL∗ is non-empty. For
〈A,≺〉 ∈ L∗, let N〈A,≺〉 denote the non-empty basic clopen set in XL∗ ,
consisting of ≺∗ ∈ XL∗ such that ≺∗�A = ≺.

Suppose that µ is a Borel probability measure on XL∗ which is invariant
with respect to the natural action of Aut(L∞) on XL∗ . Define

O = {V ⊆ XL∗ : V is open and µ(V ) = 0}.

Then Aut(L∞) permutes the family O, so O =
⋃
O is an open invariant

subset of XL∗ . Moreover, µ(O) = 0, and the restriction of µ to the invariant
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set C = XL∗ \ O has full support, that is, µ(V ∩ C) > 0 for every open
V ⊆ XL∗ such that V ∩ C is non-empty.

Fix a finite Booelan lattice A ∈ L with two atoms x, y ∈ A. Let ≺0

be an L∗-admissible ordering for A such that x ≺0 y, and let ≺1 be an
L∗-admissible ordering for A such that y ≺1 x.

Now fix a finite Boolean lattice B ∈ L with three atoms a, b, c ∈ B.
Denote by A0 the Boolean lattice generated by b ∨ c, a, and by A1 the
Boolean lattice generated by a ∨ c, b. Because b ∨ c and a are incompa-
rable, there exists an L∗-admissible ordering ≺′0 for A0 such that b∨ c ≺′0 a.
Similarly, there exists an L∗-admissible ordering ≺′1 for A1 such that
a ∨ c ≺′1 b.

Clearly, the unique lattice isomorphism π0 : A→ A0 that maps x to b∨c
and y to a, is also an isomorphism of the orderings ≺0 and ≺′0. Similarly,
the unique lattice isomorphism π1 : A→ A1 that maps y to a ∨ c and x to
b, is an isomorphism of the orderings ≺1 and ≺′1.

Since a ∨ b, c are incomparable and C is non-empty and invariant under
the action of Aut(L∞), there exists a linear ordering ≺2 on B that can be
extended to an element of C, and is such that c is the maximal atom in
B with respect to ≺2. As a is the maximal atom for any ordering of B
extending ≺′0, no such ordering extends ≺2. Similarly, no ordering extending
≺′1 extends ≺2.

Also, if an ordering of B extends ≺′0, then a is the maximal atom, so it
cannot extend ≺′1 which forces b to be the maximal atom. Analogously, no
ordering extending ≺′1 can extend ≺′0.

The above observations imply that

N〈B,≺2〉 ∩ C 6= ∅,(1)

N〈B,≺2〉 ⊆ XL∗ \ (N〈A0,≺′0〉 ∪N〈A1,≺′1〉),(2)

N〈A0,≺′0〉 ∩N〈A1,≺′1〉 = ∅.(3)

In order to complete the proof, we will follow the main argument of [6,
Proposition 2.1]. As already mentioned, Aut(L∞) naturally acts on XL∗ : for
ϕ ∈ Aut(L∞), ≺ ∈ XL∗ , and x, y ∈ L∞,

x ≺ϕ y ⇔ ϕ−1(x) ≺ ϕ−1(y).

Fix ϕ0, ϕ1 ∈ Aut(L∞) extending π0, π1, respectively. Then

ϕ0[N〈A,≺0〉] = N〈A0,≺′0〉, ϕ1[N〈A,≺1〉] = N〈A1,≺′1〉,

so

(4) µ(N〈A,≺0〉) = µ(N〈A0,≺′0〉), µ(N〈A,≺1〉) = µ(N〈A1,≺′1〉).
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Moreover, by (1),
µ(N〈B,≺2〉) > 0.

By (2) and (3), this implies that

µ(N〈A0,≺′0〉) + µ(N〈A1,≺′1〉) = µ(N〈A0,≺′0〉 ∪N〈A1,≺′1〉) < 1,

which contradicts (4) because, obviously,

N〈A,≺0〉 ∪N〈A,≺1〉 = XL∗ , N〈A,≺0〉 ∩N〈A,≺1〉 = ∅,
so

µ(N〈A,≺0〉) + µ(N〈A,≺1〉) = µ(N〈A,≺0〉 ∪N〈A,≺1〉) = 1.

It has been pointed out to us by Miodrag Sokić and by the anonymous
referee that exactly the same proof works for the class S of all finite semi-
lattices, and the order expansion S∗ of S such that 〈S,≺〉 ∈ S∗ if S ∈ S and
≺ is a linear ordering extending the semilattice ordering of S. Thus we have
the following corollary.

Corollary 2.3. Let S be the Fraïssé class of all finite semilattices, and
let S∞ be the Fraïssé limit of S. Then Aut(S∞) is not amenable.

3. The automorphism group of the random distributive lattice.
In this section we present an alternative method of identifying the universal
minimal flow for the automorphism group Aut(D∞) of the random distribu-
tive lattice D∞. The universal minimal flow for this group has been first
found in [6, Theorem 5.1]. Let us start by defining the notions involved.

Recall that a G-flow X is called minimal if all its orbits are dense. A min-
imal G-flow X is called the universal minimal flow for G if any minimal
G-flow Y is a factor of X, i.e., there is a continuous surjection π : X → Y
which is a G-map: π(g · x) = g · π(x) for all g ∈ G and x ∈ X.

For a compact space X, a chain in X is a collection of compact subsets
of X that is linearly ordered by inclusion. The space C(X) of all maximal
chains in X can be naturally viewed as a compact subspace of the space
K(K(X)) endowed with the Vietoris topology (here, K(X) is the space of
all compact subsets of X). Then Hom(X) continuously acts on C(X) in a
natural way, that is, C(X) is a Hom(X)-flow.

A compact space X endowed with an ordering ≤ with the least element 0
and the greatest element 1 is called a bounded Priestley space if 0 6= 1 and
it is totally order-disconnected: for any x, y ∈ X with x 6≤ y there exists a
clopen downset containing y but not containing x.

Theorem 3.1. The random distributive lattice D∞ is isomorphic to the
lattice of all clopen subsets of the Cantor space X that contain a distinguished
point x0 ∈ X, and do not contain a distinguished point x1 ∈ X, where
x0 6= x1.
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In particular, Aut(D∞) is isomorphic to the group Hom(X,x0, x1) of all
homeomorphisms of X fixing x0 and x1, and the universal minimal flow for
Aut(D∞) is the space of all maximal chains in X containing the sets {x0}
and {x0, x1}.

Proof. It is well known that every distributive lattice D is isomorphic to
the lattice of proper, non-empty clopen downsets of the bounded Priestley
space X of all prime ideals in D ordered by inclusion (see [2, Section 1.2]).
A subbasis in X is defined by clopen sets of the form

U(a) = {x ∈ X : a ∈ x}, V (a) = {x ∈ X : a 6∈ x},

where a ∈ D. Moreover, automorphisms of D correspond to homeomor-
phisms of X that preserve the ordering.

Let X be the Priestley space for D∞. Obviously, the least element of the
ordering of X is x0 = ∅, and the largest element is x1 = D∞. Moreover,
all non-trivial prime ideals in D∞ are maximal, that is, any two distinct,
non-trivial elements in X are incomparable. This is because D∞ is relatively
complemented (see below), and it is known that in relatively complemented,
distributive lattices all non-trivial prime ideals are maximal (see [5, Theo-
rem 4.2]).

Recall that a lattice D is relatively complemented if for all x, y, z ∈ D
with x < y < z there exists w ∈D such that

y ∧ w = x, y ∨ w = z.

To see that D∞ is relatively complemented, fix a, b, c, d ∈D∞ such that

a = b ∧ c, d = b ∨ c.

By the ultrahomogeneity of D∞, for arbitrary x, y, z ∈ D∞ such that x <
y < z, there exists an automorphism ϕ ∈ Aut(D∞) such that

ϕ(a) = x, ϕ(b) = y, ϕ(d) = z.

Then ϕ(c) must be the complement of y relative to x and z:

y ∧ ϕ(c) = x, y ∨ ϕ(c) = z.

We show that there are no isolated points in X. Fix a prime ideal x ∈ X.
Suppose first that x is non-trivial, and fix a0, . . . , an ∈ x, b0, . . . , bm 6∈ x. We
will find y ∈ X such that y 6= x, and

y ∈ U(a0) ∩ · · · ∩ U(an) ∩ V (b0) ∩ · · · ∩ V (bm).

Put a = a0∨· · ·∨an, b = b0∧· · ·∧ bm. Because x is prime, we have a ∈ x
and b 6∈ x. Suppose that a < b. By the ultrahomogeneity of D∞, there exist
c, d ∈ D∞ such that c ∧ d = a and c ∨ d = b. Since x is prime, exactly one
of the elements c, d is in x; say it is c. By [3, Theorem 115], there exists a
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prime ideal y ∈ X such that d ∈ y and b 6∈ y. Then c 6∈ y, so y 6= x, and y is
as required.

On the other hand, if a, b are incomparable, using the ultrahomogeneity
ofD∞, we find c ∈D∞ such that each of the sets {a, b, c}, {a∨c, b}, {a, b∧c}
is pairwise incomparable. If c 6∈ x, then a ∨ c generates an ideal which does
not contain b, and, by [3, Theorem 115], there exists y ∈ X such that a, c ∈ y
and b 6∈ y. Thus, y 6= x, and y is as required. If c ∈ x, then b ∧ c generates a
filter which does not contain a, and we can use the same argument as in the
case that c 6∈ x.

In order to show that the trivial ideals ∅ and D∞ are not isolated, we
proceed analogously, using the fact that there is no smallest nor largest
element in D∞.

It is well known that every compact space with a clopen countable basis
and no isolated points is isomorphic to the Cantor space. Thus, X is the
Cantor space with two distinct, distinguished points x0, x1 ∈ X correspond-
ing to the ideals ∅ and D∞. Moreover, any two distinct, non-trivial elements
in X are incomparable with respect to the inclusion ordering. It follows that
Aut(D∞) is isomorphic to the group Hom(X,x0, x1) of all homeomorphisms
of X fixing x0 and x1.

Observe now that Hom(X,x0, x1) is equal to the group of all homeomor-
phisms of X fixing setwise the sets {x0} and {x0, x1}. But it is proved in [1,
Theorem 12] that the universal minimal flow for this group is the space of
all maximal chains in X containing these sets.
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