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Abstract. Suppose that x is A-supercompact witnessed by an elementary embedding
j V. — M with critical point x, and further suppose that F' is a function from the
class of regular cardinals to the class of cardinals satisfying the requirements of Easton’s
theorem: (1) Va a < cf(F(a)), and (2) a < 8 = F(a) < F(8). We address the question:
assuming GCH, what additional assumptions are necessary on j and F if one wants to
be able to force the continuum function to agree with F' globally, while preserving the
A-supercompactness of k7

We show that, assuming GCH, if F' is any function as above, and in addition for some
regular cardinal A > x there is an elementary embedding j : V' — M with critical point x
such that x is closed under F, the model M is closed under A-sequences, H(F(\)) C M,
and for each regular cardinal v < X one has (|5(F)(v)| = F(v))", then there is a cardinal-
preserving forcing extension in which 2° = F (6) for every regular cardinal ¢ and x remains
A-supercompact. This answers a question of [CM14].

1. Introduction. In this article we address the following question,
which is posed in [CM14].

QUESTION 1.1. Given a A-supercompact cardinal x and assuming GCH,
what behaviors of the continuum function on the regular cardinals can be
forced while preserving the A-supercompactness of x, and from what hy-
potheses can such behaviors of the continuum function be obtained?

Let us first consider the special case where s is k-supercompact, in
other words & is measurable. Silver proved that if x is kT T-supercompact
and GCH holds, then there is a cofinality-preserving forcing extension in
which x remains measurable and 2% = kT, but one can also obtain such
a model from a much weaker hypothesis. Woodin proved that the exis-
tence of a measurable cardinal x such that 2¢ = k™1 is equiconsistent
with the existence of an elementary embedding j : V — M with criti-
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cal point k such that j(k) > kT and M* C M. The forward direction
of Woodin’s equiconsistency is trivial, and for the backward direction the
embedding is lifted to a certain forcing extension V[G]|[H][go] where go is
an “extra forcing” necessary for carrying out a surgical modification of a
generic filter on the M-side (see [Cuml0, Theorem 25.1] or [Jec03, Theo-
rem 36.2]). A more uniform method for proving Woodin’s equiconsistency,
in which no “extra forcing” is required, is given in [ETO08]. This method
involves lifting an elementary embedding through Sacks forcing on uncount-
able cardinals, an idea which has found many additional applications (see
[EMO09], [FHOS|, [FZ10], [Honl0], [DF08], [FHI12a] and [FH12b]). The uni-
formity of the method led to answers [FHOS] to Question 1.1 in the case
that x is a measurable cardinal and in the case that s is a strong cardi-
nal.

In a result analagous to Woodin’s equiconsistency mentioned above, the
first author proved [Cod12] the equiconsistency of the following three hy-
potheses:

(i) There is a cardinal  that is Ad-supercompact and 2% > AT,
(i) There is a cardinal s that is A-supercompact and 2* > \*+,
(iii) There is an elementary embedding j : V' — M with critical point &
such that j(k) > AT+ and M* C M.

In the argument of [Cod12], a model of (ii) is obtained from a model of (iii)
by lifting the embedding j to a forcing extension of the form V[G][H][go]
by using Woodin’s technique of surgically modifying a generic filter.
However, in the final model, x is A-supercompact and one has 2¢ = 2%
= ATT, so the final model satisfies both (i) and (ii). Furthermore, it is
remarked in [Cod12] that the surgery argument does not seem to yield
a model with GCH on the interval [k,\) and 2* = AT+ where & is
A-supercompact.

The second and third authors showed that the more uniform method
involving Sacks forcing on uncountable cardinals can be used to address this
discordance. Indeed, it is shown in [FHI2b| that from the hypothesis (iii)
above, and assuming GCH, there is a cofinality-preserving forcing extension
in which x remains A-supercompact, GCH holds on the interval [, \) and
2} = A*F. The following question is posed in [FH12b]: Starting with a model
of (iii) and GCH, is there a cofinality-preserving forcing extension in which
k is A-supercompact and for some regular cardinal v with k < v < A one
has GCH on [k,7) and 27 = A™"? This question was recently answered in
[CM14] where it is shown that Woodin’s method of surgically modifying a
generic filter to lift an embedding can be extended to include the case where
modifications are made on “ghost-coordinates”. Indeed [CM14] establishes
that if GCH holds, F : [k, A\] " REG — CARD is any function satisfying
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Easton’s requirements

(E1) a < cf(F(w)), and
(E2) a < g implies F(a) < F(B),

where A > k is a regular cardinal, and there is a j : V — M with
critical point s such that j(k) > F(\) and M* C M, then there is a
cofinality-preserving forcing extension in which x remains A-supercompact
and 27 = F(v) for every regular cardinal v with x <« < A. This provides an
answer to the above Question if we restrict our attention to controlling
the continuum function only on the interval [k, A] while preserving the \-
supercompactness of k. The uniformity of the method led to answers [FHO08]
to Question 1.1 in the case that  is a measurable cardinal and in the case
that k is a strong cardinal. For example, using Sacks forcing on uncountable
cardinals, Friedman and Honzik proved that one can force the continuum
function to agree with a “locally definable” function satisfying the require-
ments of Easton’s theorem while preserving strong cardinals. Menas [Men76]
established a similar result for supercompactness using Cohen forcing and
master conditions.

In this article we combine the methods of [FHO08| and [CM14] to address
Question in the context of controlling the continuum function at all
regular cardinals by proving the following theorem.

THEOREM 1.2. Assume GCH. Suppose F' : REG — CARD is a function
satisfying Easton’s requirements (E1) and (E2), for some regular cardinal
A > K there is an elementary embedding j : V. — M with critical point k
such that k is closed under F, the model M is closed under \-sequences,
H(F(X)) € M, and for each regular cardinal v < X one has (|j(F)(y)]
= F(¢))V. Then there is a cardinal-preserving forcing extension in which
20 = F(6) for every reqular cardinal § and k remains \-supercompact.

The forcing used to prove Theorem will be an Easton-support iter-
ation of Easton-support products of Cohen forcing. To lift the embedding
through the first k-stages of the forcing, we will use the technique of twist-
ing a generic using an automorphism in order to obtain a generic for the
M-side (see [FHOS]). In order to lift the embedding through a latter portion
of the iteration we will use the technique of surgically modifying a generic
filter on ghost-coordinates (see |[CMI4]), which will require us to use an
“extra forcing” over V. We will prove a lemma which establishes that the
extra forcing not only preserves cardinals, but it also does not disturb the
continuum function (see Lemma below). Note that the latter was not
necessary in [CM14].

Regarding the hypothesis of Theorem notice that if j : V. — M
witnesses the A-supercompactness of x then it follows that for v < A\ we
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have 27 < (27)M < j(k) and futhermore, in V, the cardinality of (27)™ is
equal to 27. Thus, if one desires to lift an embedding j : V — M to a forcing
extension in which the continuum function agrees with some F' as in the
statement of Theorem then one must require that (|j(F)(y)| = F())".

2. Preliminaries. We assume familiarity with Easton’s theorem [Eas70]
as well as with lifting large cardinal embeddings through forcing [Cum10].

In the proof of Theorem we will use the following forcing notion.
Suppose F'is a function from the regular cardinals to the cardinals satisfying
the requirements (E1) and (E2) of Easton’s theorem and that x < A are
regular cardinals. We will let Q. yj denote the Easton-support product of
Cohen forcing that will ensure that, assuming GCH in the ground model, the
continuum function agrees with F' on [k, \] N REG in the forcing extension.
We can regard conditions p € Q) as functions satisfying the following:

e Every element in dom(p) is of the form (v, , 5) where v € [k, A] is a
regular cardinal, « < v and 8 < F(7).
e (Easton support) For each regular cardinal v € [k, \] we have

{(d,, B) € dom(p) [ 6 <~} <.
o ran(p) C {0,1}.
LemMA 2.1 ([Eas70]). Under GCH, forcing with the poset Q. ) pre-

serves all cofinalities and achieves 27 = F(v) for every regular cardinal
v € [k, A] while preserving GCH otherwise.

REMARK 2.2. Suppose F and j are as in the hypothesis of Theorem [I.2]
Let us briefly show that one can assume, without loss of generality, that M
is of the form

M=) Na) | fiPAxk—=V Aa<FQO) A feV)

Let j : V' — M be as in the statement of Theorem [I.2] We will show that
j can be factored through an embedding jo : V' — My having all the desired
properties. Let Xo = {j(f)(j"\,a) | f: PAXxKk =V Aa<FA) A feV}
and X7 = {j(f)(J" N a) | f: PAAXH(k) >V ANa€ HF(X)AN f eV} Now
let Mg : X — My and 71 : X1 — M; be the Mostowski collapses of Xy and
X1 respectively. Define jg := 71'61 0j:V — My and j; := ﬂ'fl oj:V — M.
It follows that jo : V — My has critical point x, Mg C My, jo(k) > F(\)
and My has the desired form

Mo ={jo(f)Go" N a) | f: PAAXK—=>V ANa<FA) AN feV}

It remains to show H(F'(X)) C My. It is easy to see that H(F'()\)) C M,
using the fact that

My = {j1()GNa) | f: PAx H(k) =V AacHEN) A feV)
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Since the map i : My — M; defined by i(jo(f)(jo” A, @) :== j1(f) (71" A, @) s
an elementary embedding with critical point greater than F'(\), and since i is
the identity on F'()), it follows that i is surjective, and thus H(F(X)) € My
= M. To see that i is surjective onto H(F()\)) (and thus onto M) one uses
the fact that each € H(F(\)) can be coded by a subset of some cardinal
d < F(N).

3. Proof of Theorem Our final model will be a forcing exten-
sion of V' by an ORD-length forcing iteration PP, which will be broken up
as P = P! % S « P2, The first factor P! will be an iteration forcing the
continuum function to agree with F at every regular cardinal less than
or equal to F(A). The second factor S will be an “extra forcing” that
will be necessary to carry out the surgery argument to lift the embed-
ding j through P'. We will argue that the extra forcing S is mild in Ve
in the sense that it preserves all cofinalities and preserves the continuum
function. The last factor P2 € VE'*S will be a <F(\)-closed, ORD-length
Easton-support product of Cohen forcing, which will force the continuum
function to agree with F at all regular cardinals greater than or equal
to F(\)™T.

For an ordinal «, let & denote the least closure point of F' greater than a.
For a regular cardinal 7, the symbol Add(v, F(7)) denotes the forcing poset
for adding F'(y) Cohen subsets to .

Let Ag be the greatest closure point of F' which is less than or equal
to A. We now recursively define an Easton-support forcing iteration Py, 41 =
(B, Qy) : 1 < Ao) as follows.

(1) If n» < Ao is a closure point of F', then Qn is a P,-name for the
Easton-support product

py= ]I Add(y F(v)
7€[n.n)NREG
as defined in V7 and P, 41 = P, * Qn-
(2) If n = Ao, then @n is a Py,-name for
Qo r0) = 11 Add(v, F(7))
~YE[Xo,F(A)]JNREG

as defined in V"% and Pyo+1 =Py, * Q,\O. .

(3) Otherwise, if n < Ag is not a closure point of F', then Qy, is a Py-name
for trivial forcing and Py 1 = Py * Q.

Let G,4+1 be generic for Py 41 over V.

NoTATION. We will adopt the notation and conventions used in [FHOS].
We will use [ [, - @~ to denote Qy, ;) where @ := Add(v, F(7)) denotes an
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individual factor of the product, and similarly g, 7) denotes the correspond-
ing generic filter. It will be understood that, for example, gj, ») is a product
over just the regular cardinals in the interval [n,7) of the relevant generic
filters. In particular, if n is a singular cardinal then there is no forcing over

n in the product g, ») C H[n,ﬁ) Q~-
3.1. Lifting the embedding through P, by twisting a generic

using an automorphism. By Remark [2.2] we can assume that j : V — M
is an embedding as in the statement of Theorem such that

M= Na) | fiPAxKk =V Aa<FQO) A feVl.

First we will lift j through G, C P, by finding a filter for j(P,) that is
generic over M. We will need the following definitions of various cardinals
relating to F' and A.

DEFINITION 3.1. The first three definitions will be needed because the
forcings Py,4+1 and j(Py,4+1) are iterations of products over intervals deter-
mined by closure points of F' and j(F’) respectively, and these three cardinals
are important such closure points:

Ao := “the greatest closure point of F' that is at most \”,
A1 := “the least closure point of F' greater than A\g”,

MM .= “the least closure point of j(F) greater than Ay”.

The way one builds a generic for the forcing Add(+y, F'(y)) depends, of course,
on the size of F(v), and the regular cardinals vy and ~; defined below are
important transition points in the size of F'(~):

Yo := “the least regular cardinal less than or equal to A,
such that F(vyy) = F(\)”,

7 := “the least regular cardinal such that F(y;) > F(\)”.

We have £ < Ao < 70 < A <7 < F(A) = F(y) < j(F)(0) <
M < (k) < F(\)* < A1. Furthermore, if v € [x,70) is a regular car-
dinal then |j(F)(y)|Y = F(v), and since M and V have the same cardi-
nals < F()), it follows that j(F)(vy) = F(v). In other words, F' and j(F)
agree on [k,79) N REG. This implies that we may let Gf\;{AO) = Gx,\) and
g[j‘)ﬁ)ﬁo) = Gro0)- Note that F" and j(F') may disagree at o because M has
cardinals strictly between F(vo) = F(A) and (F(\)T)V.

Suppose 7 € [y0, F'(M\)] is a regular cardinal. Since j(k) is a closure
point of j(F) we have F(\) < j(F)(y) < j(k), and since |j(x)|¥ < F(\)
it follows that |j(F)(7)|V = F()\). Let us define a forcing [0 roy @F in
V[G,,] that will be used to obtain a generic for Q%J’(A)} over M[Gy,].
Working in V[G)], for regular v € [y0,71) let Q5 = Add(v,j(F)(v)) and
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notice that @ is isomorphic to Add(vy, F()) since i(EYY = i(k)]Y =
F'(\) = F(y). For regular v € [y, F(\)], let Q3" = Add(y,j(F)(7)) and
notice that Q3" is a truncation of Add(vy, F(7)) because for such v one has
J(F)(v) < j(k) < F(A)T < F(v). Now define

(3.1) 0, r00 @7 = 00 @5 % i roy @5

It is easy to see that H[V()’F()\)] Q;L completely embeds into H[%F(A)] Q~,
and hence there is a filter g[me,F()\)] € VIGy, * (Q[Ao,vo) X g[W,F(A)})] generic
over V(G * gixgn0)) Tor T ron @5 -

The lifting of j through G, will be broken up into two cases, depend-
ing on the regularity or singularity of F'(A). If F()\) is regular, the proof is
substantially simpler because it almost directly follows from the assumption
H(F()\)) € M (see Lemma below). If F'()\) is singular, there are two
cases to distinguish depending on whether the V-cofinality of F'(\) is A*
or not; in both cases the assumption of H(F(\)) C M is again essential,
but an additional argument is required. Assuming that F'()\) is singular,
the case in which cf(F(\))" = AT is easier to handle than the case where
cf(F(A\)) > AT. The latter case requires an induction along a matrix of co-
ordinates (see Lemma . To avoid long repetitions of the relevant proofs
in [FHOS8], we only include outlines of the proofs of Lemmas and
with detailed references to [FHO§| where appropriate (the proofs in [FHOS]
apply almost verbatim here when one identifies k with \).

LEMMA 3.2. Assume that F(X) is regular. Then there exists in
VIGx, * (Q[Aowo) X g[vo,F(A)})} an M[G)y, * g[,\o’,m)]—generic for Hf\;[o)\{”) Qy,

which we will denote as 9[1\740 Furthermore, we can take g% Al to agree

A
. + . M — gt M
with I N7 that is, Iroay = Ipo ] < Iy

Proof. Since F(A) is regular in V' and hence also in M, it follows that
M . : M
50,700 Qy is (F(\)Y)M-c.c. in MG}y, * g[ro,v0)]- Further, H(F(/\)J{”) Qy
is (F(A)")M-closed in M[Gy, * g[ry o)) It follows by Easton’s lemma that
generic filters for these forcings are mutually generic and therefore it suffices
to obtain generic filters for them separately.
As in [FHO8, Lemma 3.9], one may check that 9[]\7/[0,F(>\)} = g[fyO,F(A)] N

Hf\,;fof()\)] Qy is M[G,, * g[)\ov,m)]—generic and one can build an M[G), *

9[ro,v0)|-generic filter g%(/\M% for H%()\M{u) QQ/I in VG, * gppom0)]-

M M M
FoAM) = Io,FO)] < I(FO)AM)

that g% oMy = g[J;O’A] X g(]‘f\’/\{w). Since M[G),] is closed under A-sequences

in V[G),], we have Hf\’fo,ﬂ QM = [}, @3- Now use lb to obtain the

desired conclusion. m

Now we define g and it remains to show
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LEMMA 3.3. Assume that F(X\) is singular. Then there exists in
VIGy, * (Q[Ao,vo) X g[’yo,F()\)))] an M[G), * g[AOﬂO)]—genem'c for H?;IO,A{W) Qy,
which we will denote as 9[1\740

M
A

VI[G»,] and gé\i/\{v,) is M[G)y, * g[,\oﬂo)]—generic for H?f)\{u) Qy.

M
AM)- Furthermore, we can take Ty AM) to be of

the form U[g[‘;ON] X g where o is an automorphism of H[Wo,k] QY in

Proof. CASEI: Suppose F()) is singular in V with cf(F(\))V = AT (note
that F'(A) can be singular or regular in M). As in [FHOS8, Sublemma 3.12],

we can find a condition p., € Hho)\{w) Qj (which may only exist in

VI[Gxg *gprg o)) such that if  is generic for [, p(y) Q7 with pso [0, F(N))
in b and b = {poo [[F(X), M)} U{g € T} aan) Q3 | oo [IF(N), M) < b,
then (h x h') N MG, * gpag,v0)] 18 M[G g * gprg 40)]-generic for Hf\,;lo’wf) Qy
We define gf‘fo AMy 88 follows. A homogeneity argument can be used
AL
to find an automorphism o of J[;, | rn\) Q7 such that pe[[y0, F())) is in
U[g['fy0 F( /\))]. We obtain the desired generic by letting

(32) g[],\i)’)\{\/l) = (U[g[—:o’F()\))] X h/) N M[GAO *g[)‘O"\/O)]'

Since M|[G,,] is closed under A-sequences in V[G),], we have Hf\:{{)’ N QQ/[ =
Hhﬂ’/\] Q3. Now using 1' and the definition lb we obtain g{‘fo N
7190, )

CASE II: Suppose F()) is singular in V and cf(F(\))Y # AT (note that

F(X) can be singular or regular in M). If F(\) is regular in M then, as in

[FHOS, Sublemma 3.13], we can use a “matrix of confitions” argument to find

a Poo as above. As in Case I, g[]\,;[o’)\]lw) = a[g[f/O’F(A))] x h'is M[Gxg * [ngm0) )

ge;erlc for Hj\gyo AM) QY where b is soj\ile MG, * g[rg,40)]-generic filter for
H[F(Ii),)\{w) @y - Asin Case I, we get g7 ) = J[g[':O,A]].

If F()) is singular in M then an easier argument will suffice (see [FHOS),
Case (2), p. 205]). =

By Lemmas and above, if F'(\) is regular or singular in V', there
is an MG, * G|y ,0)]-generic filter g[]\w/{),A{”) for H%,A{W) Q% in

VG * ging,r 1] = VIGrg * (9100.70) X Ipo,m0)])]-

Define g[J‘fO,A{W) = Gros0) X g%))\{w). We will now use the fact that, depending

on whether F'()) is regular or singular, g[]‘fo

+
[’YU 7)‘] ’

. . +
My agrees with either Iy OF

an automorphic image of g to establish the following.
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LEMMA 3.4. The model M|Gy, *g[]\;[o’)\{w)] is closed under \-sequences in
VIGxy * 9o, ro)]-

Proof. It will suffice to argue that if X is a A-sequence of ordinals in
VIG o * (9120,70) X Gpro,F(v)))] then X is in MG, * (g[rg,40) X g[]\,fo’)\%)]. Since
[T\ py) @y is SA-distributive in VG, #g)y, 5], we have X € VG xgpx, 5]
Furthermore, since \ < ;, we deduce from that

X € V[Gho * gpo] = VIGh * (91070 X 915, )]
Since M[G,,] is closed under A-sequences in V[G),], it follows that

M *

(3:3) i3 @3 = Hpgne) @ % T @3-
First let us assume that F()) is regular, so that, by Lemma [3.2] we have
gP\A/[o,M = 9roiy0) ¥ g[J;O’M. As the forcing in 1) is isomorphic to HP\O,M Qy

in V[G,,], we see that it is AT-c.c. in V[G,,], and therefore the model

MG * (9prono) X 95 )] = MG * g )

is closed under A-sequences in V[G, * gy,,]- Thus X € M[G), * g[]‘)flo’/\}] C

MG, * g[]\)iloy)\iw)]'
Now let us assume F'()) is singular. By Lemma we have g[]\/{o N

Ioo) X a[gfgw\]} for some automorphism o of H[%/\] QY in V[G),]. Since

V[G/\O * (g[)\o,'yo) X g[—;O’)\])] = V[G/\o * (g[/\o,'yo) X O—[g[_;o,)\]])]

Aos0) X U[g['fm’)\]] is V[G,]-generic for the A*-c.c. forcing in ||

it follows as before that M[G, * (gng~) X a[gﬁw\}])] = M[G), * g[o’/\]]

and since g

is closed under A-sequences in V|G, * gp\,,n]- Thus X € M[G), * g[f‘fo /\}] -

MGy, * gf\fo)\{w)]. n

LEMMA 3.5. We can build an M[Gx, * (g[rg,40) X 9
Gt 17 P gy 7 VI * g ]

[A“i)v\f”))] -generic filter

Proof. There are at most A™ functions in V that represent names for

dense subsets of a tail of j(P;). Thus every dense subset of ]P’KM i) in
1

MG, * g[]\fo A {\4)] has a name represented by one of these functions. We may
use the fact that Pf\/{%j(n)) is <F(A)-closed in M[G), * g[l‘;fowa)] and that

MGy, * gf\fo /\M)} is closed under A-sequences in V[G), * g[/\mp(,\)}] to build
M1
M

a decreasing AT-sequence of conditions from P[,\%J‘(n)) in V[Gx, * gppo,r0)]]

KNI j(H)) )] It fOHOWS that
1

this AT-sequence of conditions generates the desired generic filter. m

meeting every dense subset of P in M[G), * gf\fo \M
"1
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Thus we may lift j to

j: VIGs] = M[j(G)],

M
(M5 (k)
Furthermore, M [j(Gy)] is closed under A-sequences in V[G, *gjxy,r(x))] and

MG ={i(N)T"Aa) | f:PAxr =V Aa<FQA)AfeV[G]}

where j(G,) = Gy, *9&7A%4)*G and j is a class of V[G, * g, ron)]-

3.2. Outline. Our goal is to lift j through the forcing Py, 5,) * QP\OJ\] =
Pleng) * H[)\O)\] Q. Our strategy will be to first use a master condition for
lifting j through P y,) of this forcing and then to use the surgery argument
of [CM14] to lift j through Qpy, x-

3.3. Lifting the embedding through P, ) ) via a master condition
argument. In V[G], the poset P, \,) has size no larger than A, and thus,
77 Gle,xo) has size at most A in VG g1, p(n))]- Hence 77 G o) € M[j(G)]
and since j(P \,)) is <j(k)-directed closed in M[j(Gy)], there is a master
condition p. x,) € J(P[s,ny)) extending every element of j” G|, 5,). We now
build an M[j(G)]-generic filter below py, ). First notice that every dense
subset of j(P(. ) in M[j(Gx)] can be written as j(h)(j” A, o) where h €
V[G] is a function from P\ x r into the collection of dense subsets of P, y)
and a < F()). Since in V[G] there are no more than A™ such functions,
it follows that we can enumerate them as (he | £ < AT) € V[G,] so that
every dense subset of j(P, »y)) in M[j(Gx)] is of the form j(h¢) (57 A, «) for
some ¢ < AT and some o < F()\). One can build a decreasing A\-sequence of
conditions (pg | £ < AT) € V[Gx, *gprg,r(1))] below p; vy such that for every
€ < AT the condition pg € J(Plx.g)) meets every dense subset of j(P, »,))
in M[j(Gx)] appearing in the sequence (j(h¢)(j”A, ) | @ < F(X)). Let
Gﬁfl(n)yj()\o)) € V[Gxy * gpro,r(2))] be the filter generated by (pe | € < A™T). By

construction, Gf;‘/[(n),j(/\o)) is M[j(Gy)]-generic and j” G, 5, € Gfg[(n),j()\o))'

Thus we may lift j to
(3.4) J: VIGr* Glang)l = M[j(Gr) * (G ng))]

where j(G.x,)) = ny(fi),j()\o)) and where j is a class of V|G, * g, r(0)]]-
Furthermore, M [j(Gx) * j(Gls )] is closed under A-sequences in
VG * ging,rov)-

3.4. Obtaining a generic for j(Q, ) for use in surgery. Now
we will lift j through the forcing Qqy, »j by applying the surgery technique
of [CM14]. We will factor the embedding in through an ultrapower
embedding jo, force with jo(Qx,,z)) over VG, * gjxy,7(x)] and then modify
the generic to lift the embedding.
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Let X = {j(h)(j"A) | h : PA — V[Gy], h € V[Gy,]}- Then it fol-
lows that X < M[j(Gy,)]. Let k : M) — MI[j(G),)] be the inverse of
the Mostowski collapse 7 : X — M and let jo : V[G),] — M be de-
fined by jo := k~!' o j. It follows that jy is the ultrapower embedding
by the measure Uy := {X C P | 7°X € j(X)} and we will see that
Up € V|G, * w(g[]\/{o’F(/\)])]. Using a theorem of Laver [Lav07], which says
that the ground model is always definable from a parameter in any set forc-
ing extension, we deduce by elementarity that M| is of the form My[jo(G2, )],
where My C M{; and jo(G),) C jo(P»,) € M{, is My-generic.

REMARK 3.6. Since j”A € X, it follows that X is closed under A-se-
quences in V[G), * 9iro,F( )\)]]. Thus AT C X and hence the transitive collapse
7 is the identity on [0, AT). In fact AT also belongs to X so the critical point
of k is greater than \*.

In Lemmas and below, we show that the forcing jo(Qpy,,z) be-
haves well in the model V[Gy, * g, p(a)], in the sense that it is highly
distributive and has a good chain condition. Then it easily follows that forc-
ing with jo(Qp,,n) over V[Gy, * gpr,7(n)]] Preserves cardinals, and since
SCH holds in VG, * % #(»)); this forcing does not disturb the continuum

3-9)

function (see Lemma

LEMMA 3.7. jo(Q,,\) is SA-distributive in V]G, * gx,,r)]-

Proof. Define S := jo(Qy,,5) and g[]\fé)’)\] = ﬂ(g[]‘fw\]). It follows that
géﬁ)ﬂ is generic over My[Gy,] for T := W(Hf\)/\[ON Q7). Notice that T is a
“truncated” version of Hf\fm N Q7 because 7 is the identity on [0, A]; more-
over, g[]\ﬁ) 5 18 generic for T" over VI[G,,) and T is At-c.c. over V[G,,].

We prove the lemma in two steps: (i) Firstly, we show that My[jo(Gx,)]
is closed under A-sequences in V* := V[GAO][g[A){é”)\] X gl this will
imply that S is <A-closed in V*. (ii) Secondly, we show that S remains
<A-distributive in V[Gx, * gz, r(r)], Which can be written—as we will
argue—as V*[gjy, \]-

As for (i), notice that jo|V : V — M is elementary, and M is closed
under A-sequences in V. The generic G, * g[]\fg A is added by a AT-c.c. forc-
ing over V, and hence My[G Ao][g[]\f;’ )\]] is still closed under A-sequences in

V[Gko][g[ﬂ)@)\ﬂ Finally, the forcing adding g(x r(x) is, by Easton’s lemma,

<\-distributive over V[G,\O][g[ﬂfg,)\]] (and therefore does not add new A-
sequences); now (i) follows because My[jo(G),)] is included in V*.

As for (i), notice that J]j, @~ (with the associated generic g, )
is isomorphic in V[G),] to T' x ][}, y @+- Now (ii), and hence the lemma,
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follows by another application of Easton’s lemma, using the AT-c.c. of
H[,\o,,\] @y =

LEMMA 3.8. jo(Qp,,x) i8 AT F-c.c. in V]G, * g, (1))

Proof. Notice that each condition p € jO(Q[AO,A]) can be written as
jo(hp)(3”A) for some function hy, : PoA — Qpy,\ in V]G] Thus, each
condition p € jo(Qp,,») leads to a function hy : A — Qp, 5 in V[Gy],
which is a condition in the full-support product of A copies of Qpy, \ taken
in V[G),], denoted by Q = (QP\ON))‘.

Let us argue that Q is ATT-c.c. in V[Gy, * gp+ p(r)]- We define the
domain of a condition p = (ps | {£ < A\) € Q to be the disjoint union of
the domains of its coordinates: domain(p) := | | dom(pg). It follows that
each p € Q, being the union of X sets, each of size less than ), has domain
of size at most A. Suppose A is an antichain of Q in V[G), * g+, of
size ATT. If there are AT conditions in A that have a common domain, say d,
then we immediately get a contradiction because, in V[G),, * IIA+,F( A)]L there
are at most 2* = AT functions in 2¢. Otherwise, the set domain(A4) =
{domain(p) | p € A} has size A*T. Since 2% = AT in V[G), * gt rovs it
follows that (At)<*" = At and hence, by the A-system lemma, domain(A)
contains a A-system of size AT with root r. This produces a contradiction,
because in V|G, * gja+ r(r)] We have [27| = 2N =\t

To see that Q is AT -c.c. in

(3.5) VIGxo * 9o, ro0]] = VIGx * 9+ ro01900,0]

we will use the fact that the product of §T-Knaster forcing with 6%-c.c.
forcing is 8T -c.c., where # > w is a cardinal. Since the forcing 90N S Qpro,n
is AT*-Knaster and Q is A™-c.c. in V[Gy, * g+ p(n)))s it follows that Q is
)\++—C.C. in the model V[G/\O * gP\O»F(A)]] = V[G)\D * 9[/\+,F(A)]H9[>\o,/\]]-

It remains to show that an antichain of jo(Qp\,,x) in V[Gxg * gprg, 7 (1))
with size AT would lead to an antichain of Q in V[Gx, * gp,,r)] of
size AT, but this is quite easy. Suppose A is an antichain of Jo(Qpg,n)
with size 0 in V[Gy, * gjag,rr))- Bach p € A is of the form jo(hy) (57 A)
where hy 1 PoA — Qpy,,\- As mentioned above, each h, leads to a condition
hy € Q. It is easy to check that A := {h, | p € A} is an antichain of Q in
V[G)\O * g[)\O,F(A)}] of size ATT. u

LEMMA 3.9. Forcing with jo(Qx,\) over VG, * ging,r(x)] Preserves
cardinals and does not disturb the continuum function.

Proof. By Lemma J0(Qprg,ny) 18 SA-distributive in VG, * gag, (2]
and thus preserves cardinals in [w, AT] and does not disturb the continuum
function on the interval [w, A].
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Lemma implies that cardinals in [A\T1,00) are preserved. Further-
more, by counting nice names we will now show that the continuum function
is not disturbed on [AT, 00). Working in V[Gx, * g5, r(n)]> since jo(Qpx,,x))
has size at most [*F(A) N V[Gy,]| = F()\) and is A**-c.c., we deduce that
if § € [A\T,00) is a cardinal then there are at most F(A\)*"9 = F(X)® nice
Jo(Qprg,n)-names for subsets of §. Since SCH holds in V[Gx, * gpng, )5
it follows that for all infinite cardinals u and v, if p < 2¥ then p¥ = 2%
(see [Jec03, Theorem 5.22(ii)(a)]). In particular, we have F'(\) < F(AT) < 2°
and so F(\)° = 29 in V[G), * 9o, F(]]- Thus there are at most 29 nice
Jo(Qrg,z)-names for subsets of §, and the result follows. m

Let J be a V[Gy, * g, r(n)]-generic filter for jo(Qx,,x])-

LEMMA 3.10. k”J generates an M[j(Gx,)]-generic filter for j(Qp,x),
which we will call K.

Proof. Suppose D € M[j(G),)] is an open dense subset of j(Qp,,x])
and let D = j(h)(j” A, «) for some h € V[G,,] with dom(h) = P\ X  and
a < F(X). Without loss of generality, let us assume that every element of the
range of h is a dense subset of Q|5 y) in V[G,]. We have D = j(h)(j" )\, a) =
k(jo(R))(j” A, @). Define a function h € My[jo(G)] with dom(h) = m(F()))
by h(€) = Jo(A)(jo" A, €). Then dom(k(F)) = k(x(F(X))) = F(\) and we
have D = k(h)(«). Now the range of h is a collection of 7(F'(A)) open dense
subsets ijo(@[/\o A])- Since jo(Qxy,x)) is <m(F(A))-distributive in Mo[jo(G)],
one sees that D = (ran(h) is an open dense subset of Jo(Qprg,x)- Hence

there is a condition p € JND, and by elementarity, k(p) € k’JNk(D) C D. =

3.5. Performing surgery. We will modify the M[j(G),)]-generic fil-
ter K C j(Q[AO A]) to get K* with j7gp\, y € K*. Then we will argue that
K* remains an M[j(G\,)]-generic filter for j(Q[y, ) using the main lemma
from [CM14].

Let us define K*. Working in V[Gx]lg[x,,7(r)], define

dom(j U{dom |p € Qpon)}

and let @ be the part1al function with dom(Q) € dom(j(Qx,,x)), defined by
Q =UJ"gp,n- Given p € K, let p* be the partial function with dom(p*) =
dom(p), obtained from p by altering p on dom(p) N"dom(Q) so that p* agrees
with Q. Let
K*={p"|peK}.

Clearly, j7g[x,,n © K*, and it remains to argue that p* is a condition in

J(Qpng,n)) for each p € K and that K* is an M[j(G),)]-generic filter. This
follows from the next lemma, which appears in [CM14].
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LeEmMA 3.11 ([CM14]). Suppose B € M[j(G),)] with B C j(dom(Qpy, )
and |B[MVU(Gx0)l < j(N). Then the set

Ip = {dom(j(q)) N B | q € Qg \}

has size at most X in V[G g * ging,r(2)])-

Proof. Let B be as in the statement and let B = j(h)(5” A, «) where
h: PV x £ — Pyt (dom(Qpy, ) %], a < F()) and h € V[G),]. Then
Uran(h) is a subset of dom(Qpy, ) in V]G] with [UJ ran(h)|V (@l < .
Since V[Gy,] = A<} = A (in V[G),] we have GCH on [A\g,A] and ) is a
regular cardinal), it will suffice to show that

Ip C {j(d) NB|de P;(Uran(h))‘/[GAO]}.

Suppose dom(j(q))NB € Zp where q € Q5. We will show dom(j(¢))NB =

7(d)N B for some d € Py((Jran(h))V%l. Let d := dom(g) N{Jran(h). Then
dom(j(q)) N B = j(d) N B since

j(d) = dom(j(q)) N | Jran(j(h)) 2 dom(j(g)) N B. =

It now follows from Lemma exactly as in [CM14] that K* is an
Mjo(G ), )]-generic filter for j(Q[y, 5))- Now let us show that K* C j(Qq,,x))-
Suppose p € j(Qy,,z)- Then since |dom (p)| MU (Gl < j(N), it follows from
Lemma that the set Zgom(p) := {dom(j(g)) Ndom(p) | ¢ € Qpx, n} has
size at most A in V[Gx, * i, rovyl- Let (Ia | @ < X) € VG, * gpo,p(0)]
be an enumeration of Zgqy (). By the maximality of the filter K, for each
a < A we can choose g, € K such that dom(j(ga)) Np = I,. It follows that
(4(ga) | @ < A) € M[j(Gy,)] because M[j(G),)] is closed under A-sequences
in VG, * g, o) Since j(Qpy,,z) 18 <j(Xo)-directed closed, it follows
that the partial master condition m := (J{j(¢a) | @ < A} is a condition in
7(Qpxy,7)); and moreover ¢* can be computed in M[j(G,)] by comparing p
and m.

To see that K* is M[j(G,,)]-generic, suppose A is a maximal anti-
chain of j(Qp,) in M[j(Gr,)]. Since Qpy, 5 is AT-c.c. in V[G)], it fol-
lows by elementarity that dom(A) := (J{dom(r) | » € A} has size at
most j(A) in M[j(G),)]. Hence by Lemma we see that Zyom(a) =
{dom(j(q)) Ndom(A) | g € Q,,} has size at most A in VG, * gpng,7(\)]]
and is therefore in M[j(G,,)]. Using this one can show, as in [CM14], that
there is a bit-flipping automorphism 74 of j(Qp, ) in M[j(G»,)] such that
if r € K and dom(r) C dom(A) then dom(mw(r)) = dom(r) and wa(r) = r*.
So, since ;' [A] € M[j(G),)] is a maximal antichain of j(Qpxe,\)> and K is
generic for j(Qy, \) over M[j(G|x, )], it follows that there is a condition
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s € KNy '[A]l. Then ma(s) = s* € K*N A, and therefore K* is generic for
J(Qpag,n)) over M[j(Gx,)]-
Thus we may lift the embedding to

3 VIGx * gpen] = MI3(Gxo) * 5 (910 .0)]
where j(g|x,,\) = K™ and j is a class of VG, * g, r(r)) * J]- It follows that

MIj(Gxy) * 3(gprg,n))] 18 closed under A-sequences in VG, * g, r(n)] * ]
and that

MIj(Gx) * 3(gpron)]
= GG\ a) [h: PAx =V A a<FA) A hEV[Gy* g}

Since the forcing g+ po*J € Qo+, FO) * Jo(Qprg,n) 18 <A-distributive
in VG, * gjrg,x)]; We see that the pointwise image j[gp\+ r(x) * J] generates

an M[j(G\,) * j(gxo,n)]-generic filter for j(Qp+ () * Jo(Qpa,,x7))- Denote
this filter by j(gia+ ) * J). Then the embedding lifts to

3 VIGxg * 9o, ro) * ] — MIG(Gxo) * (9o, r0)]) * 5 ()]

where j is a class of V[G)\O*g[)\ovpo\)] xJ], witnessing that x is A-supercompact
in this model.

3.6. Controlling the continuum function at F(\)" and above. In
the model V[G, * gy, 7(1)] * J] one has 27 = F(y) for every regular cardinal
v < F(A\) and GCH holds at all cardinals greater than or equal to F/(A)™.
Working in V|G, * g5, r(0) * /], let E be the Easton-support product of
Cohen forcing

E:= 11 Add(v, F(7)).

~E[F(A)+,00)NREG

Let E be generic for E over V|G, *g[x,, r(y) */]- Standard arguments [Eas70]
can be used to see that in V[G), *G 20, F(V)] xJ+E], for every regular cardinal v,
we have 27 = F'(7). Since E is <F(A)-closed in V[G\,*g[r,, (1) %], it follows
that the pointwise image j[E| generates an M[j(G.,) * j(gp\m o) * 3 ()]
generic filter for j(E), which we will denote by j(E). Then j lifts to

J 1 VIGx * gpo,rov) * J * Bl = M[j(Gx,) * (g, ro0)) * 3 () * 5(E)]

where j is a class of V[G, * gx,, (0] * J * E] witnessing that « is A-super-
compact in that model.
This finishes the proof of Theorem .

4. Open questions. First let us discuss the problem of globally con-
trolling the continuum function on the regular cardinals while preserving
multiple instances of partial supercompactness. Suppose GCH holds and we
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have regular cardinals kg < 79 < k1 < 11 such that, for each a € {0, 1},
Ka 1S Mo-supercompact. Additionally, assume F' is a function satisfying the
requirements (E1) and (E2) of Easton’s theorem, and that for each «
there is a j, : V — M, with critical point k, such that k., is closed un-
der F, M" C M, H(F(n,)) € M, and for each regular cardinal v < ,,
(|ia(F)(y)| = F(v))V. Then, as a corollary to the proof of Theorem
above, we obtain the following.

COROLLARY 4.1. There is a cardinal preserving forcing extension in
which 27 = F(v) for every reqular cardinal v and ko remains nq-super-
compact for o € {0,1}.

This corollary can be obtained by essentially applying the above proof of
Theorem twice. For example, first we carry out the proof of Theorem
with ko and 7y in place of x and A and where the forcing iteration used
terminates before stage k1. Lifting the embedding jo : V — My witnessing
that kg is nmo-supercompact requires the “extra forcing” that depends on jg.
Let Py denote the iteration defined so far, including the extra forcing. Since
Py has size less than the critical point k1 of the next embedding j1 : V' — My
witnessing the 7;-supercompactness of k1, it follows by the Lévy—Solovay
theorem that j; lifts through the iteration performed so far. Next, working
in VP0_ we perform an iteration for controlling the continuum function that
picks up where the last one left off. Call the iteration IP1, and lift j; through
the iteration Py x P; just as we lifted jo through Pg. Furthermore, since Py
is highly distributive in V'0, the first embedding jo will easily extend to
V]P’o *Pq .

Corollary only covers a simple configuration of partially supercom-
pact cardinals. Is a more general result possible? It seems that the need
for the “extra forcing” in our proof of Theorem prevents the method
from providing a clear strategy for obtaining a more general result in which
more complicated configurations of partially supercompact cardinals are pre-
served. It may be the case that the uniformity of the Sacks-forcing method,
which is applied in [FHO§| to obtain analogous global results for measurable
as well as strong cardinals, could lead to an answer to Question below.
One would desire a two-cardinal version of Sacks forcing for adding subsets
to k that satisfies A-fusion.

QUESTION 4.2. Assuming GCH, and given a class of partially super-
compact cardinals S and a function F' from the class of regular cardinals to
the class of cardinals satisfying Easton’s requirements (E1) and (E2), under
what conditions can one force the continuum function to agree with F' at
all regular cardinals, while preserving cardinals as well as the full degree of
partial supercompactness of each cardinal in S7
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Another potential way of strengthening Theorem [I.2] is to weaken the
hypothesis. This was done for the analogous theorem concerning measurable
cardinals in [FHI2al. In this direction, we pose the following question.

QUESTION 4.3. Can the hypothesis of Theorem 1.2 be weakened by re-
placing the assumption H(F'(\)) C M by the weaker assumption “V and M
have the same cardinals up to and including F'(A)”? Or, in the special case
when F'(\) = ™ for some regular cardinal u, by the ostensibly stronger as-
sumption that H(p) € M and (u7)™ = p+? (Note however that the latter
assumption is actually optimal for the analogous case when one wants to
find a model with a measurable cardinal x with 2F = p*, where y = k™"
for some n > 0; see [FH12a] for more details.)
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