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Abstract. Suppose that κ is λ-supercompact witnessed by an elementary embedding
j : V → M with critical point κ, and further suppose that F is a function from the
class of regular cardinals to the class of cardinals satisfying the requirements of Easton’s
theorem: (1) ∀α α < cf(F (α)), and (2) α < β ⇒ F (α) ≤ F (β). We address the question:
assuming GCH, what additional assumptions are necessary on j and F if one wants to
be able to force the continuum function to agree with F globally, while preserving the
λ-supercompactness of κ?

We show that, assuming GCH, if F is any function as above, and in addition for some
regular cardinal λ > κ there is an elementary embedding j : V →M with critical point κ
such that κ is closed under F , the model M is closed under λ-sequences, H(F (λ)) ⊆ M ,
and for each regular cardinal γ ≤ λ one has (|j(F )(γ)| = F (γ))V , then there is a cardinal-
preserving forcing extension in which 2δ = F (δ) for every regular cardinal δ and κ remains
λ-supercompact. This answers a question of [CM14].

1. Introduction. In this article we address the following question,
which is posed in [CM14].

Question 1.1. Given a λ-supercompact cardinal κ and assuming GCH,
what behaviors of the continuum function on the regular cardinals can be
forced while preserving the λ-supercompactness of κ, and from what hy-
potheses can such behaviors of the continuum function be obtained?

Let us first consider the special case where κ is κ-supercompact, in
other words κ is measurable. Silver proved that if κ is κ++-supercompact
and GCH holds, then there is a cofinality-preserving forcing extension in
which κ remains measurable and 2κ = κ++, but one can also obtain such
a model from a much weaker hypothesis. Woodin proved that the exis-
tence of a measurable cardinal κ such that 2κ = κ++ is equiconsistent
with the existence of an elementary embedding j : V → M with criti-
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cal point κ such that j(κ) > κ++ and Mκ ⊆ M . The forward direction
of Woodin’s equiconsistency is trivial, and for the backward direction the
embedding is lifted to a certain forcing extension V [G][H][g0] where g0 is
an “extra forcing” necessary for carrying out a surgical modification of a
generic filter on the M -side (see [Cum10, Theorem 25.1] or [Jec03, Theo-
rem 36.2]). A more uniform method for proving Woodin’s equiconsistency,
in which no “extra forcing” is required, is given in [FT08]. This method
involves lifting an elementary embedding through Sacks forcing on uncount-
able cardinals, an idea which has found many additional applications (see
[FM09], [FH08], [FZ10], [Hon10], [DF08], [FH12a] and [FH12b]). The uni-
formity of the method led to answers [FH08] to Question 1.1 in the case
that κ is a measurable cardinal and in the case that κ is a strong cardi-
nal.

In a result analagous to Woodin’s equiconsistency mentioned above, the
first author proved [Cod12] the equiconsistency of the following three hy-
potheses:

(i) There is a cardinal κ that is λ-supercompact and 2κ > λ++.
(ii) There is a cardinal κ that is λ-supercompact and 2λ > λ++.

(iii) There is an elementary embedding j : V →M with critical point κ
such that j(κ) > λ++ and Mλ ⊆M .

In the argument of [Cod12], a model of (ii) is obtained from a model of (iii)
by lifting the embedding j to a forcing extension of the form V [G][H][g0]
by using Woodin’s technique of surgically modifying a generic filter.
However, in the final model, κ is λ-supercompact and one has 2κ = 2λ

= λ++, so the final model satisfies both (i) and (ii). Furthermore, it is
remarked in [Cod12] that the surgery argument does not seem to yield
a model with GCH on the interval [κ, λ) and 2λ = λ++, where κ is
λ-supercompact.

The second and third authors showed that the more uniform method
involving Sacks forcing on uncountable cardinals can be used to address this
discordance. Indeed, it is shown in [FH12b] that from the hypothesis (iii)
above, and assuming GCH, there is a cofinality-preserving forcing extension
in which κ remains λ-supercompact, GCH holds on the interval [κ, λ) and
2λ = λ++. The following question is posed in [FH12b]: Starting with a model
of (iii) and GCH, is there a cofinality-preserving forcing extension in which
κ is λ-supercompact and for some regular cardinal γ with κ < γ < λ one
has GCH on [κ, γ) and 2γ = λ++? This question was recently answered in
[CM14] where it is shown that Woodin’s method of surgically modifying a
generic filter to lift an embedding can be extended to include the case where
modifications are made on “ghost-coordinates”. Indeed [CM14] establishes
that if GCH holds, F : [κ, λ] ∩ REG → CARD is any function satisfying
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Easton’s requirements

(E1) α < cf(F (α)), and
(E2) α < β implies F (α) ≤ F (β),

where λ > κ is a regular cardinal, and there is a j : V → M with
critical point κ such that j(κ) > F (λ) and Mλ ⊆ M , then there is a
cofinality-preserving forcing extension in which κ remains λ-supercompact
and 2γ = F (γ) for every regular cardinal γ with κ ≤ γ ≤ λ. This provides an
answer to the above Question 1.1 if we restrict our attention to controlling
the continuum function only on the interval [κ, λ] while preserving the λ-
supercompactness of κ. The uniformity of the method led to answers [FH08]
to Question 1.1 in the case that κ is a measurable cardinal and in the case
that κ is a strong cardinal. For example, using Sacks forcing on uncountable
cardinals, Friedman and Honzik proved that one can force the continuum
function to agree with a “locally definable” function satisfying the require-
ments of Easton’s theorem while preserving strong cardinals. Menas [Men76]
established a similar result for supercompactness using Cohen forcing and
master conditions.

In this article we combine the methods of [FH08] and [CM14] to address
Question 1.1 in the context of controlling the continuum function at all
regular cardinals by proving the following theorem.

Theorem 1.2. Assume GCH. Suppose F : REG→ CARD is a function
satisfying Easton’s requirements (E1) and (E2), for some regular cardinal
λ > κ there is an elementary embedding j : V → M with critical point κ
such that κ is closed under F , the model M is closed under λ-sequences,
H(F (λ)) ⊆ M , and for each regular cardinal γ ≤ λ one has (|j(F )(γ)|
= F (γ))V . Then there is a cardinal-preserving forcing extension in which
2δ = F (δ) for every regular cardinal δ and κ remains λ-supercompact.

The forcing used to prove Theorem 1.2 will be an Easton-support iter-
ation of Easton-support products of Cohen forcing. To lift the embedding
through the first κ-stages of the forcing, we will use the technique of twist-
ing a generic using an automorphism in order to obtain a generic for the
M -side (see [FH08]). In order to lift the embedding through a latter portion
of the iteration we will use the technique of surgically modifying a generic
filter on ghost-coordinates (see [CM14]), which will require us to use an
“extra forcing” over V . We will prove a lemma which establishes that the
extra forcing not only preserves cardinals, but it also does not disturb the
continuum function (see Lemma 3.9 below). Note that the latter was not
necessary in [CM14].

Regarding the hypothesis of Theorem 1.2, notice that if j : V → M
witnesses the λ-supercompactness of κ then it follows that for γ ≤ λ we
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have 2γ ≤ (2γ)M < j(κ) and futhermore, in V , the cardinality of (2γ)M is
equal to 2γ . Thus, if one desires to lift an embedding j : V →M to a forcing
extension in which the continuum function agrees with some F as in the
statement of Theorem 1.2, then one must require that (|j(F )(γ)| = F (γ))V .

2. Preliminaries. We assume familiarity with Easton’s theorem [Eas70]
as well as with lifting large cardinal embeddings through forcing [Cum10].

In the proof of Theorem 1.2 we will use the following forcing notion.
Suppose F is a function from the regular cardinals to the cardinals satisfying
the requirements (E1) and (E2) of Easton’s theorem and that κ < λ are
regular cardinals. We will let Q[κ,λ] denote the Easton-support product of
Cohen forcing that will ensure that, assuming GCH in the ground model, the
continuum function agrees with F on [κ, λ]∩REG in the forcing extension.
We can regard conditions p ∈ Q[κ,λ] as functions satisfying the following:

• Every element in dom(p) is of the form (γ, α, β) where γ ∈ [κ, λ] is a
regular cardinal, α < γ and β < F (γ).
• (Easton support) For each regular cardinal γ ∈ [κ, λ] we have

|{(δ, α, β) ∈ dom(p) | δ ≤ γ}| < γ.

• ran(p) ⊆ {0, 1}.
Lemma 2.1 ([Eas70]). Under GCH, forcing with the poset Q[κ,λ] pre-

serves all cofinalities and achieves 2γ = F (γ) for every regular cardinal
γ ∈ [κ, λ] while preserving GCH otherwise.

Remark 2.2. Suppose F and j are as in the hypothesis of Theorem 1.2.
Let us briefly show that one can assume, without loss of generality, that M
is of the form

M = {j(f)(j”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V }.
Let j : V →M be as in the statement of Theorem 1.2. We will show that

j can be factored through an embedding j0 : V →M0 having all the desired
properties. Let X0 = {j(f)(j”λ, α) | f : Pκλ×κ→ V ∧ α < F (λ) ∧ f ∈ V }
and X1 = {j(f)(j”λ, a) | f : Pκλ×H(κ)→ V ∧ a ∈ H(F (λ))∧ f ∈ V }. Now
let π0 : X → M0 and π1 : X1 → M1 be the Mostowski collapses of X0 and

X1 respectively. Define j0 := π−1
0 ◦ j : V →M0 and j1 := π−1

1 ◦ j : V →M1.
It follows that j0 : V → M0 has critical point κ, Mλ

0 ⊆ M0, j0(κ) > F (λ)
and M0 has the desired form

M0 = {j0(f)(j0”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V }.
It remains to show H(F (λ)) ⊆ M0. It is easy to see that H(F (λ)) ⊆ M1

using the fact that

M1 = {j1(f)(j1”λ, a) | f : Pκλ×H(κ)→ V ∧ a ∈ H(F (λ)) ∧ f ∈ V }.
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Since the map i : M0 →M1 defined by i(j0(f)(j0”λ, α)) := j1(f)(j1”λ, α) is
an elementary embedding with critical point greater than F (λ), and since i is
the identity on F (λ), it follows that i is surjective, and thus H(F (λ)) ⊆M0

= M1. To see that i is surjective onto H(F (λ)) (and thus onto M1) one uses
the fact that each x ∈ H(F (λ)) can be coded by a subset of some cardinal
δ < F (λ).

3. Proof of Theorem 1.2. Our final model will be a forcing exten-
sion of V by an ORD-length forcing iteration P, which will be broken up
as P ∼= P1 ∗ Ṡ ∗ Ṗ2. The first factor P1 will be an iteration forcing the
continuum function to agree with F at every regular cardinal less than
or equal to F (λ). The second factor S will be an “extra forcing” that
will be necessary to carry out the surgery argument to lift the embed-
ding j through P1. We will argue that the extra forcing S is mild in V P1

in the sense that it preserves all cofinalities and preserves the continuum

function. The last factor P2 ∈ V P1∗Ṡ will be a ≤F (λ)-closed, ORD-length
Easton-support product of Cohen forcing, which will force the continuum
function to agree with F at all regular cardinals greater than or equal
to F (λ)+.

For an ordinal α, let ᾱ denote the least closure point of F greater than α.
For a regular cardinal γ, the symbol Add(γ, F (γ)) denotes the forcing poset
for adding F (γ) Cohen subsets to γ.

Let λ0 be the greatest closure point of F which is less than or equal
to λ. We now recursively define an Easton-support forcing iteration Pλ0+1 =
〈(Pη, Q̇η) : η ≤ λ0〉 as follows.

(1) If η < λ0 is a closure point of F , then Q̇η is a Pη-name for the
Easton-support product

Q[η,η̄) =
∏

γ∈[η,η̄)∩REG

Add(γ, F (γ))

as defined in V Pη and Pη+1 = Pη ∗ Q̇η.

(2) If η = λ0, then Q̇η is a Pλ0-name for

Q[λ0,F (λ)] =
∏

γ∈[λ0,F (λ)]∩REG

Add(γ, F (γ))

as defined in V Pλ0 and Pλ0+1 = Pλ0 ∗ Q̇λ0 .
(3) Otherwise, if η < λ0 is not a closure point of F , then Q̇η is a Pη-name

for trivial forcing and Pη+1 = Pη ∗ Q̇η.

Let Gλ0+1 be generic for Pλ0+1 over V .

Notation. We will adopt the notation and conventions used in [FH08].
We will use

∏
[η,η̄)Qγ to denote Q[η,η̄) where Qγ := Add(γ, F (γ)) denotes an



284 B. Cody et al.

individual factor of the product, and similarly g[η,η̄) denotes the correspond-
ing generic filter. It will be understood that, for example, g[η,η̄) is a product
over just the regular cardinals in the interval [η, η̄) of the relevant generic
filters. In particular, if η is a singular cardinal then there is no forcing over
η in the product g[η,η̄) ⊆

∏
[η,η̄)Qγ .

3.1. Lifting the embedding through Pκ by twisting a generic
using an automorphism. By Remark 2.2 we can assume that j : V →M
is an embedding as in the statement of Theorem 1.2 such that

M = {j(f)(j”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V }.
First we will lift j through Gκ ⊆ Pκ by finding a filter for j(Pκ) that is

generic over M . We will need the following definitions of various cardinals
relating to F and λ.

Definition 3.1. The first three definitions will be needed because the
forcings Pλ0+1 and j(Pλ0+1) are iterations of products over intervals deter-
mined by closure points of F and j(F ) respectively, and these three cardinals
are important such closure points:

λ0 := “the greatest closure point of F that is at most λ”,

λ1 := “the least closure point of F greater than λ0”,

λM1 := “the least closure point of j(F ) greater than λ0”.

The way one builds a generic for the forcing Add(γ, F (γ)) depends, of course,
on the size of F (γ), and the regular cardinals γ0 and γ1 defined below are
important transition points in the size of F (γ):

γ0 := “the least regular cardinal less than or equal to λ,

such that F (γ0) = F (λ)”,

γ1 := “the least regular cardinal such that F (γ1) > F (λ)”.

We have κ ≤ λ0 ≤ γ0 ≤ λ < γ1 ≤ F (λ) = F (γ0) ≤ j(F )(γ0) <
λM1 < j(κ) < F (λ)+ < λ1. Furthermore, if γ ∈ [κ, γ0) is a regular car-
dinal then |j(F )(γ)|V = F (γ), and since M and V have the same cardi-
nals ≤ F (λ), it follows that j(F )(γ) = F (γ). In other words, F and j(F )
agree on [κ, γ0) ∩ REG. This implies that we may let GM[κ,λ0) = G[κ,λ0) and

gM[λ0,γ0) = g[λ0,γ0). Note that F and j(F ) may disagree at γ0 because M has

cardinals strictly between F (γ0) = F (λ) and (F (λ)+)V .
Suppose γ ∈ [γ0, F (λ)] is a regular cardinal. Since j(κ) is a closure

point of j(F ) we have F (λ) ≤ j(F )(γ) < j(κ), and since |j(κ)|V ≤ F (λ)
it follows that |j(F )(γ)|V = F (λ). Let us define a forcing

∏
[γ0,F (λ)]Q

+
γ in

V [Gλ0 ] that will be used to obtain a generic for QM
[γ0,F (λ)] over M [Gλ0 ].

Working in V [Gλ0 ], for regular γ ∈ [γ0, γ1) let Q∗γ = Add(γ, j(F )(γ)) and



Easton functions and supercompactness 285

notice that Q∗γ is isomorphic to Add(γ, F (γ)) since |j(F )(γ)|V = |j(κ)|V =
F (λ) = F (γ). For regular γ ∈ [γ1, F (λ)], let Q∗∗γ = Add(γ, j(F )(γ)) and
notice that Q∗∗γ is a truncation of Add(γ, F (γ)) because for such γ one has
j(F )(γ) < j(κ) < F (λ)+ ≤ F (γ). Now define∏

[γ0,F (λ)]Q
+
γ :=

∏
[γ0,γ1)Q

∗
γ ×

∏
[γ1,F (λ)]Q

∗∗
γ .(3.1)

It is easy to see that
∏

[γ0,F (λ)]Q
+
γ completely embeds into

∏
[γ0,F (λ)]Qγ ,

and hence there is a filter g+
[γ0,F (λ)] ∈ V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)])] generic

over V [Gλ0 ∗ g[λ0,γ0)] for
∏

[γ0,F (λ)]Q
+
γ .

The lifting of j through Gκ will be broken up into two cases, depend-
ing on the regularity or singularity of F (λ). If F (λ) is regular, the proof is
substantially simpler because it almost directly follows from the assumption
H(F (λ)) ⊆ M (see Lemma 3.2 below). If F (λ) is singular, there are two
cases to distinguish depending on whether the V -cofinality of F (λ) is λ+

or not; in both cases the assumption of H(F (λ)) ⊆ M is again essential,
but an additional argument is required. Assuming that F (λ) is singular,
the case in which cf(F (λ))V = λ+ is easier to handle than the case where
cf(F (λ)) > λ+. The latter case requires an induction along a matrix of co-
ordinates (see Lemma 3.3). To avoid long repetitions of the relevant proofs
in [FH08], we only include outlines of the proofs of Lemmas 3.2 and 3.3,
with detailed references to [FH08] where appropriate (the proofs in [FH08]
apply almost verbatim here when one identifies κ with λ).

Lemma 3.2. Assume that F (λ) is regular. Then there exists in

V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)])] an M [Gλ0 ∗ g[λ0,γ0)]-generic for
∏M

[γ0,λM1 )Q
M
γ ,

which we will denote as gM
[γ0,λM1 )

. Furthermore, we can take gM[γ0,λ] to agree

with g+
[γ0,λ], that is, gM

[γ0,λM1 )
= g+

[γ0,λ] × g
M
(λ,λM1 )

.

Proof. Since F (λ) is regular in V and hence also in M , it follows that∏M
[γ0,F (λ)]Q

M
γ is (F (λ)+)M -c.c. in M [Gλ0 ∗ g[λ0,γ0)]. Further,

∏M
(F (λ),λM1 )Q

M
γ

is (F (λ)+)M -closed in M [Gλ0 ∗ g[λ0,γ0)]. It follows by Easton’s lemma that
generic filters for these forcings are mutually generic and therefore it suffices
to obtain generic filters for them separately.

As in [FH08, Lemma 3.9], one may check that gM[γ0,F (λ)] := g+
[γ0,F (λ)] ∩∏M

[γ0,F (λ)]Q
M
γ is M [Gλ0 ∗ g[λ0,γ0)]-generic and one can build an M [Gλ0 ∗

g[λ0,γ0)]-generic filter gM
(F (λ),λM1 )

for
∏M

(F (λ),λM1 )Q
M
γ in V [Gλ0 ∗ g[λ0,γ0)].

Now we define gM
[γ0,λM1 )

:= gM[γ0,F (λ)] × g
M
(F (λ),λM1 )

and it remains to show

that gM
[γ0,λM1 )

= g+
[γ0,λ] × g

M
(λ,λM1 )

. Since M [Gλ0 ] is closed under λ-sequences

in V [Gλ0 ], we have
∏M

[γ0,λ]Q
M
γ =

∏
[γ0,λ]Q

∗
γ . Now use (3.1) to obtain the

desired conclusion.
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Lemma 3.3. Assume that F (λ) is singular. Then there exists in

V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)))] an M [Gλ0 ∗ g[λ0,γ0)]-generic for
∏M

[γ0,λM1 )Q
M
γ ,

which we will denote as gM
[γ0,λM1 )

. Furthermore, we can take gM
[γ0,λM1 )

to be of

the form σ[g+
[γ0,λ]] × g

M
(λ,λM1 )

where σ is an automorphism of
∏

[γ0,λ]Q
+
γ in

V [Gλ0 ] and gM
(λ,λM1 )

is M [Gλ0 ∗ g[λ0,γ0)]-generic for
∏M

(λ,λM1 )Q
M
γ .

Proof. Case I: Suppose F (λ) is singular in V with cf(F (λ))V = λ+ (note
that F (λ) can be singular or regular in M). As in [FH08, Sublemma 3.12],
we can find a condition p∞ ∈

∏
[γ0,λM1 )Q

+
γ (which may only exist in

V [Gλ0 ∗g[λ0,γ0)]) such that if h is generic for
∏

[γ0,F (λ))Q
+
γ with p∞�[γ0, F (λ))

in h and h′ = {p∞�[F (λ), λM1 )}∪{q ∈
∏M

[F (λ),λM1 )Q
M
γ | p∞�[F (λ), λM1 ) ≤ q},

then (h×h′)∩M [Gλ0 ∗ g[λ0,γ0)] is M [Gλ0 ∗ g[λ0,γ0)]-generic for
∏M

[γ0,λM1 )Q
M
γ .

We define gM
[γ0,λM1 )

as follows. A homogeneity argument can be used

to find an automorphism σ of
∏

[γ0,F (λ))Q
+
γ such that p∞�[γ0, F (λ)) is in

σ[g+
[γ0,F (λ))]. We obtain the desired generic by letting

gM
[γ0,λM1 )

:= (σ[g+
[γ0,F (λ))]× h

′) ∩M [Gλ0 ∗ g[λ0,γ0)].(3.2)

Since M [Gλ0 ] is closed under λ-sequences in V [Gλ0 ], we have
∏M

[γ0,λ]Q
M
γ =∏

[γ0,λ]Q
∗
γ . Now using (3.1) and the definition (3.2), we obtain gM[γ0,λ] =

σ[g+
[γ0,λ]].

Case II: Suppose F (λ) is singular in V and cf(F (λ))V 6= λ+ (note that
F (λ) can be singular or regular in M). If F (λ) is regular in M then, as in
[FH08, Sublemma 3.13], we can use a “matrix of confitions” argument to find
a p∞ as above. As in Case I, gM

[γ0,λM1 )
:= σ[g+

[γ0,F (λ))]×h
′ is M [Gλ0 ∗ g[λ0,γ0)]-

generic for
∏M

[γ0,λM1 )Q
M
γ where h′ is some M [Gλ0 ∗ g[λ0,γ0)]-generic filter for∏M

[F (κ),λM1 )Q
M
γ . As in Case I, we get gM[γ0,λ] = σ[g+

[γ0,λ]].

If F (λ) is singular in M then an easier argument will suffice (see [FH08,
Case (2), p. 205]).

By Lemmas 3.2 and 3.3 above, if F (λ) is regular or singular in V , there

is an M [Gλ0 ∗ g[λ0,γ0)]-generic filter gM
[γ0,λM1 )

for
∏M

[γ0,λM1 )Q
M
γ in

V [Gλ0 ∗ g[λ0,F (λ)]] = V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)])].

Define gM
[λ0,λM1 )

:= g[λ0,γ0)×gM[γ0,λM1 )
. We will now use the fact that, depending

on whether F (λ) is regular or singular, gM
[γ0,λM1 )

agrees with either g+
[γ0,λ] or

an automorphic image of g+
[γ0,λ], to establish the following.
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Lemma 3.4. The model M [Gλ0 ∗gM[λ0,λM1 )
] is closed under λ-sequences in

V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. It will suffice to argue that if X is a λ-sequence of ordinals in
V [Gλ0 ∗ (g[λ0,γ0)× g[γ0,F (λ)])] then X is in M [Gλ0 ∗ (g[λ0,γ0)× gM[γ0,λM1 )

)]. Since∏
(λ,F (λ)]Qγ is≤λ-distributive in V [Gλ0∗g[λ0,λ]], we haveX ∈ V [Gλ0∗g[λ0,λ]].

Furthermore, since λ < γ1, we deduce from (3.1) that

X ∈ V [Gλ0 ∗ g[λ0,λ]] = V [Gλ0 ∗ (g[λ0,γ0) × g+
[γ0,λ])].

Since M [Gλ0 ] is closed under λ-sequences in V [Gλ0 ], it follows that∏M
[λ0,λ]Q

M
γ =

∏
[λ0,γ0)Qγ ×

∏
[γ0,λ]Q

∗
γ .(3.3)

First let us assume that F (λ) is regular, so that, by Lemma 3.2, we have
gM[λ0,λ] = g[λ0,γ0) × g+

[γ0,λ]. As the forcing in (3.3) is isomorphic to
∏

[λ0,λ]Qγ

in V [Gλ0 ], we see that it is λ+-c.c. in V [Gλ0 ], and therefore the model

M [Gλ0 ∗ (g[λ0,γ0) × g+
[γ0,λ])] = M [Gλ0 ∗ gM[λ0,λ]]

is closed under λ-sequences in V [Gλ0 ∗ g[λ0,λ]]. Thus X ∈M [Gλ0 ∗ gM[λ0,λ]] ⊆
M [Gλ0 ∗ gM[λ0,λM1 )

].

Now let us assume F (λ) is singular. By Lemma 3.3 we have gM[λ0,λ] =

g[λ0,γ0) × σ[g+
[γ0,λ]] for some automorphism σ of

∏
[γ0,λ]Q

+
γ in V [Gλ0 ]. Since

V [Gλ0 ∗ (g[λ0,γ0) × g+
[γ0,λ])] = V [Gλ0 ∗ (g[λ0,γ0) × σ[g+

[γ0,λ]])]

and since g[λ0,γ0)×σ[g+
[γ0,λ]] is V [Gλ0 ]-generic for the λ+-c.c. forcing in (3.3),

it follows as before that M [Gλ0 ∗ (g[λ0,γ0) × σ[g+
[γ0,λ]])] = M [Gλ0 ∗ gM[λ0,λ]]

is closed under λ-sequences in V [Gλ0 ∗ g[λ0,λ]]. Thus X ∈M [Gλ0 ∗ gM[λ0,λ]] ⊆
M [Gλ0 ∗ gM[λ0,λM1 )

].

Lemma 3.5. We can build an M [Gλ0 ∗ (g[λ0,γ0)× gM[γ0,λM1 )
)]-generic filter

GM
[λM1 ,j(κ))

for PM
[λM1 ,j(κ))

in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. There are at most λ+ functions in V that represent names for
dense subsets of a tail of j(Pκ). Thus every dense subset of PM

[λM1 ,j(κ))
in

M [Gλ0 ∗gM[λ0,λM1 )
] has a name represented by one of these functions. We may

use the fact that PM
[λM1 ,j(κ))

is ≤F (λ)-closed in M [Gλ0 ∗ gM[λ0,λM1 )
] and that

M [Gλ0 ∗ gM[λ0,λM1 )
] is closed under λ-sequences in V [Gλ0 ∗ g[λ0,F (λ)]] to build

a decreasing λ+-sequence of conditions from PM
[λM1 ,j(κ))

in V [Gλ0 ∗ g[λ0,F (λ)]]

meeting every dense subset of PM
[λM1 ,j(κ))

in M [Gλ0 ∗ gM[λ0,λM1 )
]. It follows that

this λ+-sequence of conditions generates the desired generic filter.
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Thus we may lift j to

j : V [Gκ]→M [j(Gκ)],

where j(Gκ) = Gλ0 ∗gM[λ0,λM1 )
∗GM

[λM1 ,j(κ))
and j is a class of V [Gλ0 ∗g[λ0,F (λ)]].

Furthermore, M [j(Gκ)] is closed under λ-sequences in V [Gλ0 ∗g[λ0,F (λ))] and

M [j(Gκ)] = {j(f)(j”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V [Gκ]}.

3.2. Outline. Our goal is to lift j through the forcing P[κ,λ0) ∗ Q̇[λ0,λ] =

P[κ,λ0) ∗
∏

[λ0,λ]Qγ . Our strategy will be to first use a master condition for

lifting j through P[κ,λ0) of this forcing and then to use the surgery argument

of [CM14] to lift j through Q[λ0,λ].

3.3. Lifting the embedding through P[κ,λ0) via a master condition
argument. In V [Gκ], the poset P[κ,λ0) has size no larger than λ, and thus,
j”G[κ,λ0) has size at most λ in V [Gλ0∗g[λ0,F (λ))]. Hence j”G[κ,λ0) ∈M [j(Gκ)]
and since j(P[κ,λ0)) is <j(κ)-directed closed in M [j(Gκ)], there is a master
condition p[κ,λ0) ∈ j(P[κ,λ0)) extending every element of j”G[κ,λ0). We now

build an M [j(Gκ)]-generic filter below p[κ,λ0). First notice that every dense
subset of j(P[κ,λ0)) in M [j(Gκ)] can be written as j(h)(j”λ, α) where h ∈
V [Gκ] is a function from Pκλ×κ into the collection of dense subsets of P[κ,λ0)

and α < F (λ). Since in V [Gκ] there are no more than λ+ such functions,
it follows that we can enumerate them as 〈hξ | ξ < λ+〉 ∈ V [Gκ] so that
every dense subset of j(P[κ,λ0)) in M [j(Gκ)] is of the form j(hξ)(j”λ, α) for

some ξ < λ+ and some α < F (λ). One can build a decreasing λ+-sequence of
conditions 〈pξ | ξ < λ+〉 ∈ V [Gλ0 ∗g[λ0,F (λ))] below p[κ,λ0) such that for every
ξ < λ+ the condition pξ ∈ j(P[κ,λ0)) meets every dense subset of j(P[κ,λ0))
in M [j(Gκ)] appearing in the sequence 〈j(hξ)(j”λ, α) | α < F (λ)〉. Let
GM[j(κ),j(λ0)) ∈ V [Gλ0 ∗ g[λ0,F (λ))] be the filter generated by 〈pξ | ξ < λ+〉. By

construction, GM[j(κ),j(λ0)) is M [j(Gκ)]-generic and j”G[κ,λ0) ⊆ GM[j(κ),j(λ0)).

Thus we may lift j to

j : V [Gκ ∗G[κ,λ0)]→M [j(Gκ) ∗ j(G[κ,λ0))](3.4)

where j(G[κ,λ0)) = GM[j(κ),j(λ0)) and where j is a class of V [Gλ0 ∗ g[λ0,F (λ)]].

Furthermore, M [j(Gκ) ∗ j(G[κ,λ0))] is closed under λ-sequences in
V [Gλ0 ∗ g[λ0,F (λ)]].

3.4. Obtaining a generic for j(Q[λ0,λ]) for use in surgery. Now
we will lift j through the forcing Q[λ0,λ] by applying the surgery technique
of [CM14]. We will factor the embedding in (3.4) through an ultrapower
embedding j0, force with j0(Q[λ0,λ]) over V [Gλ0 ∗ g[λ0,F (λ)]] and then modify
the generic to lift the embedding.
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Let X = {j(h)(j”λ) | h : Pκλ → V [Gλ0 ], h ∈ V [Gλ0 ]}. Then it fol-
lows that X ≺ M [j(Gλ0)]. Let k : M ′0 → M [j(Gλ0)] be the inverse of
the Mostowski collapse π : X → M ′0 and let j0 : V [Gλ0 ] → M ′0 be de-
fined by j0 := k−1 ◦ j. It follows that j0 is the ultrapower embedding
by the measure U0 := {X ⊆ Pκλ | j”λ ∈ j(X)} and we will see that
U0 ∈ V [Gλ0 ∗ π(gM[λ0,F (λ)])]. Using a theorem of Laver [Lav07], which says

that the ground model is always definable from a parameter in any set forc-
ing extension, we deduce by elementarity that M ′0 is of the form M0[j0(Gλ0)],
where M0 ⊆M ′0 and j0(Gλ0) ⊆ j0(Pλ0) ∈M ′0 is M0-generic.

Remark 3.6. Since j”λ ∈ X, it follows that X is closed under λ-se-
quences in V [Gλ0 ∗g[λ0,F (λ)]]. Thus λ+ ⊆ X and hence the transitive collapse
π is the identity on [0, λ+). In fact λ+ also belongs to X so the critical point
of k is greater than λ+.

In Lemmas 3.7 and 3.8 below, we show that the forcing j0(Q[λ0,λ]) be-
haves well in the model V [Gλ0 ∗ g[λ0,F (λ)]], in the sense that it is highly
distributive and has a good chain condition. Then it easily follows that forc-
ing with j0(Q[λ0,λ]) over V [Gλ0 ∗ g[λ0,F (λ)]] preserves cardinals, and since
SCH holds in V [Gλ0 ∗g[λ0,F (λ)]], this forcing does not disturb the continuum
function (see Lemma 3.9).

Lemma 3.7. j0(Q[λ0,λ]) is ≤λ-distributive in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. Define S := j0(Q[λ0,λ]) and gM0

[λ0,λ] := π(gM[λ0,λ]). It follows that

gM0

[λ0,λ] is generic over M0[Gλ0 ] for T := π(
∏M

[λ0,λ]Q
+
γ ). Notice that T is a

“truncated” version of
∏M

[λ0,λ]Q
+
γ because π is the identity on [0, λ]; more-

over, gM0

[λ0,λ] is generic for T over V [Gλ0 ] and T is λ+-c.c. over V [Gλ0 ].

We prove the lemma in two steps: (i) Firstly, we show that M0[j0(Gλ0)]

is closed under λ-sequences in V ∗ := V [Gλ0 ][gM0

[λ0,λ] × g(λ,F (λ)]]; this will

imply that S is ≤λ-closed in V ∗. (ii) Secondly, we show that S remains
≤λ-distributive in V [Gλ0 ∗ g[λ0,F (λ)]], which can be written—as we will
argue—as V ∗[g[λ0,λ]].

As for (i), notice that j0|V : V → M is elementary, and M is closed
under λ-sequences in V . The generic Gλ0 ∗ g

M0

[λ0,λ] is added by a λ+-c.c. forc-

ing over V , and hence M0[Gλ0 ][gM0

[λ0,λ]] is still closed under λ-sequences in

V [Gλ0 ][gM0

[λ0,λ]]. Finally, the forcing adding g(λ,F (λ)] is, by Easton’s lemma,

≤λ-distributive over V [Gλ0 ][gM0

[λ0,λ]] (and therefore does not add new λ-

sequences); now (i) follows because M0[j0(Gλ0)] is included in V ∗.

As for (ii), notice that
∏

[λ0,λ]Qγ (with the associated generic g[λ0,λ])

is isomorphic in V [Gλ0 ] to T ×
∏

[λ0,λ]Qγ . Now (ii), and hence the lemma,
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follows by another application of Easton’s lemma, using the λ+-c.c. of∏
[λ0,λ]Qγ .

Lemma 3.8. j0(Q[λ0,λ]) is λ++-c.c. in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. Notice that each condition p ∈ j0(Q[λ0,λ]) can be written as
j0(hp)(j”λ) for some function hp : Pκλ → Q[λ0,λ] in V [Gλ0 ]. Thus, each

condition p ∈ j0(Q[λ0,λ]) leads to a function h̄p : λ → Q[λ0,λ] in V [Gλ0 ],
which is a condition in the full-support product of λ copies of Q[λ0,λ] taken

in V [Gλ0 ], denoted by Q̄ = (Q[λ0,λ])
λ.

Let us argue that Q̄ is λ++-c.c. in V [Gλ0 ∗ g[λ+,F (λ)]]. We define the

domain of a condition p = 〈pξ | ξ < λ〉 ∈ Q̄ to be the disjoint union of
the domains of its coordinates: domain(p) :=

⊔
ξ<λ dom(pξ). It follows that

each p ∈ Q̄, being the union of λ sets, each of size less than λ, has domain
of size at most λ. Suppose A is an antichain of Q̄ in V [Gλ0 ∗ g[λ+,F (λ)]] of
size λ++. If there are λ++ conditions in A that have a common domain, say d,
then we immediately get a contradiction because, in V [Gλ0 ∗g[λ+,F (λ)]], there

are at most 2λ = λ+ functions in 2d. Otherwise, the set domain(A) =
{domain(p) | p ∈ A} has size λ++. Since 2λ = λ+ in V [Gλ0 ∗ g[λ+,F (λ)]], it

follows that (λ+)<λ
+

= λ+, and hence, by the ∆-system lemma, domain(A)
contains a ∆-system of size λ++ with root r. This produces a contradiction,
because in V [Gλ0 ∗ g[λ+,F (λ)]] we have |2r| = 2λ = λ+.

To see that Q̄ is λ++-c.c. in

V [Gλ0 ∗ g[λ0,F (λ)]] = V [Gλ0 ∗ g[λ+,F (λ)]][g[λ0,λ]](3.5)

we will use the fact that the product of θ+-Knaster forcing with θ+-c.c.
forcing is θ+-c.c., where θ > ω is a cardinal. Since the forcing g[λ0,λ] ⊆ Q[λ0,λ]

is λ++-Knaster and Q̄ is λ++-c.c. in V [Gλ0 ∗ g[λ+,F (λ)]], it follows that Q̄ is
λ++-c.c. in the model V [Gλ0 ∗ g[λ0,F (λ)]] = V [Gλ0 ∗ g[λ+,F (λ)]][g[λ0,λ]].

It remains to show that an antichain of j0(Q[λ0,λ]) in V [Gλ0 ∗ g[λ0,F (λ)]]

with size λ++ would lead to an antichain of Q̄ in V [Gλ0 ∗ g[λ0,F (λ)]] of
size λ++, but this is quite easy. Suppose A is an antichain of j0(Q[λ0,λ])

with size δ in V [Gλ0 ∗ g[λ0,F (λ)]]. Each p ∈ A is of the form j0(hp)(j”λ)
where hp : Pκλ→ Q[λ0,λ]. As mentioned above, each hp leads to a condition

h̄p ∈ Q̄. It is easy to check that Ā := {h̄p | p ∈ A} is an antichain of Q̄ in
V [Gλ0 ∗ g[λ0,F (λ)]] of size λ++.

Lemma 3.9. Forcing with j0(Q[λ0,λ]) over V [Gλ0 ∗ g[λ0,F (λ)]] preserves
cardinals and does not disturb the continuum function.

Proof. By Lemma 3.7, j0(Q[λ0,λ]) is ≤λ-distributive in V [Gλ0 ∗g[λ0,F (λ)]]

and thus preserves cardinals in [ω, λ+] and does not disturb the continuum
function on the interval [ω, λ].
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Lemma 3.8 implies that cardinals in [λ++,∞) are preserved. Further-
more, by counting nice names we will now show that the continuum function
is not disturbed on [λ+,∞). Working in V [Gλ0 ∗ g[λ0,F (λ)]], since j0(Q[λ0,λ])

has size at most |λF (λ) ∩ V [Gλ0 ]| = F (λ) and is λ++-c.c., we deduce that

if δ ∈ [λ+,∞) is a cardinal then there are at most F (λ)λ
+·δ = F (λ)δ nice

j0(Q[λ0,λ])-names for subsets of δ. Since SCH holds in V [Gλ0 ∗ g[λ0,F (λ)]],

it follows that for all infinite cardinals µ and ν, if µ ≤ 2ν then µν = 2ν

(see [Jec03, Theorem 5.22(ii)(a)]). In particular, we have F (λ) ≤ F (λ+) ≤ 2δ

and so F (λ)δ = 2δ in V [Gλ0 ∗ g[λ0,F (λ)]]. Thus there are at most 2δ nice
j0(Q[λ0,λ])-names for subsets of δ, and the result follows.

Let J be a V [Gλ0 ∗ g[λ0,F (λ)]]-generic filter for j0(Q[λ0,λ]).

Lemma 3.10. k”J generates an M [j(Gλ0)]-generic filter for j(Q[λ0,λ]),
which we will call K.

Proof. Suppose D ∈ M [j(Gλ0)] is an open dense subset of j(Q[λ0,λ])
and let D = j(h)(j”λ, α) for some h ∈ V [Gλ0 ] with dom(h) = Pκλ× κ and
α < F (λ). Without loss of generality, let us assume that every element of the
range of h is a dense subset of Q[λ0,λ] in V [Gλ0 ]. We have D = j(h)(j”λ, α) =

k(j0(h))(j”λ, α). Define a function h̃ ∈ M0[j0(G)] with dom(h̃) = π(F (λ))

by h̃(ξ) = j0(h)(j0”λ, ξ). Then dom(k(h̃)) = k(π(F (λ))) = F (λ) and we

have D = k(h̃)(α). Now the range of h̃ is a collection of π(F (λ)) open dense
subsets of j0(Q[λ0,λ]). Since j0(Q[λ0,λ]) is≤π(F (λ))-distributive inM0[j0(G)],

one sees that D̃ =
⋂

ran(h̃) is an open dense subset of j0(Q[λ0,λ]). Hence

there is a condition p ∈ J∩D̃, and by elementarity, k(p) ∈ k”J∩k(D̃) ⊆ D.

3.5. Performing surgery. We will modify the M [j(Gλ0)]-generic fil-
ter K ⊆ j(Q[λ0,λ]) to get K∗ with j”g[λ0,λ] ⊆ K∗. Then we will argue that
K∗ remains an M [j(Gλ0)]-generic filter for j(Q[λ0,λ]) using the main lemma
from [CM14].

Let us define K∗. Working in V [Gλ0 ][g[λ0,F (λ)]], define

dom(j(Q[λ0,λ])) :=
⋃
{dom(p) | p ∈ j(Q[λ0,λ])}

and let Q be the partial function with dom(Q) ⊆ dom(j(Q[λ0,λ])), defined by
Q =

⋃
j”g[λ0,λ]. Given p ∈ K, let p∗ be the partial function with dom(p∗) =

dom(p), obtained from p by altering p on dom(p)∩dom(Q) so that p∗ agrees
with Q. Let

K∗ = {p∗ | p ∈ K}.
Clearly, j”g[λ0,λ] ⊆ K∗, and it remains to argue that p∗ is a condition in
j(Q[λ0,λ]) for each p ∈ K and that K∗ is an M [j(Gλ0)]-generic filter. This
follows from the next lemma, which appears in [CM14].
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Lemma 3.11 ([CM14]). Suppose B ∈M [j(Gλ0)] with B ⊆ j(dom(Q[λ0,λ]))

and |B|M [j(Gλ0 )] ≤ j(λ). Then the set

IB = {dom(j(q)) ∩B | q ∈ Q[λ0,λ]}

has size at most λ in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. Let B be as in the statement and let B = j(h)(j”λ, α) where
h : Pκλ

V × κ → Pλ+(dom(Q[λ0,λ]))
V [Gλ0 ], α < F (λ) and h ∈ V [Gλ0 ]. Then⋃

ran(h) is a subset of dom(Q[λ0,λ]) in V [Gλ0 ] with |
⋃

ran(h)|V [Gλ0 ] ≤ λ.

Since V [Gλ0 ] |= λ<λ = λ (in V [Gλ0 ] we have GCH on [λ0, λ] and λ is a
regular cardinal), it will suffice to show that

IB ⊆
{
j(d) ∩B

∣∣ d ∈ Pλ(⋃ ran(h)
)V [Gλ0 ]}

.

Suppose dom(j(q))∩B ∈ IB where q ∈ Q[λ0,λ]. We will show dom(j(q))∩B =

j(d)∩B for some d ∈ Pλ(
⋃

ran(h))V [Gλ0 ]. Let d := dom(q)∩
⋃

ran(h). Then
dom(j(q)) ∩B = j(d) ∩B since

j(d) = dom(j(q)) ∩
⋃

ran(j(h)) ⊇ dom(j(q)) ∩B.

It now follows from Lemma 3.11 exactly as in [CM14] that K∗ is an
M [j0(Gλ0)]-generic filter for j(Q[λ0,λ]). Now let us show thatK∗ ⊆ j(Q[λ0,λ]).

Suppose p ∈ j(Q[λ0,λ]). Then since |dom(p)|M [j(Gλ0 )] < j(λ), it follows from
Lemma 3.11 that the set Idom(p) := {dom(j(q)) ∩ dom(p) | q ∈ Q[λ0,λ]} has
size at most λ in V [Gλ0 ∗ g[λ0,F (λ)]]. Let 〈Iα | α < λ〉 ∈ V [Gλ0 ∗ g[λ0,F (λ)]]
be an enumeration of Idom(p). By the maximality of the filter K, for each
α < λ we can choose qα ∈ K such that dom(j(qα)) ∩ p = Iα. It follows that
〈j(qα) | α < λ〉 ∈M [j(Gλ0)] because M [j(Gλ0)] is closed under λ-sequences
in V [Gλ0 ∗ g[λ0,F (λ)]]. Since j(Q[λ0,λ]) is <j(λ0)-directed closed, it follows
that the partial master condition m :=

⋃
{j(qα) | α < λ} is a condition in

j(Q[λ0,λ]), and moreover q∗ can be computed in M [j(Gλ0)] by comparing p
and m.

To see that K∗ is M [j(Gλ0)]-generic, suppose A is a maximal anti-

chain of j(Q[λ0,λ]) in M [j(Gλ0)]. Since Q[λ0,λ] is λ+-c.c. in V [Gλ0 ], it fol-
lows by elementarity that dom(A) :=

⋃
{dom(r) | r ∈ A} has size at

most j(λ) in M [j(Gλ0)]. Hence by Lemma 3.11, we see that Idom(A) :=
{dom(j(q)) ∩ dom(A) | q ∈ Q[λ0,λ]} has size at most λ in V [Gλ0 ∗ g[λ0,F (λ)]]

and is therefore in M [j(Gλ0)]. Using this one can show, as in [CM14], that
there is a bit-flipping automorphism πA of j(Q[λ0,λ]) in M [j(Gλ0)] such that
if r ∈ K and dom(r) ⊆ dom(A) then dom(πA(r)) = dom(r) and πA(r) = r∗.
So, since π−1

A [A] ∈M [j(Gλ0)] is a maximal antichain of j(Q[λ0,λ]), and K is
generic for j(Q[λ0,λ]) over M [j(G[λ0,λ])], it follows that there is a condition
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s ∈ K ∩ π−1
A [A]. Then πA(s) = s∗ ∈ K∗ ∩A, and therefore K∗ is generic for

j(Q[λ0,λ]) over M [j(Gλ0)].

Thus we may lift the embedding to

j : V [Gλ0 ∗ g[λ0,λ]]→M [j(Gλ0) ∗ j(g[λ0,λ])]

where j(g[λ0,λ]) = K∗ and j is a class of V [Gλ0 ∗g[λ0,F (λ)] ∗J ]. It follows that

M [j(Gλ0) ∗ j(g[λ0,λ])] is closed under λ-sequences in V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ]
and that

M [j(Gλ0) ∗ j(g[λ0,λ])]

= {j(h)(j”λ, α) | h : Pκλ× κ→ V ∧ α < F (λ) ∧ h ∈ V [Gλ0 ∗ g[λ0,λ]]}.

Since the forcing g[λ+,F (λ)] ∗J ⊆ Q[λ+,F (λ)] ∗ j0(Q[λ0,λ]) is ≤λ-distributive
in V [Gλ0 ∗ g[λ0,λ]], we see that the pointwise image j[g[λ+,F (λ)] ∗J ] generates
an M [j(Gλ0) ∗ j(g[λ0,λ])]-generic filter for j(Q[λ+,F (λ)] ∗ j0(Q[λ0,λ])). Denote
this filter by j(g[λ+,F (λ)] ∗ J). Then the embedding lifts to

j : V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ]→M [j(Gλ0) ∗ j(g[λ0,F (λ)]) ∗ j(J)]

where j is a class of V [Gλ0∗g[λ0,F (λ)]∗J ], witnessing that κ is λ-supercompact
in this model.

3.6. Controlling the continuum function at F (λ)+ and above. In
the model V [Gλ0 ∗g[λ0,F (λ)] ∗J ] one has 2γ = F (γ) for every regular cardinal
γ ≤ F (λ) and GCH holds at all cardinals greater than or equal to F (λ)+.
Working in V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ], let E be the Easton-support product of
Cohen forcing

E :=
∏

γ∈[F (λ)+,∞)∩REG

Add(γ, F (γ)).

Let E be generic for E over V [Gλ0∗g[λ0,F (λ)]∗J ]. Standard arguments [Eas70]
can be used to see that in V [Gλ0∗g[λ0,F (λ)]∗J∗E], for every regular cardinal γ,
we have 2γ = F (γ). Since E is ≤F (λ)-closed in V [Gλ0∗g[λ0,F (λ)]∗J ], it follows
that the pointwise image j[E] generates an M [j(Gλ0) ∗ j(g[λ0,F (λ)]) ∗ j(J)]-
generic filter for j(E), which we will denote by j(E). Then j lifts to

j : V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ∗ E]→M [j(Gλ0) ∗ j(g[λ0,F (λ)]) ∗ j(J) ∗ j(E)]

where j is a class of V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ∗E] witnessing that κ is λ-super-
compact in that model.

This finishes the proof of Theorem 1.2.

4. Open questions. First let us discuss the problem of globally con-
trolling the continuum function on the regular cardinals while preserving
multiple instances of partial supercompactness. Suppose GCH holds and we
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have regular cardinals κ0 < η0 < κ1 < η1 such that, for each α ∈ {0, 1},
κα is ηα-supercompact. Additionally, assume F is a function satisfying the
requirements (E1) and (E2) of Easton’s theorem, and that for each α
there is a jα : V → Mα with critical point κα such that κα is closed un-
der F , Mηα ⊆ M , H(F (ηα)) ⊆ M , and for each regular cardinal γ ≤ ηα,
(|jα(F )(γ)| = F (γ))V . Then, as a corollary to the proof of Theorem 1.2
above, we obtain the following.

Corollary 4.1. There is a cardinal preserving forcing extension in
which 2γ = F (γ) for every regular cardinal γ and κα remains ηα-super-
compact for α ∈ {0, 1}.

This corollary can be obtained by essentially applying the above proof of
Theorem 1.2 twice. For example, first we carry out the proof of Theorem 1.2
with κ0 and η0 in place of κ and λ and where the forcing iteration used
terminates before stage κ1. Lifting the embedding j0 : V → M0 witnessing
that κ0 is η0-supercompact requires the “extra forcing” that depends on j0.
Let P0 denote the iteration defined so far, including the extra forcing. Since
P0 has size less than the critical point κ1 of the next embedding j1 : V →M1

witnessing the η1-supercompactness of κ1, it follows by the Lévy–Solovay
theorem that j1 lifts through the iteration performed so far. Next, working
in V P0 , we perform an iteration for controlling the continuum function that
picks up where the last one left off. Call the iteration P1, and lift j1 through
the iteration P0 ∗ P1 just as we lifted j0 through P0. Furthermore, since P1

is highly distributive in V P0 , the first embedding j0 will easily extend to
V P0∗P1 .

Corollary 4.1 only covers a simple configuration of partially supercom-
pact cardinals. Is a more general result possible? It seems that the need
for the “extra forcing” in our proof of Theorem 1.2 prevents the method
from providing a clear strategy for obtaining a more general result in which
more complicated configurations of partially supercompact cardinals are pre-
served. It may be the case that the uniformity of the Sacks-forcing method,
which is applied in [FH08] to obtain analogous global results for measurable
as well as strong cardinals, could lead to an answer to Question 4.2 below.
One would desire a two-cardinal version of Sacks forcing for adding subsets
to κ that satisfies λ-fusion.

Question 4.2. Assuming GCH, and given a class of partially super-
compact cardinals S and a function F from the class of regular cardinals to
the class of cardinals satisfying Easton’s requirements (E1) and (E2), under
what conditions can one force the continuum function to agree with F at
all regular cardinals, while preserving cardinals as well as the full degree of
partial supercompactness of each cardinal in S?
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Another potential way of strengthening Theorem 1.2 is to weaken the
hypothesis. This was done for the analogous theorem concerning measurable
cardinals in [FH12a]. In this direction, we pose the following question.

Question 4.3. Can the hypothesis of Theorem 1.2 be weakened by re-
placing the assumption H(F (λ)) ⊆M by the weaker assumption “V and M
have the same cardinals up to and including F (λ)”? Or, in the special case
when F (λ) = µ+ for some regular cardinal µ, by the ostensibly stronger as-
sumption that H(µ) ⊆M and (µ+)M = µ+? (Note however that the latter
assumption is actually optimal for the analogous case when one wants to
find a model with a measurable cardinal κ with 2κ = µ+, where µ = κ+n

for some n > 0; see [FH12a] for more details.)
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