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Deloopings of the spaces of long embeddings

by

Keiichi Sakai (Nagano)

Abstract. The homotopy fiber of the inclusion from the long embedding space to
the long immersion space is known to be an iterated based loop space (if the codimension
is greater than two). In this paper we deloop the homotopy fiber to obtain the topological
Stiefel manifold, combining results of Lashof and of Lees. We also give a delooping of the
long embedding space, which can be regarded as a version of Morlet–Burghelea–Lashof’s
delooping of the diffeomorphism group of the disk relative to the boundary. As a corollary,
we show that the homotopy fiber is weakly equivalent to a space on which the framed
little disks operad acts possibly nontrivially, and hence its rational homology is a (higher)
BV-algebra in a stable range of dimensions.

1. Introduction. Let Ed = Ed
n,j (resp. Id = Idn,j) be the space of long

j-embeddings (resp. long j-immersions) in Rn, that is, smooth embeddings
f : Rj ↪→ Rn (resp. immersions Rj # Rn) such that f(x) = (x,0) if
|x| ≥ 1. Here “d” indicates that we are considering differentiable maps.
We also consider the space fEd

n,j (resp. fIdn,j) of framed long embeddings

(resp. immersions) Rj × (−ε, ε)n−j → Rn. Budney [2] defined an action
of the little (j + 1)-disks operad Cj+1 on (a space equivalent to) fEd

n,j .

Consequently, fEd
n,j (n − j ≥ 3) turns out to be weakly equivalent to a

(j+1)-fold loop space by the loop space recognition principle [19]. Budney’s
Cj+1-action also applies to fIdn,j in such a way that the inclusion fEd

n,j →
fIdn,j is a map of Cj+1-spaces. Thus the space Ed

n,j , the homotopy fiber of

fEd
n,j → fIdn,j (or equivalently of Ed

n,j → Idn,j), is also a Cj+1-space and
hence a (j + 1)-fold loop space if n − j ≥ 3 (this argument is the same as
the proof of [29, Proposition 1.1]). Sinha [27] also proved that Ed

n,1 (n ≥ 4)
is weakly equivalent to a double loop space, using a cosimplicial method.
Based on Sinha’s work, Salvatore [25] showed that Ed

n,1 (n ≥ 4) is weakly
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equivalent to a double loop space with double loop maps Ed
n,1 → fEd

n,1 and

Ed
n,1 → Ed

n,1.

A natural question is: what is the delooping of Ed
n,j (and of fEd

n,j)?

Dwyer–Hess [9] and Turchin [28] independently described a delooping of Ed
n,1

(n ≥ 4) as the derived space of maps between some operads. The purpose of
this paper is to give a simple delooping of Ed

n,j which had already appeared
implicitly in Lashof’s paper [16].

Theorem 1.1. If n − j ≥ 3 and n ≥ 5, then Ed
n,j is weakly equivalent

to the (j + 1)-fold based loop space of the topological Stiefel manifold V t
n,j.

The topological Stiefel manifold V t
n,j (“t” suggests that it consists of

topological maps) is defined to be the orbit space Top(n)/Top(n, j), where

Top(n, j) is the topological group of germs at 0 of homeomorphisms Rn ≈−→
Rn which restrict to the identity on Rj × {0}n−j , and Top(n) := Top(n, 0).
Though V t

n,j is not a manifold in the usual sense, we follow the classical
terminology.

Since the orthogonal group acts in a nontrivial way on the topological
Stiefel manifold, a possibly nontrivial BV-structure on H∗(E

d
n,j) is deduced

by [26, Example 2.5] in a range of dimensions.

Corollary 1.2. If n − j ≥ 3, n ≥ 5 and n ≥ 2j + 1, then Ed
n,j is

weakly equivalent to a space on which the framed (j + 1)-disks operad C̃j+1

acts in a nontrivial way. Consequently H∗(E
d
n,j ;Q) is a BVj+1-algebra [26,

Definition 5.2].

It is well known, though not often mentioned, that Ed
n,j (n − j ≥ 3) is

weakly equivalent to a j-fold loop space, because π0E
d
n,j is a group if n−j ≥ 3

[12] and Cj acts on Ed
n,j in a similar fashion to the case of j-fold based loop

spaces. We can also describe a delooping of Ed
n,j .

Proposition 1.3. If n−j ≥ 3 and n ≥ 5, then Ed
n,j is weakly equivalent

to ΩjV
t/d
n,j , where V

t/d
n,j is the homotopy fiber of the natural inclusion from

the (usual) Stiefel manifold V d
n,j = O(n)/O(n− j) to V t

n,j.

The delooping in Proposition 1.3 can be seen as a “positive codimen-
sion version” of Morlet–Burghelea–Lashof’s delooping of the diffeomorphism
group Diff(Dn, ∂) = Ed

n,n of the disk relative to the boundary [6, 21];

(1.1) Diff(Dn, ∂) ∼ Ωn+1(Top(n)/O(n)).

Indeed, (1.1) can be written as Ed
n,n ∼ ΩnV

t/d
n,n , since Top(n) = V t

n,n,

O(n) = V d
n,n, and O(n) → Top(n) → Top(n)/O(n) is a fiber bundle [10,

Theorem 4.1] and hence a Serre fibration.
The proof of the following is similar to that of Corollary 1.2.
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Corollary 1.4. If n− j ≥ 3 and n ≥ 5, then Ed
n,j is weakly equivalent

to a space on which C̃j acts in a nontrivial way. Consequently, H∗(E
d
n,j ;Q)

is a BVj-algebra.

Proposition 1.3 gives rise to an alternative proof of the useful fact which
was proved in [3, Proposition 3.9(1)] by means of a spinning method (in a
wider range of dimensions). In fact the isomorphism in Corollary 1.5 below
coincides with that given in [3].

Corollary 1.5 ([3]). If n−j ≥ 3 and n ≥ 5, then πkE
d
n,j
∼= π0E

d
n+k,j+k

for k ≤ 2(n− j)− 5.

Here we mention some possible advantages of our delooping of Ed.
First, we might be able to describe the (co)homology of Ed in terms of

that of V t, and the possibly BV-algebra structure from Corollaries 1.2 and
1.4 might produce new homology classes of Ed (see also §3, Question 3).
The author indeed proved in [22, 23] that the Browder operation induced
by Budney’s C2-action [2] yields a nontrivial homology class of fEd

n,1 for odd
n ≥ 3 (see [18] for a similar result). In fact this homology class can also be
obtained by using the BV-operator introduced in [24] arising from Hatcher’s
cycle [14]. It would be of interest to determine, using H∗(V

t), the generating
set of H∗(E

d) as a BV-algebra.
Second, the proof of Corollary 1.5 does not require the celebrated “Good-

willie calculus” as in [3]. Instead we need the knowledge of the homotopy
groups of V t

n,j [16, 20]. So far many interesting results on the (homology of)
embedding spaces have been obtained by means of Goodwillie calculus (see
for example [1, 15] and the papers already cited above). Perhaps we might
be able to give alternative proofs for some of these results using V t

n,j as in
Corollary 1.5, and if this is the case, it would be of interest to compare these
two methods.

In §2 we prove the above results. In §3 some related questions are listed.

2. Proofs. Let Et = Et
n,j and It = Itn,j be the spaces of locally flat

topological long embeddings and immersions Rj → Rn respectively. Let

Et/d = E
t/d
n,j and It/d = I

t/d
n,j be the homotopy fibers of the inclusions Ed →

Et and Id → It respectively.

Theorem 2.1 ([16, Theorem A (t/d)]). If n− j ≥ 3 and n ≥ 5, then the

map E
t/d
n,j → I

t/d
n,j is a weak homotopy equivalence.

Remark 2.2. Theorem 2.1 was stated in [16] in terms of simplicial sets.
As mentioned in [16, Appendix], by the work of Černavskĭı [7], the simplicial
sets of locally flat topological embeddings or immersions used in [16] are
homotopy equivalent to the singular complexes of our space Et

n,j or Itn,j if
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the above conditions on n and j are satisfied. Therefore we always assume
n− j ≥ 3 and n ≥ 5 throughout this paper.

Proof of Theorem 1.1. Consider the following commutative diagram con-
sisting of six fibration sequences:

Et/d //

��

Ed //

��

Et

��
Et/d //

(a)

��

Ed //

��

Et

��

' // ∗

It/d // Id // It

(2.1)

where E∗ denotes the homotopy fiber of E∗ → I∗, ∗ = d, t, t/d. Since
by Theorem 2.1 the map (a) in (2.1) is a weak equivalence, Et/d is weakly
contractible and hence Ed → Et is a weak equivalence.

On the other hand, since Et is contractible by the Alexander trick ([16,
p. 146, Example]),ΩIt → Et is a homotopy equivalence. Theorem 1.1 follows
from Lees’ topological Smale–Hirsch theorem Itn,j

∼−→ ΩjV t
n,j [17].

Remark 2.3. In fact Lees’ theorem [17] asserts that there exists a
weak equivalence from the space fItn,j of topological framed long immersions

Rj × (−ε, ε)n−j # Rn to ΩjTop(n), which fits into the following diagram of
fibration sequences:

ΩjTop(n, j) // fItn,j
//

∼ Lees
��

Itn,j

��
ΩjTop(n, j) // ΩjTop(n) // ΩjV t

n,j

Thus we have Itn,j
∼−→ ΩjV t

n,j (on the component containing the base point).

Remark 2.4. The above proof works even if the spaces of topological
maps are replaced by those of piecewise-linear (PL) maps. In this case the
proof relies on Haefliger–Poenaru’s theorem IPLn,j

∼−→ ΩjV PL
n,j [13] (the space

of locally flat PL immersions and the PL Stiefel manifold V PL are defined
analogously to the topological case). If n − j ≥ 3, then V PL

n,j → V t
n,j is

a homotopy equivalence by [16, Proposition (t/pl)], and hence V PL may
replace V t.

Proof of Proposition 1.3. As noted in [16, p. 146, Example], there is a
fibration sequence

Ed → Id → It.
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This is because we can deduce a weak equivalence Ed ∼−→ It/d which makes
(2.1) homotopy commutative, using Theorem 2.1 and the fact that Et is
contractible.

The weak equivalences I∗n,j → ΩjV ∗n,j (∗ = d, t) both send long immer-

sions to their germs. Thus Idn,j → Itn,j is equivalent to the j-fold loop map

of V d
n,j → V t

n,j and hence the fiber Ed is equivalent to ΩjV
t/d
n,j .

Proof of Corollary 1.2. As explained in [26, Proposition 2.3, Exam-
ple 2.5], the Cj+1-action on a (j + 1)-fold based loop space Ωj+1X can be

extended to that of C̃j+1 by using a basepoint-preserving action of SO(j+1)
on X (Ωj+1X is then acted on by SO(j+ 1) by conjugation). Thus we need
a (nontrivial) action of SO(j + 1) on V t

n,j which preserves the basepoint,
the orbit of idRn . One of the easiest choices is the restriction of the conju-
gation of SO(n− j) = idRj ⊕SO(n− j) on Top(n) (see Remark 2.5 below),
which descends to a basepoint-preserving action on V t

n,j since it preserves
Top(n, j). If n− j ≥ j + 1, this action restricts to that of SO(j + 1).

The BVj+1-structure on H∗(Ω
j+1V t

n,j ;Q) is a consequence of the C̃j+1-

action [26, Theorem 5.4, Example 5.5]. The weak equivalence Ed
n,j

∼−→
Ωj+1V t

n,j implies H∗(E
d
n,j ;Q) ∼= H∗(Ω

j+1V t
n,j ;Q), and this completes the

proof.

Remark 2.5. One of the reasons why we chose conjugation in the proof
of Corollary 1.2 is that it seems meaningful from the viewpoint of immer-
sions; for example, we can define an action SO(j) × V ∗n,j → V ∗n,j (∗ = d, t)

as the conjugation (g, f) 7→ (g ⊕ idRn−j ) ◦ f ◦ g−1, where V ∗n,j is regarded as

the space of germs at 0 of (smooth or topological) embeddings (Rj ,0) ↪→
(Rn,0). Under the Smale–Hirsch/Lees equivalence I∗n,j

∼−→ ΩjV ∗n,j , the in-

duced action of SO(j) on ΩjV ∗n,j by conjugation corresponds to the natural
conjugation action of SO(j) on long immersions I∗n,j . This action seems
meaningful since it would produce new immersions via “spinning”, and can
be used for the proof of Corollary 1.4. However in the proof of Corollary 1.2
we adopted SO(n − j) instead of SO(j) as the space acting on V ∗n,j , be-
cause the action explained here unfortunately does not extend to one of
SO(j+ 1). But the action in Corollary 1.2 may also be meaningful, because
it “rotates” embeddings in the orthonormal direction {0}j×Rn−j and looks
similar to the “Gramain cycle” [11, 4]. At present the author does not know
whether the action given in the proof of Corollary 1.2 yields a nontrivial
BV-operation on H∗(E

d
n,j), nor whether there are other significant actions.

Proof of Corollary 1.4. The proof is similar to that of Corollary 1.2,
but in this case, as explained in Remark 2.5, we may use the conjugation
SO(j)×V ∗n,j → V ∗n,j given by (g, f) 7→ (g⊕ idRn−j ) ◦ f ◦ g−1 (∗ = d, t) which
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preserves the basepoints [idRn ] ∈ V ∗n,j (this action requires no dimension

assumptions). Since V d
n,j → V t

n,j is SO(j)-equivariant under conjugation,

SO(j) also acts on the homotopy fiber V
t/d
n,j preserving the basepoint, the

constant path at [idRn ] ∈ V t
n,j . The weak equivalence Ed

n,j
∼−→ ΩjV

t/d
n,j induces

an isomorphism on homology.

Proof of Corollary 1.5. Using Haefliger–Millett’s theorem [20], Lashof
proved in [16, Proposition (t/d)] that, when n− j ≥ 3 and m ≤ 2n− j − 5,
there is an isomorphism

(2.2) πm(V
t/d
n,j ) ∼= πm+1(G;O,Gn−j)

where Gq is the space of degree one maps Sq−1 → Sq−1 and G is its sta-
ble suspension (see [12]). On the other hand, by Haefliger’s classification
theorem [12],

(2.3) πm+1(G;O,Gq) ∼= π0E
d
m+q,m

for q ≥ 3. We have

πm−jE
d
n,j

Prop 1.3∼= πmV
t/d
n,j

(2.2)∼= πm+1(G;O,Gn−j)
(2.3)∼= π0E

d
n−j+m,m

for n − j ≥ 3 and j ≤ m ≤ 2n − j − 5. Putting k = m − j completes the
proof.

3. Questions. In [2, 5] the space Ed
3,1 is proved to be a free C2-object,

and hence H∗(E
d
3,1;Q) is a free Poisson algebra [8]. An analogous result for

Ed
n,j for general n, j (n − j ≥ 3) would be derived if the answer to the

following question is affirmative.

Question 1. Is V t
n,j a (j + 1)-fold suspension?

Salvatore [25] proved that Ed
n,1 (n ≥ 4) is weakly equivalent to a double

loop space. The following question asks whether the similar result holds for
general n, j.

Question 2. Is V
t/d
n,j a based loop space with any (j + 1)-fold loop map

ΩjV
t/d
n,j → Ωj+1V t

n,j?

Question 3. How do the BV-structures of Corollary 1.2 and of [24]
relate to each other? Do they produce any new operation other than cycles
of Gramain [11] and Hatcher [14]?
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