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Univoque sets for real numbers
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Fan Lü, Bo Tan and Jun Wu (Wuhan)

Abstract. For x ∈ (0, 1), the univoque set for x, denoted U(x), is defined to be the set
of β ∈ (1, 2) such that x has only one representation of the form x = x1/β + x2/β

2 + · · ·
with xi ∈ {0, 1}. We prove that for any x ∈ (0, 1), U(x) contains a sequence {βk}k≥1

increasing to 2. Moreover, U(x) is a Lebesgue null set of Hausdorff dimension 1; both
U(x) and its closure U(x) are nowhere dense.

1. Introduction. Given β > 1 and x ∈ R, an infinite sequence (εi) =
ε1ε2 · · · of integers with 0 ≤ εi < β for all i is called an expansion of x in
base β if

x =
ε1
β

+
ε2
β2

+ · · · .

It is clear that x has such an expansion only if x lies in the interval Jβ =
[0, (dβe − 1)/(β − 1)], where dβe denotes the smallest integer larger than
or equal to β. Conversely, for any x ∈ Jβ, the expansions always exist,
for instance, the following so-called quasi-greedy algorithm [DK95] gives an
expansion of x in base β > 1 as follows: If x = 0, then xi = 0 for all i.
Otherwise, x1 is defined to be the largest integer in Ωβ = {0, 1, . . . , dβe−1}
such that x1/β < x. Inductively, if x1, . . . , xi−1 have already been defined,
then xi is chosen to be the largest integer in Ωβ such that

x1
β

+ · · ·+ xi
βi

< x.

It is easy to show that (xi) is an expansion of x, called the quasi-greedy
expansion of x in base β.

For β > 1, let Ω∞β be the collection of infinite sequences over Ωβ, i.e.,
Ω∞β = {(εi) = ε1ε2 · · · : εi ∈ Ωβ for all i}. We define the projection map
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πβ : Ω∞β → R as

πβ
(
(εi)
)

=
∞∑
i=1

εi
βi

for (εi) ∈ Ω∞β .

The map πβ is not injective; there is an easy example: taking β = G to be

the golden ratio (1 +
√

5)/2 ≈ 1.618, we have

1 =
1

G
+

1

G2
=

1

G
+

1

G3
+

1

G5
+ · · · .

It was generally believed that for any given β ∈ (1, 2), the number 1 has
infinitely many expansions [Ko]. After Erdős, Horváth and Joó’s startling
discovery [EHJ] that #π−1β (1) = 1 (i.e., the quasi-greedy expansion is the

unique expansion of 1 in base β) for a continuum of β ∈ (1, 2), many works
[DK95, dVK09, EJK, KoL98, KoL07] have been devoted to the study of the
set

U(1) = {β ∈ (1, 2) : #π−1β (1) = 1}.

In particular, it was proved that both U(1) and its closure U(1) are of
Lebesgue measure 0 and of Hausdorff dimension 1 [DK95, KoL07], and thus
they are nowhere dense.

In the same way, for any x ∈ [0, 1], we define

U(x) = {β ∈ (1, 2) : #π−1β (x) = 1}.

Note that 0 has the unique expansion 00 · · · in any base β ∈ (1, 2).

Recently, de Vries and Komornik [dVK11] proved that U(x)\U(x) is (at
most) countable for any x ∈ [0, 1]. Moreover, they studied the set

U = {(x, β) ∈ R× (1,∞) : x ∈ Uβ},
where Uβ = {x ∈ Jβ : #π−1β (x) = 1}, proving that:

(1) U is not closed and U is a Cantor set;
(2) U and U are two-dimensional Lebesgue null sets;
(3) U and U have Hausdorff dimension 2.

When β is an integer, all but countably many x ∈ [0, 1] have a unique
expansion, i.e., Uβ = [0, 1] up to a countable set; when β is not an integer,
Sidorov [S03] showed that Uβ is a Lebesgue null set (see also [DdV, Theo-
rem 7]). Daróczy, Kátai and Kallós [DK93, KK, Ka99, Ka01] developed a
strategy for the computation of the Hausdorff dimension of Uβ for any given
β > 1. Glendinning and Sidorov [GS], Sidorov [S07], Kong, Li and Dekking
[KLD], and de Vries and Komornik [dVK11] proved that:

(1) dimH Uβ = 1 if β ∈ N, and dimH Uβ < 1 if β /∈ N;
(2) dimH Uβ → 1 as β ↗ 2.
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In this paper, we deal with the structure and properties of the set U(x)
for any x ∈ (0, 1). It is well known, in the study of the set U(1), that the
uniqueness of the expansion of 1 depends only on the comparison of the
expansion with its shifts. But, in the criterion of the uniqueness of the ex-
pansion of any x ∈ (0, 1), the quasi-greedy expansion of 1 and the expansion
of x itself are involved, while usually, one does not know both expansions
simultaneously; this causes the main difficulty in the construction.

The following are our main results:

Theorem 1.1. For any x∈(0, 1), there exists a sequence {βk}k≥1 in U(x)
satisfying βk ↗ 2 as k →∞.

Theorem 1.2. We have

L(U(x)) = 0 for all x ∈ (0, 1),

where L denotes the one-dimensional Lebesgue measure.

Theorem 1.3. We have

dimH U(x) = 1 for all x ∈ (0, 1),

where dimH means the Hausdorff dimension.

We make several remarks here:

1. By Theorem 1.1, for any x ∈ (0, 1), we know that U(x) is nonempty,
and the projection of U onto the x-axis contains the interval [0, 1].

2. Together with the result of de Vries and Komornik that U(x) \ U(x)
is (at most) countable, Theorem 1.2 implies that for any x ∈ (0, 1), we have

L(U(x)) = 0. Therefore U(x) and U(x) are nowhere dense in (1, 2).

3. In light of [F, Corollary 7.10], Theorem 1.3 provides an alternative
proof of the fact that both U and U are of Hausdorff dimension 2.

The rest of this paper is organized as follows: In the next section, some
basic facts about quasi-greedy expansion and the set U(x) are presented.
Section 3 is devoted to the proof of Theorem 1.2. Theorem 1.1 is proved
in Section 4. We will prove Theorem 1.3 in the last section, based on the
construction in the proof of Theorem 1.1.

2. Preliminaries. More than fifty years ago, Rényi [R] introduced the
well-known greedy expansions. Parry [P] then gave a lexicographic charac-
terization of greedy expansions, which became an excellent tool in investigat-
ing the combinatorial and topological nature of such expansions. In Parry’s
lexicographic characterization, the quasi-greedy expansion of 1 plays a very
important role. Given β > 1 and x ∈ R, note that x has a unique expansion
in base β if and only if the lexicographically largest and smallest expansions
of x in base β coincide.
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From now on, for simplicity, we always consider β in the interval (1, 2],
whence Ωβ = {0, 1}. It is readily checked that the quasi-greedy expansion
of 1 for β ∈ (1, 2] should contain infinitely many 1’s. Moveover, a sequence
(δi) ∈ {0, 1}∞ of infinitely many 1’s is the quasi-greedy expansion of 1 for
some β ∈ (1, 2] if and only if it is self-admissible [BK], i.e.,

(δj+i)i ≤ (δi) for all j ≥ 1,

here and below, the notation < or ≤ between sequences means the lexico-
graphic order: (εi) < (ηi) if there exists i0 ≥ 1 such that εi0 < ηi0 and
εi = ηi for all i < i0; (εi) ≤ (ηi) means either (εi) < (ηi), or (εi) = (ηi).
The symbol (δj+i)i denotes the sequence δj+1δj+2 · · · ; we will write (δj+i)
instead if it causes no confusion.

Given β ∈ (1, 2] and x ∈ [0, 1], a criterion for x to have a unique expan-
sion (in base β) is (see [Ko]): there exists an expansion (εi) of x satisfying

(2.1)

{
(εj+i) < (δi) if εj = 0,

(εj+i) < (δi) if εj = 1,

where (δi) is the quasi-greedy expansion of 1, εi = 1−εi and (εi) = ε1 ε2 · · · .
A sequence (δi) ∈ {0, 1}∞ is the unique expansion of 1 in some base

β ∈ (1, 2] if and only if it is admissible, that is,{
(δj+i) < (δi) if δj = 0,

(δj+i) < (δi) if δj = 1.

Moreover, the quasi-greedy algorithm provides a strictly increasing bijection
between the set U(1) of bases β in which the expansion of 1 is unique and
the collection A of admissible sequences (equipped with the lexicographic
order defined as above); see [EJK] for more information.

From now on, we put Ω = {0, 1}. For x ∈ [0, 1], define Φx : (1, 2]→ Ω∞

as follows: for β ∈ (1, 2],

Φx(β) = (xi),

where (xi) is the quasi-greedy expansion of x in base β.

We list some basic facts about the quasi-greedy expansion here, and the
readers are referred to [dVK09, dVK11] for more details.

Proposition 2.1. For any x ∈ (0, 1], Φx is strictly increasing.

Proposition 2.2. Given β ∈ (1, 2] and x ∈ (0, 1], let (xi) and (δi) be
the quasi-greedy expansions of x and 1 (in base β) respectively. Then

(1) The sequence (xi) is infinite, i.e., there are infinitely many 1’s in (xi);
(2) For any infinite expansion (εi) ∈ Ω∞ of x in base β, (εi) ≤ (xi);
(3) (xi) ≤ (δi) with equality if and only if x = 1;
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(4) If xj = 0 for some j ≥ 1, then x1
β + · · ·+ xj−1

βj−1 + 1
βj ≥ x;

(5) If 1
β + · · ·+ 1

βj < x for some j ≥ 1, then x1 · · ·xj = 1j .

Proposition 2.3 ([Ko]). If β ∈ (1, G) with G the golden ratio, then any
x ∈ (0, 1] has a continuum of expansions.

As a result, for any x ∈ (0, 1], the elements of U(x) must be larger than
or equal to G. In fact, they are strictly larger than G (see [dVK09]) and G
is sharp in this respect.

3. The Lebesgue measure of U(x). In this section, we study the
Lebesgue measure of U(x) and prove Theorem 1.2.

Given x ∈ (0, 1), for j ≥ 1 and ω ∈ Ωj , we define pω and qω as follows:

(1) Put pω = 1 if ω = 0j ; otherwise, define pω to be the unique solution
larger than 1 of the equation

x =
ω1

p
+ · · ·+ ωj

pj
.

(2) Define qω to be the unique solution larger than 1 of the equation

x =
ω1

q
+ · · ·+ ωj

qj
+

1

qj+1
+

1

qj+2
+ · · · .

Denoting ωτ = ω1 · · ·ωjτ for τ = 0 or 1, we have

(3.1) pω = pω0 < min{pω1, qω0} ≤ max{pω1, qω0} < qω1 = qω.

When pω1 < 2 or qω0 < 2, we have pω1 < qω0, and thus

(3.2) pω0 = pω < pω1 < qω0 < qω = qω1.

Lemma 3.1. For j ≥ 1 and ω ∈ Ωj, we have:

(1) If pω ∈ (1, 2), then x has at least two expansions in base pω; if
qω ∈ (1, 2), then x has at least two expansions in base qω.

(2) For any β ∈ (1, 2), we have β ∈ [pω, qω] if and only if there exists a
sequence (εi) ∈ π−1β (x) satisfying ε1 · · · εj = ω.

Proof. (1) can be deduced directly from the criterion (2.1) for x ∈ (0, 1)
to have a unique expansion in base β ∈ (1, 2).

(2) “⇒”: This is true for β = pω or qω. Assume that β ∈ (pω, qω). Then

x−
∞∑
i=1

1

qj+iω

=

j∑
i=1

ωi
qiω

<

j∑
i=1

ωi
βi

<

j∑
i=1

ωi
piω
≤ x,

and thus

0 < x−
j∑
i=1

ωi
βi

<

∞∑
i=1

1

qj+iω

<

∞∑
i=1

1

βj+i
=

1

βj(β − 1)
,
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i.e.,

y = βj
(
x−

j∑
i=1

ωi
βi

)
∈ Jβ.

Let (yi) be the quasi-greedy expansion of y in base β. Then

x =

j∑
i=1

ωi
βi

+

∞∑
i=1

yi
βj+i

,

that is, the sequence (εi) = ω1 · · ·ωjy1y2 · · · is an expansion of x.
“⇐”: Trivial.

For j ≥ 1 and ω ∈ Ωj , set Iω = (pω, qω) ∩ (1, 2) and

I∗ω = Iω \
⋃

ζ∈Ωj\{ω}

Iζ .

It is readily checked that both Iω and I∗ω are (possibly empty) intervals, and
for any pair of distinct ω, ζ ∈ Ωj , we have I∗ω ∩ I∗ζ = ∅. By (3.1),

(pω0, qω0) ∪ (pω1, qω1) ⊆ (pω, qω).

Then with the help of (3.2) it is not difficult to see that Iω0 ∪ Iω1 = Iω, and
thus we infer that I∗ω0 ∪ I∗ω1 ⊆ I∗ω, in other words, the intervals {I∗ω}w have
a nested structure.

Lemma 3.2. With the notations above, we have U(x) =
⋂∞
j=1

⋃
ω∈Ωj I∗ω.

Proof. First we have
∞⋂
j=1

⋃
ω∈Ωj

I∗ω =
⋃

η∈Ω∞

∞⋂
j=1

I∗η|j ,

where η|j = η1 · · · ηj for η = (ηi) ∈ Ω∞. We divide the proof into two steps:
“⊆”: For β ∈ U(x), we assume that η is the unique expansion of x in

base β. Then by Lemma 3.1, we have β ∈ Iη|j for all j ≥ 1. Also by Lemma

3.1, for any ω ∈ Ωj with ω 6= η|j , we have β /∈ Iω. We infer that β ∈ I∗η|j for

all j ≥ 1, and hence

β ∈
∞⋂
j=1

I∗η|j ⊆
∞⋂
j=1

⋃
ω∈Ωj

I∗ω.

“⊇”: Suppose that β ∈
⋃
η∈Ω∞

⋂∞
j=1 I

∗
η|j . Then β ∈

⋂∞
j=1 I

∗
η|j for some

η ∈ Ω∞, and thus β ∈ I∗η|j ⊆ Iη|j for all j ≥ 1. If β /∈ U(x), then by Lemma

3.1 we can find some ω ∈ Ωj with ω 6= η|j such that β ∈ [pω, qω]. Then
β ∈ Iη|j ∩ [pω, qω] ⊆ Iη|j ∩ Iω, and thus β /∈ I∗η|j , a contradiction.

Proof of Theorem 1.2. For β ∈ U(x), let η be the unique expansion of x
in base β. Then by Lemma 3.1, we have β ∈ I∗η|j ⊆ Iη|j for all j ≥ 1. Let i0
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be the first place where 1 occurs in the sequence η (recall that x 6= 0 and
thus η 6= 0∞ := 000 · · · ), i.e., ηi0 = 1 and ηi = 0 for i < i0.

For j ≥ i0, we write p = pη|j and q = qη|j . Since p < β < q and

j∑
i=1

ηi
pi

= x =

j∑
i=1

ηi
qi

+
1

qj(q − 1)
,

we have

1

qj(q − 1)
=

j∑
i=1

ηi
pi
−

j∑
i=1

ηi
qi
≥ 1

pi0
− 1

qi0
>
q − p
pqi0

,

then

(3.3) q − p < pqi0

qj(q − 1)
<

β

βj−i0(β − 1)
;

therefore,

(3.4) |Iη|j | = q − p→ 0 as j →∞,
where | · | denotes the length of an interval. Then there exists a constant
γ > 0 (depending on β) such that Iη|j ⊆ (1+γ, 2−γ) for large j, say j ≥ j0.
Writing p∗ = p(η|j)1 and q∗ = q(η|j)0, we have

j∑
i=1

ηi
(p∗)i

+
1

(p∗)j+1
= x =

j∑
i=1

ηi
(q∗)i

+
1

(q∗)j+1(q∗ − 1)
,

and thus

(3.5)
1

(q∗)j+1(q∗ − 1)
− 1

(q∗)j+1
=

j∑
i=1

ηi
(p∗)i

−
j∑
i=1

ηi
(q∗)i

+
1

(p∗)j+1
− 1

(q∗)j+1
.

By (3.2), the left hand side of (3.5) is

1

(q∗)j+1(q∗ − 1)
− 1

(q∗)j+1
=

1

(q∗)j+1

(
1

q∗ − 1
− 1

)
≥ γ

qj+1(1− γ)
,

and the right hand side is

j∑
i=1

ηi
(p∗)i

−
j∑
i=1

ηi
(q∗)i

+
1

(p∗)j+1
− 1

(q∗)j+1

≤
∞∑
i=1

[
1

(p∗)i
− 1

(q∗)i

]
≤ 1

p∗ − 1
− 1

q∗ − 1
≤ q∗ − p∗

γ2
.

Comparing the two inequalities above, we infer that

|I(η|j)0 ∩ I(η|j)1| = q∗ − p∗ ≥ γ3

qj+1(1− γ)
≥ γ3

qj(1− γ)(2− γ)
.
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On the other hand, by (3.3),

|Iη|j | = q − p < pqi0

qj(q − 1)
<

(2− γ)i0+1

qjγ
.

Therefore, when j ≥ j0,

(3.6)
|I(η|j)0 ∩ I(η|j)1|

|Iη|j |
=
q∗ − p∗

q − p
> C

for some constant C > 0 which only depends on x and β.

By (3.4), for any r > 0 small enough, we can find j ≥ j0 such that

Iη|(j+1)
⊆ (β − r, β + r) but Iη|j * (β − r, β + r).

This means that |Iη|j | ≥ r, and thus by (3.6), we have

|Iη|(j+1)
| ≥ |Iη|j0 ∩ Iη|j1| ≥ Cr.

Now by Lemma 3.2, we have U(x) ⊆
⋃
ω∈Ωj+2 I∗ω, so

Iη|(j+1)0 ∩ Iη|(j+1)1 ∩ U(x) = ∅.

Notice that Iη|(j+1)0 ∩ Iη|(j+1)1 ⊆ Iη|(j+1)
⊆ (β − r, β + r), and thus by (3.6),

L(U(x) ∩ (β − r, β + r)) ≤ 2r − |Iη|(j+1)0 ∩ Iη|(j+1)1| ≤ 2r − C2r.

Therefore,

lim sup
r→0

L(U(x) ∩ (β − r, β + r))

2r
≤ 1− C2

2
< 1,

which implies that β is not a density point of U(x). Since β ∈ U(x) is
arbitrary, the Lebesgue density theorem yields L(U(x)) = 0.

4. Sequence increasing to 2 in U(x). In this section we prove Theo-
rem 1.1. To this end, we construct a sequence of β’s increasing to 2 in U(x).

For x ∈ (0, 1), let (xi) be the quasi-greedy expansion of x in base 2.
Recalling that (xi) cannot end with 0∞ by Proposition 2.2(1), we consider
the following two cases according to the tails of (xi).

Case I: (xi) ends with 1∞. In this case, we write

(xi) = α1 · · ·αm01∞,

where m ≥ 0 and αi ∈ Ω for all 1 ≤ i ≤ m.

For k ≥ 2, we take two sequences of integers (ai), (bi) with 1 ≤ ai, bi ≤
k − 1, and put

(x
(k)
i ) = α1 · · ·αm01k0a11b10a21b2 · · · ,

(ε
(k)
i ) = 1k0a11b10a21b2 · · · ,
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where, e.g., 1k denotes the block of 1’s of length k. We remark that when
k ≥ m+ 1, we have

(4.1)

 (x
(k)
j+i) ≤ (ε

(k)
i )

(x
(k)
j+i) < (ε

(k)
i )

for all j ≥ 0.

Let βk be the unique solution between 1 and 2 of the equation

x =
∞∑
i=1

x
(k)
i

βi
.

We claim that when k ≥ max{2,m+ 1}, the number x has a unique expan-
sion in base βk. To prove the claim, by the criterion for the uniqueness of
the expansion (2.1) and the inequalities (4.1), we only need to show that

(ε
(k)
i ) < (δ

(k)
i ) with (δ

(k)
i ) the quasi-greedy expansion of 1 in base βk, or

equivalently,
∑∞

i=1 ε
(k)
i /βik < 1 (see (2) and (3) in Proposition 2.2). To this

end, we note that

∞∑
i=1

xi
2i

=
m∑
i=1

αi
2i

+
1

2m+1
= x =

∞∑
i=1

x
(k)
i

βik
=

m∑
i=1

αi
βik

+
1

βm+1
k

∞∑
i=1

ε
(k)
i

βik
,

hence
∞∑
i=1

ε
(k)
i

βik
= βm+1

k

(
m∑
i=1

αi
2i

+
1

2m+1
−

m∑
i=1

αi
βik

)
≤
βm+1
k

2m+1
< 1,

and the claim follows.

To see that βk → 2 as k →∞, we remark that

pα1···αm01k < βk < qα1···αm01k = 2,

and by a similar estimation to (3.4), that qα1···αm01k − pα1···αm01k → 0 as
k →∞.

Case II: (xi) does not end with 1∞. Then there are infinite 0’s and 1’s
in (xi). This case can be divided into the following two subcases according
to the first digit of (xi).

Subcase II.1: (xi) begins with 1. Then

(xi) = 1r10s11r20s2 · · · ,

where rj , sj are positive integers for all j.

When k ≥ 2, we take two sequences of integers (ai), (bi) satisfying 1 ≤
ai, bi ≤ νk − 3, where νk =

∑k
j=1(rj + sj), and put

(x
(k)
i ) = 1r10s1 · · · 1rk0sk01a10b11a20b2 · · · .
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It is readily checked that when k ≥ 3,

(4.2)

 (x
(k)
j+i) < 1νk−20∞

(x
(k)
j+i) < 1νk−20∞

for all j ≥ 0.

Let βk be the unique solution in the interval (1, 2) of the equation

x =
∞∑
i=1

x
(k)
i

βi
.

We claim that when k ≥ 3, the expansion of x in base βk is unique. To see
this, by (4.2) and Proposition 2.2(5), we only need to prove that

(4.3)

νk−2∑
i=1

1

βik
< 1.

Note that
νk∑
i=1

xi
βik

=

νk∑
i=1

x
(k)
i

βik
<
∞∑
i=1

x
(k)
i

βik
= x =

∞∑
i=1

xi
2i
<

νk∑
i=1

xi
2i

+
1

2νk
.

Then
1

βk
− 1

2
≤

νk∑
i=1

xi
βik
−

νk∑
i=1

xi
2i
<

1

2νk
,

where the first inequality is due to the facts that x1 = 1 and βk < 2. Hence

(4.4) 2− βk <
βk

2νk−1
<

1

βνk−2k

,

and thus
νk−2∑
i=1

1

βik
=

1− β2−νkk

βk − 1
< 1,

and this completes the proof of the claim.
At last, the fact that βk → 2 as k →∞ is due to (4.3).

Subcase II.2: (xi) begins with 0. In this case, we write

(xi) = 0r11s10r21s2 · · · .

For k ≥ 3 and 1 ≤ ai, bi ≤ νk−1 + rk − r1− 2, where νk =
∑k

j=1(rj + sj),
we put

(x
(k)
i ) = 0r11s1 · · · 0rk01a10b11a20b2 · · · .

Then if k ≥ r1 + 2, (x
(k)
j+i) < 1νk−1+rk−r1−10∞

(x
(k)
j+i) < 1νk−1+rk−r1−10∞

for all j ≥ 1.
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Let βk ∈ (1, 2) be the unique solution of the equation

x =
∞∑
i=1

x
(k)
i

βi
.

We claim that when k ≥ r1 + 2, the expansion of x in base βk is unique,
and that βk → 2 as k →∞. To see this, as in Subcase II.1, we only need to
show that

νk−1+rk−r1−1∑
i=1

1

βik
< 1.

In fact,

νk−1+rk∑
i=1

xi
βik

=

νk−1+rk∑
i=1

x
(k)
i

βik
<
∞∑
i=1

x
(k)
i

βik
= x =

∞∑
i=1

xi
2i
<

νk−1+rk∑
i=1

xi
2i

+
1

2νk−1+rk
.

Then

1

2νk−1+rk
>

νk−1+rk∑
i=1

xi
βik
−
νk−1+rk∑
i=1

xi
2i
≥ 1

βr1+1
k

− 1

2r1+1
≥ 2− βk

2r1βk
,

and thus

2− βk <
βk

2νk−1+rk−r1
<

1

β
νk−1+rk−r1−1
k

,

therefore,
νk−1+rk−r1−1∑

i=1

1

βik
=

1− β1+r1−rk−νk−1

k

βk − 1
< 1.

5. The Hausdorff dimension of U(x). In this section, we prove The-

orem 1.3, based on the construction of (x
(k)
i ) in the preceding section.

As usual, we equip the space Ω∞ = {0, 1}∞ with the metric D defined as
follows: For (εi), (ηi) ∈ Ω∞, if (εi) = (ηi), then D((εi), (ηi)) = 0; otherwise,

D((εi), (ηi)) = 2−min{i : εi 6=ηi}.

For x ∈ (0, 1), let (xi) be the quasi-greedy expansion of x in base 2. As in
the preceding section, the proof of Theorem 1.3 can be divided into several
cases according to the expansion (xi). We will only prove the theorem for
Case I; the other cases can be treated in the same way. From now on, we
assume that

(xi) = α1 · · ·αm01∞

with m ≥ 0 and αi ∈ Ω for 1 ≤ i ≤ m.
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For k ≥ 2, let Σk−1 = {1, . . . , k − 1} and let Σ∗k−1 =
⋃∞
j=1Σ

j
k−1 be the

set of finite blocks over Σk−1. For w = w1 · · ·wj ∈ Σj
k−1, define

y(w) = εw1
1 · · · ε

wj

j εj+1,

where εi = 0 if i is odd and ε = 1 otherwise. Thus y(w) is a block of length
w1 + · · ·+ wj + 1 over Ω.

For k ≥ max{2,m+ 1}, put x(k) = α1 · · ·αm01k. For ω ∈ Σ∗k−1, define

E(k)
ω = {(εi) ∈ Ω∞ : (εi) begins with the block x(k)y(w)}.

Then E
(k)
ω is a compact set and E

(k)
ωτ ⊆ E

(k)
ω for any τ ∈ Σk−1, and for two

distinct blocks ω, ζ ∈ Σj
k−1, we have E

(k)
ω ∩ E(k)

ζ = ∅. At last, we define

(5.1) E(k) =
∞⋂
j=1

⋃
ω∈Σj

k−1

E(k)
ω =

⋃
η∈Σ∞k−1

∞⋂
j=1

E
(k)
η|j .

Then from the proof of Theorem 1.1 and Proposition 2.1, we know that for
any k ≥ max{2,m+ 1}, E(k) is a nonempty compact set and

Φ−1x (E(k)) ⊆ U(x).

So, to prove Theorem 1.3, we only need to show that for any s ∈ (0, 1),

(5.2) dimH Φ
−1
x (E(k)) ≥ s

when k is large enough. This fact will be proved via the following two lem-
mas.

Lemma 5.1. For s ∈ (0, 1), there exists k0 ≥ max{2,m + 1} such that
dimHE

(k) > s whenever k ≥ k0.
Lemma 5.2. Given λ > 0 and k ≥ max{2,m+1}, there exists a constant

C > 0 such that for any β1, β2 ∈ Φ−1x (E(k)), we have

D(Φx(β1), Φx(β2)) ≤ C|β1 − β2|1−λ.
In fact, if the two lemmas are proven, then by the following proposition,

dimH Φ
−1
x (E(k)) ≥ s(1− λ),

and thus (5.2) follows.

Proposition 5.3 ([F]). Suppose that (X, d1), (Y, d2) are metric spaces
and f : X → Y is a map. If there exist constants C,α > 0 such that

d2(f(a), f(b)) ≤ C(d1(a, b))
α for all a, b ∈ X,

then dimHX ≥ α dimH f(X).

Now we prove the lemmas.

Proof of Lemma 5.1. Let σ : Ω∞ → Ω∞ be the shift operator, i.e.,
σ(εi) = (εi+1) for (εi) ∈ Ω∞. Set F (k) = σm+1+kE(k), here σm+1+k is a
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similarity between E(k) and F (k). As a result, the set F (k) is compact, and
dimHE

(k) = dimH F
(k).

For any ω ∈ Σ2
k−1, we define ϕ(ω) : Ω∞ → Ω∞ as follows:

ϕ(ω)
(
(εi)
)

= 0ω11ω2(εi) for (εi) ∈ Ω∞.
Then ϕ(ω) is a contractive similarity for any ω ∈ Σ2

k−1. Moreover, by (5.1),
we infer that

F (k) =
⋃

ω∈Σ2
k−1

ϕ(ω)(F (k))

with the union pairwise disjoint. In other words, the set F (k) is a self-similar
set satisfying the open set condition. Therefore, denoting sk = dimH F

(k),
we have

(2−sk + 2−2sk + · · ·+ 2−(k−1)sk)2 = 1,

i.e., 2−sk + 2−2sk + · · · + 2−(k−1)sk = 1. The lemma then follows from the
fact that sk → 1 as k →∞.

Proof of Lemma 5.2. Fix β1, β2 ∈ Φ−1x (E(k)) with β2 > β1. By Proposi-
tion 2.3, we have β2 > β1 ≥ G, where G is the golden ratio.

Let (εi) and (ηi) be the unique expansions of x in base β1 and β2 re-
spectively. Then by Proposition 2.1, we have (εi) < (ηi). Hence, there exists
i0 ≥ 1 such that

εi0 = 0, ηi0 = 1, and εi = ηi for all i < i0.

Therefore D(Φx(β1), Φx(β2)) = D((εi), (ηi)) = 2−i0 .

By Proposition 2.2(4) and the definition of E(k), we have

i0−1∑
i=1

ηi
βi2

+
1

βi02
+

1

βi0+k2

< x ≤
i0−1∑
i=1

εi
βi1

+
1

βi01
,

and thus

1

βi0+k2

<

i0∑
i=1

(
1

βi01
− 1

βi02

)
≤ β2 − β1

(G− 1)2
;

therefore,

(5.3) β2 − β1 ≥ β−(i0+k)2 (G− 1)2 > 2−(i0+k)(G− 1)2.

Fix λ > 0. Assume that β2 − β1 < 2−k/λ(G− 1)2. Then i0 > k(1− λ)/λ
by (5.3). So

D(Φx(β1), Φx(β2)) = 2−i0 <

(
β2 − β1
(G− 1)2

) i0
i0+k

≤ |β1 − β2|
1−λ

(G− 1)2
,

and the lemma follows.
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