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Univoque sets for real numbers
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Fan Lii, Bo Tan and Jun Wu (Wuhan)

Abstract. For z € (0,1), the univoque set for =, denoted U(z), is defined to be the set
of 8 € (1,2) such that = has only one representation of the form = = z1/8 + x2/8% + - - -
with z; € {0,1}. We prove that for any = € (0,1), U(z) contains a sequence {fk}r>1
increasing to 2. Moreover, U(z) is a Lebesgue null set of Hausdorff dimension 1; both
U(x) and its closure U(x) are nowhere dense.

1. Introduction. Given 5 > 1 and x € R, an infinite sequence (g;) =

€19 -+ - of integers with 0 < ¢; < 8 for all i is called an expansion of x in
base [ if

€1 £9

g B

It is clear that x has such an expansion only if = lies in the interval Jg =
[0,([8] —1)/(8 — 1)], where [3] denotes the smallest integer larger than
or equal to 8. Conversely, for any x € Jg, the expansions always exist,
for instance, the following so-called quasi-greedy algorithm [DK95] gives an
expansion of z in base 8 > 1 as follows: If x = 0, then z; = 0 for all 3.
Otherwise, x; is defined to be the largest integer in 253 = {0,1,...,[F] —1}
such that 1 /8 < x. Inductively, if z1,...,z;—1 have already been defined,
then x; is chosen to be the largest integer in {23 such that

Fot 2 <

—_ DY — x'

B B

It is easy to show that (z;) is an expansion of z, called the quasi-greedy
expansion of x in base (.

For g > 1, let ng be the collection of infinite sequences over {23, i.e.,
ng = {(ei) = €162+ : & € (23 for all i}. We define the projection map
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WB:QEO—HRaS

m5((e0)) = Z% for (e;) € Q5.
=1

The map 74 is not injective; there is an easy example: taking S = G to be
the golden ratio (14 +/5)/2 ~ 1.618, we have
11 111

“cteETodTeE e
It was generally believed that for any given g € (1,2), the number 1 has
infinitely many expansions [Ko]. After Erdds, Horvath and Jod’s startling
discovery [EHJ| that #775_1(1) = 1 (i.e., the quasi-greedy expansion is the
unique expansion of 1 in base ) for a continuum of 8 € (1,2), many works
[DK95, dVEKO09, [EJK] [KoL98| [KoL07] have been devoted to the study of the
set

1 4,

U) ={8e1,2): #r5'(1) = 1}.

In particular, it was proved that both /(1) and its closure U(1) are of
Lebesgue measure 0 and of Hausdorff dimension 1 [DK95] [KoL07], and thus
they are nowhere dense.

In the same way, for any x € [0, 1], we define

Ux) ={B e (1,2) : #my ' (x) = 1}.
Note that 0 has the unique expansion 00--- in any base 8 € (1,2).

Recently, de Vries and Komornik [dVKI11] proved that U(z) \U(x) is (at
most) countable for any z € [0, 1]. Moreover, they studied the set

U= {(z,8) e Rx (1,00) : x € Us},
where Ug = {z € Jg : #77/;1(1‘) = 1}, proving that:

(1) U is not closed and U is a Cantor set;
(2) U and U are two-dimensional Lebesgue null sets;
(3) U and U have Hausdorff dimension 2.

When f is an integer, all but countably many = € [0, 1] have a unique
expansion, i.e., Ug = [0, 1] up to a countable set; when 3 is not an integer,
Sidorov [S03] showed that U is a Lebesgue null set (see also [DAV, Theo-
rem 7]). Daréezy, Kétai and Kallés [DK93, KK, [Ka99l [Ka01] developed a
strategy for the computation of the Hausdorff dimension of /3 for any given
B > 1. Glendinning and Sidorov [GS], Sidorov [S07], Kong, Li and Dekking
[KLD], and de Vries and Komornik [dVK11] proved that:

(1) dimpUg =11if p € N, and dimpUs < 1if 5 ¢ N;
(2) dimplg —1as B 2.
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In this paper, we deal with the structure and properties of the set U(z)
for any = € (0,1). It is well known, in the study of the set ¢/(1), that the
uniqueness of the expansion of 1 depends only on the comparison of the
expansion with its shifts. But, in the criterion of the uniqueness of the ex-
pansion of any z € (0, 1), the quasi-greedy expansion of 1 and the expansion
of x itself are involved, while usually, one does not know both expansions
simultaneously; this causes the main difficulty in the construction.

The following are our main results:

THEOREM 1.1. For any z € (0,1), there exists a sequence {Bj}x>1 inU(x)
satisfying B /2 as k — oo.

THEOREM 1.2. We have
LU(z)) =0 forallz e (0,1),
where L denotes the one-dimensional Lebesque measure.
THEOREM 1.3. We have
dimgU(x) =1 for all x € (0,1),
where dimyg means the Hausdorff dimension.
We make several remarks here:

1. By Theorem for any x € (0,1), we know that U(z) is nonempty,
and the projection of U onto the z-axis contains the interval [0, 1].

2. Together with the result of de Vries and Komornik that U (z) \ U(x)
is (at most) countable, Theorem implies that for any = € (0, 1), we have

L(U(x)) = 0. Therefore U(z) and U(z) are nowhere dense in (1,2).

3. In light of [} Corollary 7.10], Theorem provides an alternative
proof of the fact that both U and U are of Hausdorff dimension 2.

The rest of this paper is organized as follows: In the next section, some
basic facts about quasi-greedy expansion and the set U(x) are presented.
Section 3 is devoted to the proof of Theorem [1.2] Theorem [1.1] is proved
in Section 4. We will prove Theorem in the last section, based on the
construction in the proof of Theorem

2. Preliminaries. More than fifty years ago, Rényi [R] introduced the
well-known greedy expansions. Parry [P] then gave a lexicographic charac-
terization of greedy expansions, which became an excellent tool in investigat-
ing the combinatorial and topological nature of such expansions. In Parry’s
lexicographic characterization, the quasi-greedy expansion of 1 plays a very
important role. Given 8 > 1 and x € R, note that z has a unique expansion
in base § if and only if the lexicographically largest and smallest expansions
of x in base [ coincide.
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From now on, for simplicity, we always consider ( in the interval (1, 2],
whence 25 = {0,1}. It is readily checked that the quasi-greedy expansion
of 1 for # € (1,2] should contain infinitely many 1’s. Moveover, a sequence
(6;) € {0,1}°° of infinitely many 1’s is the quasi-greedy expansion of 1 for
some 3 € (1,2] if and only if it is self-admissible [BK], i.e.,

(6j4i)i < (6;) forall j >1,

here and below, the notation < or < between sequences means the lexico-
graphic order: (g;) < (n;) if there exists igp > 1 such that g, < n;, and
g; = n; for all i < dp; (¢;) < (m;) means either (g;) < (m;), or (g;) = (m:).
The symbol (d;4;); denotes the sequence §;41d;42---; we will write (§;4)
instead if it causes no confusion.

Given § € (1,2] and z € [0, 1], a criterion for = to have a unique expan-
sion (in base ) is (see [Ko|): there exists an expansion (g;) of x satisfying

(Ej—l—i) < (6;) if g; =0,
{ (&) < () ifej =1,

where (6;) is the quasi-greedy expansion of 1, &; = 1—¢; and (g;) = €183 - - .

(2.1)

A sequence (0;) € {0,1}* is the unique expansion of 1 in some base
B € (1,2] if and only if it is admissible, that is,
{ (0j4¢) < (6:) if 05 =0,

(5j+i) < (51) if 5]' =1.
Moreover, the quasi-greedy algorithm provides a strictly increasing bijection
between the set (1) of bases 8 in which the expansion of 1 is unique and
the collection A of admissible sequences (equipped with the lexicographic
order defined as above); see [EJK]| for more information.
From now on, we put {2 = {0,1}. For z € [0,1], define &, : (1,2] — 2>
as follows: for 5 € (1,2],

@I(B) - (xl)’

where (x;) is the quasi-greedy expansion of = in base f.

We list some basic facts about the quasi-greedy expansion here, and the
readers are referred to [dVKQ9, [dVK11] for more details.

PROPOSITION 2.1. For any = € (0,1], @, is strictly increasing.

PROPOSITION 2.2. Given 8 € (1,2] and x € (0,1], let (x;) and (6;) be
the quasi-greedy expansions of x and 1 (in base [3) respectively. Then

(1) The sequence (z;) is infinite, i.e., there are infinitely many 1’s in (x;);
(2) For any infinite expansion (g;) € £2°° of x in base 3, (g;) < (x;);
(3) (x;) < (6;) with equality if and only if © = 1,
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(4) If z; =0 for some j > 1, then%—l—-"—#—gj—l—ézx;

(5) If%—k---—i—é <z for some j > 1, then x1---xz; = 17.
ProrosITION 2.3 ([Kd]). If 8 € (1,G) with G the golden ratio, then any
x € (0,1] has a continuum of expansions.

As a result, for any = € (0, 1], the elements of U (z) must be larger than
or equal to G. In fact, they are strictly larger than G (see [dVK09]) and G
is sharp in this respect.

3. The Lebesgue measure of U(z). In this section, we study the
Lebesgue measure of U(z) and prove Theorem [1.2
Given x € (0,1), for j > 1 and w € 27, we define p,, and q,, as follows:

(1) Put p,, = 1 if w = 0/; otherwise, define p,, to be the unique solution
larger than 1 of the equation

e
p P
(2) Define g, to be the unique solution larger than 1 of the equation
w1 Wy 1 1
R B e R

Denoting wr = wy - --w;7 for 7 = 0 or 1, we have
(3.1) Pw = Puwo < Min{pu1, guo} < max{pu1,quo} < quwi = u-
When p,1 < 2 or g0 < 2, we have p,1 < quo, and thus
(3-2) Pud = Do < Pt < o < Qo = qut.-
LEMMA 3.1. Forj > 1 and w € £29, we have:

(1) If p» € (1,2), then = has at least two expansions in base py; if
qw € (1,2), then x has at least two expansions in base q,.

(2) For any € (1,2), we have B € [pw,qu| if and only if there exists a
sequence (g;) € ng(ac) satisfying €1 -+ - €5 = w.

Proof. (1) can be deduced directly from the criterion ({2.1)) for = € (0,1)
to have a unique expansion in base € (1,2).
(2) “=": This is true for § = p,, or q,. Assume that 5 € (py,qn). Then

') J J J
1 Wi wj Wi
x’z:ﬂ4:§}7<§%ﬁ<§}7§$
i=1 dw - o 3 im1 Pw

and thus
> 1

I i 1 &
O<x‘;ﬁi<zqgﬁ<;ﬁj+fﬂjw—l>’
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ie.,
v=#(r-35)
i=1
Let (y;) be the quasi-greedy expansion of y in base 5. Then

J
T = Z Z B]+z
i:1

that is, the sequence (g;) = wy - - “W;y1Y2 - -+ is an expansion of x.

“<”: Trivial. w

For j > 1 and w € £, set I, = (pw, qu) N (1,2) and

=1\ |J I
Ceni\{w}
It is readily checked that both I@ and I are (possibly empty) intervals, and
for any pair of distinct w,( € £27, we have I; N I = (). By 1 ,
(pw07 QWO) U (pwla le) c (pw7Qw)-

Then with the help of (3.2)) it is not difficult to see that I,0U I,; = I, and
thus we infer that I, U I, C I%, in other words, the intervals {I}},, have
a nested structure.

LEMMA 3.2. With the notations above, we have U(z) = (;2) Uyeni 13-

Proof. First we have

oo [e.e]
U z=UnNs,
J=1lwei nefe j=1
where n|; =n1 - --n; for n = (n;) € £2°°. We divide the proof into two steps:

“C”: For € U(x), we assume that 7 is the unique expansion of z in
base 3. Then by Lemma we have 8 € I, for all j > 1. Also by Lemma

for any w € 27 with w # 7|}, we have 8 ¢ I,,. We infer that 8 € I;;'j for

all 7 > 1, and hence
Be ﬂ LenuUn
J=lwe2s
“D”: Suppose that 8 € Uneﬂw ﬂoo I* Then 8 € ﬂoo I:]“ for some
n € 2°°, and thus § € I77j C I, for all j 2 1. If B ¢ U(x), then by Lemma
we can find some w 67(23' with w # 7|; such that 8 € [p,,q.]. Then
B el nN [P 4w C I, N1y, and thus 3 ¢ I;‘j, a contradiction. m

Proof of Theorem 1.2. For B € U(x), let  be the unique expansion of x
in base 3. Then by Lemma we have § € I, C I for all j > 1. Let i
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be the first place where 1 occurs in the sequence 7 (recall that x # 0 and
thus n # 0% :=000---), i.e,, n;, = 1 and n; = 0 for ¢ < 4.
For j > iy, we write p = P, and ¢ = ;- Since p < 5 < g and

j
i i 1
— =T = — + y
—p Z; ¢  ¢(q—1)
we have ‘
1 7, Z ni 1 1 _qg-—p
N
¢(qg—=1) =p =g po g° pg
then
pq" B
3.3 g—p< - ;
33 1) = FeE 1)
therefore,
(3.4) ]In|j\:q—p—>0 as j — 0o,
where | - | denotes the length of an interval. Then there exists a constant

v > 0 (depending on 3) such that I, C (1+7,2—7) for large j, say j > jo.

j
Writing p* = p(y|;)1 and ¢* = q(y,)0, we have

nl5)

Ni 1 L o, 1
Z: ) 2 @) @) =1

and thus

1 1 ol i 1 1
3.5 - — — = - — -+ — — —.
69 D @ T @y T e @
By (3.2)), the left hand side of ({3.5]) is

1 | < 1 1> .
(@) g* = 1) (g*)7*t (g*)7 ! \g* -1 T @t (1 =)
and the right hand side is

=1 =1
oo X ook
. [1._1]§1_1§q2p‘
L)y ()] pr-1 ¢-1 gl
Comparing the two inequalities above, we infer that
~3 ~3

Hinlpo M il =a" —p" 2 P (1 —v) = ¢ (1 —)(2—7)
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On the other hand, by ({3.3),
pe°  _ (2-y)*
: < A )
¢(qg—1) @y

1l =a-p<
Therefore, when j > jo,

Lo VMl ¢t —p*
‘In\j | q—>p

for some constant C' > 0 which only depends on = and §.
By , for any r > 0 small enough, we can find j > jp such that

In‘(]’+1) C(B—r,f+7r) but Inlj g (B—r,B+T).
This means that |[,.| > r, and thus by (3.6), we have
‘In‘(j+1)’ > L0 N Iypya| = O
Now by Lemma we have U(x) C U, coire L5, so
I”\<j+1)0 N I77|(j+1)1 NU(x) = 0.
Notice that Iy ..o NV Iy .1 € Iy,,yy © (B —7,8+7), and thus by (3.6),

>C

(3.6)

LU@)N(B—=r,B+7)) <2r =Ly 0N Lyl < 2r = C?r,
Therefore,
_ 2
ey U@ G5
r—0 2r 2

which implies that 5 is not a density point of U(x). Since 8 € U(z) is
arbitrary, the Lebesgue density theorem yields L(U(z)) =0. =

4. Sequence increasing to 2 in (z). In this section we prove Theo-
rem To this end, we construct a sequence of 8’s increasing to 2 in U(x).

For = € (0,1), let (x;) be the quasi-greedy expansion of x in base 2.
Recalling that (z;) cannot end with 0° by Proposition [2.2(1), we consider
the following two cases according to the tails of (z;).

CASE i (x;) ends with 1°°. In this case, we write
(i) = a1 -+ @, 017,
where m > 0 and «; € 2 for all 1 < < m.
For k > 2, we take two sequences of integers (a;), (b;) with 1 < a;,b; <
k — 1, and put
@M) = oy -+ 4y 01F071 10107210 . |
(

(e®) = 1hoar1bigeante ...

)
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where, e.g., 1¥ denotes the block of 1’s of length k. We remark that when
k> m+ 1, we have

k)
(2) < (")
(4.1) i:) b, forallj>0.
( ]-H) < (51 )
Let 5; be the unique solution between 1 and 2 of the equation
T = —
= B

We claim that when k& > max{2, m + 1}, the number z has a unique expan-
sion in base Bi. To prove the claim, by the criterion for the uniqueness of
the expansion ([2.1) and the inequalities (4.1), we only need to show that
(é‘gk)) < ((5i(k)) with ((5(k)) the quasi-greedy expansion of 1 in base [, or

equivalently, >~>°, Z /6k < 1 (see (2) and (3) in Proposition . To this
end, we note that

oo x(k LN 1 00 €(k)
i \
SH-Y Gemm - oY e o
i=1 i=1 "k i=1 "k k i=1 "k
hence
e g(k) m m+1
7 _ om—+1
Z /3@ "k Z 2m+1 Z 2m+1 <1,
i=1 "k i=1

and the claim follows.
To see that S — 2 as k — oo, we remark that
Pay 01k < ﬁk < 9oy a0l = 2,

and by a similar estimation to (3.4), that q,,..., 01x = Pay...a,01k — 0 as
k — oo.

CASE II: (x;) does not end with 1°°. Then there are infinite 0’s and 1’s
in (x;). This case can be divided into the following two subcases according
to the first digit of (x;).

SUBCASE II.1: (z;) begins with 1. Then
(@) = 171091720 . ..

where r;, s; are positive integers for all j.
When k > 2, we take two sequences of integers (a;), (b;) satisfying 1 <
a;,b; < v, — 3, where v, = Z;?:l(rj + s;), and put

(x(k)) — 171051 ... 1705k Q191 Qb1 192002 . ..
2 .
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It is readily checked that when k > 3,

k) v —2
(@) < 1200
(4.2) al for all j > 0.
() < 172000

Let Bk be the unique solution in the interval (1,2) of the equation

xr = — .
= B

We claim that when k > 3, the expansion of x in base (i is unique. To see
this, by (4.2]) and Proposition (5), we only need to prove that

v —2

1
(4.3) > <L
=1 Bk’
Note that
LA Uk a:(k) > x(k a LA 1
I N 0 I I
i=1 Bi i=1 Bi i=1 B i=1 ' i=1 202
Then

TR S

Br 27 = ﬁ’
where the first inequality is due to the facts that z1 = 1 and B < 2. Hence
Bk 1

(44) 2 - /Bk < —1 < UL —20
QW ng
and thus
Vk72 1 1_ 2 Vi 1
P L < ,
i=1 Bk Bk - 1

and this completes the proof of the claim.

At last, the fact that Sy — 2 as k — oo is due to (4.3]).

SUBCASE I1.2: (x;) begins with 0. In this case, we write

() = 07115107212 - . |

Fork>3and 1 <a;,b; <vp_q1+7rr—1r1—2, where v, = Z;?:l(rj +55),
we put
(@) = ori1st .. or011 0P 1200 -

K]
Then if £ > ry + 2,
(Qj(]i)l) < 1Yk—1Fre—Ti—1goo

) for all j > 1.

( Slj_) ) 1uk_1+rk—7"1—1000
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Let B € (1,2) be the unique solution of the equation

B
We claim that when k& > r; + 2, the expansion of x in base [ is unique,

and that By — 2 as k — oo. To see this, as in Subcase II.1, we only need to
show that

Vg—1+rp—r1—1

> ﬁlk<1

=1
In fact,
Vk—171Tk . Vg—1+Tk (k: 00 x( . Vg—1+Tk . 1
i T i i -
Z E_ Z Bz<26z_ Zz Z 21+2Vk1+7'k
i=1 k i=1 k i=1 i=1
Then
[ V—1+Tk
1 €Ty ZT; 1 1 2 — ﬁk
— > A > - >
Wi—1+Tk ; B[lg ; i /8;;14-1 ori+l 2“519 ’
and thus
Bk 1
2— ’Bk < 21’/971"’7‘1@77'1 Vp_1+re—ri—17
k
therefore,
Vg_1+7rE—r1—1 1 1 - 1—‘1-7'1 Tp—Vg—1
- . — < 1-
; 5}6 /Bk -1

5. The Hausdorff dimension of ¢/(z). In this section, we prove The-
orem based on the construction of (xl(k)) in the preceding section.

As usual, we equip the space 2°° = {0, 1}*° with the metric D defined as
follows: For (&;), (n;) € £2°°, if (&;) = (1:), then D((e;), (1:)) = 0; otherwise,

D((e:), () = 27 mintiseinid,

For z € (0,1), let (z;) be the quasi-greedy expansion of = in base 2. As in
the preceding section, the proof of Theorem can be divided into several
cases according to the expansion (x;). We will only prove the theorem for
Case I; the other cases can be treated in the same way. From now on, we
assume that

(x;) = ag -+ @, 01%°

with m > 0 and «; € 2 for 1 < i < m.
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For k> 2, let Sy = {1,....,k — 1} and let 5, = U}, 57| be the
set of finite blocks over Xj_;1. For w = wy ---w; € X_,, define
y(w) =" 6 e,
where ¢; = 0 if 7 is odd and € = 1 otherwise. Thus y(w) is a block of length
wy + -+ +w; + 1 over (2.
For k > max{2,m + 1}, put z*) = a1 ---a,,,01%. For w € X%, define
k) = {(g;) € 2% : (&;) begins with the block z*)y(w)}.

Then E( )is a compact set and E&T) - E(k) for any 7 € X1, and for two
distinct blocks w, ( € X %1, We have E(k) N E = (). At last, we define

(5.1) ﬂ U = | ﬂEf]’fJ

i=lyesi | nexee | j=1

Then from the proof of Theorem [I.1] and Proposition we know that for
any k > max{2,m + 1}, E®) s a nonempty compact set and

o, (EW) CU(x).
So, to prove Theorem we only need to show that for any s € (0,1),
(5.2) dimg &1 (E®) > s

when k is large enough. This fact will be proved via the following two lem-
mas.

LEMMA 5.1. For s € (0,1), there exists kg > max{2,m + 1} such that
dimpg E®) > s whenever k > ko.

LEMMA 5.2. Given A\ > 0 and k > max{2, m~+1}, there exists a constant
C > 0 such that for any B, B2 € D5 (E®)), we have

D(®4(51), Dx(82)) < C|B1 — S| .
In fact, if the two lemmas are proven, then by the following proposition,
dimg &, (E®)) > s(1 = \),
and thus follows.

ProprosITION 5.3 ([E]). Suppose that (X,d1), (Y,d2) are metric spaces
and f: X —Y is a map. If there exist constants C,a > 0 such that

da(f(a), F(b) < C(di(a,)*  for all a,be X,
then dimpg X > adimy f(X).
Now we prove the lemmas.

Proof of Lemma [5.1. Let o : 2°° — 2° be the shift operator, i.e.,
o(g;) = (gi41) for (g;) € 2%, Set FF) = gmHHkE(k) here g™ F1+F i5 a
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similarity between E®) and F(*). As a result, the set F*) is compact, and
dimyg E® = dimyg F®).
For any w € X2 |, we define ¢(w) : 2°° — 2 as follows:
go(w)((sz)) =0“11%2(g;)  for (&) € 02°°.
Then p(w) is a contractive similarity for any w € 2}%—1' Moreover, by 1 ,

we infer that
F® = | ew)(F®)

w€2i71

with the union pairwise disjoint. In other words, the set F*¥) is a self-similar
set satisfying the open set condition. Therefore, denoting s, = dimyg F*),
we have

(Q*Sk + 2*25k 4ot 27(k71)sk)2 — 17
ie, 27% 4272k 4 ... 4 2=(k=Dst — 1 The lemma then follows from the
fact that s, — 1 as k — 00. m

Proof of Lemma . Fix 81, B2 € &, (E®) with By > 1. By Proposi-
tion we have 2 > (31 > G, where G is the golden ratio.

Let (g;) and (7;) be the unique expansions of = in base 51 and (2 re-
spectively. Then by Proposition [2.1} we have (g;) < (1;). Hence, there exists
ig > 1 such that

g, =0,m, =1, and ¢ =mn; foralli<ip.

Therefore D(@x(ﬁlzg(ﬁg)) = D((&i), (m;)) = 27 %.
2.2

By Proposition 4) and the definition of E®) we have

i() 177 1 1 iO_l € 1
R A REED
i=1 B BZOJrk 7,21 ’81 10
and thus A
1 S ( 1 > B2 — Bi
— < — —— | < ;
HE Zl ooogn) T (G-12
therefore,
(5.3) By — By > By (G = 1)2 > 2l th) (G — 1)2,

Fix A > 0. Assume that 8y — 81 < 272G — 1)2. Then ig > k(1 — \)/\
by (5.3). So
B> — By ) 1B = B

D(®a(Br), Pa(B2) = 277 < ((G—1)2 (G127

and the lemma follows. =
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