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Abstract. Utilizing the discrete homotopy methods developed for uniform spaces by
Berestovskii–Plaut, we define the critical spectrum Cr(X) of a metric space, generalizing
to the non-geodesic case the covering spectrum defined by Sormani–Wei and the homotopy
critical spectrum defined by Plaut–Wilkins. If X is geodesic, Cr(X) is the same as the
homotopy critical spectrum, which differs from the covering spectrum by a factor of 3/2.
The latter two spectra are known to be discrete for compact geodesic spaces, and corre-
spond to the values at which certain special covering maps, called δ-covers (Sormani–Wei)
or ε-covers (Plaut–Wilkins), change equivalence type. In this paper we initiate the study
of these ideas for non-geodesic spaces, motivated by the need to understand the extent to
which the accompanying covering maps are topological invariants. We show that discrete-
ness of the critical spectrum for general metric spaces can fail in several ways, which we
classify. The “newcomer” critical values for compact non-geodesic spaces are completely
determined by the homotopy critical values and the refinement critical values, the latter
of which can, in many cases, be removed by changing the metric in a bi-Lipschitz way.

1. Introduction. The covering spectrum of a geodesic space, intro-
duced by Sormani and Wei ([14], [15]), provides a way to understand the
topology of the space at a given scale. Their construction uses a classical
method of Spanier ([16]) that produces a covering map for a given open

cover; in particular, they use the covering map πδ : X̃δ → X of a geodesic
space X corresponding to the open cover by δ-balls. Such a cover is con-
structed for every δ > 0, yielding a parameterized collection {X̃δ}δ>0. The
covering spectrum consists of those δ > 0 such that for all δ′ > δ, the cover-
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ing maps πδ
′

and πδ are not equivalent (see also Remark 16 below). Sormani
and Wei use these covering maps, and the covering spectrum, to obtain in-
teresting results concerning limits of compact Riemannian manifolds with
Ricci curvature uniformly bounded below.

Berestovskii and Plaut independently developed a method to construct
covering maps determined by geometric information—first for topological
groups ([2], [4]) and later for uniform spaces ([3], [9]), hence metric spaces.
Unlike Spanier’s construction, which uses classical (continuous) paths and
homotopies, the Berestovskii–Plaut construction uses discrete chains and
homotopies, which we will discuss in more detail in the following section.
One consequence is that the construction works for an arbitrary connected
metric space and yields, for each ε > 0, a covering map ϕε : Xε → X and
corresponding deck group πε(X), called the ε-cover and ε-group, respec-
tively. Plaut and Wilkins show in [11] that for compact geodesic spaces the
Sormani–Wei cover πδ is equivalent to ϕε when ε = 2δ/3. At the same time,
in [10], [11], and [19], they give several topological and geometric applica-
tions of the discrete methods.

For example, in [10] the authors strengthen a theorem of M. Gromov
([6]) that the fundamental group of any compact Riemannian manifold of
diameter at most D has a set of generators g1, . . . , gk of length at most
2D and relators of the form gigm = gj . In fact, they obtain an explicit
bound for the number k of generators in terms of the number of equivalence
classes of “short loops” at every point and the number of balls required to
cover a given semilocally simply connected geodesic space. As a corollary
they obtain a “curvature free” fundamental group finiteness theorem (new
even for Riemannian manifolds) that generalizes the finiteness theorems of
Anderson ([1]) and Shen–Wei ([13]). In [11], they investigate the covers of
Gromov–Hausdorff convergent sequences, where discrete methods are par-
ticularly useful due to the well-established principle that many properties of
the limit of a convergent sequence of compact metric spaces Xn can be for-
mulated in terms of the limits of finite point sets (cf. Chapter 7 of [5]). They
establish a type of weak closure result for a collection of covers called circle
covers that generalize ε-covers, allowing them to complete the investigation
of Sormani-Wei into the structure of limits of δ-covers. In [19], Wilkins em-
ploys these discrete methods to relate the existence of universal covers of
Peano continua to the geometry and topology of various generalized fun-
damental groups. For example, he shows that such a space has a universal
cover if and only if the revised and uniform fundamental groups are finitely
presented, which, in turn, holds if and only both groups are discrete in a
specific topology called the covering topology.

In [11], Plaut and Wilkins ask to what degree these concepts are topo-
logical invariants. The present paper represents a start on that program by
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moving beyond the geodesic case. There are many reasons why one would
want to pursue such a program, including the existence of new topological
invariants. As an example, given a Peano continuum X, one can consider
the collection of all covering maps of X (with connected domain) that are
ε-covers for some geodesic metric (or more general metric) on X. For in-
stance, up to rescaling, there is only one geodesic metric on a topological
circle, and the only ε-covers for that metric are the trivial cover and the uni-
versal cover; the n-fold covers of the circle are not ε-covers for the geodesic
metric. We conjecture that the same is true for any metric on the circle (as-
suming the covers have connected domain). On the other hand, RP2 with
an open disc removed is homeomorphic to the Möbius band, and so there
are geodesic metrics on the Möbius band that Gromov–Hausdorff approx-
imate RP2. It follows from the convergence results of [11] that the 2-fold
cover of the Möbius band occurs as an ε-cover for some geodesic metrics. In
other words, one can distinguish between the circle and the Möbius band on
this basis, despite the fact that the circle is a deformation retraction of the
Möbius band. However, other than directly classifying all of the ε-covers in
examples like the circle, at this point we have few good methods to show
that a given cover is not an ε-cover for some geodesic metric, and it may
be easier to consider more broadly the collection of covering maps that are
ε-covers for some compatible metric in general. In this case one has to con-
sider the possibility that Xε is not connected, and also that the analog of
the covering spectrum may not be discrete in R+. The latter possibility is
one of the main complications of the non-geodesic case, and understanding
it is a main thrust of this paper.

Note also that these discrete methods—unlike geodesic methods—can
be applied to fractals with no rectifiable curves like the Sierpiński Gasket
with its “resistance metric,” which is not geodesic and is different from
the metric induced by the plane (cf. [7] and [17]). One may also consider
more exotic spaces such as metrized solenoids, and—as was already observed
in [3]—the Topologist’s Sine Curve. Finally, one should recall that Gromov–
Hausdorff convergence of non-compact proper geodesic spaces is generally
reduced to consideration of metric balls, which, even in geodesic spaces,
need not themselves be geodesic spaces when equipped with the subspace
metric.

The results of this paper are built around a natural defintion of the
critical spectrum for an arbitrary metric space. The precise definition (Def-
inition 19) requires some technical background given in Section 2, but the
critical spectrum of a metric space X—denoted by Cr(X)—can be intu-
itively thought of as the set of all positive real numbers ε at which the
equivalence type of ε-covers changes as ε decreases toward 0. This spectrum
extends both the covering spectrum of Sormani–Wei and the homotopy crit-
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ical spectrum of Plaut–Wilkins ([10]) to the non-geodesic case. The latter
spectra are known to be discrete in R+ for any compact geodesic metric
(see Section 3), but for non-geodesic spaces the situation is more compli-
cated.

First of all, we have

Theorem 1. There exist compact connected metric spaces with critical
spectra that are not discrete in R+.

In Section 3 we give a formal classification of the ways in which dis-
creteness may fail. In Section 4, we give examples of many of the types of
critical values deduced in Section 3 using spaces we call Rapunzel’s Combs.
To begin with, one may identify two types of fundamental critical values:
homotopy and refinement critical values. The resulting spectra are denoted
by H(X) and R(X), respectively. Homotopy critical values are defined for
metric spaces in the same way that they are defined for geodesic spaces, and
are more topologically significant than refinement critical values, although
the latter do indicate a lack of connectivity of certain metric balls (Propo-
sition 32). In particular, R(X) is empty for geodesic spaces, and refinement
critical values can often be removed by changing the metric:

Theorem 2. Let (X, d) be a compact connected metric space. Then for
every ε > 0 there is a metric Dε on X such that

(1) d ≤ Dε, and d(x, y) = Dε(x, y) if and only if d(x, y) < ε.
(2) d and Dε are bi-Lipschitz equivalent.
(3) Dε has no refinement critical values greater than ε.

The metric Dε is called the ε-intrinsic metric induced by d. Note that the
only obstruction in Theorem 2 to possibly removing all refinement critical
values is that one may have inf R(X) = 0 (see Theorem 6).

Rapunzel’s Combs show that not all critical values are refinement or
homotopy critical values, but these two types determine the entire spectrum:

Theorem 3. Let X be a compact connected metric space. If H(X) de-
notes the closure of the homotopy critical spectrum H(X) in R+ = (0,∞),
then

Cr(X) = H(X) ∪R(X).

Since a geodesic space X has no refinement critical values, the discrete-
ness of H(X) in R+ when X is compact immediately yields the following.

Corollary 4. If X is geodesic, then Cr(X) = H(X). If X is also
compact, then Cr(X) = H(X).

We are also able to classify isolated critical values:
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Theorem 5. If X is a compact metric space, and if ε > 0 is an isolated
critical value of X, then ε is a homotopy or a refinement critical value.

Finally, it is interesting to consider the limit of the metrics Dε described
in Theorem 2, which are monotone increasing as ε↘ 0. In general the limit
need not be finite, or if it is finite, topologically equivalent to the original
metric. However, we do have:

Theorem 6. Let (X, d) be a compact connected metric space. If D0 is
finite, then (X,D0) has no refinement critical values. If, in addition, (X, d)
and (X,D0) are topologically equivalent then D0 is a geodesic metric—and
hence X is locally path connected.

Remark 7. Some of the research contained in this paper was carried out
by the undergraduate authors during an REU at the University of Tennessee
in summer 2009 and during the subsequent year. The quality of contributions
by undergraduate co-authors in published papers is known to vary from
paper to paper. In the case of the present work, the contributions of the
undergraduate authors are substantial, including the discovery of Rapunzel’s
Combs and insights into the distinct types of critical values in general metric
spaces.

2. Background on discrete homotopy theory. Omitted proofs of
statements in this section may be found in [3] or [18]. Given a metric space
(X, d), we will denote the open metric balls of radius ε centered at x ∈ X
by B(x, ε) := {y ∈ X : d(x, y) < ε}. If multiple metrics on the same
space are being considered, we will distinguish them by subscripts: Bd1(x, r),
Bd2(x, r), etc. A map f : Y → X between metric spaces is an isometry if f
is surjective and preserves distances (i.e. dX(f(y1), f(y2)) = dY (y1, y2) for
all y1, y2 ∈ Y ). If f : Y → X is surjective and for some ε > 0 the restriction
of f to any B(y, ε) ⊂ Y is an isometry onto B(f(y), ε) ⊂ X, we call f an
ε-local isometry. It follows easily that an ε-local isometry is in fact a covering
map such that ε-balls are evenly covered; when ε is unimportant we may
simply call f a metric covering map. Recall that X is a geodesic space if
every pair of points in X is joined by a geodesic, an arclength parameterized
curve having length equal to the distance between its endpoints. Note that
when X is a geodesic space, Y is a connected topological space, and f :
Y → X is any covering map, then the well-known “lifted metric” on Y is
the unique, topologically equivalent, geodesic metric on Y such that f is a
metric covering map.

An ε-chain α in X is a finite sequence of points α={x0, x1, . . . , xn−1, xn}
such that d(xi−1, xi) < ε for i = 1, . . . , n. For any ε-chain α = {x0, . . . , xn},
the reversal of α is denoted by α−1 := {xn, xn−1, . . . , x1, x0}. A basic move
on an ε-chain is the addition or removal of a single point with the conditions
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that the endpoints remain fixed and the resulting chain is still an ε-chain.
If two ε-chains α and β have the same initial and terminal points, then we
say they are ε-homotopic if there is a finite sequence of ε-chains, H = {α =
γ0, γ1, . . . , γk−1, γk = β}—called an ε-homotopy—such that each γi differs
from γi−1 by a basic move. For a fixed basepoint ∗ ∈ X, let Xε be the set of
all ε-equivalence classes [{∗ = x0, . . . , xn}]ε of ε-chains in X beginning at ∗,
which has a natural metric (Definition 9). One may then define ϕε : Xε → X
to be the “endpoint map” taking [{∗ = x0, . . . , xn}]ε to xn. If one assumes
that X is chain connected in the sense that every pair of points is joined by
ε-chains in X for all ε > 0, then ϕε : Xε → X is surjective, and in fact is
a covering map and local isometry. Given 0 < δ < ε, there is a well-defined
map (cf. [3]) ϕεδ : Xδ → Xε that simply treats a δ-chain like an ε-chain, i.e.
ϕεδ([α]δ) = [α]ε. These maps satisfy the composition relation ϕεδ = ϕελ◦ϕλδ
for δ < λ < ε.

Basic arguments show that connected spaces are chain connected, and
compact chain connected spaces are connected—although, for example, the
rationals with the subspace metric from R are chain connected but not
connected. To ensure that the maps ϕε are always covering maps, we assume
from now on that all metric spaces are connected unless otherwise noted.
We are concerned primarily with compact connected metric spaces.

Although it is important to keep in mind that all chains technically have
both initial and terminal points, for simplicity we will often use the nota-
tion {x} instead of {x, x} for constant or trivial chains. The notation α ∼ε β
will denote the (equivalence) relation “α is ε-homotopic to β.” We will of-
ten write [x0, . . . , xn]ε rather than the technically correct [{x0, . . . , xn}]ε.
There is a well-defined, associative concatenation operation on equivalence
classes of ε-chains: if the initial point of β equals the terminal point of α,
then we can define [α]ε[β]ε = [αβ]ε. The following properties are easily
checked:

Lemma 8. Let α and β be ε-chains. If the initial point of β is the termi-
nal point of α, and if α′ ∼ε α and β′ ∼ε β, then αβ ∼ε α′β′. Furthermore,
αα−1 is ε-null, and if α ∼ε β, then α−1 ∼ε β−1.

An ε-loop is an ε-chain with equal initial and terminal points. If an ε-loop
α = {∗ = x0, . . . , xn = ∗} is ε-homotopic to the trivial loop {∗} then we
say that α is ε-null. If α is an ε-chain, δ < ε, and α is ε-homotopic to a
δ-chain β, then we say that α can be ε-refined to β. We call such a homotopy
an ε-refinement, and refer to β as a δ-refinement of α. When no confusion
will result, we will often drop the ε’s and δ’s in our notation. Note that if α
is an ε-chain in a geodesic space then we can refine α to any desired degree
of fineness by successively adding midpoints of geodesics joining each pair
of consecutive points in the chain. Refinements of this sort play important
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roles in [10] and [11], and the ability (or inability) to refine chains is an
important possible feature of non-geodesic spaces.

The set of classes [λ]ε, where λ is an ε-loop at ∗, forms a group πε(X)
with operation induced by concatenation. This group acts on Xε by precon-
catenation: for any ε-loop λ, define hλ([α]ε) := [λα]ε. Then hλ is a bijection
that depends only on the ε-equivalence class of λ and, as was shown in [3],
ϕε is a well-defined regular covering map with deck group naturally identi-
fied with πε(X). One can think of πε(X), roughly, as a fundamental group at
a specific metric scale. For instance, for a geodesic space X there is always
a natural surjective homomorphism h : π1(X)→ πε(X), the kernel of which
is generated by classes of loops that are, roughly, “small” on the scale of ε.

We define a metric dε on Xε as follows:

Definition 9. The length of an ε-chain, α = {x0, . . . , xn}, in (X, d) is

L(α) :=

n∑
i=1

d(xi−1, xi).

The length of the equivalence class [α]ε ∈ Xε is L([α]ε) := inf{L(β) : β ∈
[α]ε}, and for [α]ε, [β]ε ∈ Xε, we define dε

(
[α]ε, [β]ε

)
= L

(
[α−1β]ε

)
.

Note that if the initial point of β is the terminal point of α, then L(αβ) =
L(α) + L(β). We also have L(α) = L(α−1), and hence L([α−1]ε) = L([α]ε).

It is straightforward to check that L([αβ]ε) ≤ L([α]ε) + L([β]ε), from
which the triangle inequality for dε follows. Symmetry is obvious, and posi-
tive definiteness is implied by the otherwise useful fact that if L([α]ε) < ε,
where α = {x0, . . . , xn} is an ε-chain, then d(x0, xn) < ε, α is ε-homotopic
to the two-point ε-chain {x0, xn}, and L([α]ε) = d(x0, xn). More generally
one also sees that for 0 < δ ≤ ε and an ε-chain α = {∗ = x0, . . . , xn},
B([α]ε, δ) ⊂ Xε consists precisely of those [β]ε ∈ Xε such that β is ε-
homotopic to an ε-chain of the form {∗ = x0, . . . , xn, y}, where d(y, xn) < δ.
Furthermore, ϕε is 1-Lipschitz (or distance non-increasing) and an ε/2-local
isometry. In fact, every ε/2-ball in X is evenly covered by a union of ε/2-balls
in Xε. As with the case of classical covering space theory, change of base-
point in a chain connected space induces a natural equivalence of covering
spaces, which with the present metric is an isometry. Therefore we will treat
base points very informally, but assuming, when needed, that maps are base
point preserving. In particular, if ∗ is the base point in X we will always use
[∗]ε as the base point in Xε. For brevity we will denote [∗]ε by ∗̃. Finally,
the maps hλ : Xε → Xε defining the action of πε(X) on Xε are isometries.

There is an identification of fundamental importance, ιδε : Xδ → (Xε)δ,
that is defined by

ιδε
(
[∗ = x0, x1, . . . , xn]δ

)
=
[
[∗]ε, [∗, x1]ε, . . . , [∗, x1, . . . , xn]ε

]
δ
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and was shown in [3] to be a well-defined uniform homeomorphism. Accord-
ing to the metrics we have defined in the spaces Xε and (Xε)δ,

dε
(
[∗, . . . , xi]ε, [∗, . . . , xi, xi+1]ε

)
= d(xi, xi+1),

and therefore

L
(
{∗ = x0, . . . , xn}

)
= L

({
[∗]ε, [∗, x1]ε, . . . , [∗, x1, . . . , xn]ε

})
.

This implies that ιδε is in fact an isometry in the case of metric spaces. For
one thing, this fact implies that the basic results that we have proved about
ϕδ hold equally well for the function ϕεδ, including the properties of being
Lipschitz and a δ/2-local isometry when it is surjective.

We will denote the restriction of ϕεδ to πδ(X) by Φεδ : πδ(X)→ πε(X).
These maps are homomorphisms (again, invoke ιδε), and ϕεδ is injective (re-
spectively, surjective) if and only if Φεδ is injective (respectively, surjective).
In the case of geodesic spaces, the functions ϕεδ are always surjective. In
fact, when X is geodesic, the metric dε coincides with the lifted geodesic
metric (Proposition 23 of [10]), so that Xε is path connected, and hence
chain connected. The identification ιδε then tells us that ϕεδ is surjective.

An ε-loop of the form {x, y, z, x} will be called an ε-triangle. Note that an
ε-triangle is necessarily ε-null. If f : Y → X is a map between metric spaces,
then a lift of a chain, α = {x0, . . . , xn}, from X to a point y ∈ f−1(x0) is a
chain α̃ = {y = x̃0, . . . , x̃n} such that f(x̃i) = xi for each i = 0, 1, . . . , n.

The next lemma shows that Xε largely inherits the local topology and
metric properties of X. The first part follows directly from the fact that
ϕε : Xε → X is an isometry from any ε/2-ball onto its image. The last parts
were proved in [3] in the more general setting of uniform spaces.

Lemma 10. Let X be a connected metric space. If X is locally compact
(respectively, complete), then Xε is locally compact (respectively, complete).
Furthermore, suppose the ε-balls in X have any one of the following proper-
ties: connected, chain connected, path connected. Then the whole space Xε

is, respectively, connected, chain connected, path connected.

Lemma 11 (Chain and homotopy lifting). Let f : Y → X be a surjective
map between metric spaces that is a bijection from ε-balls in Y onto ε-balls
in X. Let α = {x0, x1, . . . , xn} be an ε-chain in X, and let x̃0 be any point
in f−1(x0). Then α lifts uniquely to an ε-chain α̃ beginning at x̃0. If, in
addition, f has the property that the lift of any ε-triangle in X is an ε-
triangle in Y , and if β is an ε-chain that begins at x0 and is ε-homotopic
to α, then the lifts of α and β to x̃0 end at the same point and are ε-
homotopic.

Proof. The first part is proved by induction on the number of points in α.
If α contains one point, the result is trivial. So, assume the result holds for
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all chains with n or fewer points for some n ≥ 1. Let α = {x0, . . . , xn}
be an ε-chain with n + 1 points, and let λ = {x0, . . . , xn−1}. Using the
inductive hypothesis, let λ̃ = {x̃0, . . . , x̃n−1} be the unique lift of λ to x̃0.
Then f(x̃n−1) = xn−1, f is a bijection from B(x̃n−1, ε) onto B(xn−1, ε),
and xn ∈ B(xn−1, ε). Let x̃n be the unique point in B(x̃n−1, ε) mapping
to xn under f , and let α̃ = λ̃{x̃n} = {x̃0, . . . , x̃n−1, x̃n}. Then α̃ is an
ε-chain and f(α̃) = α, proving existence. If there were another ε-chain,
ᾱ = {x̃0 = x̄0, . . . , x̄n}, beginning at x̃0 and projecting to α, then by the
uniqueness part of the inductive hypothesis, the first n points of ᾱ and λ̃
must coincide: x̄i = x̃i for 0 ≤ i ≤ n− 1. The bijectivity of f on B(x̃n−1, ε)
then implies that x̃n and x̄n must be the same, proving uniqueness.

To prove the second part, it suffices to consider the case in which α and
β differ by only a basic move, since an ε-homotopy is just a finite sequence
of basic moves. Suppose β is obtained by removing a point from α, say
α = {x0, . . . , xi−1, xi, xi+1, . . . , xn} and β = {x0, . . . , xi−1, xi+1, . . . , xn}. Let
α̃ and β̃ denote the unique lifts of α and β to x̃0. By uniqueness, α̃ and β̃ must
agree for their first i points. Denote α̃ by {x̃0, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n} and
β̃ by {x̃0, . . . , x̃i−1, ỹi+1, . . . , ỹn}. Since we can remove xi from α, the loop
{xi−1, xi, xi+1, xi−1} is an ε-triangle. The lift of this ε-triangle to x̃i−1 is an
ε-triangle by hypothesis, and, by uniqueness of lifts, the first three points of
that triangle must be x̃i−1, x̃i, and x̃i+1. Since a triangle is a loop, the fourth
point of this lift must be x̃i−1. In other words, we have dY (x̃i−1, x̃i+1) < ε.
So, x̃i+1 and ỹi+1 both lie in B(x̃i−1, ε) and project under f to xi+1, implying
that x̃i+1 = ỹi+1. Finally, by uniqueness of lifts, the rest of β̃ agrees with α̃.
Thus, β̃ is obtained by removing a point from α̃, so α̃ ∼ε β̃. The reasoning
for the basic move is similar.

Corollary 12. Let X be a connected metric space, and let α and β be
ε-chains beginning at a common point x ∈ X that are ε-homotopic. Then
their lifts, α̃ and β̃, to any x̃ ∈ ϕ−1ε (x) are ε-homotopic in Xε.

Proof. Let {z0, z1, z2, z0} be an ε-triangle in X, and let [α]ε be any point
in ϕ−1ε (z0), where α = {∗ = x0, . . . , xn = z0}. Let β = {∗ = x0, . . . ,
xn = z0, z1} and λ = {∗ = x0, . . . , xn = z0, z2}. Then dε([α]ε, [β]ε) and
dε([α]ε, [λ]ε) are less than ε. Moreover, β−1λ ∼ε {z1, z0, z2}, and since
d(z1, z2) < ε, we can remove z0 from this chain to conclude that
β−1λ ∼ε {z1, z2}. Thus, dε([β]ε, [λ]ε)<ε. It follows that {[α]ε, [β]ε, [λ]ε, [α]ε}
is an ε-triangle, and it projects under ϕε to {z0, z1, z2, z0}. Uniqueness of lifts
now implies that ε-triangles lift to ε-triangles, so Lemma 11 then applies.

For ε-covers, we can precisely characterize the lifts of ε-chains.

Lemma 13. Let X be a connected metric space, and let ε > 0 be given.
If α = {∗ = x0, . . . , xn} is an ε-chain beginning at the base point ∗ ∈ X then
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the unique lift of α to ∗̃ = [∗]ε ∈ Xε is given by

α̃ = {[∗]ε, [x0, x1]ε, . . . , [x0, . . . , xn−1]ε, [x0, . . . , xn]ε = [α]ε}.
In particular, the endpoint of the lift of α is [α]ε and the distances between
consecutive points, as well as the chain length, are preserved in the lift.

Proof. First, note that, for i = 1, . . . , n,

dε([x0, . . . , xi−1]ε, [x0, . . . , xi−1, xi]ε)

= L([xi−1, . . . , x1, x0, x1, . . . , xi−1, xi]ε)

= L([xi−1, xi]ε) = d(xi−1, xi) < ε,

since we can successively remove from {xi−1, . . . , x1, x0, x1, . . . , xi−1, xi} the
point x0, then each x1, and so on via an ε-homotopy. Thus, α̃ is an ε-chain,
and clearly ϕε(α̃) = α.

The previous lemma immediately yields the following.

Corollary 14. If X is a connected metric space and ε > 0, then an
ε-loop γ based at ∗ lifts to an ε-loop at ∗̃ ∈ Xε if and only if γ is ε-null.
Thus, any representative of a non-trivial element of πε(X) lifts open (i.e.
to a non-loop).

Lemma 15. For a connected metric space X and any ε > 0, Xε is ε-
connected and ε-simply connected, i.e. every ε-loop based at ∗̃ ∈ Xε is ε-null,
or equivalently, πε(Xε) is trivial.

Proof. The ε-connectivity follows from Lemma 13. Given an ε-loop γ̃ at
∗̃ ∈ Xε, it will project to an ε-loop, γ := ϕε(γ̃), at ∗. Since γ lifts to a closed
loop, it is ε-null. By Corollary 12, this ε-nullhomotopy will lift to Xε.

We will postpone some concrete examples until the next section when
we introduce the critical spectrum.

Remark 16. In their definition of the covering spectrum, Sormani–Wei
use the condition X̃δ 6= X̃δ′ for all δ′ > δ, but from their proofs it is clear
that they take this to mean non-equivalence of the corresponding covering
maps πσ and πδ. In fact, it seems to be an interesting open question (in
our terminology) whether it is possible for Xε and Xδ to be homeomorphic
when ϕε and ϕδ are not equivalent. Recall that it is possible in general for
non-equivalent covers to involve homeomorphic spaces—for example with n-
fold covers of the circle. However, these specific covers may not be ε-covers
of the geodesic circle with any compatible metric, as we conjectured in the
introduction.

3. The critical spectrum. We begin by defining the two aforemen-
tioned fundamental types of critical values, the first of which was originally
introduced in [10].
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Definition 17. A number ε > 0 is a homotopy critical value of X if
there is an ε-loop γ in X that is not ε-null but is δ-null for all δ > ε (when
γ is considered as a δ-chain). Such a γ is an essential ε-loop. The homotopy
critical spectrum of X is the set H(X) of all homotopy critial values.

Definition 18. Let α = {x, y} be a two-point chain in a metric space
X such that

(1) d(x, y) = ε > 0;
(2) for all δ greater than but sufficiently close to ε, α is not δ-homotopic

to an ε-chain.

Then we say that ε is a refinement critical value of X and that {x, y} is
an essential ε-gap, or just an essential gap when ε is clear. The set of all
refinement critical values of X is denoted by R(X).

Of course, since d(x, y) = ε, an essential ε-gap {x, y} is not an ε-chain,
and the point of the above definition is that, in a sense, we cannot “refine”
it to one either. The existence (or non-existence) of essential gaps is closely
connected to the surjectivity of the maps ϕεδ; see Lemma 24.

Even adding refinement critical values to the mix, however, does not tell
the full story, and to completely understand the behavior of the ε-covers we
need the following general definition of a critical value.

Definition 19. Let X be a chain connected metric space. A non-critical
interval of X is a non-empty open interval I ⊂ R+ such that, for each δ < ε
in I, the map ϕεδ : Xδ → Xε is bijective. We call ε > 0 a critical value of X
if it does not lie in a non-critical interval. The set Cr(X) of all critical values
of X is called the critical spectrum of X.

There are two immediate consequences of the definition. First, Cr(X)
is bounded above by diam(X) when X is compact (or simply bounded).
Second, the set of non-critical values, R+ \Cr(X), is open in R+. This means
that Cr(X) is closed in R+, although 0 may be a limit point of the critical
spectrum.

Even though we are interested largely in non-geodesic spaces, it is useful
to sketch out what happens in some simple but illustrative instances by
starting with the geodesic case. Two non-geodesic examples follow the first
two, and more are given in Section 4.

Example 20. Consider X = S1, the geodesic circle of circumference 1.
The details of this example are given in [18]. If ε > 1/3, then all ε-loops are
ε-null, meaning that the ε-cover Xε is isometric to X and is, therefore, the
trivial cover. For any 0 < ε ≤ 1/3, however, the ε-loop that wraps around
the circle one time (in either direction) is no longer ε-null. The ε-cover for
any ε ≤ 1/3 is now R, the universal cover, and these covers “unravel” the
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hole in X. Since there is a 1/3-loop in X that is not 1/3-null but is δ-null
for all δ > 1/3, it follows that 1

3 is a homotopy critical value of X. It is, in
fact, the only critical value of X, since Xε is universal for 0 < ε ≤ 1/3.

While basic, this first example illustrates some important phenomena.
First, as noted in Corollary 4, the critical spectrum of a compact geodesic
space X is simply its homotopy critical spectrum. Furthermore, as we men-
tioned previously, one of the fundamental results concerning the cover-
ing/homotopy critical spectra of a compact geodesic space X is that this
set is discrete in R+ := (0,∞) when X is compact. These properties do
not hold for general metric spaces. The discreteness was first proved by
Sormani and Wei for their covering spectrum in [14], and a stronger result
was later established by Plaut and Wilkins ([10]) for the homotopy criti-
cal spectrum. Thus, the situation in the previous example is, by extension,
typical of compact geodesic spaces. One can imagine ε > 0 sliding contin-
uously along the positive real axis from the diameter of X towards 0 and
consider the corresponding covers ϕε : Xε → X. For ε ≥ diam(X), the
covering map ϕε is trivial. As ε decreases to 0, the covering map remains
trivial for a while until ε is the first critical value of X, if one exists. At
that point, the equivalence class of ϕε : Xε → X and the ε-group change
from the trivial cover and group, respectively, to the next cover and group
in the sequence. The covering map ϕε remains the same for some non-
trivial interval, then changes again at the next critical value—again, if one
exists.

The common discreteness of both the critical and covering spectra in the
compact geodesic case is actually a consequence of a more general result.
Plaut and Wilkins also showed in [11] that despite the apparent difference
in methods, the Berestovskii–Plaut construction, when applied to geodesic
spaces, yields the same covers as the δ-covers used by Sormani–Wei, for
ε = 2δ/3. It follows that the covering spectrum and homotopy critical spec-
trum of a compact geodesic space differ only by a multiplicative factor of 2/3.
However, the requirement of chain connectedness is in general weaker than
connectedness, and is even satisfied by some totally disconnected spaces.
Therefore, the requirement of local path connectedness in the Spanier con-
struction used by Sormani–Wei may be dropped when using discrete chains
and homotopies. As was noted in the introduction, this opens the way to
investigate all of these topics for non-geodesic spaces.

Example 21. For the geodesic Hawaiian Earring determined by cir-
cles with distinct circumferences di → 0, the homotopy critical spectrum is
{d1/3, d2/3, . . . }. At each of the critical values, another circle is “unrolled,”
and Xε consists of an infinite tree with successively smaller Hawaiian Ear-
rings attached to each vertex.
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The previous example shows that for a compact geodesic space that is
not semilocally simply connected, the critical spectrum is still discrete but
may not have a positive lower bound. This is not true in general, though;
there are compact geodesic spaces that are not semilocally simply connected
but have finite or even empty critical spectra (cf. [19]). In general, for a
compact, semilocally simply connected geodesic space, Xε is the universal
cover of X for all sufficiently small ε > 0; in fact, a stronger statement holds
in the more general setting of uniform spaces (Theorem 88 in [3]). Note
that in this case it is interesting to consider the so-called uniform universal
cover of X ([3]), which is the inverse limit of the covers ϕε : Xε → X
as ε → 0. The bonding maps are the functions ϕεδ mentioned earlier. The
uniform universal cover—which exists for all compact geodesic spaces, even if
they are not semilocally simply connected—has the same lifting, regularity,
and categorical universality properties as the traditional universal cover,
though it is not generally a classical covering space defined by evenly covered
neighborhoods. In this paper, however, we are only interested in the maps
ϕε and ϕδε and not the inverse limit space.

The next two examples are non-geodesic, and Example 23 gives a simple
instance of a refinement critical value.

Example 22. Let X be the square of side-length s with its (non-geode-
sic!) Euclidean metric inherited from R2. It is not hard to see that, for ε > s,
Xε is the trivial cover—while for 0 < ε ≤ s, Xε is the universal cover, which
is homeomorphic to R.

Example 23. Let S1 be the geodesic circle of circumference 1. Fix a, b ∈
S1 so that d(a, b) = 1/4, and remove the open geodesic segment from a to b.
Let X ⊂ S1 be the resulting set with the inherited subspace metric, not the
induced geodesic metric, which would just make X a line segment. Choose as
the base point ∗ the midpoint of the longer segment from a to b. See Figure 1
(showing the full sequence of ε-covers). As in the case of S1, Xε is the trivial
cover for ε > 1/3. Since ε is larger than the gap we created by removing the
segment, an ε-loop can cross over the gap; informally speaking, Xε does not
“see” the gap. For 1/4 < ε ≤ 1/3, one can show that πε(X) ∼= Z. In this

Fig. 1. The ε-covers of the geodesic circle with a gap
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case, Xε is the subspace of R with the open segments (n/2−1/8, n/2+1/8),
n ∈ Z, removed. The ε-group, πε(X), acts by shifts, as in the case of S1

itself. Intuitively, we still unravel the circle as in the standard geodesic case,
but the missing segment of the circle gets unraveled along with it. Note that
Xε is not connected in this case.

Now, suppose 0 < ε ≤ 1/4. Since the removed segment has length 1/4,
it becomes the case at ε = 1/4 that no ε-loop can cross the gap. Thus, the
ε-covers now recognize the gap, and it is now impossible to travel around the
circle via an ε-loop. In other words, all ε-loops are necessarily trivial, and
πε(X) is the trivial group. The pair {a, b} is, in fact, an essential gap, and 1/4
is a refinement critical value. In this case, H(X) = {1/3}, R(X) = {1/4},
and Cr(X) = {1/4, 1/3}.

A subtle point deserves mention: ϕε : Xε → X is topologically trivial
for ε > 1/3 and 0 < ε ≤ 1/4, but it is only an isometry for ε > 1/3. The
reason for this is that, for ε ≤ 1/4, the metric that we have defined makes
Xε isometric to a Euclidean segment. In fact, the changes in the topology of
the covering space are measuring geometric features of the space rather than
topological features. This example illustrates two things that can occur in
non-geodesic spaces but not in geodesic ones: the covering space Xε may not
be connected even when X is path connected and locally path connected,
and πε(X) may be non-trivial even when π1(X) is trivial.

We now continue to analyze the general critical spectrum.

Lemma 24. Let X be a metric space, and let 0 < δ < ε be given. The
following are equivalent:

(1) ϕεδ : Xδ → Xε is surjective;

(2) every ε-chain in X can be ε-refined to a δ-chain;

(3) every two-point ε-chain in X can be ε-refined to a δ-chain.

Proof. The equivalence of (2) and (3) is obvious, since an ε-chain is the
concatenation of two-point ε-chains. The equivalence of (1) and parts (2)
and (3) follows from the definition of ϕεδ. Specifically, given [α]ε ∈ Xε, the
existence of an element [β]δ ∈ Xδ such that [β]ε = ϕεδ([β]δ) = [α]ε means
precisely that α is ε-homotopic to the δ-chain β.

In the following, we may occasionally need to refer to the bonding map
between two covers Xδ and Xε when either δ < ε or vice versa is possible.
In this case, we will simply refer to “the map between Xδ and Xε,” and this
will mean ϕεδ if δ < ε and ϕδε if ε < δ.

Lemma 25. A positive number ε is in Cr(X) if and only if there is a
sequence {εn} such that εn 6= ε for all n, εn → ε, and the map between Xε

and Xεn is not bijective for all n.
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Proof. If such a sequence exists, then ε cannot lie in a non-critical in-
terval, for if it did then εn would also lie in that interval for all large n,
contradicting that the map between Xε and Xεn is not bijective.

Conversely, suppose ε ∈ Cr(X). Then there is no non-critical interval
containing ε. So there are two positive numbers, r1 and r2, in (ε− 1, ε+ 1)
such that r1 < r2 and the map ϕr2r1 : Xr1 → Xr2 is not bijective. We
will show that at least one of the maps between Xε and Xr1 , Xr2 must be
non-bijective. In other words, we can choose ε1 to be r1 or r2, and the proof
is complete by iterating this process to construct {εn}. If ε equals r1 or r2,
we are done. If r1 < r2 < ε, then ϕεr1 = ϕεr2 ◦ ϕr2r1 . If both ϕεr1 and ϕεr2
were bijective, then ϕr2r1 would be also, a contradiction. The proofs for the
other two possible orderings are similar.

In light of this result, there are four possible ways in which a critical
value might occur. That is, ε ∈ Cr(X) if and only if one or more of the
following hold (the sloped arrows indicate strictly increasing or decreasing
sequences):

(1) There is a sequence, εn ↘ ε, such that the map ϕεnε : Xε → Xεn

is non-injective (resp. non-surjective) for all n. In these cases, we
say that X is ε-upper non-injective (resp. ε-upper non-surjective),
and we call ε an upper non-injective critical value (resp. upper non-
surjective critical value).

(2) There is a sequence, εn ↗ ε, such that the map ϕεεn : Xεn → Xε is
non-injective (resp. non-surjective) for all n. In these cases, we say
that X is ε-lower non-injective (resp. ε-lower non-surjective), and we
call ε a lower non-injective critical value (resp. lower non-surjective
critical value).

As we will see in the last section, each of these possibilities may occur
in a compact metric space, and in fact two or more of these cases may
simultaneously hold for a given ε.

Remark 26. Spaces for which all maps ϕεδ are surjective exhibit a much
stronger connection between critical values and topology. Such spaces—
which include, for example, all geodesic spaces, all convex subsets of
Euclidean space, and all Peano continua—are called refinable. By Defini-
tion 18, such spaces have no esssential gaps, and thus no refinement critical
values.

If ε is a homotopy critical value of X, then the maps Xε → Xε+t are
non-injective for all t > 0, meaning that X is ε-upper non-injective. The
converse of this statement is true when X is compact geodesic; that is,
every upper non-injective critical value is a homotopy critical value. If ε is a
refinement critical value of X then the maps Xε → Xε+t are non-surjective
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for all sufficiently small t, and ε is an upper non-surjective critical value. The
converse of this statement is not true in general. Example 23 shows that the
two notions may coincide, but it may also be the case that ε is an upper
non-surjective critical value when there is no essential ε-gap, as illustrated
in Examples 31 and 42. These examples also show that the second part of
Lemma 27 below cannot be improved to the existence of a refinement critical
value.

Lemma 27. Let 0 < δ < ε be given. If ϕεδ : Xδ → Xε is not injective,
then there is a homotopy critical value of X in the interval [δ, ε). If ϕεδ :
Xδ → Xε is not surjective, then there is an upper non-surjective critical
value in [δ, ε).

Proof. If ϕεδ : Xδ → Xε is not injective, then there is a non-trivial δ-loop
γ that is ε-null. Since an ε-chain is also an (ε−t)-chain for sufficiently small t,
and since an ε-homotopy is just a finite sequence of ε-chains, it follows that
an ε-homotopy is also an (ε−t)-homotopy for sufficiently small t > 0. Hence,
γ is also (ε − t)-null for small t. Let ε∗ = inf{τ ∈ (δ, ε) : γ is τ -null}. Note
that ε∗ cannot be in this set, for if γ were ε∗-null, it would be (ε∗ − t)-null
for small t, contradicting that ε∗ is the infimum. Thus γ is ε∗-non-trivial
but (ε∗ + t)-null for all t > 0, making ε∗ a homotopy critical value.

If ϕεδ : Xδ → Xε is not surjective then there is a two-point ε-chain
γ = {x, y} that cannot be ε-refined to a δ-chain. Let l = d(x, y) < ε and ε∗

be the infimum of the set R of all τ ∈ (δ, ε) such that γ can be ε-refined to a
τ -chain. Clearly we have δ ≤ ε∗ ≤ l < ε. Moreover, γ cannot be ε-refined to
an ε∗-chain, for such a chain would also be an (ε∗ − t)-chain for sufficiently
small t > 0, contradicting ε∗ = inf R. Suppose ε∗ were not an upper non-
surjective critical value. Then there would be some interval [ε∗, ε∗+ t∗) such
that ε∗ + t∗ < ε and, for every 0 < t < t∗, every (ε∗ + t)-chain can be
(ε∗ + t)-refined to an ε∗-chain. But by definition of ε∗, we can ε-refine γ to
an (ε∗+ t)-chain for some t < t∗. Then we could (ε∗+ t)-refine that chain to
an ε∗-chain, yielding an ε-refinement of γ to an ε∗-chain, a contradiction.

Lemma 28. For a connected metric space X the following hold:

(1) ε is a lower non-injective critical value of X if and only if it is
the upper limit of a strictly increasing sequence of homotopy critical
values;

(2) if ε is an upper non-injective critical value, then it is either a ho-
motopy critical value or the limit of a strictly decreasing sequence of
homotopy critical values.

Proof. If ε is a lower non-injective critical value of X then there exists
a sequence εn ↗ ε such that each map Xεn → Xε is non-injective. By
Lemma 27, for each n there is a homotopy critical value ε∗n in the inter-
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val [εn, ε). From the sequence {ε∗n} we may choose any strictly increasing
subsequence.

Conversely, suppose there is a sequence of homotopy critical values, {εn},
such that εn ↗ ε. Then for each n, there is some t > 0 such that εn <
εn + t < ε and the map ϕεn+t,εn : Xεn → Xεn+t is not injective. The map
ϕεεn : Xεn → Xε is equal to the composition ϕε,εn+t◦ϕεn+t,εn . Since ϕεn+t,εn
is not injective, neither is ϕεεn , completing the proof of the first statement.

For the second statement suppose ε is not a homotopy critical value
and consider a sequence εn ↘ ε such that each map ϕεnε : Xε → Xεn is
non-injective. Then there is a homotopy critical value ε∗n in [ε, εn), and since
ε∗n 6= ε, we may choose any strictly decreasing subsequence of {ε∗n}.

Lemma 29. Let X be a metric space and ε > 0 a lower non-surjective
critical value. Then there exists a sequence of upper non-surjective critical
values converging up to ε. If in addition X is compact, then ε is also an
upper non-injective critical value.

Proof. The proof of the first part is an application of Lemma 27, similar
to part (1) of Lemma 28. Going further, by hypothesis, there is an ε-chain
α1 = {x1, y1} that cannot be ε-refined to an ε/2-chain. Let ε1 = d(x1, y1),
and note that ε > ε1 ≥ ε/2. Now, let τ1 = max{ε1, ε − ε/3} and τ∗1 =
(τ1 + ε)/2. Then let α2 = {x2, y2} be an ε-chain that cannot be ε-refined
to a τ∗1 -chain. Let ε2 = d(x2, y2), noting that ε2 ≥ τ∗1 > τ1 ≥ ε1 and
ε > ε2 > ε−ε/3. Continuing this process inductively, we obtain a sequence of
ε-chains, αn = {xn, yn}, with εn := d(xn, yn) such that (a) ε− ε

n+1 < εn < ε
for each n ≥ 2, and (b) for each n ≥ 1, there is some τ strictly between
εn < εn+1 such that αn+1 cannot be ε-refined to a τ -chain. In particular,
εn ↗ ε.

If X is compact, by choosing subsequences if necessary we may suppose
that xn → x and yn → y for some x, y such that d(x, y) = ε, and d(xn, xn−1),
d(yn, yn−1) < ε/2 for all n.

For each n, let βn := {xn, xn−1, yn−1, yn}, and let γn denote the loop
βnα

−1
n = {xn, xn−1, yn−1, yn, xn}. Note that βn is an ε-chain and γn is an

ε-loop. For any λ > εn−1, βn is a λ-chain, since d(xn, xn−1), d(yn, yn−1) <
ε/2 ≤ εn−1 and d(xn−1, yn−1) = εn−1. In addition, the chain αn cannot be
ε-homotopic to βn; if this were true, then αn would be ε-homotopic to a
chain in which all distances are at most εn−1, contradicting the fact that
there is some τ strictly between εn−1 and εn such that αn is not ε-homotopic
to a τ -chain. It follows that γn is not ε-null. We next observe that

εn−1 + d(xn, xn−1) ≥ ε and εn−1 + d(yn, yn−1) ≥ ε.

In fact, if the first inequality did not hold, we would have the following
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ε-nullhomotopy between γn and {xn}:
γn = {xn, xn−1, yn−1, yn, xn} ∼ {xn, yn−1, yn, xn} ∼ {xn, yn, xn}(1)

∼ {xn, xn},
where the first step is allowed because

d(xn, yn−1) ≤ d(xn, xn−1) + d(xn−1, yn−1) = d(xn, xn−1) + εn−1 < ε.

A similar conclusion follows if the other inequality does not hold. Finally,
define

δn := max{εn−1 + d(xn, xn−1), εn−1 + d(yn, yn−1)} ≥ ε.
Then γn is (δn + 1/n)-null, via the same sequence of steps in homotopy (1).
This means that the map Xε → Xδn+1/n is not injective. Since δn+1/n→ ε,
it now follows that ε is an upper non-injective critical value.

Lemma 30. Suppose that X is a compact metric space, ε is an upper
non-surjective critical value, and there exists δ > ε such that whenever ε <
δ1 < δ2 < δ, the map ϕδ2δ1 is injective. Then ε is a refinement critical value.

Proof. By assumption, there is a sequence εn ↘ ε, with εn < δ for all n,
such that each map Xε → Xεn is not surjective. That is, for each n there
is an εn-chain γn = {xn, yn} that cannot be εn-refined to an ε-chain. We
claim that for any n ≥ 1, γn cannot be ε1-refined to an ε-chain either. If it
could be, then, equivalently, [γn]ε1 would lie in the image of ϕε1ε. But by
assumption, ϕε1εn is an injection, and since ϕε1ε = ϕε1εn ◦ ϕεnε, that would
place [γn]εn in the image of ϕεnε, a contradiction.

Since X is compact, by choosing subsequences if necessary we may sup-
pose xn → x and yn → y for some x, y with d(x, y) = ε. We finish by proving
that γ := {x, y} is an essential gap. Suppose, to the contrary, that we can
find values δ strictly greater than but arbitrarily close to ε such that γ can
be δ-refined to an ε-chain. We may choose δ < ε1 and n large enough that
d(xn, yn) + d(xn, x) + d(yn, y) < δ and d(xn, x), d(yn, y) < ε. Noting that
d(x, yn) ≤ d(x, xn) + d(xn, yn) < δ, we have a δ-homotopy

γn = {xn, yn} → {xn, x, yn} → {xn, x, y, yn}.
Combining this with a δ-refinement of {x, y} to an ε-chain, we obtain a
δ-refinement of γn to an ε-chain. Since δ < ε1, this δ-refinement would also
be an ε1-refinement, which we showed previously does not exist.

Proof of Theorem 5. Lemmas 28 and 29 together imply that ε must
be upper non-injective or upper non-surjective. If the former holds, then
Lemma 28 and the fact that this critical value is isolated imply that ε is
a homotopy critical value. If ε is upper non-surjective, then since ε is an
isolated critical value, the hypotheses of Lemma 30 are satisfied and ε is a
refinement critical value.
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Compactness is only required for the second part of the proof of Theo-
rem 5, but the theorem is false without it:

Example 31. Let X be the union of the graphs of f(x) = 1 + ex and
g(x) = −1 − ex, for x ≤ 0, and the vertical segment connecting the right
endpoints of each graph. Give X the subspace metric inherited from R2.
Pictured as a subset of R2, as x → −∞ the tails of this space asymp-
totically approach a distance of 2 from each other. In fact, 2 is an upper
non-surjective critical value. To see this, take any pair of vertically aligned
points, {(x,−1− ex), (x, 1 + ex)}, for any x � 0. The distance between
these points is 2 + 2ex. For all ε greater than but sufficiently close to this
value, this chain can be ε-refined to a (2 + τ)-chain for any τ > 0, but it
cannot be refined to a 2-chain. (If ε is large enough we can simply refine it
around the other end.) However, there is no essential 2-gap in this space.

Proof of Theorem 3. The containment H(X) ∪ R(X) ⊂ Cr(X) is clear
since Cr(X) is closed in R+. Conversely, let ε > 0 be a critical value of X.
Lemma 28 immediately handles the cases when ε is upper or lower non-
injective. If ε is lower non-surjective then we may use Lemma 29 followed
by Lemma 28. If ε is upper non-surjective then by Lemma 30 we need only
consider the following case: there exist, for each n ≥ 1, τn and δn such that
ε < δn < τn < ε+ 1/n and the map ϕτnδn : Xδn → Xτn is non-injective. But
then Lemma 27 implies there is a homotopy critical value in each interval
[δn, τn), and the proof is finished.

The next few results further examine the utility and topological signifi-
cance of refinement critical values.

Proposition 32. If {x, y} is an essential ε-gap in a metric space X,
then the balls B(x, δ) and B(y, δ) are disconnected for all δ greater than but
sufficiently close to ε.

Proof. Let α := {x, y} be an essential ε-gap in X. There is a τ > ε
such that for all δ ∈ (ε, τ), α is not δ-homotopic to an ε-chain. We claim
that B(x, δ) is not connected for all such δ; a parallel argument holds for
B(y, δ). In fact, B(x, δ) is not even ε-connected. If B(x, δ) were ε-connected,
there would be an ε-chain β = {x = x0, x1, . . . , xn = y} lying in B(x, δ).
Then we could construct a δ-homotopy between β and α by just successively
removing x1, x2, . . . , xn−1. But this contradicts that {x, y} is an essential
ε-gap.

The Topologist’s Sine Curve with its Euclidean metric has no refinement
critical values but has a continuum of points at which small balls are not
connected. Thus, the converse of the previous proposition is not true.
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Definition 33. Let (X, d) be a connected metric space with ε > 0. The
ε-intrinsic metric determined or induced by d is the metric Dε defined by

Dε(x, y) = inf{L(α) : α is an ε-chain in (X, d) from x to y}.
The fact that Dε is a metric follows from the same type of argument

that shows dε is a metric on the ε-cover, and it follows immediately from
the triangle inequality that d ≤ Dε. This inequality and the fact that {x, y}
is the shortest ε-chain between x and y when d(x, y) < ε further imply that
Dε(x, y) < ε if and only if d(x, y) < ε, in which case the two metrics agree.
This moreover shows that not only are (X, d) and (X,Dε) locally isometric,
but also the topologies induced by d and Dε are equivalent. Finally, for
fixed x, y ∈ X, it is easy to see that Dε(x, y) ≤ Dδ(x, y) for δ < ε, since any
δ-chain from x to y is also an ε-chain. Thus, the function (ε, x, y) 7→ Dε(x, y)
is decreasing in ε, or increasing as ε→ 0.

The ε-intrinsic metric induced by a given metric can be thought of as
a discretized or coarse analog of an induced length metric. If (X, d) is al-
ready a length or geodesic space, then Dε is equal to d for every ε. Thus,
one can roughly think of the difference between a given metric d and the
induced metric Dε as a measure—at a particular metric scale—of how far d
is from being intrinsic in some sense. It is also interesting to note that the
ε-cover, Xε, with its natural metric dε, is always ε-intrinsic, whether (X, d)
is geodesic or not.

One of the results of Theorem 2 is that, for each ε > 0, one can replace the
given metric d on a compact connected metric space X with a topologically
equivalent metric that eliminates all refinement critical values greater than ε.
In particular, we have the following immediate corollary.

Corollary 34. If (X, d) is a compact connected metric space such that
inf R(X) > 0, then there is a metric d̄ on X that is topologically equivalent
to d and is such that (X, d̄) has no refinement critical values.

This result also supports the idea put forth in the introduction that
refinement critical values arise not as much as a result of the underlying
topology of the given space as they do as a result of the particular metric
one imposes on the space.

Proof of Theorem 2. Part (1) has already been noted. Consider the met-
ric space (X,Dε). We claim that for any δ > ε, any two-point δ-chain can
be δ-refined to an ε-chain, showing that there are no refinement critical val-
ues greater than ε. But this essentially follows from the definition of Dε.
If Dε(x, y) < δ, then there is—with respect to d—an ε-chain α = {x =
x0, x1, . . . , xn = y} such that L(α) =

∑n
i=1 d(xi−1, xi) < δ. Since the metrics

agree on ε-balls, α is also an ε-chain in (X,Dε). To see that α is δ-homotopic
to {x, y} in (X,Dε), we construct a δ-homotopy as follows. Since {x0, x1, x2}
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is an ε-chain with respect to d, we have Dε(x0, x2) ≤ d(x0, x1) + d(x1, x2) ≤∑n
i=1 d(xi−1, xi) < δ. Thus, we can remove x1 from α via δ-homotopy to ob-

tain {x0, x2, . . . , xn}. Similarly, {x0, x1, x2, x3} is an ε-chain in (X, d) from
x0 to x3, and Dε(x0, x3) ≤

∑3
i=1 d(xi−1, xi) ≤

∑n
i=1 d(xi−1, xi) < δ. So,

we can then remove x2 from the previous chain to obtain {x0, x3, . . . , xn}.
Continuing in the obvious way, we obtain a δ-homotopy in (X,Dε) from α
to {x = x0, xn = y}.

Now, assume (X, d) is compact, which implies that there is a natural
number M such that any two points in (X, d) can be joined by an ε-chain
having at most M points. If x, y ∈ X and d(x, y) < ε, then Dε(x, y) = d(x, y)
and we trivially have Dε(x, y) ≤ Md(x, y). Suppose d(x, y) ≥ ε, and let α
be an ε-chain in (X, d) from x to y with M or fewer points. It follows that
Dε(x, y) ≤ L(α) ≤ Mε ≤ Md(x, y). Thus, Dε ≤ Md, and the two metrics
are bi-Lipschitz equivalent.

Since Dε(x, y) is increasing as ε decreases, it is natural to consider what
happens when we let ε go to 0. If we set

D0(x, y) = sup
ε
Dε(x, y),

then it is easy to see that D0 is also a metric on X when D0(x, y) is finite for
all x and y. Furthermore, we obviously have d(x, y) ≤ Dε(x, y) ≤ D0(x, y)
for all x, y ∈ X and ε > 0. In general, however, D0 need not be finite even
for a compact connected metric space. For instance, if we take the usual
Koch snowflake with its subspace metric in R2, then D0(x, y) will be infinite
for all pairs of points. Moreover, even if D0 is finite and uniformly bounded,
the resulting metric space (X,D0) need not be topologically equivalent to
the original space (X, d). If X is the boundary of the unit square in R2

with the vertical segments from the top boundary to the bottom attached
at the points (1/2n, 0), then X with the subspace metric is compact and
path connected, though not locally connected. In this case, D0(x, y) is finite
for every (x, y), but the resulting space (X,D0) is not compact. The issue
that arises here is that the while D0 is bounded, the relative distortion
D0(x, y)/d(x, y) is unbounded.

Proof of Theorem 6. The proof that (X,D0) has no refinement critical
values follows as in the proof of Theorem 2. In fact, if ε < δ and {x, y} is a
δ-chain with respect to D0, then Dε(x, y) ≤ D0(x, y) < δ, and the preceding
proof goes through without change.

For the second part, it suffices to prove that for every x, y ∈ X there is
a midpoint between x and y (cf. [5] or [8]), i.e. a point m ∈ X such that
D0(x,m) = D0(y,m) ≤ D0(x, y)/2. By definition of D0 for every natural
number i there is a 1/i-chain α := {x = x0, . . . , xn = y} such that L(α) <
D0(x, y) + 1/i. Let ji be the largest index such that L({x0, . . . , xji}) ≤
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D0(x, y)/2. By the triangle inequality,

L ({x0, . . . , xji}) ≥ L ({x0, . . . , xji+1})−
1

i
>
D0(x, y)

2
− 1

i
.

Setting mi := xji we have by definition D1/i(x,mi) ≤ D0(x, y)/2. On the
other hand,

D1/i(y,mi) ≤ L({mi = xji , . . . , y}) = L(α)− L({x0, . . . , xji})

< D0(x, y) +
1

i
−
(
D0(x, y)

2
− 1

i

)
=
D0(x, y)

2
+

2

i
.

Combining these inequalites we obtain

D1/i(x,mi) ≤
D0(x, y)

2
and D1/i(y,mi) ≤

D0(x, y)

2
+

2

i
, i ≥ 1.

By choosing a subsequence if necessary we may assume that mi → m ∈ X.
Since X is compact, it follows from Dini’s Theorem (cf. [12]) that D1/i

actually converges to D0 uniformly. Thus, given any k > 0, we have
D0(x,mi) − 1/k < D1/i(x,mi) ≤ D0(x,mi) and D0(y,mi) − 1/k <
D1/i(y,mi) ≤ D0(y,mi) for all large i. For a fixed k, it follows that

D0(x,mi)−
1

k
<
D0(x, y)

2
and D0(y,mi)−

1

k
<
D0(x, y)

2
+

2

i

for all sufficiently large i. Letting i→∞ in these inequalities, we obtain

D0(x,m)− 1

k
≤ D0(x, y)

2
and D0(y,m)− 1

k
≤ D0(x, y)

2
.

Finally, we let k →∞, and this is the desired result.

Note that an immediate corollary of the above proof is that (X,Dε)
converges in the uniform sense (cf. [5])—hence, in the Gromov–Hausdorff
sense—to (X,D0) as ε→ 0.

4. Examples of non-discrete spectra. In this section we will present
several examples illustrating some of the phenomena that can occur con-
cerning the critical spectrum of a general compact metric space. We will
first prove some technical results that facilitate identifying refinement criti-
cal values. Roughly speaking, the following construction yields a method for
detecting or constructing essential gaps. Indeed, the following discussion and
definition should make it clear why the name ‘essential gap’ is appropriate
for the structure that induces a refinement critical value.

Let X be a connected metric space. Assume there are points, x, y ∈ X,
with d(x, y) = l > 0, and a number ε∗ > l such that the following holds: for
each ε in the interval (l, ε∗], if we let Bx = B(x, ε− l) and By = B(y, ε− l),
then we can express X as a disjoint union, X = Z ∪ Y , such that
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(1) Bx ⊂ Z and By ⊂ Y (hence Bx ∩By = ∅),
(2) the only points in Z that are strictly within ε of a point in By lie

in Bx, and the only points of Y that are strictly within ε of a point
in Bx lie in By.

If these conditions hold, we call {x, y} a pre-essential gap. A pre-essential
gap need not be an essential gap. Note also that though it behaves like
one locally around x and y, {Z, Y } need not be a disconnection of X.
As we have already seen, connected spaces can have refinement critical
values.

Given a pre-essential gap, {x, y}, with d(x, y) = l < ε ≤ ε∗ as above,
let γ = {x0, . . . , xn} be any ε-chain in X. A pair of consecutive points,
(xi−1, xi), 1 ≤ i ≤ n, will be said to contain or cross the x, y-gap if xi−1
lies in either Bx or By and xi lies in the other ball. Assign to each pair of
consecutive points a value |xi−1, xi| as follows:

|xi−1, xi| =


0, (xi−1, xi) does not contain the x, y-gap,

1, xi−1 ∈ Bx, xi ∈ By,
−1, xi−1 ∈ By, xi ∈ Bx.

Note that the order of the points in the notation |xi−1, xi| does matter; the
second case in this definition, for instance, occurs when the first point of the
pair lies in Bx and the second point lies in By, while the third case occurs
when the opposite holds. Now, define G (γ;x, y, ε) :=

∑n
i=1 |xi−1, xi|. We call

this the (x, y, ε)-gap number of γ; it measures the net number of times γ
crosses the x, y-gap.

Lemma 35. Assume that the above conditions hold for some ε∗ > l =
d(x, y), so that {x, y} is a pre-essential gap. Given ε such that l < ε ≤ ε∗, the
integer G (γ;x, y, ε) is an ε-homotopy invariant. That is, for fixed ε ∈ (l, ε∗],
if α and γ are ε-chains such that α ∼ε γ, then G (γ;x, y, ε) = G (α;x, y, ε).

Proof. Since any ε-homotopy taking γ to α will consist of a finite se-
quence of basic moves, it suffices to prove the result in the case where α is
obtained by adding or removing a single point to/from γ. The proof is not
difficult, but it is a tedious process in working through all the possible cases.
We will prove one case to illustrate the reasoning used. The rest of the cases
follow in exactly the same manner.

Let γ = {x0, x1, . . . , xn}, and assume that α is obtained by adding z
between xi−1 and xi. Since this basic move only affects three different pairs
of points in the sums defining the (x, y, ε)-gap numbers of γ and α, we only
need to show that |xi−1, xi| = |xi−1, z|+ |z, xi|.

Assume that |xi−1, xi| = 0. If |xi−1, z| = |z, xi| = 0, then the result is
clear. If |xi−1, z| = 1 and |z, xi| = −1 (or |xi−1, z| = −1 and |z, xi| = 1),
the result is also clear. The subcase |xi−1, z| = 1 = |z, xi| cannot occur,
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for the first equality would imply that xi−1 ∈ Bx and z ∈ By, while the
second would imply that z ∈ Bx and xi ∈ By, which would further imply
that z ∈ Bx ∩ By, a contradiction. The case |xi−1, z| = −1 = |z, xi| cannot
occur either, for the first equality would imply xi−1 ∈ By and z ∈ Bx, while
the second would imply that z ∈ By and xi ∈ Bx, another contradiction.
Suppose |xi−1, z| = 1 and |z, xi| = 0. Then xi−1 ∈ Bx, z ∈ By, and xi cannot
be in Bx or By (or else we would have |xi−1, xi| = 1 in the latter case and
|z, xi| = −1 in the former). But xi must lie in Z or Y , and xi is strictly
within ε of xi−1, a point in Bx, and strictly within ε of z, a point in By. If
xi ∈ Z, then, since d(xi, z) < ε, condition (2) above implies that xi ∈ Bx,
a contradiction. If xi ∈ Y , then d(xi, xi−1) < ε implies that xi ∈ By, another
contradiction. Similar reasoning applies to the cases |xi−1, z| = −1 and
|z, xi| = 0, |xi−1, z| = 0 and |z, xi| = 1, and |xi−1, z| = 0 and |z, xi| = −1.
Thus, given that |xi−1, xi| = 0, the only possible cases that can occur result
in the equality |xi−1, xi| = |xi−1, z| + |z, xi|. Proceeding, one would argue
simliarly for the cases |xi−1, xi| = ±1, and then work through the same
procedure in the case where a point is removed from γ to obtain α. All cases
that can occur lead to the desired equality, thus proving the result.

Lemma 36 (Essential Gap Lemma). Let X be a chain connected met-
ric space, and suppose {x, y} is a pre-essential gap with d(x, y) = l. If
dist(B(x, r), B(y, r)) = d(x, y) for all sufficiently small r, then {x, y} is
an essential l-gap.

Proof. Let ε∗ > l be as in the definition of a pre-essential gap; we may
assume that ε∗ − l is small enough that dist(B(x, r), B(y, r)) = d(x, y) for
all r ≤ ε∗ − l. Fix ε so that l < ε ≤ ε∗. Then γ := {x, y} is an ε-chain, and
G (γ;x, y, ε) = 1. No l-chain can cross the x, y-gap. In fact, if {z0, . . . , zn} is
an l-chain, and if we had zi−1 ∈ Bx = B(x, ε−l) and zi−1 ∈ By = B(y, ε−l),
then we would have dist(Bx, By) ≤ d(zi−1, zi) < l, contradicting the fact
that dist(Bx, By) = d(x, y) = l. Thus, the (x, y, ε)-gap number of any l-
chain must be 0. The ε-homotopy invariance of this value then implies that
γ = {x, y} is not ε-homotopic to an l-chain. Since ε ∈ (l, ε∗) was arbitrary,
it follows that {x, y} is an essential l-gap.

A partial converse to the Essential Gap Lemma also holds. However, this
condition alone is not sufficient to ensure that {x, y} is an essential gap.

Lemma 37. If {x, y} is an essential gap in X, then dist(B(x, r), B(y, r))
= d(x, y) for sufficiently small r.

Proof. Suppose the conclusion does not hold. Let l = d(x, y), and let
ε > l be given. Choose r < min{l, (ε− l)/2} such that there are points u ∈
B(x, r), v ∈ B(y, r) satisfying dist(B(x, r), B(y, r)) ≤ d(u, v) < d(x, y) = l.
We can transform {x, y} via ε-homotopy as follows: {x, y} → {x, u, y} →
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{x, u, v, y}. The second step is valid since d(u, y) ≤ d(u, v)+d(v, y) < l+r <
(ε+ l)/2 < ε. Moreover, this last chain is an l-chain, since d(u, v) < d(x, y)
= l and r < l. In other words, {x, y} can be ε-refined to an l-chain for all ε
sufficiently close to l, contradicting the hypothesis.

This is a rather technical set-up, and it may not yet be visually clear what
this structure looks like. The following can be taken as a sort of canonical
example illustrating this concept.

Example 38. Let L, l1, l2, and h be positive real numbers such that L is
significantly larger than l1 (say, L > 3l1), l2 ≤ l1, and h2 + (l1 + l2)

2/4 > l21.
Let X be the metric subspace of R2 shown in Figure 2, and let x, y, u, and
v be the points

(
L−l1
2 , h

)
,
(
L+l1
2 , h

)
,
(
L−l2
2 , 0

)
, and

(
L+l2
2 , 0

)
, respectively.

Let d be the diagonal distance from x to v (or y to u, by symmetry). The
condition h2 + (l1 + l2)

2/4 > l21 implies that d > l1. Let ε∗ be such that
l1 < ε∗ < min{d, 2l1, (L− l1)/2}. Now, fix any ε with l1 < ε ≤ ε∗. Let Z be
the left half of X, and let Y be the right half. The conditions ε < 2l1 and
ε < (L− l2)/2 ensure that the balls Bx := B(x, ε− l1) and By := B(y, ε− l1)
do not intersect or extend to the vertical sides of X.

Fig. 2. An essential gap

Suppose that z ∈ Z and is strictly within ε of a point in By. Clearly,
z cannot lie on the vertical segment of Z. If z lies on the lower boundary
of Z, then the closest it could be to any point in By is d, which occurs when
z = u. But d > ε∗ ≥ ε, so z cannot, in fact, lie on this lower boundary.
If z lies on the upper boundary of Z but outside of Bx, then it is at least
ε− l1 + l1 = ε away from any point of By. Thus, it must be the case that z
lies in Bx. Likewise, by symmetry, if z ∈ Y and is strictly within ε of a point
in Bx, then z ∈ By. Moreover, we clearly have dist(B(x, r), B(y, r)) = d(x, y)
for sufficiently small r. Therefore, {x, y} is an essential l-gap, and l is a
refinement critical value.
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To see what makes this essential gap phenomenon occur, consider the
trapezoid {x, u, v, y}. The diagonals of this trapezoid are longer than the
longest base of the trapezoid. This, essentially, is why {x, y} cannot be ε-
refined to an l1-chain for ε ∈ (l1, ε

∗). Adding v in between x and y is not
allowed, because ε ≤ ε∗ < d = d(x, v). Likewise, one cannot jump from x
to u to y for the same reason. In other words, because the diagonal is too
long, one cannot overcome the {x, y}-gap by going around it, at least via
“hops” that are sufficiently close to l1 in length. Note that if d ≤ l1 then
we could, in fact, go around the {x, y}-gap. Indeed, for any ε > l1, we could
then transform the ε-chain, {x, y}, via ε-homotopy by adding v and then u.
So, it is the diagonal length that makes this gap essential.

Finally, X is not connected, but we could attach a long joining curve
to X to make it path connected, without affecting the critical value.

Now, we will use the Essential Gap Lemma to produce examples of com-
pact metric spaces having critical spectra with positive limit points. More-
over, these examples will show that critical values of one type can converge
to critical values of the other type. They will also illustrate some of the other
properties mentioned in the previous section.

Example 39. We define the following sets:

(1) For n ≥ 0, An = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y = 1/2n} ∪ {(x, y) ∈ R2 :
2 ≤ x ≤ 3, y = 1/2n}.

(2) A∞ = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y = 0} ∪ {(x, y) ∈ R2 : 2 ≤ x ≤ 3,
y = 0}.

(3) B1 = {(x, y) ∈ R2 : x = 0, 0 ≤ y ≤ 2}, B2 = {(x, y) ∈ R2 : x = 3,
0 ≤ y ≤ 2}.

(4) C = {(x, y) ∈ R2 : 0 ≤ x ≤ 3, y = 2}.

Define a metric subspace of R2 by X = (
⋃∞
n=0An)∪A∞ ∪B1 ∪B2 ∪C. For

n ≥ 0, let xn = (1, 1/2n) and yn = (2, 1/2n), and let x∞ = (1, 0), y∞ = (2, 0),
z0 = (3/2, 2). Let d0 = d(x0, z0) and, for n ≥ 1, let dn = d(xn−1, yn). Note
that d0 = d1. For m > n ≥ 0, let dnm = d(xn, ym), and note that dn−1n = dn
for n ≥ 1. See Figure 3 below. We call X a “Rapunzel’s Comb.”

The following results can be easily verified: (a) 1 < dn < dn−1 for all
n ≥ 1, and dn ↘ 1 as n → ∞; (b) dnm > 1 for all m > n ≥ 0, and for
fixed n, dnm is minimized when m = n+ 1. Now, fix n ≥ 1. It is evident that
dist(B(xn, r), B(yn, r)) = d(xn, yn) for sufficiently small r. Fix any ε such
that d(xn, yn) = 1 < ε ≤ dn+1. Let Z be the left half of X, including z0 (so
Z is closed), and let Y be the rest of the space. Let Bxn = B(xn, ε− 1) ⊂ Z
and Byn = B(yn, ε − 1) ⊂ Y . Suppose z ∈ Z is strictly within ε of a point
in Byn . Clearly z /∈ B1, and z /∈ C. In fact, the closest any point of C ∩ Z
can be to Byn is the distance from z0 to yn, which is greater than d0. But
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Fig. 3. Rapunzel’s Comb

d0 = d1 > dn+1 ≥ ε, so z /∈ C. Thus, z is in the left half of one of the
sets, Ak. However, z cannot be in Ak for 0 ≤ k < n, since in that case the
distance between z and Byn would be at least dkn, which in turn is at least
as great as dn−1n = dn. Since dn > dn+1 ≥ ε, this shows that this case cannot
occur. Hence, z must lie in Am for some m ≥ n. If z were in Am for m > n,
the distance between z and Byn would be at least dnm. For fixed n, dnm is
minimized when m = n + 1, so the distance between z and any point of
Byn is at least dnn+1 = dn+1 ≥ ε. This contradicts that z is strictly within ε
of a point of Byn . Therefore, z ∈ An, and since it is within ε of a point
of Byn , it must lie in Bxn . By symmetry, if z ∈ Y and is strictly within ε of
a point of Bxn , then z ∈ Byn . Hence, {xn, yn} is an essential 1-gap, and 1 is
a refinement critical value.

Fix n ≥ 1, and let γn = {xn, xn+1, yn+1, yn, xn}. For 1 < ε ≤ dn+1, γn is
an ε-loop with (xn, yn, ε)-gap number −1. An ε-null loop has (xn, yn, ε)-gap
number 0, implying that γn is ε-nontrivial. This holds for all 1 < ε ≤ dn+1.
However, for ε > dn+1, γn is easily seen to be trivial. Thus, dn+1 ∈ H(X),
and dn ↘ 1, showing that Cr(X) is not discrete. Note that X is compact,
path connected, and even simply connected.

This example illustrates some other interesting properties. There are
infinitely many essential 1-gaps, but there are no non-trivial 1-loops in X.
Thus, π1(X) is trivial, and the map ϕε,1 : X1 → Xε is injective for all ε
sufficiently close to 1. So, there is a sequence, dn, of critical values of one
type converging to a critical value, 1, of an entirely different type.
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There are many different variations on Rapunzel’s Comb that one can
use to illustrate critical value limiting behavior. All of them use the Essential
Gap Lemma in some form, and the details follow much as before.

Example 40 (Rapunzel’s Comb, variation 1). For n ≥ 1, let hn = 2−n/2

and H =
∑∞

n=1 hn = 1+
√

2. Let X be the subspace of R2 shown in Figure 4
below (purposefully not drawn exactly to scale to show detail). Here, the
gaps increase in length to a limiting gap of length 1.

We also define the following: z0 = (3/2, H + 2), d0 = d(x∞, z0) =
d(y∞, z0), dn = d(xn, yn+1) for all n ≥ 1, x∞ = (1, H), y∞ = (2, H), and

xn =

(
1 +

1

2n+1
,

n−1∑
i=1

hi

)
, yn =

(
2− 1

2n+1
,

n−1∑
i=1

hi

)
, ∀n ≥ 1.

Reasoning as in the previous example, one can show that each {xn, yn},
for n ≥ 1, is an essential (1− 1/2n)-gap. These values converge up to 1, but
1 is not a refinement critical value or even an upper non-surjective critical
value. In fact, for every ε > 1, every ε-chain can be ε-refined to a 1-chain,
even the chain {x∞, y∞}. Given any ε > 1, the distances d(x∞, yn) and

Fig. 4. Rapunzel’s Comb, variation 1
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d(y∞, xn) are eventually less than ε, thus making this refinement possible.
So, what type of critical value is 1?

Fix n ≥ 2, and let γn be the loop {xn, xn−1, yn−1, yn, xn}. For all ε
greater than 1− 1/2n, γn is an ε-loop. Since {xn, yn} is an essential gap, we
also know that, for each ε greater than but sufficiently close to 1−1/2n, the
(xn, yn, ε)-gap number is an ε-homotopy invariant. Fixing any such ε, we see
that the ε-chain αn := {xn, yn} has non-zero (xn, yn, ε)-gap number, while
the ε-chain βn := {xn, xn−1, yn−1, yn} does not cross the xn, yn-gap at all.
Hence, γn = βnα

−1
n cannot be ε-null for such an ε. So, γn is ε-non-trivial for

all ε greater than but sufficiently close to 1−1/2n. On the other hand, γn is
1-null. In fact, since the diagonals between xn and yn−1 are less than 1 in
length (this is easily verified), we can successively remove yn−1, xn−1, and
yn from γn, giving us the trivial chain. Therefore, 1 is a lower non-injective
critical value that is an upper limit of sequences of refinement critical values
and homotopy critical values. Note that, as before, X is compact, path
connected, and simply connected.

Example 41 (Rapunzel’s Comb, variation 2). The construction of this
example is very similar to the previous case. In fact, the lengths of the gaps
will be the same. The key difference will be changing the heights between
the gaps in the comb. We increase them just enough so that the diagonal
lengths between xn and yn+1 are greater than 1 for each n, but still small
enough so that the sum of the heights is finite.

So, for n ≥ 1, let hn =
√

3/(
√

2)n, and let H =
∑∞

n=1 hn =
√

3+
√

6. We
defineX exactly as in the previous example except for the different values hn,
and we similarly define the points xn, yn, x∞, y∞, and z0. Also as before,
we let dn = d(xn, yn+1), so that dn is the length of the diagonal between
xn and yn+1. Since the construction is the same, Figure 4 holds equally well
for this example. We just need to keep in mind that the heights, hn, and
therefore the diagonals, dn, are larger in this case. One can verify by direct
computation the following:

d2n = 1 +
3

2n+1
+

9

22n+4
, dn+1 < dn for all n, dn ↘ 1,

d(xn, ym) > 1 for all 1 ≤ n < m.

In addition, for fixed n and m > n, the diagonal lengths, d(xn, ym), increase
as m increases.

Now, fix n ≥ 2, and, recalling that d(xn, yn) = 1 − 1/2n, let ε be such
that

1− 1/2n < ε ≤ min{d(x1, yn), . . . , d(xn−1, yn), d(xn+1, yn), 1 + hn − 1/2n}.
The condition that ε be less than or equal to 1 +hn− 1/2n is to ensure that
the ball of radius ε− (1−1/2n) centered at xn (or yn) does not intersect any
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nearby teeth of the comb or either of the vertical sides of X. That is, these
balls are just segments of the teeth of the comb formed by An. As before, we
let Z be the left half of X, and we let Y be the right half. Suppose z ∈ Z and
lies within ε of a point of Byn := B(yn, ε− (1− 1/2n)). Clearly, z cannot lie
in C or B1. If z were in Am for some m ≤ n−1, the distance between z and
any point of Byn would be at least d(xm, yn). But ε ≤ d(xm, yn) for such m,
so this cannot occur. If z were in An+1, then the closest z could be to any
point of Byn is dn = d(xn+1, yn), but again, we have ε ≤ d(xn+1, yn). So, this
cannot occur either. Neither can z be in Am for m > n+1, since the diagonal
lengths, d(xm, yn), are greater than dn for m > n+1. Hence, z must lie in An,
and in fact it must lie in B(xn, ε−(1−1/2n)). By symmetry, the same result
holds if z ∈ Y and lies within ε of a point in B(xn, ε− (1− 1/2n)). We also
have dist(B(xn, r), B(yn, r)) = d(xn, yn) for sufficiently small r, so {xn, yn}
is an essential (1−1/2n)-gap. It follows that 1−1/2n = d(xn, yn) is an upper
non-surjective critical value; for all ε greater than but sufficiently close to
1−1/2n, {xn, yn} is an ε-chain that cannot be ε-refined to a (1−1/2n)-chain.

Finally, since 1− 1/2n ↗ 1, we know that 1 is a critical value. Note that

1 < min{d(x1, yn), . . . , d(xn−1, yn), d(xn+1, yn), 1 + hn − 1/2n},
because all diagonals have length greater than 1 and

hn >
1

(
√

2)n
>

1

2n
, so 1 + hn −

1

2n
> 1.

Thus, for ε = 1, the (xn, yn, ε)-gap number of an ε-chain is an ε-homotopy
invariant. Now, {xn, yn} is a 1-chain, and its (xn, yn, 1)-gap number is 1.
However, no (1−1/2n)-chain can cross the xn, yn-gap. Thus, {xn, yn} cannot
be 1-homotopic to a (1 − 1/2n)-chain. In other words, the map ϕ1,1−1/2n :
X1−1/2n → X1 is not surjective, and this holds for all n ≥ 1. Hence, 1 is a
lower non-surjective critical value. As we have shown, such a critical value
can only occur as the upper limit of upper non-surjective critical values.

Example 42 (Rapunzel’s Comb, variation 3). Working as in the previ-
ous examples, let X be the variation of Rapunzel’s Comb shown in Figure 5.
Here, we have a sequence of gaps of length 1 + 1/2n converging down to a
gap of length 1. Moreover, we have attached an extra single set of teeth
below the limiting gap, which adds a gap of length l < 1.

We choose the heights, hn, to be hn = 1/(
√

2)n, and we choose h so
that d(x∞, b) = d(y∞, a) = 1 and d(x∞, a), d(y∞, b) < 1. A straightforward
computation shows that this can be done. It can then be seen as in the
previous examples that {xn, yn} is an essential (1 + 1/2n)-gap for each n.
Thus, for each n and all ε greater than but sufficiently close to 1 + 1/2n,
{xn, yn} cannot be ε-refined to a (1 + 1/2n)-chain, and thus to a 1-chain
either. Hence, 1 is an upper non-surjective critical value. However, there is
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Fig. 5. Rapunzel’s Comb, variation 3

no essential 1-gap in X. Because we have added the gap {a, b} below the gap
{x∞, y∞}, and chosen h so that d(x∞, b) = d(y∞, a) = 1, the chain {x∞, y∞}
can be ε-refined to a 1-chain for all ε greater than 1. The homotopy itself is
simply

{x∞, y∞} → {x∞, a, y∞} → {x∞, a, b, y∞}.
Since l < 1, this is a 1-chain. This example shows that—even in a compact
space—an upper non-surjective critical value need not correspond to an
essential gap. As we have already shown, the two only correspond for certain
when the critical value in question is isolated.
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