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Smooth conjugacy classes of circle diffeomorphisms with
irrational rotation number
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Christian Bonatti (Dijon) and Nancy Guelman (Montevideo)

Abstract. We prove the C1-density of every Cr-conjugacy class in the closed subset
of diffeomorphisms of the circle with a given irrational rotation number.

1. Introduction. One knows from H. Poincaré’s work that the dynamic
of a homeomorphism f of the circle depends strongly on the rotation num-
ber ρ(f): the existence of periodic orbits is equivalent to the rationality of
ρ(f). If, on the contrary, the rotation number is irrational then f is semi-
conjugate to the corresponding irrational rotation. The non-injectivity of
the semiconjugacy consists in collapsing each wandering interval to a point.
In the thirties, A. Denjoy exhibited examples of C1-diffeomorphisms with
irrational rotation number but having wandering intervals. He also proved
that such a phenomenon cannot appear if f is assumed to be C2: every C2-
diffeomorphism with irrational rotation number is topologically conjugate
to the corresponding irrational rotation. Note that the conjugating homeo-
morphism (or semiconjugacy) is unique up to composition with a rotation.

However, for a C2 or C∞ or even analytic diffeomorphism with irrational
rotation number, the conjugating homeomorphism is in general not differen-
tiable. The expression in general here leads to important and deep results,
in particular by V. Arnold [Ar], M. Herman [He] and J. C. Yoccoz [Yo]. In-
deed, for rotation numbers satisfying a Diophantine condition, every smooth
diffeomorphism is smoothly conjugate to a rotation. Later, different proofs
and some generalizations were given by K. Khanin and Ya. Sinai [KS1],
[KS2] and Y. Katznelson and D. Ornstein [KO1], [KO2].

In this paper, we consider C1-diffeomorphisms. In this class of regularity,
no arithmetic condition may ensure regularity of the conjugacy homeomor-
phism. Even if we have not found a precise reference for this statement, it is
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beyond doubt that every irrational rotation number corresponds to infinitely
many C1-conjugacy classes. Let us illustrate this by distinct behaviors of dif-
ferent conjugacy classes:

• The C1-centralizer of a diffeomorphism f is the group of diffeomor-
phisms commuting with f . Any diffeomorphism g C1-conjugate to f
has a C1-centralizer conjugate to the one of f (by the same diffeomor-
phism). Therefore, the isomorphism class of the centralizer is a C1-
invariant for a C1-conjugacy class: in particular, if f is C1-conjugate
to a rotation then its C1-centralizer is isomorphic to S1. There are
examples of diffeomorphisms for which the centralizer is trivial, or
some dense proper subgroup of R, or much larger than R if f admits
wandering intervals.
• The asymptotic behavior of the iterates fn leads also to an invariant

of a C1-conjugacy class: if a C1-diffeomorphism is C1-conjugate to a
rotation, its derivatives dfn are uniformly bounded for n ∈ Z. However
[BCW, Theorem B] implies that for any rotation number there is a
C1-diffeomorphism for which the sequence sup{dfn(x), df−n(x)}, n∈Z
is unbounded in any orbit.

All such properties are invariant under C1-conjugacy, and they show a great
variety of C1-behaviors of C1-diffeomorphisms with the same irrational ro-
tation number.

In this paper we consider the space of diffeomorphisms having a given
irrational rotation number α ∈ (R \ Q)/Z. In his thesis Herman denoted
by F rα ⊂ Diffr(S1) the closed subset of Cr-diffeomorphisms whose rotation
number is α. He proved several results on F rα: it is connected, and F sα for
s > r is dense in F rα for the Cr-topology. As mentioned above, F 1

α always
contains many different C1-behaviors. The aim of this paper is to show that
these behaviors are indeed equidistributed in F 1

α, giving some homogeneity
of this space. More precisely:

Given any f ∈ Diff1(S1) and r ∈ N, we denote by Cr(f) the Cr-conjugacy
class {hfh−1 : h ∈ Diffr(S1)}; notice that all elements in C1(f) share all the
C1-properties of f (same C1-centralizer, same distortion properties, etc.).
We prove:

Theorem 1.1. Given any α ∈ (R \ Q)/Z and any f ∈ F 1
α, the C1-

conjugacy class C1(f) of f is dense in F 1
α for the C1-topology.

Approaching the conjugation diffeomorphism h by some smooth diffeo-
morphism, one finds that Cr(f) is also C1-dense, for every r ∈ N.

The same kind of question can also be considered for the rational rota-
tion number case. That case is closely related to the question of conjugacy
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classes of diffeomorphisms of [0, 1]; this problem is solved in [Fa], which gives
complete (and different) answers to two natural questions:

• Under what conditions the C1-conjugacy class of a diffeomorphism f
of [0, 1] contains g in its closure?
• Under what conditions does there exist a path ht, t ∈ [0, 1), of diffeo-

morphisms such that h0 = id and htfh
−1
t tends to g as t→ 1?

This approach suggests a natural question in our setting:

Question 1. Given f, g ∈ F 1
α, does there exist a path ht, t ∈ [0, 1), of

diffeomorphisms of S1 such that h0 = id and htfh
−1
t tends to g as t→ 1?

After our results and the ones of [Fa] were announced, A. Navas [Na]
found a very simple, elementary and clever argument that partially answers
this question. He showed

Theorem 1.2 (Navas). Given any irrational α and f ∈ F 1
α, there is a

path ht, t ∈ [0, 1), of diffeomorphisms of S1 such that h0 = id and htfh
−1
t

tends to Rα as t→ 1.

Navas’ argument consists in building the derivatives of the conjugacy ht
as an approximate solution of a cohomological equation, the rotation Rα
being characterized in F 1

α by the vanishing logarithm of its derivative. This
argument does not seem to be adaptable to going from f to g when g is not
smoothly conjugate to a rotation.

Notice that a similar result had been proved by Herman [He] for C2-
diffeomorphisms: he proved in that setting that f can be conjugate arbi-
trarily close to the rotation in the C1+bounded variations topology.

Given (f0, g0) ∈ Diff1(S1)×Diff1(S1) and r ∈ N, we denote by Cr(f0, g0)
the Cr-conjugacy class {(f, g) : f = hf0h

−1 and g = hg0h
−1 for some h ∈

Diffr(S1)}. One of our motivations for this paper is the same question for
commuting diffeomorphisms.

Question 2. Given two irrational numbers α, β, we consider the space
of commuting C1-diffeomorphisms f, g with rotation numbers α and β, en-
dowed with the C1-topology.

Are all the C1-conjugacy classes dense in this space?

This problem is closely related to a famous old question of Rosenberg:
does there exist a pair (f, g) such that the induced Z2 action is Cr-structural-
ly stable? A positive answer to Question 2 would answer Rosenberg’s ques-
tion negatively for r = 1. In that direction, Navas [Na] proved recently that
every C1-conjugacy class contains a pair of rotations (Rα, Rβ) in its closure.

Notice that, in higher differentiability, [KN] and [DKN] provide a gen-
eralization of the Denjoy theorem for Zn actions on the circle by C1+θ-
diffeomorphisms, where θ ∈ (0, 1) depends on n. For smooth actions J. Moser
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[Mo] posed the problem of smooth linearization of commuting circle diffeo-
morphisms. In this direction Fayad and Khanin [FK] proved that a finite
number of commuting C∞ diffeomorphisms with simultaneously Diophan-
tine rotation numbers are smoothly conjugate to rotations.

1.1. Idea of the proof and organization of the paper. The idea
of the proof is very simple. Given f and g with the same irrational rotation
number, we want to build a conjugate hfh−1 of f arbitrarily C1-close to g.
For that, we consider long orbit segments {x, . . . , fn(x)} and {y, . . . , gn(y)}
of the same length n. They are ordered in the same way on the circle.

Therefore, one may consider a homeomorphism H of the circle such that
H(f i(x)) = gi(y) for 0 ≤ i ≤ n. Furthermore, we can choose H to be affine
on each connected component of the complement of the orbit segment. If n
is large enough, and if f and g have dense orbits, all connected components
of the complement of each of these segments are arbitrarily small. Thus f
and g are almost affine on each component, and the derivative of H on each
component is almost the ratio between the component and its image.

Consider now the piecewise C1-homeomorphism HfH−1. It is also al-
most affine on each connected component of the complement of the orbit
segment {y, . . . , gn(y)}. Furthermore, up to the components starting at y or
at gn(y) (i.e. the extremities of the orbit segment) the images of a compo-
nent under g and under HfH−1 are the same. As a direct consequence, their
derivatives are almost equal. We show that for the derivatives of HfH−1

and g to be everywhere almost equal (that is, even on the components ad-
jacent to y and gn(y)), it is sufficient that the ratios between the lengths of
components adjacent to the extremal points x, fn(x) and y, gn(y) are the
same for f and for g. These ratios of the lengths of the components adjacent
to the initial point and end point of the orbit segment are called the initial
and final ratios of f and g.

Then, the announced diffeomorphism h is obtained by smoothing H.
This is not so easy because the derivative of H can be very different on
the right and the left of a singular point, but Proposition 2.12 solves this
difficulty.

Another difficulty comes from the fact that f or g may not have dense or-
bits, when we deal with C1-diffeomorphisms. The argument can be adapted
to that case, once one notices that one may perform a C1-conjugacy of f
so that the distortion on the wandering interval is arbitrarily small (see
Proposition 2.16); thus the diffeomorphism is still almost affine on the com-
plements of long orbit segments.

To conclude the proof it remains to show that one can perform a small
perturbation of g so that its initial and final ratios will be equal to the ones
of f .
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To perform such a perturbation, we would like the components adjacent
to the extremal points to be disjoint from their iterates during a long time,
allowing their ratios to change slowly. This is not always the case. For that,
we need to choose the length n of the orbit segments carefully. We build a
sequence of times ki called characteristic times with the property of having
a long wandering time. Lemma 4.14 gives a bound of the ratio. This bound
allows us to show in Proposition 5.1 that a small perturbation of g at the
characteristic times enables us to get any possible initial and final ratios
of f , ending the proof.

2. Geometry of orbit segments

2.1. Informal sketch. In this section we define the fundamental tools
of the proof: for every diffeomorphism f with irrational rotation number α we
consider orbit segments {x, . . . , fn(x)}, forbidding some exceptional relative
positions of the first and end points; we call them adapted segments.

For adapted segments we define the initial and final ratios which are the
ratios of the lengths of the components adjacent to x and to fn(x).

We consider diffeomorphisms f and g with the same irrational rotation
number and adapted segments {f i(x)}, {gi(y)}, 0 ≤ i ≤ n, of the same
length n. We assume that:

1. the distortion of f and g on each component of the complement of the
respective orbit segment is small; this hypothesis is not so hard to get:

• when f and g have dense orbit (for instance if they are C2), it is
enough to choose sufficiently long orbit segments;
• if f has wandering intervals, we solve the difficulty in Section 2.6 by

conjugating f to a diffeomorphism with small distortion on wan-
dering intervals;
• if g has wandering intervals, as we just want to approach g, one will

perturb g in order to get a C2-diffeomorphism.

2. The adapted segments {f i(x)}, {gi(y)}, 0 ≤ i ≤ n, have the same
initial and final ratios; achieving this is the hard part of this paper
and will be the aim of Sections 3–5.

We consider the piecewise affine homeomorphism H defined by

• H(f i(x)) = gi(y), for 0 ≤ i ≤ n,
• H is affine on each component of S1 \ {f i(x)}.

We notice that our hypotheses imply that HfH−1 is a piecewise C1-hom-
eomorphism whose derivative at each point is close to the one of g. The aim
of this section is to build a smooth conjugacy of f to some diffeomorphism
close to g by smoothing the homeomorphism H (see Section 2.5).
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2.2. Adapted segments, initial and final ratios, and conjugacy.
In this paper, S1 is the oriented circle R/Z. For x, y ∈ S1, [x, y] denotes the
positively oriented segment joining x to y and (x, y) denotes its interior.

If X ⊂ S1 is a finite set, then two points x, y ∈ X are adjacent if (x, y)
or (y, x) is a connected component of S1 \ X. If (x, y) is a component of
S1 \X, one says that y is the first point to the right of x and x is the first
point to the left of y in X.

Two different components (x, y) and (y, z) of S1 \X are called adjacent,
(y, z) being to the right of (x, y).

Two sequences x1, . . . , xn and y1, . . . , yn of points of S1 are similarly
ordered on the circle if there is an orientation preserving homeomorphism
ϕ : S1 → S1 with ϕ(xi) = yi for i ∈ {1, . . . , n}.

Let Diff1(S1) be the set of all C1-diffeomorphisms of the circle, and
Diff1

+(S1) the subset of orientation preserving ones. An orbit segment of
length n of f ∈ Diff1(S1) is a sequence {x, f(x), . . . , fn(x)}. The point x is
the initial point of the segment and fn(x) is its final point.

Given an orbit segment {x, f(x), . . . , fn(x)}, n ≥ 2, we define its initial
and final basic intervals to be the intervals [a, b] and [c, d], respectively, such
that:

• a is the first point to the left of x in the orbit segment,
• b is the first point to the right of x,
• c is the first point to the left of fn(x),
• d is the first point to the right of fn(x).

In other words:

• a, b, c, d ∈ {x, f(x), . . . , fn(x)},
• x ∈ (a, b) and {x} = (a, b) ∩ {x, f(x), . . . , fn(x)},
• fn(x) ∈ (c, d) and {fn(x)} = (c, d) ∩ {x, f(x), . . . , fn(x)}.
Lemma 2.1. Let f ∈ Diff1

+(S1) with irrational rotation number α. Let
[a, b] and [c, d] be the initial and final basic intervals of an orbit segment
{x, f(x), . . . , fn(x)}. Let i, j ∈ {1, . . . , n − 1} be such that c = f i(x) and
d = f j(x). Then

a = fn−j(x) and b = fn−i(x).

Proof. Any orbit segment {x, . . . , fn(x)} is similarly ordered to the orbit
segment {0, α, . . . , nα} of the rotation Rα.

Consider the symmetry σ : t 7→ nα − t of S1. The symmetry σ leaves
the segment {0, α, . . . , nα} globally invariant, and σ(kα) = (n − k)α. In
particular σ keeps the adjacent pairs but reverses right and left, leading to
the conclusion.

Definition 2.2. Let f ∈ Diff1
+(S1). One says that an orbit segment

{x, . . . , fn(x)} is adapted if:
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• x and fn(x) are not adjacent,
• the image under f of the final basic segment is not the initial basic

segment.

Remark 2.3. Let f ∈ Diff1
+(S1) with irrational rotation number, and

{x, . . . , fn(x)} be an orbit segment. Let [a, b] and [c, d] be the initial and
final basic intervals of this segment, with c = f i(x) and d = f j(x). Then the
orbit segment is adapted if and only if i 6= 0, j 6= 0, and i+ j 6= n− 1.

Proof. (i 6= 0 and j 6= 0) is equivalent to x and fn(x) not being adjacent;
and i+ j 6= n−1 is equivalent to f([f i(x), f j(x)]) 6= [fn−j(x), fn−i(x)], that
is (according to Lemma 2.1), f([c, d]) 6= [a, b].

The next observation is fundamental to our argument:

Lemma 2.4. If {x, . . . , fn(x)} is an adapted orbit segment with initial
and final basic intervals [a, b] and [c, d] then the open intervals (f(c), f(d))
and (f−1(a), f−1(b)) are disjoint from the orbit segment {x, . . . , fn(x)}.

The idea is very simple: if one considers the image under f , most of the
points of the orbit segment remain in that segment. The point fn(x) is the
only one which goes out of the orbit segment, and f−1(x) is the only one
which enters. One deduces that the unique point of the orbit segment which
may belong to (f(c), f(d)) is x; that means that f([c, d]) = [a, b], which is
forbidden by the definition of adapted interval. More precisely:

Proof. As i, j are different from n, by definition, f(c) and f(d) are points
of the orbit segment {x, . . . , fn(x)}.

Assume for contradiction that (f(c), f(d))∩{x, . . . , fn(x)} 6= ∅. That is,
there is k ∈ {0, . . . , n} with fk(x) ∈ (f(c), f(d)); then fk−1(x) ∈ (c, d).

If k 6= 0, then fk−1(x) belongs to the orbit segment and is different from
fn(x); this contradicts the fact that (c, d) ∩ {x, . . . , fn(x)} = fn(x).

Therefore k = 0. In particular k is unique. This means that (f(c), f(d))∩
{x, . . . , fn(x)} = x. Thus f([c, d]) = [a, b], contradicting the definition of
adapted segment.

This proves that (f(c), f(d)) ∩ {x, . . . , fn(x)} = ∅.
The proof of (f−1(a), f−1(b)) ∩ {x, . . . , fn(x)} = ∅ is analogous.

We first complete Lemma 2.4 by the following observation:

Remark 2.5. Let f ∈ Diff1
+(S1). Let {x, . . . , fn(x)} be an adapted orbit

segment of f , and C be a connected component of S1\{x, . . . , fn(x)}. Then:

• If C is neither (f−1(a), f−1(b)), (c, fn(x)) nor (fn(x)), d), then f(C)
is a connected component of S1 \ {x, . . . , fn(x)}.
• If C is either (c, fn(x)) or (fn(x)), d), then f(C) lies in (f(c), f(d)),

which is a connected component of S1 \ {x, . . . , fn(x)}.
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• Finally, if f([f−1(a), f−1(b)]) = [a, x]∪ [x, b], then the image of a com-
ponent covers two components.

One gets the same statement for f−1 by replacing (f−1(a), f−1(b)), (c, fn(x))
and (fn(x)), d) by (f(c), f(d)), [a, x] and [x, b].

For a given irrational rotation number, the orbit segments are all simi-
larly ordered. Therefore:

Remark 2.6. Given a irrational rotation number α, whether or not an
orbit segment {x, . . . , fn(x)} is adapted only depends on its length n ≥ 0:
more precisely, if f, g ∈ F 0

α and if {x, . . . , fn(x)} is an adapted orbit segment
for f , then for every y ∈ S1, {y, . . . , gn(y)} is an adapted orbit segment.

We are now ready for defining the initial and final ratios, which are
fundamental notions used in our argument:

Definition 2.7. Given an adapted orbit segment {x, . . . , fn(x)}, we
define its initial and final ratios to be the quotients

R0 =
`([a, x])

`([x, b])
and Rn =

`([c, fn(x)])

`([fn(x), d])
.

2.3. Distortion, initial and final ratios, and conjugacy

Definition 2.8. The distortion ∆(g, I) of g ∈ Diff1(S1) on some inter-
val I is

∆(g, I) = max
x,y∈I

log

(
dg(x)

dg(y)

)
.

Remark 2.9. If I and J are two intervals such that I ∩J 6= ∅ then I ∪J
is an interval and ∆(g, I ∪ J) ≤ ∆(g, I) +∆(g, J).

The aim of the next subsection is the proof of the following result, which
is an important step in proving Theorem 1.1.

Theorem 2.1. Let f and g be two diffeomorphisms with irrational ro-
tation number α, and assume that g has dense orbits. Assume that, for any
ε > 0 and N ∈ N, there are:

• a diffeomorphism g̃, ε-C1-close to g,
• n > N ,
• adapted orbit segments {x, . . . , fn(x)} and {y, . . . , g̃n(y)} similarly or-

dered, and
• h ∈ Diff1

+(S1)

such that the diffeomorphism f̃ = hfh−1 satisfies:

– the (adapted ) orbit segments

{x, f̃(x), . . . , f̃n(x)} and {y, g̃(y), . . . , g̃n(y)}
have the same initial and final ratios,
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– the distortion of f̃ on each connected component of the difference S1 \
{x, f̃(x), . . . , f̃n(x)} is less than ε.

Then there is a sequence {hm}m∈N of diffeomorphisms such that hmfh
−1
m

→ g in the C1-topology as m→∞.

2.4. Piecewise linear conjugacy and the proof of Theorem 2.1

Lemma 2.10. Let f , g be diffeomorphisms, and ε > 0. Assume that f and
g admit adapted orbit segments {x, . . . , fn(x)} and {y, . . . , gn(y)} similarly
ordered and with the same initial and final ratios. Assume furthermore that
the distortion of f and g on each connected component of the complement
of the respective orbit segment is bounded by ε.

Consider the piecewise affine homeomorphism H defined as H(f i(x)) =
gi(y) for i ∈ {0, . . . , n} and H is affine on each connected component of the
complement of the orbit segment of f . Then:

(i) H is differentiable at x and at fn(x).
(ii) HfH−1 is a piecewise C1-homeomorphism.

(iii) HfH−1 is C1 on S1 \{y, . . . , gn(y)}; the derivatives of HfH−1 and
Hf−1H−1 are defined and continuous on the closure of each con-
nected component of S1\{y, . . . , gn−1(y)} and S1\{g(y), . . . , gn(y)},
respectively.

(iv) The right and left derivatives of HfH−1 are well defined at every
point y ∈ S1 and are close to the derivative of g at y. More precisely,

exp(−4ε) ≤ d±(HfH−1)(y)

dg(y)
≤ exp(4ε)

where d− and d+ denote the left and right derivative respectively.

Proof. The map HfH−1 and its inverse are piecewise C1-homeo-
morphisms since they are the composition of a diffeomorphism with two
piecewise affine homeomorphisms, proving (ii).

Let [a(f), b(f)], [c(f), d(f)] and [a(g), b(g)], [c(g), d(g] denote the initial
and final basic segments of f and g, respectively.

Notice that H is affine from [a(f), x] to [a(g), y] and from [x, b(f)] to

[y, b(g)]. Furthermore the ratios `([a(f),x])
`([x,b(f)]) and `([a(g),y])

`([y,b(g)]) are equal. Therefore

`([a(g), y])

`([a(f), x])
=
`([y, b(g)])

`([x, b(f)])
.

This implies that H has the same right and left derivatives at x, hence is
affine in [a(f), b(f)] (and so smooth at x).

The proof that H is affine on [c(f), d(f)] (and so differentiable at fn(x))
is analogous, using the final ratios of f and g. This proves (i).
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We have shown that H and H−1 are affine on each connected component
of S1 \ {f(x), . . . , fn−1(x)} and S1 \ {g(y), . . . , gn−1(y)} respectively. Using
the fact that H(f i(x)) = gi(x) for i ∈ {0, . . . , n} one deduces that a point
z is non-singular for HfH−1 if z /∈ {g(y), . . . , gn−1(y)} and f(H−1(z)) /∈
{f(x), . . . , fn−1(x)}, that is, if z /∈ {y, . . . , gn−1(y)}. One shows analogously
that z is non-singular for Hf−1H−1 if z /∈ {g(y), . . . , gn(y)}. This shows (iii).

It remains to compare the derivative of HfH−1 with the derivative of g.
For that, notice that on each connected component Cg of the complement
of {y, . . . , gn(y)} the map is the composition of:

• H−1 : Cg → H−1(Cg) which is affine; furthermore Cf = H−1(Cg) is a
connected component of S1 \ {x, . . . , fn(x)},
• f : Cf → f(Cf ) which has bounded distortion, by the assumption on f ,
• H : f(Cf )→ H(f(Cf )).

Claim 1. H : f(Cf )→ H(f(Cf )) is affine.

Proof. By Remark 2.5, as the orbit segment {x, . . . , fn(x)} is adapted,
if Cf is neither (c(f), fn(x)), (fn(x), d(f)), nor (f−1(a(f)), f−1(b(f))) then
f(Cf ) is already a connected component of the complement of {x, . . . , fn(x)}.
Thus, in that case, H is affine on f(Cf ).

IfCf = (c(f), fn(x)) or (fn(x), d(f)) then f(Cf ) lies in (f(c(f)), f(d(f))),
which is a connected component of the complement of {x, . . . , fn(x)}, be-
cause this orbit segment is adapted. Thus H is affine on [f(c(f)), f(d(f)],
hence on f(Cf ).

If f(Cf ) = (a(f), b(f)), then (i) shows that H is affine on [a(f), b(f)],
which concludes the proof of the claim.

Summarizing, the restriction of HfH−1 to Cg is the composition of affine
maps with the restriction of f to a connected component of the complement
of {x, . . . , fn(x)}.

Composing with affine maps does not modify distortion. Therefore the
distortion of HfH−1 on Cg is bounded by ε. By hypothesis on g, the dis-
tortion of g on Cg is also bounded by ε.

Claim 2. If Cg is neither (c(g), gn(y)), nor (gn(y), d(g)), then

HfH−1(Cg) = g(Cg).

Proof. The hypothesis implies that Cf is neither (c(f), fn(x)) nor
(fn(x), d(f)).

If Cg = (g−1(a(g)), g−1(b(g))) then f(Cf ) = (a(f), b(f)) and H(f(Cf ))
= (a(g), b(g)) = g(Cg). Otherwise, f(Cf ) is a connected component of S1 \
{x, . . . , fn(x)} and g(Cg) is the corresponding connected component of S1 \
{y, . . . , gn(y)}, so that H(f(Cf )) = g(Cg). Hence HfH−1(Cg) = g(Cg).
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Thus, if Cg is neither (c(g), gn(y)), nor (gn(g), d(g)), there is at least one
point in Cg where the derivatives of HfH−1 and g coincide. As a conse-
quence, for every y ∈ Cg,

exp(−2ε) ≤ d(HfH−1)(y)

dg(y)
≤ exp(2ε).

We finish this proof by considering the points in [c(g), d(g)] = [c(g), gn(y)]∪
[gn(y), d(g)]. As g and HfH−1 have distortion bounded by ε on [c(g), gn(y)]
and on [gn(y), d(g)], their distortion on [c(g), d(g)] is bounded by 2ε. Fur-
thermore

HfH−1([c(g), d(g)]) = [H(f(c(f)), H(f(d(f))] = [g(c(g)), g(d(g))]

= g([c(g), d(g)]).

The same argument as above now shows that, for every y ∈ [c(g), d(g)],

exp(−4ε) ≤ d(HfH−1)(y)

dg(y)
≤ exp(4ε).

Remark 2.11. Notice that the (right and left) derivatives of HfH−1 at
every point are ε0-close to the derivative of g, where ε0 = (exp(4ε) − 1)M
and M = supx∈S1 |dg(x)|. In formula:

‖d±(HfH−1)(y)− dg(y)‖ < (exp(4ε)− 1)M.

Notice that for small ε one has exp(4ε)− 1 < 5ε. Thus, if the constant ε in
Lemma 2.10 has been chosen small enough, one gets

‖d±(HfH−1)(y)− dg(y)‖ < 5εM.

Proposition 2.12. Let f be a C1-diffeomorphism of the circle, ε > 0
and {x, . . . , fn(x)} be an adapted orbit segment. Let H be a piecewise affine
homeomorphism, smooth off {f(x), . . . , fn−1(x)}, such that the right and
left derivatives of HfH−1 are ε-close at each y ∈ S1. Then there is a smooth
diffeomorphism h arbitrarily C0-close to H and such that the derivative of
hfh−1 is 2ε-close to the right and left derivatives of HfH−1 at every point.

We postpone the proof of Proposition 2.12 to the next section.

Proof of Theorem 2.1. Consider f , g satisfying the hypotheses of Theo-
rem 2.1. In particular the orbits of g are assumed to be dense. Let M > 0
be such that the derivatives of g and of g−1 are bounded by M/2. Fix some
ε0 > 0. Let 0 < ε1 < ε0 with ε1 + 5(exp(4ε1)− 1)M < ε0.

Claim 3. There is an integer N > 0 such that, for every y ∈ S1, the
distortion of g on every connected component of S1 \ {y, g(y), . . . , gN (y)} is
less than ε1/2.
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Proof. The orbits of g are all dense, so that the length of any connected
component of the complement of {y, . . . , gN (y)} tends uniformly to 0 as N
tends to infinity.

One concludes by recalling that the logarithm of the derivative of g is
uniformly continuous.

From now on, we fix such an N > 0.

Claim 4. There is 0 < ε < ε1 such that, for any g̃ which is ε-C1-close
to g, and any y ∈ S1, the distortion of g̃ on any connected component of
S1 \ {y, g̃(y), . . . , g̃N (y)} is less than ε1.

Proof. Assume that the claim is false. Then there are gi converging to g
in the C1-topology, and for every i an orbit segment {yi, . . . , gNi (yi)} and a
connected component Ci of S1 \ {yi, . . . , gNi (yi)} on which the distortion of
gi is larger than ε1.

Up to taking a subsequence, one may assume that the yi tend to a point
y and the component Ci tends to a component of S1 \ {y, . . . , gN (y)} on
which the distortion of g is larger than or equal to ε1. This contradicts our
choice of N .

We fix now some 0 < ε < ε1 given by Claim 4.
As f and g satisfy the hypotheses of Theorem 2.1, there are

• a diffeomorphism g̃, ε-C1-close to g,
• n > N ,
• ϕ ∈ Diff1

+(S1) and f̃ = ϕfϕ−1, and

• adapted orbit segments {x, . . . , f̃n(x)} and {y, . . . , g̃n(y)}
such that

– {x, . . . , f̃n(x)} and {y, . . . , g̃n(y)} are similarly ordered, and have the
same initial and final ratios,

– the distortion of f̃ on each connected component of S1\{x, . . . , f̃n(x)}
is less than ε (hence than ε1).

Let H be the piecewise affine homeomorphism defined by H(f̃ i(x)) =
g̃i(x) for i ∈ {0, . . . , n}, and affine on each connected component of S1 \
{x, . . . , f̃n(x)}.

Recall f̃ and g̃ have distortion bounded by ε1 on each connected com-
ponent of S1 \ {x, . . . , f̃n(x)} and S1 \ {y, . . . , g̃n(y)} respectively. Thus,

according to Lemma 2.10, Hf̃H−1 is a piecewise C1-homeomorphism whose
left and right derivatives are (exp(4ε1) − 1)M -C1-close to the one of g̃, at
each point.

The triangular inequality implies that for every y ∈ S1,

|d+(Hf̃H−1)(y)− d−(Hf̃H−1)(y)| < 2(exp(4ε1)− 1)M.
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According to Proposition 2.12, there is h ∈ Diff1
+(S1) which is C0-close

to H and such that for every y ∈ S1 one has

|d(hf̃h−1)(y)− d+(Hf̃H−1)(y)| < 4(exp(4ε1)− 1)M.

By the triangular inequality one gets

|d(hf̃h−1)(y)− dg̃(y)| < 5(exp(4ε1)− 1)M.

Finally, as |dg̃(y)− dg(y)| < ε < ε1 one gets

|d(hf̃h−1)(y)− dg(y)| < ε1 + 5(exp(4ε1)− 1)M < ε0.

In other words, for any ε0 > 0 we have built a diffeomorphism hϕ ∈
Diff1

+(S1) so that hϕfϕ−1h−1 is ε0-close to g, concluding the proof.

2.5. Smoothing a piecewise linear conjugacy: proof of Proposi-
tion 2.12. We start by linearizing the diffeomorphism f in a neighborhood
of an adapted orbit segment:

Lemma 2.13. Let f be a diffeomorphism of S1 and {x, . . . , fn(x)} be an
orbit segment of a non-periodic point. There is a family of diffeomorphisms
ϕt : S

1 → S1, t ∈ (0, t0], with the following properties:

• ϕt(f i(x)) = f i(x) for all t and i ∈ {0, . . . , n+ 1},
• ϕt tends to id|S1 in the C1-topology as t→ 0,
• the support of ϕt is the union of disjoint intervals It,i centered at f i(x),
i ∈ {0, . . . , n+ 1}, and whose total length tends to 0 as t→ 0,
• the derivative of ϕt at f i(x), i ∈ {0, . . . , n+ 1}, is equal to 1,
• the restriction of ϕtfϕ

−1
t to each segment [f i(x) − t, f i(x) + t] is the

orientation preserving affine map

Ai : [f i(x)−t, f i(x)+t]→ [f i+1(x)−t·df(f i(x)), f i+1(x)+t·df(f i(x))].

Notice that Ai does not depend on t: it is the affine map sending f i(x)
to f i+1(x) and with derivative equal to df(f i(x)).

Proof. The proof is easy; as it is somewhat technical, let us just give
some indications.

If n = 0, then x and f(x) are different points, and we only need to choose
ϕt,0 to be the identity map on a small neighborhood It,0 of x containing
[x− t, x+ t] and to coincide with A0 ◦ f−1 on f([x− t, x+ t]) (the interval
It,1 contains f([x− t, x+ t])). Therefore, for every y ∈ [x− t, x+ t] one gets

ϕt,0fϕ
−1
t,0 (y) = ϕt,0(f(y)) = (A0 ◦ f−1)f(y) = A0(y).

The derivative of A0 ◦ f−1 at f(x) is 1 so that, by shrinking t, one may
choose ϕt,0 C

1-close to the identity map and with support It,1 tending to
{f(x)}.
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One can now prove Lemma 2.13 by induction on n. We fix an orbit seg-
ment {x, . . . , fn+1(x)} associated to a non-periodic point x, and we assume
that ϕt,n has already been built and satisfies:

• the support of ϕt,n is the union of disjoint intervals It,i centered at
f i(x), i ∈ {0, . . . , n+ 1}, and whose lengths tend to 0 as t→ 0,
• ϕt,nfϕ−1t,n coincides with Ai on [f i(x)− t, f i(x) + t] for i = 0, . . . , n,

• the derivative of ϕt,n at f i(x) is 1 and ϕt,n → id as t→ 0.

Let ft,n = ϕ−1t,nfϕt,n; we build ϕt,n+1 as follows:

• ϕt,n+1 coincides with ϕt,n on
⋃n+1
i=0 It,i,

• ϕt,n+1 coincides with An+1f
−1
t,n on ft,n([fn+1(x)− t, fn+1(x) + t]),

• the support of ϕt,n+1 is the union of
⋃n+1
i=0 It,i and an interval It,n+2

centered at fn+2(x), containing ft,n([fn+1(x) − t, fn+1(x) + t]), and
whose length tends to 0 as t→ 0.

When t is small, the interval It,n+2 is disjoint from
⋃n+1
i=0 It,i. Then it is easy

to check that ϕt,n+1fϕ
−1
t,n+1 coincides with Ai on [f i(x) − t, f i(x) + t] for

i = 0, . . . , n+ 1.
One concludes by noticing that the derivative of ϕt,n+1 is 1 at fn+2(x),

and ϕt,n+1 can be chosen C1-close to the identity for small t.

For every positive α, β, we denote by hα,β : R→ R the map defined by

• x 7→ αx for x < −1,
• x 7→ β−α

4 x2 + β+α
2 x+ β−α

4 for x ∈ [−1, 1],
• x 7→ βx for x > 1.

An elementary calculation shows that

Lemma 2.14. hα,β is a C1-diffeomorphism of R whose derivative at each
point is in [α, β].

Lemma 2.15. Given α, β, γ, δ > 0 and x ∈ R one has

min

{
α

γ
,
β

δ

}
≤
dhα,β(x)

dhγ,δ(x)
≤ max

{
α

γ
,
β

δ

}
.

Proof. The proof is straightforward for x /∈ [−1, 1], since the maps hα,β
and hγ,δ are linear with slope α and γ (if x < −1) or β and δ (if x > 1).

For x ∈ [−1, 1] one has dhα,β(x) = β−α
2 x + β+α

2 = 1−x
2 α + 1+x

2 β and

hγ,δ = 1−x
2 γ + 1+x

2 δ, so that

dhα,β(x)

dhγ,δ(x)
=

1−x
2 α+ 1+x

2 β
1−x
2 γ + 1+x

2 δ
.

The stated inequality now follows immediately from the following (classical)
claim:
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Claim 5. Let a, b, c, d be positive numbers. Then

inf

{
a

c
,
b

d

}
≤ a+ b

c+ d
≤ max

{
a

c
,
b

d

}
.

Proof of the claim. Assume a
c ≤

b
d (the converse case is similar). Then

a ≤ cb
d . Therefore

a+ b

c+ d
≤

cb
d + b

c+ d
=

(c+d)b
d

c+ d
=
b

d
.

This inequality, applied now to c+d
a+b , gives c+d

a+b ≤
c
a , that is,

a

c
≤ a+ b

c+ d
≤ b

d
,

which is the desired inequality in that case. Claim 5 Lemma 2.15

Let H be a piecewise affine homeomorphism of S1, and x ∈ S1 a singular
point. Let α, β be the right and left derivatives of H at x, and η > 0 be
small enough so that H is affine on [x− η, x] and on [x, x+ η].

We denote by hα,β,x,η : [x−η, x+η]→ H([x−η, x+η]) the diffeomorphism
obtained as follows:

• Let A be the orientation preserving affine diffeomorphism that sends
[x− η, x+ η] onto [−1, 1].
• hα,β induces a diffeomorphism of [−1, 1] onto [−α, β],
• Let B be the orientation preserving affine diffeomorphism sending
H([x− η, x+ η]) = [H(x)− αη,H(x) + βη] onto [−α, β].

Then

hα,β,x,η = B−1 ◦ hα,β ◦A : [x− η, x+ η]→ H([x− η, x+ η]).

Notice that:

1. The linear parts of A and B coincide (the derivative is 1/η), therefore
the derivative dhα,β,x,η(z) is dhα,β(A(z)).

2. The derivatives of hα,β,x,η and of H coincide at x− η and at x+ η.
3. If H is smooth at x, that is, α = β, then hα,β,x,η coincides with H.

We are now ready to prove Proposition 2.12:

Proof of Proposition 2.12. Up to replacing f by a conjugate ϕ−1t fϕt
given by Lemma 2.13, one may assume that there is t > 0 such that f is
affine on each interval [f i(x)− t, f i(x) + t] for i ∈ {0, . . . , n}.

Notice that, for any η > 0 small enough, and i ∈ {0, . . . , n + 1}, the
interval f i([x − η, x + η]) is contained in [f i(x) − t, f i(x) + t] where f is
affine, and f i([x− η, x+ η]) = [f i(x)− df i(x) · η, f i(x) + df i(x) · η].

Let us denote for simplicity:

• ηi = df i(x) · η,
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• αi, βi are the left and right derivatives of H at f i(x),
• Ai : [f i(x)−ηi, f i(x)+ηi]→ [−1, 1] and Bi : [H(f ix)−αiηi, H(f i(x))+
βiηi]→ [−αi, βi] are the orientation preserving affine maps.

We denote by hη the diffeomorphism of S1 defined as follows:

• hη coincides with H outside
⋃n−1
i=1 [f i(x)− ηi, f i(x) + ηi],

• hη = hαi,βi,f i(x),ηi on [f i(x)− ηi, f i(x) + ηi].

Consider hηfh
−1
η . For x /∈ H([f i(x)− ηi, f i(x) + ηi]), i ∈ {0, . . . , n− 1},

we have hηfh
−1
η (x) = HfH−1 so that there is nothing to prove.

Pick y ∈ H([f i(x)− ηi, f i(x) + ηi]). Then

hηfh
−1
η (y) = hαi+1,βi+1,f i+1(x),ηi+1

◦ f ◦ h−1
αi,βi,f i(x),ηi

(y).

Thus, if we set z = h−1
αi,βi,f i(x),ηi

(y), then

d(hηfh
−1
η )(y) = df(z) ·

dhαi+1,βi+1,f i+1(x),ηi+1
(f(z))

dhαi,βi,f i(x),ηi(z)

= df(z) ·
dhαi+1,βi+1

(Ai+1(f(z)))

dhαi,βi(Ai(z))
.

From the fact that f is affine and from the definition of Ai and Ai+1 one
easily checks that Ai+1f = Ai. This implies

d(hηfh
−1
η )(y) = df(z) ·

dhαi+1,βi+1
(Ai(z))

dhαi,βi,(Ai(z))
.

Since z ∈ [f i(x)− ηi, f i(x) + ηi], one has

d(hηfh
−1
η )(y) = df(f i(x)) ·

dhαi+1,βi+1
(Ai(z))

dhαi,βi,(Ai(z))
.

From Lemma 2.15 one deduces that

df(f i(x)) min

{
αi+1

αi
,
βi+1

βi

}
≤ d(hηfh

−1
η )(y)

≤ df(f i(x)) max

{
αi+1

αi
,
βi+1

βi

}
.

Recall that the derivative of HfH−1 is αi+1

αi
df(f i(x)) on H([f i(x)−ηi, f i(x)]

and is βi+1

βi
df(f i(x)) on H([f i(x), f i(x) + ηi]. Therefore, the hypothesis on

H is that ∣∣∣∣αi+1

αi
df(f i(x))− βi+1

βi
df(f i(x))

∣∣∣∣ < ε.

One deduces that |d(HfH−1)(y)− d(hηfh
−1
η )(y)| < 2ε, as announced.
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2.6. Distortion in wandering intervals for Denjoy
counterexamples

2.6.1. Turning down the distortion of Denjoy counterexamples: state-
ments. The aim of this section is to prove the following proposition which
allows one to show that every f ∈ Diff1

+(S1) satisfies the distortion hypoth-
esis of Theorem 2.1 (with no assumption on dense orbits).

If f is a C1-diffeomorphism with irrational rotation number, we define a
(maximal) wandering interval to be the closure of any connected component
of the complement of the unique minimal set of f .

Proposition 2.16. Let f : S1 → S1 be a diffeomorphism with irrational
rotation number α. Then for any ε > 0 there is a diffeomorphism h such
that the distortion of g = hfh−1 on each wandering interval I is bounded
by ε.

Remark 2.17. Let f be a diffeomorphism with irrational rotation num-
ber and η > 0. Then for any point x belonging to the minimal set (that is,
x does not belong to any wandering interval) there is n1 > 0 such that for
every n > n1, the closure I of every connected component of the comple-
ment of the orbit segment {x, . . . , fn(x)} has one of the following properties:
either

• the length of I is smaller than η, or
• there is a wandering interval J contained in I such that the sum of

the lengths of the two components of I \ J is smaller than η.

Corollary 2.18. Given f ∈ Diff1
+(S1) with irrational rotation number

and ε > 0, there are h ∈ Diff1
+(S1) and N > 0 such that for all n ≥ N and

x ∈ S1, the distortion of f̃ = hfh−1 on any connected component of the
complement of the orbit segment {x, . . . , f̃n(x)} is bounded by ε.

Proof. By Proposition 2.16, there is a diffeomorphism h such that the
distortion of f̃ = hfh−1 is smaller than ε/10 on each wandering interval.

Notice that, due to the uniform continuity of the derivative of f̃ , its
distortion on small intervals, is very small: there is δ > 0 such that the
distortion of f̃ on every interval shorter than δ is less than ε/10.

By Remark 2.17 there is N > 0 such that, for any n ≥ N and any x,
each connected component C of S1 \ {x, . . . , f̃n(x)} is the union of at most
three intervals, two of them having length less than δ and (at most) one
being a wandering interval. The distortion of f̃ on each of these components
is bounded by ε/10 so that the distortion of f̃ on C is bounded by 3

10ε < ε.

The proof of Proposition 2.16 is divided into two main parts. We first
perturb the derivative by conjugacy inside the orbits of wandering intervals
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in order to get small distortion. Then we extend the conjugacy onto the
circle without changing the distortion inside the wandering intervals.

2.6.2. Turning down the distortion on wandering intervals. The aim of
this section is to prove

Lemma 2.19. Let f be a C1-diffeomorphism of S1 with irrational rota-
tion number, and ε > 0. Let [a, b] be a maximal wandering interval. Then
there is a family of diffeomorphisms hi : f

i([a, b]) → f i([a, b]), i ∈ Z, such
that:

• there is n0 such that hi = id|f i([a,b]) for |i| ≥ n0,

• the distortion of hi+1 ◦f ◦h−1i : f i([a, b])→ f i+1([a, b]) is bounded by ε
for every i ∈ Z.

To prove Lemma 2.19 we will use

Lemma 2.20. Let {fi}i∈Z be a sequence of diffeomorphisms of [0, 1] such
that fi → id in the C1-topology as i → ±∞, and let ε > 0. Then there is a
sequence {gi}i∈Z of diffeomorphisms of [0, 1], ε-C1-close to the identity map,
and n0 such that:

• gi = fi for |i| ≥ n0,
• gn0 ◦ gn0−1 ◦ · · · ◦ g−n0+1 ◦ g−n0 = fn0 ◦ fn0−1 ◦ · · · ◦ f−n0+1 ◦ f−n0.

Proof. Let n1 > 1 be such that fn and fn+1fn are ε/2-close to the
identity for |n| ≥ n1.

We fix gi = fi for i < −n1.
Consider the diffeomorphism F = fn1 ◦ · · · ◦ f−n1 . The fragmentation

lemma (which is elementary for diffeomorphisms of the interval) asserts that
any orientation preserving diffeomorphism of [0, 1] is the product of finitely
many diffeomorphisms arbitrarily close to the identity. Therefore there is
m > 0 and diffeomorphisms gi, i = −n1, . . . ,m, such that

• every gi, i = −n1, . . . ,m, is ε-C1-close to the identity,
• F = gm ◦ · · · ◦ g−n1 .

If m ≤ n1 one fixes gi = id for m ≤ i ≤ n1. Therefore one may always
assume that m > n1. Let us write m = n1 + k with k > 0. Then we define:

• gm+i = fn1+2ifn1+2i−1 for i = 1, . . . , k,
• gi = fi for i > m+ k = n1 + 2k,
• n0 > n1 + 2k.

Thus gi is ε-close to the identity for every i and

gm+k1 ◦ · · · ◦ gm ◦ · · · ◦ g−n1 = fn1+2k1 ◦ · · · ◦ fn1+1 ◦F = fn1+2k1 ◦ · · · ◦ f−n1 .

As a direct consequence, gn0 ◦ gn0−1 ◦ · · · ◦ g−n0+1 ◦ g−n0 = fn0 ◦ fn0−1 ◦ · · · ◦
f−n0+1 ◦ f−n0 , concluding the proof of the lemma.
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Proof of Lemma 2.19. Let ϕi : f
i([a, b]) → [0, 1] be the unique orienta-

tion preserving affine diffeomorphism. We write

fi = ϕi+1fϕ
−1
i : [0, 1]→ [0, 1].

Notice that the distortion of fi on [0, 1] is equal to the distortion of the
restriction of f to f i([a, b]).

Notice that for i large enough, the length of f i([a, b]) is arbitrarily small,
so the distortion of f on f i([a, b]) tends to 0 as i → ±∞. Therefore the
distortion of fi on [0, 1] tends to 0 as i→ ±∞. Since the fi are orientation
preserving diffeomorphisms of [0, 1], they each have at least one point at
which the derivative is 1. Therefore, the fact that the distortion of the fi
tends to 0 implies:

Claim 6. The C1-distance from fi to the identity map tends to 0 as
i→ ±∞.

Therefore, {fi}i∈Z satisfies the hypothesis of Lemma 2.20. Consider
n0 > 0 and the sequence {gi}i∈Z of diffeomorphisms given by Lemma 2.20
associated to the fi and the constant ε

4 (i.e. the gi are ε
4 -C1-close to identity).

In particular fi = gi for i < −n0. We set

• hi = id for i < −n0 − 1,
• hi = ϕ−1i ◦ gi−1 ◦ · · · ◦ g−n0−1 ◦ f−1−n0−1 ◦ · · · ◦ f

−1
i−1 ◦ ϕi.

By definition of the gi, one has gn0 ◦ · · · ◦ g−n0 = fn0 ◦ · · · ◦ f−n0 and gi = fi
for |i| > n0; one deduces that hi = id for i > n0. Furthermore

hi+1fh
−1
i = ϕ−1i+1

◦ gi ◦ · · · ◦ g−n0−1 ◦ f−1−n0−1 ◦ · · · ◦ f
−1
i

◦ϕi+1 ◦ f ◦ ϕ−1i
◦ fi−1 ◦ · · · ◦ f−n0−1 ◦ g−1−n0−1 ◦ · · · ◦ g

−1
i−1

◦ϕi
= ϕ−1i+1

◦ gi ◦ · · · ◦ g−n0−1 ◦ f−1−n0−1 ◦ · · · ◦ f
−1
i

◦ fi
◦ fi−1 ◦ · · · ◦ f−n0−1 ◦ g−1−n0−1 ◦ · · · ◦ g

−1
i−1

◦ϕi
= ϕ−1i+1 ◦ gi ◦ ϕi.

Note that as gi is ε
4 -C1-close to the identity map, one has∣∣∣∣dgi(x)

dgi(y)
− 1

∣∣∣∣ =

∣∣∣∣dgi(x)− dgi(y)

dgi(y)

∣∣∣∣ ≤ 2ε/4

1− ε/4
<

2ε

3
for ε < 1.
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As ϕi and ϕi+1 are affine one concludes that the distortion of hi+1fh
−1
i on

f i([a, b]) is bounded by log(1 + 2ε/3), therefore it is smaller than ε.

2.6.3. Extension of the conjugacy onto the whole circle: proof of Propo-
sition 2.16. The aim of this section is to show that one can extend the
conjugacy, defined inside the wandering interval by Lemma 2.19, onto the
whole circle without changing the distortion.

First notice that, due to the uniform continuity of the derivative of f , its
distortion is smaller than ε/2 on every small enough interval. This shows:

Lemma 2.21. There are N > 0, k ≥ 0 and, for every 0 < i ≤ k,
a maximal wandering interval [ai, bi] such that:

• the orbits of [ai, bi] are pairwise distinct,
• for any n with |n| > N , the distortion of f on fn([ai, bi]) is smaller

than ε/2,
• for any wandering interval [a, b] whose orbit is distinct from the orbits

of the [ai, bi], the distortion is bounded by ε/2 on each fn([a, b]), n ∈ Z.

For every i ≥ 0, we fix n0,i > 0 and a sequence of diffeomorphisms
hi,t : [f t(ai), f

t(bi)]→ [f t(ai), f
t(bi)], t ∈ Z, associated by Lemma 2.19 to f ,

the wandering interval [ai, bi] and the constant ε > 0. We denote n0 =
max{n0,i}, 0 < i ≤ k. By definition, for every 0 < i ≤ k, one has:

• hi,t = id|f t([ai,bi]) for |t| ≥ n0,
• the distortion of hi,t+1 ◦ f ◦h−1i,t : f t([ai, bi])→ f t+1([ai, bi]) is bounded

by ε.

Notice that the [f t(ai), f
t(bi)], i ∈ {1, . . . , k}, t ∈ {−n0, . . . , n0}, are finitely

many compact disjoint segments.
We are now ready to state the main result of this section:

Lemma 2.22. There is a diffeomorphism h of S1 such that h coincides
with the hi,t for i ∈ {1, . . . , k}, t ∈ {−n0, . . . , n0}, and the derivative of
h is constant in every wandering interval distinct from the [f t(ai), f

t(bi)],
i ∈ {1, . . . , k}, t ∈ {−n0, . . . , n0}.

To construct h we will build its derivative dh. This derivative is a classical
Lebesgue devil staircase as it is continuous, and constant on each connected
component of the complement of a Cantor set. We will use the following
result:

Lemma 2.23. Let C ⊂ R be a Cantor set, and α, β, δ > 0. Let I = [a, b]
be the convex hull of C. Then there is a continuous function ϕ : [a, b] → R
such that:

• ϕ(t) > 0 for every t ∈ I,
• ϕ(a) = α and ϕ(b) = β,
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• ϕ is constant on each connected component of I \ C,

•
	b
a ϕdt = δ.

Proof. The unique point which is not classical is the condition on the
integral.

We begin by constructing a continuous map ϕ− : [a, b]→ [0,∞), constant
on each connected component of [a, b] \ C, such that ϕ−(a) = α, ϕ−(b) = β

and
	b
a ϕdt < δ; for that, it is enough to build ϕ− bounded by max{α, β} and

equal to 0 on a segment [c, d] with c, d ∈ C and (c− a) + (b− d) < b−a
max{α,β} .

Then we construct a continuous map ϕ0 : [a, b] → [0,∞), constant on
each connected component of [a, b]\C, and such that ϕ0(a) = ϕ0(b) = 0 and

ϕ0(x) > 0 for a < x < b. In particular
	b
a ϕ0(t) dt > 0.

Then the map ϕ defined by

ϕ(t) = ϕ−(t) +

(
δ −

	b
a ϕ−(s) ds

	b
a ϕ0(s) ds

)
ϕ0(t)

has all the announced properties.

Corollary 2.24. Let C ⊂ R be a Cantor set, and α, β > 0. Let I = [a, b]
be the convex hull of C. There is a C1-diffeomorphism h : I → I, affine on
each connected component of I \ C and such that dh(a) = α and dh(b) = β.

Proof. Let ϕ : I → (0,∞) be the map associated by Lemma 2.23 to C,
[a, b], α, β and δ = b−a. Then h : [a, b]→ R defined by h(t) = a+

	t
a ϕ(s) ds

induces a C1-diffeomorphism of [a, b] which is affine on each connected com-
ponent of I \ C.

Proof of Lemma 2.22. Recall that f ∈ Diff1
+(S1) is a C1-diffeomorphism

with irrational rotation number, whose orbits are not dense (otherwise there
is nothing to prove). Thus f has a unique minimal set which is a Cantor
set, C.

Consider the closure I = [f t1(bi), f
t2(aj)] of a connected component of

S1 \
⋃
i∈{1,...,k}, t∈{−n0,...,n0}[f

t(ai), f
t(bi)]. Notice that the interior of the last

union is disjoint from C. Consequently, the extremities of I are not isolated
points of I ∩ C. Hence I ∩ C is a Cantor set.

According to Corollary 2.24 there is an orientation preserving C1-diffeo-
morphism hI : I → I such that:

• dhI(f t1(bi)) = dhi,t1(f t1(bi)),
• dhI(f t2(aj)) = dhj,t2(f t2(aj)),
• dhI is constant on each connected component of I \ C.

Now, one defines h : S1 → S1 as h|I = hI and h|[f t(ai),f t(bi)] = hi,t for
t ∈ {−n0, . . . , n0}.
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Proof of Proposition 2.16. Consider the diffeomorphism h given by Lem-
ma 2.22. Then hfh−1 coincides with hi,t+1fhi,t on the f t([ai, bi]) for |t| < n0;
therefore, the distortion is bounded by ε. On other wandering intervals, h
is affine, so that the conjugacy does not affect the distortion, which was
bounded by ε/2 by definition of the [ai, bi] and n0.

3. Proof of the main result. The aim of this section is to prove our
main result (Theorem 1.1) assuming Theorem 3.1 which explains that one
can change the initial and final ratios by arbitrarily small perturbations if
one choose an adapted segment of a specific length.

3.1. Perturbing the initial and final ratios at characteristic
times. Our main technical result is

Theorem 3.1. Given any α ∈ R \ Q there is a (strictly increasing)
sequence {ki} ⊂ N with the following properties: Let f , g be C1-diffeomor-
phisms with rotation number α, let x, y ∈ S1, and let ε > 0. Then:

• for any i the orbit segments {x, . . . , fki(x)} and {y, . . . , gki(y)} are
adapted,
• there is i0 such that for every i ≥ i0 there is a C1-diffeomorphism gi

such that:

– gi is ε-C1-close to g,
– {y, . . . , gkii (y)} is an adapted segment of gi ordered on S1 in the

same way as {x, . . . , fki(x)} and {y, . . . , gki(y)},
– the initial and final ratios of gi on {y, . . . , gkii (y)} are the same as

the ones of f on {x, . . . , fki(x)}.

In Section 4.2 we will build the sequence {ki}, called the characteristic
times, and Section 5 will be dedicated to the proof of Theorem 3.1.

The aim of this section is to show that Theorem 3.1 together with The-
orem 2.1, Proposition 2.16, Lemma 2.10 and Proposition 2.12 imply Theo-
rem 1.1.

3.2. Proof of Theorem 1.1. Let α be an irrational number, f, g ∈
Diff1

+(S1) with rotation number α, and ε > 0. We have to prove that there
is a diffeomorphism h of S1 such that hfh−1 is ε-close to g.

Recall that F rα denotes the space of Cr-diffeomorphisms with rotation
number α. According to [He, Proposition 4.4.2], F rα is Cs-dense in F sα for any
s ≤ r. In particular, F 2

α is C1-dense in F 1
α. Thus there is a C2-diffeomorphism

g0 with rotation number α and ε/2-C2-close to g. In other words, up to
replacing ε by ε/2 and g by g0, we may (and will) assume that g is C2.

According to Proposition 2.16, f is C1-conjugate to f0 = h0fh
−1
0 such

that the distortion of f0 on each wandering interval is bounded by ε/(150M),
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where M is an upper bound for dg. Therefore, by Corollary 2.18, for any
sufficiently large orbit segment of a point x in the minimal set of f0, the
distortion of f0 on each connected component of the complement of that
orbit segment will be bounded by ε/(50M).

Thus, we choose x in the minimal set of f ; then x0 = h0(x) is in the
minimal set of f0. We choose a sufficiently large characteristic time ki so
that, according to Theorem 3.1, g admits an ε

200 -C1-perturbation g1 for
which:

• the orbit segment {0, . . . , gki1 (0)} is adapted, and is ordered in the same

way as {0, . . . , gki(0)} and {x0, . . . , fki0 (x0)},
• the initial and final ratios associated to {0, . . . , gki1 (0)} are the same

as the ones of f0 on {x0, . . . , fki0 (x0)}.
• the distortion of g1 on each connected component of the complement

of {0, . . . , gki1 (0)} is bounded by ε/(50M), since g1 was chosen C1-close
to g.

Now Lemma 2.10 yields a piecewise linear conjugacy H such that Hf0H
−1

satisfies |d(Hf0H
−1)− dg| < ε/8 (see Remark 2.11).

Finally, Proposition 2.12 ensures the existence of a diffeomorphism h
for which |d(Hf0H

−1)− d(hf0h
−1)| < ε/2. One infers that hh0f(hh0)

−1 is
ε-C1-close to g, concluding the proof.

It now remains to prove Theorem 3.1.

4. Characteristic times

4.1. Informal sketch. To end the proof of Theorem 1.1, it remains to
prove Theorem 3.1, that is, to control and modify the initial and final ratios
of (well chosen) adapted segments.

In this section, we will choose specific adapted segments that we will
call characteristic segments. They will be chosen for the rotation Rα, α ∈
R \Q, and we will then control the ratios of characteristic segments for the
diffeomorphisms f, g in F rα, r = 1, 2, and for their C1-perturbations.

Let us roughly explain how we choose these characteristic segments:

• First we consider the sequence of closest returns to 0 of the nα; they
are the extremities of an interval that contains 0. We consider the time
n− 1 such that Rα(Rn−1α (0)) belongs to the interval.
• We will see that we can extract a subsequence of such times for which

the initial and final ratios (of the corresponding segments for the ro-
tation Rα) are uniformly bounded, between 1/2 and 2.
• Then we will extract a new subsequence (called characteristic times)

for which the union of the two segments adjacent to 0 will have a
large number of disjoint successive positive iterates, which are also
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disjoint from the negative iterates of the two segments adjacent to nα.
This number of iterates will be called the wandering time. This long
wandering time will allow us to modify these ratios as we want by a
C1-perturbation.

As we need to control the complete geometry of the orbit segment until
the closest return, we will first reconstruct the sequence of these closest
return times, paying attention to the wandering time of the union of the
segments adjacent to 0.

4.2. Ordering the orbit segments of rotations. Let α ∈ R \ Q be
an irrational number and Rα the rotation x 7→ x+ α on S1 = R/Z.

Every orbit segment {x, . . . , Rnα(x)} of length n is the image under the
isometry Rx of the corresponding orbit segment starting at 0. Therefore we
consider the orbit segments {0, α, . . . , nα}.

We consider the points −1/2 < −an < 0 < bn < 1/2 which are adjacent
to 0 in this orbit segment. We define rn, sn ∈ {1, . . . , n} by −an = rnα and
bn = snα. According to Lemma 2.1, (n − sn)α < nα < (n − rn)α are the
points adjacent to nα. Note that:

• an → 0 and bn → 0 as n→∞, and hence
• rn →∞ and sn →∞ as n→∞.

The following lemma is elementary and classical (and can be deduced
from Lemma 2.1 and Remark 2.3):

Lemma 4.1.

(i) The length of each connected component of the complement of the
orbit segment belongs to {an, bn, an + bn}.

(ii) We have

rn + sn 6= n+ 1 ⇔ Rα(nα) = (n+ 1)α /∈ (−an, bn).

In that case:

• the points (sn− 1)α and (rn− 1)α are adjacent, and the length of
the component ((sn − 1)α, (rn − 1)α) is an + bn,
• an+1 = an, bn+1 = bn, rn+1 = rn, and sn+1 = sn.

(iii) If rn + sn = n + 1 then the image of [(n − sn)α, (n − rn)α] under
Rα is the segment [rnα, snα] = [−an, bn]. Hence the length of each
connected component of the complement of the orbit segment belongs
to {an, bn}. Furthermore:



Conjugacy classes of circle diffeomorphisms 153

(a) If an > bn then (n+ 1)α ∈ (−an, 0) and
an+1 = an − bn,
bn+1 = bn,

rn+1 = n+ 1 = rn + sn,

sn+1 = sn.

(b) If bn > an then (n+ 1)α ∈ (0, bn) and
an+1 = an,

bn+1 = bn − an,
rn+1 = rn,

sn+1 = n+ 1 = rn + sn.

Let ni denote the sequence of numbers such that (ni + 1)α ∈ [−ani , bni ].
Lemma 4.1 asserts that:

• if ani > bni then ani+1 = ani+1 = ani − bni and bni+1 = bni+1 = bni ,
• if ani < bni then ani+1 = ani+1 = ani and bni+1 = bni+1 = bni − ani .

One deduces:

Lemma 4.2. There is a subsequence {nij}j∈Z of ni such that

anij /bnij ∈ [1/2, 2].

Proof. Assume ani > bni . Then ani+1 = ani − bni and bni+1 = bni . If
ani+1 < bni+1 this means bni < ani < 2bni so that ni belongs to the an-
nounced sequence.

Otherwise, ani+1 > bni+1 and ani+2 = ani+1−bni+1 < ani ; if ani+1−bni+1 <
bni = bni+1 = bni+2 we are done; otherwise we continue until there is k such
that ani+k > bni+k = bni but ani+k+1

< bni+k+1
; then ni+k belongs to the

announced sequence.

The case ani < bni is analogous. Thus we have shown that the announced
sequence contains numbers greater than any of the ni, allowing us to define
the nij by induction.

Remark 4.3. {(nij + 1)α}j∈N is the sequence of closest returns to 0 of
the orbit of 0 under the rotation Rα.

4.2.1. Wandering time. Consider an irrational number α, n > 0, and
the orbit segment {0, . . . , nα}. The numbers rnα, snα have been defined
so that 0 is the unique point of the orbit segment in the open interval
In = (−an, bn) = (rnα, snα); as a consequence, n is the unique point of the
segment in the open interval Jn = ((n− sn)α, (n− rn)α).
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Definition 4.4. With the notation above, we define the wandering time
w(n) to be the largest integer w such that the 2(w + 1) intervals

In, Rα(In), . . . , Rwα (In) and R−wα (Jn), . . . , R−1α (Jn), Jn

are pairwise disjoint.

Lemma 4.5. For every n > 0,

w(n) = inf{[n− rn − 1/2], [n− sn − 1/2]},
where [·] denotes the integer part.

Proof. Notice that fn−rn(In)∩Jn contains [nα, (n−rn)α] and in partic-
ular is non-empty. This implies that 2w(n) < n−rn. One shows analogously
that 2w(n) < n− sn.

On the other hand the intervals

(rnα, 0), . . . , (nα, (n− rn)α) and (0, snα), . . . , ((n− sn)α, nα)

are pairwise disjoint.

One deduces that, for every w satisfying 2w < min{n− sn, n− rn}, the
intervals In, Rα(In), . . . , Rwα (In) and R−wα (Jn), . . . , R−1α (Jn), Jn are pairwise
disjoint.

Corollary 4.6. For any j,

w(nij ) = inf{[snij /2]− 1, [rnij /2]− 1}.

Proof. Recall that by definition rnij + snij = nij + 1.

4.3. Characteristic times. Corollary 4.6 provides a lower bound of
w(nij ) as the min of two quantities. Lemma 4.8 and Corollary 4.9 below
choose a subsequence Ni of the nij for which we have a simpler lower bound
for the wandering times w(Ni).

Remark 4.7. To ease notation we will write sometimes r(k) = rk,
a(k) = ak etc., in particular when k is a number given by some formula; for
instance s(nij−1 + 1) means snij−1

+1.

Lemma 4.8. There is a strictly increasing sequence {Ni}i∈N of integers,
which is a subsequence of {nij}j∈N, for which we have, for every i, either

• aNi < bNi and r(Ni) ≤ 2s(Ni), or
• aNi > bNi and s(Ni) ≤ 2r(Ni).

As a direct consequence of Lemma 4.8 and Corollary 4.6 one gets:

Corollary 4.9. With the notations of Lemma 4.8, for every i, either

• aNi < bNi and [r(Ni)/4]− 1 ≤ w(Ni), or
• aNi > bNi and [s(Ni)/4]− 1 ≤ w(Ni).
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Proof of Lemma 4.8. Denote by N (α) the subset of {nij}j∈N satisfying:
either anij < bnij and rnij ≤ 2snij , or anij > bnij and snij ≤ 2rnij . We have

to prove that N (α) is infinite for every α ∈ R \Q.
Most of the α are solved by the following claim:

Claim 7. If ij − ij−1 ≥ 2 then either

• a(nij ) < b(nij ) and r(nij ) < s(nij ), or
• a(nij ) > b(nij ) and r(nij ) > s(nij ),

so that in both cases ij ∈ N (α).

Proof. Assume for instance a(nij ) < b(nij ); the other case is identical.
By the choice of the nij , one has a(n) < b(n) for every nij−1 < n ≤ nij ,

and a(nij−1) > b(nij−1).
According to Lemma 4.1,

r(nij−1 + 1) = r(nij−1) + s(nij−1),

s(nij−1 + 1) = s(nij−1).

Furthermore, r(nij−1+1) = r(nij−1 + 1) and s(nij−1+1) = s(nij−1 + 1).
Then by Lemma 4.1, for every 0 ≤ k ≤ ij − ij−1,

r(nij−1+k) = r(nij−1 + 1),

s(nij−1+k) = s(nij−1 + 1) + (k − 1)r(nij−1 + 1).

In particular,

r(nij ) = r(nij−1 + 1),

s(nij ) = s(nij−1 + 1) + (ij − ij−1 − 1)r(nij−1 + 1),

so that r(nij ) < s(nij ) as announced.

Consider now α such that there is j0 such that no j ≥ j0 satisfies the
conclusion (and hence the hypothesis) of the claim. This implies that ij0+k =
ij0 + k for every positive k.

Assume for instance a(nij0 ) < b(nij0 ). Then, for every k > 0,

r(nij0 + 2k) = r(nij0 + 2k − 1) + s(nij0 + 2k − 1),

s(nij0 + 2k) = s(nij0 + 2k − 1),

r(nij0 + 2k + 1) = r(nij0 + 2k),

s(nij0 + 2k + 1) = r(nij0 + 2k) + s(nij0 + 2k).

In particular r(nij0+2) = r(nij0+1) + s(nij0+1) = 2r(nij0 ) + s(nij0 ) and

s(nij0+2) = s(nij0+1) = r(nij0 ) + s(nij0 ), so that

r(nij0+2) < 2s(nij0+2).

This proves that nij0+2 ∈ N (α), and ends the proof of the lemma.
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The Ni are almost the announced characteristic times. The unique defect
is that the orbit segments {x, . . . , RNiα (x)} are not adapted, because, as {Ni}
is a subsequence of {nij}, one has r(Ni) + s(Ni) = Ni + 1.

Definition 4.10. With the notations above, we define ki = Ni − 1 and
we call ki the characteristic times of α. If f is a diffeomorphism with rotation
number α then for every x and i ∈ N the orbit segments {0, . . . , fki(0)} will
be the characteristic segments of f .

We denote wi = w(ki), the wandering time of the characteristic segment.
Then, summarizing the results of this section:

Lemma 4.11.

• The orbit segments {x, , . . . , Rkiα (x)} are adapted segments.
• The initial and final ratios of the rotation Rα on this orbit segment

belong to [1/2, 2].
• The wandering time wi is bounded as follows: either

– aki < bki and [r(ki)/4]− 2 ≤ w(ki), or
– aki > bki and [s(ki)/4]− 2 ≤ w(ki).

Proof. One deduces from Lemma 4.1 that r(ki) = r(Ni) and s(ki) =
s(Ni). As a consequence, the orbit segment {x, . . . , Rkiα (x)} is adapted. Fur-
thermore the initial and final ratios are the same as those associated to Ni

and belong to [1/2, 2) (see Lemma 4.2).

The last item is now a consequence of the fact that w(ki) = w(Ni) or
w(ki) = w(Ni)− 1 (see Lemma 4.5) applied to Corollary 4.9.

4.4. Geometry of the characteristic segment for f ∈ F 1
α. Let

f be a C1-diffeomorphism with an irrational rotation number α. Classical
results assert that f is uniquely ergodic, that is, f admits a unique invariant
measure. The Lyapunov exponent of this measure is zero. This implies:

Lemma 4.12. For any λ > 1 there is nλ > 0 such that for any n > nλ
and any x ∈ S1,

dfn(x) ∈ [λ−n, λn].

One checks easily:

Corollary 4.13. Let x, y ∈ S1. Assume that there is n with |n| > nλ
and x < fn(x) < f2n(x) < y < f3n(x). Then

|x− fn(x)|
λ|n|

< |fn(x)− y| < (λ|n| + λ|2n|)|x− fn(x)|.

Proof. Applying f−n to the segment [fn(x), y], one gets

|fn(x)− y| ≥ |f
−n(fn(x))− f−n(y)|

λ|n|
>
|x− fn(x)|

λ|n|
,
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proving the left inequality. Moreover,

|fn(x)−y| < |fn(x)−f2n(x)|+ |f2n(x)−f3n(x)| < (λ|n|+λ|2n|)|x−fn(x)|,
ending the proof.

Lemma 4.14. Let f ∈ F 1
α. Let {ki}i∈N be the sequence of characteristic

times associated to α (see Definition 4.10). Then, given any λ > 1, there is
i(λ) such that, for all i ≥ i(λ) and x ∈ S1, the initial and final ratios of the
characteristic segments {x, . . . , fki(x)} belong to [λ−wi , λwi ].

Proof. Consider the corresponding characteristic segment {0, . . . , kiα}
for the rotation Rα. Assume for instance that a(ki) < b(ki). By Lemma 4.11,
we also have b(ki) < 2a(ki). This means

Rr(ki)α (0) < 0 < R−r(ki)α (0) < Rs(ki)α (0) < R−2r(ki)α (0).

As the orbit segments of f are similarly ordered to the ones of Rα, one gets

f r(ki)(x) < x < f−r(ki)(x) < fs(ki)(x) < f−2r(ki)(x).

Given any λ1 > 1 and i such that r(ki) > nλ1 , one deduces the following
bounds from Corollary 4.13 applied to the point f r(ki)(x) and n = −r(ki):

|x− f r(ki)(x)|
λ
|r(ki)|
1

< |fs(ki)(x)− x| < (λ
|r(ki)|
1 + λ

|2r(ki)|
1 )|x− f r(ki)(x)|.

Thus the initial ratio belongs to [λ
−r(ki)
1 , λ

|r(ki)|
1 + λ

|2r(ki)|
1 ].

Recall that for the characteristic time ki for which a(ki) < b(ki) one has

[r(ki)/4]− 1 ≤ w(ki).

Thus, there is λ1 such that

λ
|r(ki)|
1 + λ

|2r(ki)|
1 < λw(ki)

for every large enough ki > nλ1 . This gives the announced bound for the
initial ratio; the bound of the final ratio is obtained similarly.

We can restate Lemma 4.14 as follows:

Remark 4.15. There is a sequence λi > 1 tending to 1 as n→∞ such
that for all i and x ∈ S1 the initial and final ratios of the characteristic
segment {x, . . . , fki(x)} belong to [λ−wii , λwii ].

5. Perturbations. The aim of this section is to prove Theorem 3.1
with the characteristic times {ki} as the announced sequence. Let wi be
the corresponding wandering times. In the statement of Theorem 3.1, the
diffeomorphism f appears only via its initial and final ratios. Let us recall
that, according to Lemma 4.14 and Remark 4.15, these ratios are bounded:
they are in an interval [λ−wii , λwii ] where the sequence λi > 1 tends to 1; this
sequence depends on f .
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Theorem 3.1 states that there exists an ε-C1-small perturbation of g
whose initial and final ratios coincide with those of f .

As we already noticed, up to shrinking ε if necessary, one may assume
that g is a C2-diffeomorphism.

Having in mind these comments, Theorem 3.1 is a direct consequence of
Proposition 5.1 below:

Proposition 5.1. Given

• any α ∈ R\Q, the corresponding characteristic times ki and wandering
times wi, i ∈ N,
• any sequence λi > 1 tending to 1,
• any sequences ρ−i , ρ

+
i ∈ [λ−wii , λwii ],

• any C2-diffeomorphism g with rotation number α,
• any y ∈ S1,
• any ε > 0,

there is i0 such that, for every i ≥ i0, there is a C1-diffeomorphism gi and
a point yi with the following properties:

• gi is ε-C1-close to g,
• {yi, . . . , gkii (yi)} is an adapted segment of gi similarly ordered on S1

to {y, . . . , gki(y)},
• the initial and final ratios of gi on {yi, . . . , gkii (yi)} are ρ−i and ρ+i ,

respectively,
• yi → y as i→∞.

5.1. Proof of Proposition 5.1. Let Ii = Ii(g) and Ji = Ji(g) denote
the intervals (gr(ki)(y), gs(ki)(y)) and (gki−s(ki)(y), gki−r(ki)(y)), containing
y and gki(y), respectively (in the terminology of Section 2, they are the
interiors of the initial and final basic intervals, respectively). By definition
of the wandering times, the intervals Ii(g), g(Ii), . . . , g

wi(Ii), g
−wi(Ji), . . . , Ji

are pairwise disjoint.

We will achieve the final ratio equal to ρ+i by performing a perturbation
of g with support in g−wi(Ji), . . . , Ji, and the initial ratio equal to ρ−i by a
perturbation of g with support in Ii, g(Ii), . . . , g

wi(Ii). These supports are
disjoint so that the construction can be performed independently. Further-
more, they are analogous. We will only present the construction of ρ−i .

5.1.1. Distortion control and initial and final ratios for g. According to
Remark 4.15, there are λ̃i > 1 tending to 1 as i → ∞ such that the initial
and final ratios of g belong to [λ̃−wii , λ̃wii ].

The intervals gj(Ii), j ∈ {0, . . . , wi}, are pairwise disjoint in S1, so the
sum of their lengths is bounded by 1. As g is assumed to be C2, a classical
argument implies the following distortion control:
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Lemma 5.2. There is a constant C > 1 such that for all i and j ∈
{0, 1, . . . , wi}, the distortion of gj on Ii is bounded by logC.

As a consequence, for every i one has

|gr(ki)+j(y)− gj(y)|
|gs(ki)+j(y)− gj(y)|

∈ [C−2λ̃−wii , C2λ̃wii ].

We denote
µi = sup{λi, C2/wi λ̃i}.

Then

Lemma 5.3. With the notations above:

• µi → 1 as i→∞,
• ρ−i ∈ [µ−wii , µwii ] for every i,

• |g
r(ki)+j(y)− gj(y)|
|gs(ki)+j(y)− gj(y)|

∈ [µ−wii , µwii ] for all i and j ∈ {0, . . . , wi}.

5.1.2. Rescaling the statement of Proposition 5.1 on [0, 1]. For any j
the restriction g|gj(Ii) maps gj(Ii) to gj+1(Ii). It will be more comfortable
to deal with diffeomorphisms of the same interval. Therefore we will rescale
the intervals gj(Ii) by affine maps to [0, 1]. As this rescaling is affine, it will
not affect the distortion of g|gj(Ii), and small C1-pertubations of the rescaled

map will induce C1-small perturbations of g with proportional C1-size. More
precisely:

Let ϕi,j : gj(Ii(g)) → [0, 1], j ∈ {0, . . . , wi}, be the affine orientation
preserving maps. We denote by Gi,j : [0, 1]→ [0, 1], j ∈ {0, . . . , wi − 1}, the
diffeomorphism

ϕi,j+1 ◦ g|gj(Ii) ◦ ϕ
−1
i,j .

As g is assumed to be C2, the orbits are all dense. Thus the length of
gj(Ii) tends uniformly to 0 as i → ∞. Consequently, the distortion of g
tends to 0 on gj(Ii). As a direct consequence, one gets

Lemma 5.4. The diffeomorphisms Gi,j, i ∈ N, j ∈ {0, . . . , wi}, tend
uniformly to the identity map in the C1-topology as i→∞.

Our main lemma is

Lemma 5.5. Let wi be a sequence tending to infinity. Let Gi,j, j ∈
{0, . . . , wi − 1}, be families of diffeomorphisms of [0, 1] tending uniformly
to the identity in the C1-topology as i → ∞. Given any points ti,1, ti,2 sat-

isfying
ti,η

1−ti,η ∈ [µ−wii , µwii ], η ∈ {1, 2}, and any ε > 0, there is i0 such that

for any i ≥ i0 there are families Hi,j such that:

• Hi,j are ε-C1-close to Gi,j,
• Hi,j coincides with Gi,j in neighborhoods of 0 and 1,
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• Hi,wi−1 ◦ · · · ◦Hi,0(ti,1) = ti,2.

We postpone the proof of Lemma 5.5 to the next section and we now
conclude the proof of the proposition:

Proof of Proposition 5.1. Defined gi = g off the union of the intervals
gj(Ii), j ∈ {0, . . . , wi − 1}, and gi = ϕ−1i,j+1 ◦Hi,j ◦ ϕi,j on gj(Ii), where Hi,j

is given by Lemma 5.5 for the constants:

• ε/M where M is a bound for dg,
• t2 = ϕi,wi(g

wi(y)),
• t1 = the point such that t1/(1− t1) is the initial ratio ρ−i .

Using the fact that g = ϕ−1i,j+1 ◦Gi,j ◦ ϕi,j on gj(Ii) and Hi,j = Gi,j in a
neighborhood of 0 and 1, one easily checks that gi is a diffeomorphism.

Furthermore, for i large enough, and every j ∈ {0, . . . , wi}, the diffeo-
morphism Hi,j is ε/M -close to Gi,j . As a consequence, gi is ε-close to g in
the C1-topology.

Finally, let
yi = ϕ−1i,0 (t1).

The orbit segment of length ki through yi satisfies:

• gwii (yi) = gwi(y),

• gji (yi) = gj(y) for any j ∈ {wi, . . . , ki},
• {yi, . . . , gkii (yi)} is an adapted segment for gi ordered similarly to the

adapted segment {y, . . . , gki(y)}.
Hence the initial ratio of the orbit segment {yi, . . . , gkii (yi)} is ρ−i , as an-
nounced.

5.2. Proof of Lemma 5.5. Notice that, as the Gi,j are assumed to
tend uniformly to the identity, the condition that the Hi,j are ε-close to
the Gi,j can be replaced by their being ε-C1-close to the identity (up to
shrinking ε slightly).

Furthermore, the condition that Hi,j and Gi,j coincide in an (arbitrarily
small) neighborhood of 0 and 1 can be obtained by the use of a bump
function, without introducing derivatives larger than 1 + 2ε.

Therefore, up to replacing ε by ε/2, Lemma 5.5 is a direct consequence
of the following lemma:

Lemma 5.6. Let wi be a sequence tending to infinity and µi be a sequence
tending to 1. Then given any points ti,1, ti,2 satisfying

ti,η
1−ti,η ∈ [µ−wii , µwii ],

η ∈ {1, 2}, and given any ε > 0, there is i0 such that for any i ≥ i0, there
are families Hi,j such that:

• Hi,j are ε-C1-close to id,
• Hi,wi−1 ◦ · · · ◦Hi,0(ti,1) = ti,2.



Conjugacy classes of circle diffeomorphisms 161

The main step in the proof is the following elementary observation:

Lemma 5.7. Given ε > 0 small enough, t ∈ [−1, 1] and y ∈ [0, 1], there is
a diffeomorphism ϕ of [0, 1] which is equal to the identity in a neighborhood
of 0 and 1, 2ε-C1-close to the identity, and such that

|ϕ(y)|
|ϕ(y)− ϕ(1)|

= (1 + tε)
|y|
|1− y|

.

Proof. Let y1 ∈ [0, 1] be such that y1
1−y1 = (1 + tε) |y||1−y| . An easy calcu-

lation shows that y1 = (1+tε)y
1+tεy .

The map ϕ is obtained by just smoothing the piecewise affine homeo-
morphism, affine from [0, y] to [0, y1] and from [y, 1] to [y1, 1]. Notice that
the slopes of the affine segments are

• y1
y = 1+tε

1+tεy = 1 + tε 1−y
1+tεy ∈ (1− ε, 1 + ε) and

• 1−y1
1−y = 1

1+tεy = 1− ty
1+tεyε ∈ (1− 2ε, 1 + 2ε) for ε < 1/2.

Proof of Lemma 5.6. Applying Lemma 5.7 wi times to ε/2, it is enough
to show that

ti,2
1− ti,2

=

(
1 + t

ε

2

)wi ti,1
1− ti,1

for some t ∈ [0, 1].

By assumption
ti,1

1−ti,1 ,
ti,2

1−ti,2 ∈ [µ−wii , µwii ], that is,
ti,2

1−ti,2
1−ti,1
ti,1
∈ [µ−2wii , µ2wii ].

Therefore, one can find t if µ2i < 1+ε/2. As µi → 1 when i→∞, it is enough
to choose i large enough, ending the proof.
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[He] M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle
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