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Finitely presented subgroups
of systolic groups are systolic

by

Gašper Zadnik (Ljubljana and Warszawa)

Abstract. We prove that every finitely presented subgroup of a systolic group is
itself systolic.

1. Introduction. In the early eighties, Gromov deduced several prop-
erties of Riemannian manifolds of non-positive sectional curvature without
using the Riemannian structure, but only a property of the induced distance
function, which he called a CAT(0) inequality [BGS85]. Gromov proved that
for a cube complex equipped with a piecewise Euclidean metric, one can
locally check the CAT(0) condition in terms of the combinatorial structure
of the complex [BH99, Theorem II.5.20].

In [Hag03, JŚ06] the systolic complexes, a simplicial analogue of CAT(0)
spaces, were introduced. This property of complexes is also called simplicial
non-positive curvature.

Definition 1. A simplicial complex is flag if every finite set of vertices
that are pairwise connected by edges spans a simplex. A loop of length m in a
simplicial complexX is a simplicial embedding of anm-cycle intoX. An edge
connecting two non-consecutive vertices of a loop is called a diagonal. The
property that every loop of length at least four and less thanm has a diagonal
is called m-largeness. Let m ≥ 6. A simply connected m-large flag simplicial
complex is called m-systolic. We write just systolic instead of 6-systolic. A
group acting properly and cocompactly by simplicial automorphisms on a
systolic complex is called systolic.

Note that this definition of a systolic complex differs from the original
one, but is equivalent to it [JŚ06, Fact 1.2(4) and Corollary 1.6].

The purpose of this note is to prove the following theorem (1).
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(1) The author has learnt that the result was also proven independently in [GM13].
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Theorem 2. Any finitely presented subgroup of a systolic group is sys-
tolic.

For torsion-free systolic groups, Theorem 2 was proven by Wise [Wis03,
§5]. Wise considers the quotient of a systolic complex under the group action,
and his proof does not generalize to groups with torsion. Note that Theorem 2
is not true if we replaces “systolic” with “CAT(0)” [BRS07, §2.3.3].

1.1. Notation and outline. All the paths in any simplicial complex are
taken in its 1-skeleton. We use dX to denote the distance in the 1-skeleton
of a simplicial complex X equipped with the combinatorial metric. Given a
subcomplex Z ≤ X, the r-neighborhood of Z in X is defined as the simplicial
span of all vertices r-close to Z, i.e.

N r
X(Z) = Span{x ∈ X0 | dX(x, Z0) ≤ r}.

A neighborhood of a single vertex will also be called a ball around that vertex.
Let G be a group acting properly and cocompactly by automorphisms on
a systolic complex X. Let H ≤ G have a finite presentation 〈S | R〉 with
S symmetric. Let CS(H) be the Cayley graph of H with respect to the
generating set S. An edge connecting h and hs for h ∈ H and a generator
s ∈ S comes equipped with two orientations, one for s and one for s−1,
except when s2 = 1, when there are two edges connecting h and hs. Denote
by CXS (H) a subdivision of CS(H) such that there exists a simplicial H-
equivariant map φ : CXS (H) → X. Let es denote the path between 1 and
s ∈ S in CXS (H) that comes from subdivision of the edge connecting 1 and
s in CS(H). Let x0 = φ(1) and γs = φ(es) for s ∈ S. Denote by L the
maximum of the lengths of the γs. Denote also

Γ = φ(CXS (H)).

We will frequently use s1, . . . , sm to denote generators from S. We write
γs1···sm for the path which is the concatenation

γs1 ∗ (s1γs2) ∗ · · · ∗ (s1 · · · sm−1γsm) .

An outline of our proof is as follows. In the first step, we find some
neighborhood N of Γ in X such that every loop in Γ can be contracted in N .
Since there may be homotopically nontrivial loops in N apart from Γ , we
rather construct a new space Y from a disjoint union of balls around points
in Hx0 which we glue together H-equivariantly. We build Y such that Γ
naturally and H-equivariantly embeds in Y , and moreover every loop in Y
is homotopically equivalent to a loop in Γ . Thanks to the conclusions about
N from the first step, every loop in Γ is also homotopically trivial in Y .
Finally, we extend Y in an appropriate category to a maximal H-cocompact
simply connected flag simplicial complex and prove that it is 6-large.
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2. Proof of the theorem. We proceed in several steps as mentioned
above. In the first step, we find a constant R such that loops in Γ are
homotopically trivial in NR

X(Γ ). Important properties of loops in Γ deduced
in the proof of Step 1 are collected in Fact 1, since we will need them later
on.

Step 1. There exists a constant R < ∞ such that every loop in Γ is
homotopically trivial in NR−L

X (Γ ).

Proof. After replacing a loop with itsH-translate, it is enough to consider
loops in Γ containing a point at distance at most L from x0. We distinguish
two main cases. The first case deals with concatenations of H-translates of
paths γs, s ∈ S, and the second case handles general loops in Γ , where a
loop can leave some hγs and enter another h′γs′ at a point not belonging to
Hx0, i.e. not at the endpoint (resp. starting point) of hγs (resp. h′γs′); see
Figure 1.

Case (1): Loops of the form γs1···sm with s1 · · · smx0 = x0. There are
three subcases:

(a) The word s1 · · · sm belongs toR. BecauseR is finite, there is a number
R1 such that every such loop is homotopically trivial in NR1

X (z) for every
vertex z ∈ γs1···sm .

(b) The word s1 · · · sm equals 1 but it does not belong to R. Then
s1 · · · sm is a concatenation of conjugates of relators from R; each such con-
jugate is homotopically trivial in NR1

X (Γ ), hence so is the whole loop.
(c) The point x0 is fixed under s1 · · · sm but s1 · · · sm 6= 1, where s1 · · · sm

is the shortest representative of the corresponding group element (all the
other representatives differ from the shortest one by concatenation with
words considered in Subcases (1.a) or (1.b)). By properness of the G-action
and hence of the H-action, the number of elements h ∈ H fixing x0 is finite.
Hence we can choose a constant R′1 such that γs1···sm is homotopically trivial
in NR′1

X (z) for every vertex z ∈ γs1···sm .
Case (2): There are two subcases:

(a) Loops coming from a path γs1···sm with self-intersection x /∈ Hx0.
Without loss of generality we can assume that x = γs1 ∩ (s1 · · · sm−1γsm).
Figure 1 shows such a configuration. Observe that dX(x0, s1 · · · smx0) ≤ 2L
in this case. By properness of the H-action, there is an upper bound N such
that s1 · · · sm = p1 · · · pk, where the number k of terms pi ∈ S is at most N .
Since

s1 · · · smp−1k · · · p−11 = 1,

the big loop γs1···smp−1
k ···p

−1
1

is a loop from Subcases (1.a) or (1.b), it can

be contracted in NR1
X (Γ ). Thus to contract the original loop it suffices to
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contract

(♦) γp1···pk ∗ γ,
where γ is a path in Γ from s1 · · · smx0 to the intersection x of γs1 and
s1 · · · sm−1γsm concatenated with a path from x to x0. But the total length
of the loop (♦) is at most (N + 2)L. Let R2 be a number such that any
loop γp1···pk ∗ γ of type (♦) can be contracted in NR2

X (z) for any vertex
z ∈ γp1···pk ∗ γ.

b

b

p1x0

p1 · · · pk−1x0

γp1···pk

b

b

b

b

γ
x

x0

s1x0

s1 · · · smx0

s1 · · · sm−1x0

γs1···sm

Fig. 1. Loop from Case (2); possibly x = x0 or x = s1 · · · smx0. If both equalities hold,
this example is covered by Case (1).

(b) Loops α = α1 ∗ · · · ∗ αm, where αi may be a proper subpath of hiγsi
for some hi ∈ H and the endpoint of αi coincides with the starting point
of αi+1, with indices taken modulo m. Let us denote this intersection by xi.
Let δ+i be a subpath of hiγsi from xi to hisix0 (the endpoint of hiγsi) and
let δ−i be a subpath of hiγsi from hix0 (the starting point of hiγsi) to xi−1.

We now proceed as in Subcase (2.a). Since hiγsi and hi+1γsi+1 intersect
at xi, dX(hisix0, hi+1x0) ≤ 2L. Therefore for all i = 1, . . . ,m there is a path
ηi = hi+1γs(1)i ...s

(ki)
i

in Γ between hisix0 and hi+1x0 for some ki ≤ N , hence

the length of the loop δ+i ∗ ηi ∗ δ−i+1 is at most (N + 2)L, where the constants
are as in Subcase (2.a). But this loop is homotopically trivial in NR2

X (z) for
any vertex z of the path δ+i ∗ ηi ∗ δ−i+1, hence α is homotopic to

α1 ∗ δ+1 ∗ η1 ∗ δ−2 ∗ α2 ∗ · · · ∗ αn−1 ∗ δ+n−1 ∗ δ−n ∗ αn ∗ δ+n ∗ ηn ∗ δ−1 ,
which is a loop from Case (1).

Altogether, the constant R′ = max{R1, R
′
1, R2} is such that every loop

in Γ is homotopic in NR′
X (Γ ) to a trivial loop. Hence R = R′ + L works.

We will call loops from Subcases (1.a) and (1.c) and loops (♦) from
Case (2) short. From the proof of Step 1 we deduce the following.

Fact 1. Every loop in Γ is a concatenation of conjugates of short loops.
Let γ be a short loop in Γ . Then for every vertex z on γ, the loop γ is
homotopically trivial in the ball NR−L

X (z).
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We are now ready to define Y . For every h ∈ H, denote B0
h = NR

X(hx0)
0

and denote the copy of the vertex v ∈ X in B0
h by vh. Let ∼ be the equiv-

alence relation on
∐
h∈H B

0
h which is the transitive closure of the relation

vh ∼ vhs for v ∈ B0
h ∩B0

hs and s ∈ S. Let

Y 0 =
( ∐
h∈H

B0
h

)/
∼ .

Note that B0
h injects into Y 0. For y ∈ Y 0 we write ȳ for the vertex of X such

that y = ȳh for some h ∈ H. Next, we define Y 1. We connect two vertices
y, z ∈ Y 0 by an edge if there exist representatives ȳh, z̄g for y and z with
h = g and ȳ, z̄ adjacent. Let Y be the flag completion of Y 1 and let Bh be
the simplicial span of B0

h ≤ Y . We consider the natural action of H on Y ,
which is induced from the H-action on X. Note that hB1 = Bh, hence the
H-action on Y is proper and cocompact.

Observe that by the construction of Y , there exists a proper H-equiv-
ariant map f : Y → X. It is defined by f(y) = ȳ for y ∈ Y 0 and extends
simplicially to higher-dimensional simplices. Let us define local sections

(♥) ih : NR
X(hx0)→ Bh

by ih(u) = uh for every u ∈ NR
X(hx0)

0 and every h ∈ H. By definition of Y ,
each map ih is bijective on 0-skeleta. Furthermore, vertices uh, vh ∈ B0

h are
adjacent if and only if u, v ∈ NR

X(hx0)
0 are adjacent. Hence ih is a well

defined isomorphism between the 1-skeleta of NR
X(hx0) and Bh. Since a flag

complex is determined by its 1-skeleton, ih is an isomorphism. Note that Bh
might not be a ball in Y .

Observe that for any h ∈ H and s ∈ S the two maps ih and ihs agree on
NR
X(hx0) ∩NR

X(hsx0) because they agree on the 0-skeleton of that intersec-
tion. Hence, there is a natural map ϕ : CXS (H)→ Y , sending the edge path
hes to ih(hγs). We can as well describe the map ϕ in terms of the H-action
on Y , but the above definition is more useful for us. The next step ensures
that ϕ has nice properties.

Step 2. The map ϕ factors through φ : CXS (H)→ Γ .

Proof. We have to check that if two points of CXS (H) are identified un-
der φ, they are also identified under ϕ. To see this, observe that if two
paths γs and hγs′ in Γ have a common point, where s, s′ ∈ S and h ∈ H,
then there is a sequence of generators p1, . . . , pk ∈ S such that p1 · · · pk is
the shortest word representing h. In particular p1 · · · pkes′ = hes′ . It follows
from Fact 1 that the ball NR−L

X (p1 · · · plx0) contains the whole path γp1···pk
for all l = 0, 1, . . . , k, where the empty word represents 1. Thus if we write
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γs for γs with opposite orientation, then NR
X(p1 · · · plx0) contains the path

γ = (hγs′)∗γp1···pk ∗γs for all l = 0, 1, . . . , k. Hence Bp1···pl contains ip1···pl(γ)
for all l = 0, 1, . . . , k. Since two consecutive maps ip1···pl−1

and ip1···pl agree
on the intersection of their domains, the path i1(γ) = ih(γ) is contained in⋂k
l=0Bp1···pl . Thus each point on es is identified with the appropriate point

on hes′ under ϕ. This finishes the proof.

By Step 2, there exists a lift fΓ : Γ → Y of the map f : Y → X.
Obviously fΓ agrees with ih on Γ ∩NR

X(hx0). From now on, we identify Γ
with its fΓ -image.

Step 3. The complex Y is simply connected.

As mentioned in the outline, we first prove that Y encodes an appropriate
neighborhood of Γ such that loops in Γ are homotopically trivial in Y . Then
we exhibit a homotopy from any loop in Y to a loop in Γ .

Proof. Take any loop γ in Γ ⊆ Y . By Fact 1, it is a concatenation of short
loops. In the same way as in the proof of Step 2 one can show that each short
loop γ′ is fully contained in Bh for each h ∈ H such that dY (hx0, γ

′) ≤ L.
Pick such an h ∈ H. We know that Bh is isomorphic to NR

X(hx0) via the
map ih from (♥). By Fact 1 once again, the loop γ′ is homotopically trivial
in Bh, hence γ is homotopically trivial in Y .

Finally, we need to show that every loop in Y is homotopic to a loop
in Γ . Let β : S1 → Y 1 be a loop in the one-skeleton of Y . We identify S1

with I/∂I, where I = [0, 1]. Let 0 ≤ t0 < t1 < · · · < tn < 1 be cyclically
ordered points on S1 and h0, h1, . . . , hn elements of H such that β(ti) ∈ Y 0

and β([ti, ti+1]) ∈ Bhi for all i = 0, 1, . . . , n, with indices taken modulo n+1.
Since Bhi−1

and Bhi both contain β(ti), there is a sequence of generators
si1, . . . , s

i
n(i) ∈ S such that hi = hi−1s

i
1 · · · sin(i) and β(ti) ∈ Bhi−1si1···sil

for all
l = 0, 1, . . . , n(i). Recall that the empty word stands for 1. This means that
there exist geodesics

βil : (I, ∂I)→
(
Bhi−1s1···sl , {β(ti), hi−1s1 · · · slx0}

)
for all i = 0, 1, . . . , n and l = 0, 1, . . . , s(i).

Recall that hi−1s1 · · · slx0 also belongs to Bhi−1s1···sl−1
. Since balls in systolic

complexes are geodesically convex [HŚ08, Corollary 4.10], the image of βil is
contained in Bhi−1s1···sl−1

. Next, we can find some ε > 0 such that ti + n(i)ε
< ti+1 for all i. After composing β with a map S1 → S1 homotopic to
the identity, we can assume that β is constant on [ti, ti + n(i)ε] for all i =
0, 1, . . . , n. Using the fact that balls in systolic complexes are contractible,
we infer that
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• for all i = 0, 1, . . . , n and l = 1, . . . , n(i) there is

H i
l : [ti + (l − 1)ε, ti + lε]× I → Bhi−1s1···sl−1

∩Bhi−1s1···sl

with H i
l (ti + (l − 1)ε, t) = βil−1(t) and H i

l (ti + lε, t) = βil (t), where
H i
l (−, 0) is the constant path β(ti), and H i

l (−, 1) is the path hi−1s1 · · ·
sl−1γsl ⊆ Γ ;
• for all i = 0, 1, . . . , n there is H i : [ti + n(i)ε, ti+1] × I → Bhi with
H i(ti + n(i)ε, t) = βin(i)(t) and H i(ti+1, t) = βi+1

0 (t), where H(−, 0) =

β|[ti+n(i)ε,ti+1] and H(−, 1) is the constant path hix0.

Since the above homotopies agree on the intersection of their domains, they
glue together to a homotopy H : S1× I → Y with H(−, 0) = β and H(−, 1)
a loop in Γ .

In the following step, using f we extend Y to a systolic complex Y
on which H still acts properly and cocompactly, and is thus a systolic
group.

We say that a pair (W, fW ) is an f -extension of Y if the following holds.
The complex W is a simply connected flag simplicial complex containing Y
such that Y 0 = W 0 and the H-action on Y extends to an H-action on W .
Furthermore, fW : W → X is a simplicial H-equivariant map which ex-
tends f . Note that fW maps an edge of W either to an edge or to a vertex
of X.

Let F be the family of all f -extensions of Y . Observe that F is equipped
with a natural partial order≤, where (W1, fW1) ≤ (W2, fW2) if there exists an
H-equivariant embedding i : W1 →W2 fixing Y such that fW2 ◦i = fW1 . The
family F is non-empty since it contains (Y, f) by Step 3. Let (Wλ, fWλ

)λ∈Λ
be an increasing chain in F . Then (

⋃
λWλ,

⋃
λ fWλ

) is also in F , so it is
an upper bound for (Wλ, fWλ

)λ∈Λ. By the Kuratowski–Zorn Lemma, there
exists a maximal element (Y , f ) ∈ F .

Step 4. For a maximal element (Y , f) ∈ F , the simplicial complex Y is
a systolic complex, equipped with a proper and cocompact H-action.

Proof. We claim that the valence in Y 1 of each y ∈ Y 0 is bounded from
above. Recall that f and f agree on Y 0

= Y 0. Let Ny ⊆ Y 0 denote the set
of all vertices adjacent to y in Y . For every y′ ∈ Ny, either f(y′) = f(y)
or f(y′) is adjacent to f(y). This means that f(Ny) ⊆ N1

X(f(y)). In other
words, Ny ⊆ f−1(N1

X(f(y))). Because X is proper, the ball N1
X(f(y)) is

compact. But f is a proper map, hence the set f−1(N1
X(f(y))) is compact

and the claim is proven. In particular, Y is a proper simplicial complex.
Because the vertex sets of Y and Y coincide, the action of H on Y is proper
and cocompact. By definition, Y is flag and simply connected. It remains to
prove 6-largeness.
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Suppose for contradiction that there is some loop α of length four or five
in Y without diagonals. If f maps α bijectively to α′ = f(α) ⊆ X, then there
exist two non-consecutive vertices u′ and v′ of α′ connected by a diagonal,
because X is systolic. Let u and v be the vertices of α mapped to u′ and v′
by f . For every h ∈ H, we add an edge in Y between hu and hv and extend
f to the new edges naturally. Let us remind the reader that if for n different
h1, . . . , hn ∈ H all the sets {hiu, hiv} coincide for i = 1, . . . , n, we only add
one edge between h1u and h1v instead of n. This remark will be applied two
more times without explicit mention.

If f is not bijective on α there must be two vertices u, v of α, which are
mapped by f to the same vertex. If they are non-consecutive in α, we add
edges between hu and hv for every h ∈ H and extend f so that it maps any
new edge to the common image of its endpoints. If u and v are consecutive,
let w 6= u be the other neighbor of v in α. Then we add edges between hu
and hw for all h ∈ H. Note that since f(u) = f(v), the point f(w) either is
adjacent to f(u) or coincides with f(u), and hence we can extend f to the
newly added edges.

In all cases, we have added the H-orbit of an edge to Y . After flag
completion, we obtain a flag simplicial complex Ŷ on the set of vertices Y 0,
properly containing Y , together with a map f̂ extending f , and equipped
with anH-action extending theH-action on Y . The complex Ŷ is also simply
connected. Indeed, every edge e in Ŷ 1−Y 1 is a diagonal of a loop α in Y 1 of
length less than six. This means that e together with two consecutive edges
of α form a triangle, which is filled after flag completion. Hence the path
e is homotopic relative to its endpoints to a path of length two in Y . In
other words, any loop in Ŷ is homotopic to a loop in Y , and the latter is
simply connected since it belongs to F . Hence (Y , f) � (Ŷ , f̂) ∈ F , which
contradicts the maximality of (Y , f).

Remark 3. An example showing the necessity of finite presentability in
Theorem 2 is due to Stallings. Denote by 〈x, y〉 the free group of rank two
generated by x and y. In [Sta63] (see also [BRS07, §2.4.2]) Stallings proved
that the kernel K of the homomorphism

τ : 〈a, b〉 × 〈x, y〉 → Z, τ(a) = τ(b) = τ(x) = τ(y) = 1,

is finitely generated, but not finitely presentable. HenceK cannot be systolic.
On the other hand, the direct product of two free groups of rank two is
systolic [EP11].

Even in the case where G is hyperbolic, one cannot hope for a gen-
eralization of the theorem above. By the Rips Construction [Rip82], for
each finitely presented group Q and every λ > 0, there exists a finitely
presented C ′(λ) small cancellation group G and a short exact sequence
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{1} → N → G → Q → {1}, where N is a finitely generated normal sub-
group of G. By [Bie81], the group N is finitely presentable if and only if Q
is finite. Hence, if we choose Q = Z and λ = 1/6, then the Rips Construc-
tion gives a finitely presented C ′(1/6) small cancellation group G which is
hyperbolic [Gro87] and C(7) [LS77, Chapter V, §2]. By [Wis03], the C(7)
group G is 7-systolic. But it has a finitely generated not finitely presentable
subgroup N , hence a finitely generated non-systolic subgroup. In particular,
systolic and even 7-systolic groups are not coherent in general.
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