Finitely presented subgroups of systolic groups are systolic

by
Gašper Zadnik (Ljubljana and Warszawa)

Abstract

We prove that every finitely presented subgroup of a systolic group is

 itself systolic.1. Introduction. In the early eighties, Gromov deduced several properties of Riemannian manifolds of non-positive sectional curvature without using the Riemannian structure, but only a property of the induced distance function, which he called a $C A T$ (0) inequality [BGS85]. Gromov proved that for a cube complex equipped with a piecewise Euclidean metric, one can locally check the $\mathrm{CAT}(0)$ condition in terms of the combinatorial structure of the complex BH99, Theorem II.5.20].

In Hag03, JŚ06] the systolic complexes, a simplicial analogue of $\operatorname{CAT}(0)$ spaces, were introduced. This property of complexes is also called simplicial non-positive curvature.

Definition 1. A simplicial complex is flag if every finite set of vertices that are pairwise connected by edges spans a simplex. A loop of length m in a simplicial complex X is a simplicial embedding of an m-cycle into X. An edge connecting two non-consecutive vertices of a loop is called a diagonal. The property that every loop of length at least four and less than m has a diagonal is called m-largeness. Let $m \geq 6$. A simply connected m-large flag simplicial complex is called m-systolic. We write just systolic instead of 6 -systolic. A group acting properly and cocompactly by simplicial automorphisms on a systolic complex is called systolic.

Note that this definition of a systolic complex differs from the original one, but is equivalent to it [JŚ06, Fact 1.2(4) and Corollary 1.6].

The purpose of this note is to prove the following theorem $\left(^{1}\right)$.
2010 Mathematics Subject Classification: Primary 05E18.
Key words and phrases: simplicial non-positive curvature, systolic complex, systolic group.
$\left({ }^{1}\right)$ The author has learnt that the result was also proven independently in GM13.

Theorem 2. Any finitely presented subgroup of a systolic group is systolic.

For torsion-free systolic groups, Theorem 2 was proven by Wise Wis03, §5]. Wise considers the quotient of a systolic complex under the group action, and his proof does not generalize to groups with torsion. Note that Theorem 2 is not true if we replaces "systolic" with "CAT(0)" [BRS07, §2.3.3].
1.1. Notation and outline. All the paths in any simplicial complex are taken in its 1 -skeleton. We use d_{X} to denote the distance in the 1 -skeleton of a simplicial complex X equipped with the combinatorial metric. Given a subcomplex $Z \leq X$, the r-neighborhood of Z in X is defined as the simplicial span of all vertices r-close to Z, i.e.

$$
N_{X}^{r}(Z)=\operatorname{Span}\left\{x \in X^{0} \mid d_{X}\left(x, Z^{0}\right) \leq r\right\} .
$$

A neighborhood of a single vertex will also be called a ball around that vertex. Let G be a group acting properly and cocompactly by automorphisms on a systolic complex X. Let $H \leq G$ have a finite presentation $\langle\mathcal{S} \mid \mathcal{R}\rangle$ with \mathcal{S} symmetric. Let $\mathcal{C}_{\mathcal{S}}(H)$ be the Cayley graph of H with respect to the generating set \mathcal{S}. An edge connecting h and $h s$ for $h \in H$ and a generator $s \in \mathcal{S}$ comes equipped with two orientations, one for s and one for s^{-1}, except when $s^{2}=\mathbf{1}$, when there are two edges connecting h and $h s$. Denote by $\mathcal{C}_{\mathcal{S}}^{X}(H)$ a subdivision of $\mathcal{C}_{\mathcal{S}}(H)$ such that there exists a simplicial H equivariant map $\phi: \mathcal{C}_{\mathcal{S}}^{X}(H) \rightarrow X$. Let e_{s} denote the path between 1 and $s \in \mathcal{S}$ in $\mathcal{C}_{\mathcal{S}}^{X}(H)$ that comes from subdivision of the edge connecting $\mathbf{1}$ and s in $\mathcal{C}_{\mathcal{S}}(H)$. Let $x_{0}=\phi(\mathbf{1})$ and $\gamma_{s}=\phi\left(e_{s}\right)$ for $s \in \mathcal{S}$. Denote by L the maximum of the lengths of the γ_{s}. Denote also

$$
\Gamma=\phi\left(\mathcal{C}_{\mathcal{S}}^{X}(H)\right) .
$$

We will frequently use s_{1}, \ldots, s_{m} to denote generators from \mathcal{S}. We write $\gamma_{s_{1} \cdots s_{m}}$ for the path which is the concatenation

$$
\gamma_{s_{1}} *\left(s_{1} \gamma_{s_{2}}\right) * \cdots *\left(s_{1} \cdots s_{m-1} \gamma_{s_{m}}\right)
$$

An outline of our proof is as follows. In the first step, we find some neighborhood N of Γ in X such that every loop in Γ can be contracted in N. Since there may be homotopically nontrivial loops in N apart from Γ, we rather construct a new space Y from a disjoint union of balls around points in $H x_{0}$ which we glue together H-equivariantly. We build Y such that Γ naturally and H-equivariantly embeds in Y, and moreover every loop in Y is homotopically equivalent to a loop in Γ. Thanks to the conclusions about N from the first step, every loop in Γ is also homotopically trivial in Y. Finally, we extend Y in an appropriate category to a maximal H-cocompact simply connected flag simplicial complex and prove that it is 6 -large.
2. Proof of the theorem. We proceed in several steps as mentioned above. In the first step, we find a constant R such that loops in Γ are homotopically trivial in $N_{X}^{R}(\Gamma)$. Important properties of loops in Γ deduced in the proof of Step 1 are collected in Fact 1, since we will need them later on.

STEP 1. There exists a constant $R<\infty$ such that every loop in Γ is homotopically trivial in $N_{X}^{R-L}(\Gamma)$.

Proof. After replacing a loop with its H-translate, it is enough to consider loops in Γ containing a point at distance at most L from x_{0}. We distinguish two main cases. The first case deals with concatenations of H-translates of paths $\gamma_{s}, s \in \mathcal{S}$, and the second case handles general loops in Γ, where a loop can leave some $h \gamma_{s}$ and enter another $h^{\prime} \gamma_{s^{\prime}}$ at a point not belonging to $H x_{0}$, i.e. not at the endpoint (resp. starting point) of $h \gamma_{s}$ (resp. $h^{\prime} \gamma s^{\prime}$); see Figure 1 .

CASE (1): Loops of the form $\gamma_{s_{1} \cdots s_{m}}$ with $s_{1} \cdots s_{m} x_{0}=x_{0}$. There are three subcases:
(a) The word $s_{1} \cdots s_{m}$ belongs to \mathcal{R}. Because \mathcal{R} is finite, there is a number R_{1} such that every such loop is homotopically trivial in $N_{X}^{R_{1}}(z)$ for every vertex $z \in \gamma_{s_{1} \cdots s_{m}}$.
(b) The word $s_{1} \cdots s_{m}$ equals 1 but it does not belong to \mathcal{R}. Then $s_{1} \cdots s_{m}$ is a concatenation of conjugates of relators from \mathcal{R}; each such conjugate is homotopically trivial in $N_{X}^{R_{1}}(\Gamma)$, hence so is the whole loop.
(c) The point x_{0} is fixed under $s_{1} \cdots s_{m}$ but $s_{1} \cdots s_{m} \neq \mathbf{1}$, where $s_{1} \cdots s_{m}$ is the shortest representative of the corresponding group element (all the other representatives differ from the shortest one by concatenation with words considered in Subcases (1.a) or (1.b)). By properness of the G-action and hence of the H-action, the number of elements $h \in H$ fixing x_{0} is finite. Hence we can choose a constant R_{1}^{\prime} such that $\gamma_{s_{1} \cdots s_{m}}$ is homotopically trivial in $N_{X}^{R_{1}^{\prime}}(z)$ for every vertex $z \in \gamma_{s_{1} \cdots s_{m}}$.

CASE (2): There are two subcases:
(a) Loops coming from a path $\gamma_{s_{1} \cdots s_{m}}$ with self-intersection $x \notin H x_{0}$. Without loss of generality we can assume that $x=\gamma_{s_{1}} \cap\left(s_{1} \cdots s_{m-1} \gamma_{s_{m}}\right)$. Figure 1 shows such a configuration. Observe that $d_{X}\left(x_{0}, s_{1} \cdots s_{m} x_{0}\right) \leq 2 L$ in this case. By properness of the H-action, there is an upper bound N such that $s_{1} \cdots s_{m}=p_{1} \cdots p_{k}$, where the number k of terms $p_{i} \in \mathcal{S}$ is at most N. Since

$$
s_{1} \cdots s_{m} p_{k}^{-1} \cdots p_{1}^{-1}=\mathbf{1}
$$

the big loop $\gamma_{s_{1} \cdots s_{m} p_{k}^{-1} \cdots p_{1}^{-1}}$ is a loop from Subcases (1.a) or (1.b), it can be contracted in $N_{X}^{R_{1}}(\Gamma)$. Thus to contract the original loop it suffices to
contract
(\diamond)

$$
\gamma_{p_{1} \cdots p_{k}} * \gamma
$$

where γ is a path in Γ from $s_{1} \cdots s_{m} x_{0}$ to the intersection x of $\gamma_{s_{1}}$ and $s_{1} \cdots s_{m-1} \gamma_{s_{m}}$ concatenated with a path from x to x_{0}. But the total length of the loop \forall is at most $(N+2) L$. Let R_{2} be a number such that any loop $\gamma_{p_{1} \cdots p_{k}} * \gamma$ of type $\left.\diamond\right\rangle$ can be contracted in $N_{X}^{R_{2}}(z)$ for any vertex $z \in \gamma_{p_{1} \cdots p_{k}} * \gamma$.

Fig. 1. Loop from Case (2); possibly $x=x_{0}$ or $x=s_{1} \cdots s_{m} x_{0}$. If both equalities hold, this example is covered by Case (1).
(b) Loops $\alpha=\alpha_{1} * \cdots * \alpha_{m}$, where α_{i} may be a proper subpath of $h_{i} \gamma_{s_{i}}$ for some $h_{i} \in H$ and the endpoint of α_{i} coincides with the starting point of α_{i+1}, with indices taken modulo m. Let us denote this intersection by x_{i}. Let δ_{i}^{+}be a subpath of $h_{i} \gamma_{s_{i}}$ from x_{i} to $h_{i} s_{i} x_{0}$ (the endpoint of $h_{i} \gamma_{s_{i}}$) and let δ_{i}^{-}be a subpath of $h_{i} \gamma_{s_{i}}$ from $h_{i} x_{0}$ (the starting point of $h_{i} \gamma_{s_{i}}$) to x_{i-1}.

We now proceed as in Subcase (2.a). Since $h_{i} \gamma_{s_{i}}$ and $h_{i+1} \gamma_{s_{i+1}}$ intersect at $x_{i}, d_{X}\left(h_{i} s_{i} x_{0}, h_{i+1} x_{0}\right) \leq 2 L$. Therefore for all $i=1, \ldots, m$ there is a path $\eta_{i}=h_{i+1} \gamma_{s_{i}^{(1)} \ldots s_{i}^{\left(k_{i}\right)}}$ in Γ between $h_{i} s_{i} x_{0}$ and $h_{i+1} x_{0}$ for some $k_{i} \leq N$, hence the length of the loop $\delta_{i}^{+} * \eta_{i} * \delta_{i+1}^{-}$is at most $(N+2) L$, where the constants are as in Subcase (2.a). But this loop is homotopically trivial in $N_{X}^{R_{2}}(z)$ for any vertex z of the path $\delta_{i}^{+} * \eta_{i} * \delta_{i+1}^{-}$, hence α is homotopic to

$$
\alpha_{1} * \delta_{1}^{+} * \eta_{1} * \delta_{2}^{-} * \alpha_{2} * \cdots * \alpha_{n-1} * \delta_{n-1}^{+} * \delta_{n}^{-} * \alpha_{n} * \delta_{n}^{+} * \eta_{n} * \delta_{1}^{-}
$$

which is a loop from Case (1).
Altogether, the constant $R^{\prime}=\max \left\{R_{1}, R_{1}^{\prime}, R_{2}\right\}$ is such that every loop in Γ is homotopic in $N_{X}^{R^{\prime}}(\Gamma)$ to a trivial loop. Hence $R=R^{\prime}+L$ works.

We will call loops from Subcases (1.a) and (1.c) and loops (\diamond) from Case (2) short. From the proof of Step 1 we deduce the following.

FACT 1. Every loop in Γ is a concatenation of conjugates of short loops. Let γ be a short loop in Γ. Then for every vertex z on γ, the loop γ is homotopically trivial in the ball $N_{X}^{R-L}(z)$.

We are now ready to define Y. For every $h \in H$, denote $B_{h}^{0}=N_{X}^{R}\left(h x_{0}\right)^{0}$ and denote the copy of the vertex $v \in X$ in B_{h}^{0} by v^{h}. Let \sim be the equivalence relation on $\coprod_{h \in H} B_{h}^{0}$ which is the transitive closure of the relation $v^{h} \sim v^{h} s$ for $v \in B_{h}^{0} \cap B_{h s}^{0}$ and $s \in \mathcal{S}$. Let

$$
Y^{0}=\left(\coprod_{h \in H} B_{h}^{0}\right) / \sim
$$

Note that B_{h}^{0} injects into Y^{0}. For $y \in Y^{0}$ we write \bar{y} for the vertex of X such that $y=\bar{y}^{h}$ for some $h \in H$. Next, we define Y^{1}. We connect two vertices $y, z \in Y^{0}$ by an edge if there exist representatives \bar{y}^{h}, \bar{z}^{g} for y and z with $h=g$ and \bar{y}, \bar{z} adjacent. Let Y be the flag completion of Y^{1} and let B_{h} be the simplicial span of $B_{h}^{0} \leq Y$. We consider the natural action of H on Y, which is induced from the H-action on X. Note that $h B_{1}=B_{h}$, hence the H-action on Y is proper and cocompact.

Observe that by the construction of Y, there exists a proper H-equivariant map $f: Y \rightarrow X$. It is defined by $f(y)=\bar{y}$ for $y \in Y^{0}$ and extends simplicially to higher-dimensional simplices. Let us define local sections

$$
\begin{equation*}
i_{h}: N_{X}^{R}\left(h x_{0}\right) \rightarrow B_{h} \tag{৫}
\end{equation*}
$$

by $i_{h}(u)=u^{h}$ for every $u \in N_{X}^{R}\left(h x_{0}\right)^{0}$ and every $h \in H$. By definition of Y, each map i_{h} is bijective on 0-skeleta. Furthermore, vertices $u^{h}, v^{h} \in B_{h}^{0}$ are adjacent if and only if $u, v \in N_{X}^{R}\left(h x_{0}\right)^{0}$ are adjacent. Hence i_{h} is a well defined isomorphism between the 1-skeleta of $N_{X}^{R}\left(h x_{0}\right)$ and B_{h}. Since a flag complex is determined by its 1 -skeleton, i_{h} is an isomorphism. Note that B_{h} might not be a ball in Y.

Observe that for any $h \in H$ and $s \in \mathcal{S}$ the two maps i_{h} and $i_{h s}$ agree on $N_{X}^{R}\left(h x_{0}\right) \cap N_{X}^{R}\left(h s x_{0}\right)$ because they agree on the 0 -skeleton of that intersection. Hence, there is a natural map $\varphi: \mathcal{C}_{\mathcal{S}}^{X}(H) \rightarrow Y$, sending the edge path $h e_{s}$ to $i_{h}\left(h \gamma_{s}\right)$. We can as well describe the map φ in terms of the H-action on Y, but the above definition is more useful for us. The next step ensures that φ has nice properties.

STEP 2. The map φ factors through $\phi: \mathcal{C}_{\mathcal{S}}^{X}(H) \rightarrow \Gamma$.
Proof. We have to check that if two points of $\mathcal{C}_{\mathcal{S}}^{X}(H)$ are identified under ϕ, they are also identified under φ. To see this, observe that if two paths γ_{s} and $h \gamma_{s^{\prime}}$ in Γ have a common point, where $s, s^{\prime} \in \mathcal{S}$ and $h \in H$, then there is a sequence of generators $p_{1}, \ldots, p_{k} \in \mathcal{S}$ such that $p_{1} \cdots p_{k}$ is the shortest word representing h. In particular $p_{1} \cdots p_{k} e_{s^{\prime}}=h e_{s^{\prime}}$. It follows from Fact 1 that the ball $N_{X}^{R-L}\left(p_{1} \cdots p_{l} x_{0}\right)$ contains the whole path $\gamma_{p_{1} \cdots p_{k}}$ for all $l=0,1, \ldots, k$, where the empty word represents 1 . Thus if we write
$\bar{\gamma}_{s}$ for γ_{s} with opposite orientation, then $N_{X}^{R}\left(p_{1} \cdots p_{l} x_{0}\right)$ contains the path $\gamma=\left(h \gamma_{s^{\prime}}\right) * \gamma_{p_{1} \cdots p_{k}} * \bar{\gamma}_{s}$ for all $l=0,1, \ldots, k$. Hence $B_{p_{1} \cdots p_{l}}$ contains $i_{p_{1} \cdots p_{l}}(\gamma)$ for all $l=0,1, \ldots, k$. Since two consecutive maps $i_{p_{1} \cdots p_{l-1}}$ and $i_{p_{1} \cdots p_{l}}$ agree on the intersection of their domains, the path $i_{1}(\gamma)=i_{h}(\gamma)$ is contained in $\bigcap_{l=0}^{k} B_{p_{1} \cdots p_{l}}$. Thus each point on e_{s} is identified with the appropriate point on $h e_{s^{\prime}}$ under φ. This finishes the proof.

By Step 2, there exists a lift $f_{\Gamma}: \Gamma \rightarrow Y$ of the map $f: Y \rightarrow X$. Obviously f_{Γ} agrees with i_{h} on $\Gamma \cap N_{X}^{R}\left(h x_{0}\right)$. From now on, we identify Γ with its f_{Γ}-image.

Step 3. The complex Y is simply connected.

As mentioned in the outline, we first prove that Y encodes an appropriate neighborhood of Γ such that loops in Γ are homotopically trivial in Y. Then we exhibit a homotopy from any loop in Y to a loop in Γ.

Proof. Take any loop γ in $\Gamma \subseteq Y$. By Fact 1 it is a concatenation of short loops. In the same way as in the proof of Step 2 one can show that each short loop γ^{\prime} is fully contained in B_{h} for each $h \in H$ such that $d_{Y}\left(h x_{0}, \gamma^{\prime}\right) \leq L$. Pick such an $h \in H$. We know that B_{h} is isomorphic to $N_{X}^{R}\left(h x_{0}\right)$ via the map i_{h} from (8 . By Fact 1 once again, the loop γ^{\prime} is homotopically trivial in B_{h}, hence γ is homotopically trivial in Y.

Finally, we need to show that every loop in Y is homotopic to a loop in Γ. Let $\beta: S^{1} \rightarrow Y^{1}$ be a loop in the one-skeleton of Y. We identify S^{1} with $I / \partial I$, where $I=[0,1]$. Let $0 \leq t_{0}<t_{1}<\cdots<t_{n}<1$ be cyclically ordered points on S^{1} and $h_{0}, h_{1}, \ldots, h_{n}$ elements of H such that $\beta\left(t_{i}\right) \in Y^{0}$ and $\beta\left(\left[t_{i}, t_{i+1}\right]\right) \in B_{h_{i}}$ for all $i=0,1, \ldots, n$, with indices taken modulo $n+1$. Since $B_{h_{i-1}}$ and $B_{h_{i}}$ both contain $\beta\left(t_{i}\right)$, there is a sequence of generators $s_{1}^{i}, \ldots, s_{n(i)}^{i} \in \mathcal{S}$ such that $h_{i}=h_{i-1} s_{1}^{i} \cdots s_{n(i)}^{i}$ and $\beta\left(t_{i}\right) \in B_{h_{i-1} s_{1}^{i} \cdots s_{l}^{i}}$ for all $l=0,1, \ldots, n(i)$. Recall that the empty word stands for 1 . This means that there exist geodesics

$$
\begin{aligned}
\beta_{l}^{i}:(I, \partial I) \rightarrow\left(B_{h_{i-1} s_{1} \cdots s_{l}}\right. & \left.\left\{\beta\left(t_{i}\right), h_{i-1} s_{1} \cdots s_{l} x_{0}\right\}\right) \\
& \text { for all } i=0,1, \ldots, n \text { and } l=0,1, \ldots, s(i) .
\end{aligned}
$$

Recall that $h_{i-1} s_{1} \cdots s_{l} x_{0}$ also belongs to $B_{h_{i-1} s_{1} \cdots s_{l-1}}$. Since balls in systolic complexes are geodesically convex HŚ08, Corollary 4.10], the image of β_{l}^{i} is contained in $B_{h_{i-1} s_{1} \cdots s_{l-1}}$. Next, we can find some $\varepsilon>0$ such that $t_{i}+n(i) \varepsilon$ $<t_{i+1}$ for all i. After composing β with a map $S^{1} \rightarrow S^{1}$ homotopic to the identity, we can assume that β is constant on $\left[t_{i}, t_{i}+n(i) \varepsilon\right]$ for all $i=$ $0,1, \ldots, n$. Using the fact that balls in systolic complexes are contractible, we infer that

- for all $i=0,1, \ldots, n$ and $l=1, \ldots, n(i)$ there is

$$
H_{l}^{i}:\left[t_{i}+(l-1) \varepsilon, t_{i}+l \varepsilon\right] \times I \rightarrow B_{h_{i-1} s_{1} \cdots s_{l-1}} \cap B_{h_{i-1} s_{1} \cdots s_{l}}
$$

with $H_{l}^{i}\left(t_{i}+(l-1) \varepsilon, t\right)=\beta_{l-1}^{i}(t)$ and $H_{l}^{i}\left(t_{i}+l \varepsilon, t\right)=\beta_{l}^{i}(t)$, where $H_{l}^{i}(-, 0)$ is the constant path $\beta\left(t_{i}\right)$, and $H_{l}^{i}(-, 1)$ is the path $h_{i-1} s_{1} \cdots$ $s_{l-1} \gamma_{s_{l}} \subseteq \Gamma ;$

- for all $i=0,1, \ldots, n$ there is $H^{i}:\left[t_{i}+n(i) \varepsilon, t_{i+1}\right] \times I \rightarrow B_{h_{i}}$ with $H^{i}\left(t_{i}+n(i) \varepsilon, t\right)=\beta_{n(i)}^{i}(t)$ and $H^{i}\left(t_{i+1}, t\right)=\beta_{0}^{i+1}(t)$, where $H(-, 0)=$ $\left.\beta\right|_{\left[t_{i}+n(i) \varepsilon, t_{i+1}\right]}$ and $H(-, 1)$ is the constant path $h_{i} x_{0}$.
Since the above homotopies agree on the intersection of their domains, they glue together to a homotopy $H: S^{1} \times I \rightarrow Y$ with $H(-, 0)=\beta$ and $H(-, 1)$ a loop in Γ.

In the following step, using f we extend Y to a systolic complex \bar{Y} on which H still acts properly and cocompactly, and is thus a systolic group.

We say that a pair $\left(W, f_{W}\right)$ is an f-extension of Y if the following holds. The complex W is a simply connected flag simplicial complex containing Y such that $Y^{0}=W^{0}$ and the H-action on Y extends to an H-action on W. Furthermore, $f_{W}: W \rightarrow X$ is a simplicial H-equivariant map which extends f. Note that f_{W} maps an edge of W either to an edge or to a vertex of X.

Let \mathcal{F} be the family of all f-extensions of Y. Observe that \mathcal{F} is equipped with a natural partial order \leq, where $\left(W_{1}, f_{W_{1}}\right) \leq\left(W_{2}, f_{W_{2}}\right)$ if there exists an H-equivariant embedding $i: W_{1} \rightarrow W_{2}$ fixing Y such that $f_{W_{2}} \circ i=f_{W_{1}}$. The family \mathcal{F} is non-empty since it contains (Y, f) by $\operatorname{Step} 3$. Let $\left(W_{\lambda}, f_{W_{\lambda}}\right)_{\lambda \in \Lambda}$ be an increasing chain in \mathcal{F}. Then $\left(\bigcup_{\lambda} W_{\lambda}, \bigcup_{\lambda} f_{W_{\lambda}}\right)$ is also in \mathcal{F}, so it is an upper bound for $\left(W_{\lambda}, f_{W_{\lambda}}\right)_{\lambda \in \Lambda}$. By the Kuratowski-Zorn Lemma, there exists a maximal element $(\bar{Y}, \bar{f}) \in \mathcal{F}$.

Step 4. For a maximal element $(\bar{Y}, \bar{f}) \in \mathcal{F}$, the simplicial complex \bar{Y} is a systolic complex, equipped with a proper and cocompact H-action.

Proof. We claim that the valence in \bar{Y}^{1} of each $y \in \bar{Y}^{0}$ is bounded from above. Recall that \bar{f} and f agree on $\bar{Y}^{0}=Y^{0}$. Let $N_{y} \subseteq Y^{0}$ denote the set of all vertices adjacent to y in \bar{Y}. For every $y^{\prime} \in N_{y}$, either $f\left(y^{\prime}\right)=f(y)$ or $f\left(y^{\prime}\right)$ is adjacent to $f(y)$. This means that $f\left(N_{y}\right) \subseteq N_{X}^{1}(f(y))$. In other words, $N_{y} \subseteq f^{-1}\left(N_{X}^{1}(f(y))\right)$. Because X is proper, the ball $N_{X}^{1}(f(y))$ is compact. But f is a proper map, hence the set $f^{-1}\left(N_{X}^{1}(f(y))\right)$ is compact and the claim is proven. In particular, \bar{Y} is a proper simplicial complex. Because the vertex sets of Y and \bar{Y} coincide, the action of H on \bar{Y} is proper and cocompact. By definition, \bar{Y} is flag and simply connected. It remains to prove 6-largeness.

Suppose for contradiction that there is some loop α of length four or five in \bar{Y} without diagonals. If \bar{f} maps α bijectively to $\alpha^{\prime}=\bar{f}(\alpha) \subseteq X$, then there exist two non-consecutive vertices u^{\prime} and v^{\prime} of α^{\prime} connected by a diagonal, because X is systolic. Let u and v be the vertices of α mapped to u^{\prime} and v^{\prime} by \bar{f}. For every $h \in H$, we add an edge in Y between $h u$ and $h v$ and extend \bar{f} to the new edges naturally. Let us remind the reader that if for n different $h_{1}, \ldots, h_{n} \in H$ all the sets $\left\{h_{i} u, h_{i} v\right\}$ coincide for $i=1, \ldots, n$, we only add one edge between $h_{1} u$ and $h_{1} v$ instead of n. This remark will be applied two more times without explicit mention.

If \bar{f} is not bijective on α there must be two vertices u, v of α, which are mapped by \bar{f} to the same vertex. If they are non-consecutive in α, we add edges between $h u$ and $h v$ for every $h \in H$ and extend f so that it maps any new edge to the common image of its endpoints. If u and v are consecutive, let $w \neq u$ be the other neighbor of v in α. Then we add edges between $h u$ and $h w$ for all $h \in H$. Note that since $\bar{f}(u)=\bar{f}(v)$, the point $\bar{f}(w)$ either is adjacent to $\bar{f}(u)$ or coincides with $\bar{f}(u)$, and hence we can extend \bar{f} to the newly added edges.

In all cases, we have added the H-orbit of an edge to \bar{Y}. After flag completion, we obtain a flag simplicial complex \hat{Y} on the set of vertices Y^{0}, properly containing \bar{Y}, together with a map \hat{f} extending \bar{f}, and equipped with an H-action extending the H-action on \bar{Y}. The complex \hat{Y} is also simply connected. Indeed, every edge e in $\hat{Y}^{1}-\bar{Y}^{1}$ is a diagonal of a loop α in \bar{Y}^{1} of length less than six. This means that e together with two consecutive edges of α form a triangle, which is filled after flag completion. Hence the path e is homotopic relative to its endpoints to a path of length two in \bar{Y}. In other words, any loop in \hat{Y} is homotopic to a loop in \bar{Y}, and the latter is simply connected since it belongs to \mathcal{F}. Hence $(\bar{Y}, \bar{f}) \lesseqgtr(\hat{Y}, \hat{f}) \in \mathcal{F}$, which contradicts the maximality of (\bar{Y}, \bar{f}).

REmARK 3. An example showing the necessity of finite presentability in Theorem 2 is due to Stallings. Denote by $\langle x, y\rangle$ the free group of rank two generated by x and y. In [Sta63] (see also [BRS07, §2.4.2]) Stallings proved that the kernel K of the homomorphism

$$
\tau:\langle a, b\rangle \times\langle x, y\rangle \rightarrow \mathbb{Z}, \quad \tau(a)=\tau(b)=\tau(x)=\tau(y)=1
$$

is finitely generated, but not finitely presentable. Hence K cannot be systolic. On the other hand, the direct product of two free groups of rank two is systolic [EP11].

Even in the case where G is hyperbolic, one cannot hope for a generalization of the theorem above. By the Rips Construction Rip82, for each finitely presented group Q and every $\lambda>0$, there exists a finitely presented $C^{\prime}(\lambda)$ small cancellation group G and a short exact sequence
$\{\mathbf{1}\} \rightarrow N \rightarrow G \rightarrow Q \rightarrow\{\mathbf{1}\}$, where N is a finitely generated normal subgroup of G. By [Bie81], the group N is finitely presentable if and only if Q is finite. Hence, if we choose $Q=\mathbb{Z}$ and $\lambda=1 / 6$, then the Rips Construction gives a finitely presented $C^{\prime}(1 / 6)$ small cancellation group G which is hyperbolic Gro87] and $C(7)$ [LS77, Chapter V, §2]. By [Wis03], the $C(7)$ group G is 7 -systolic. But it has a finitely generated not finitely presentable subgroup N, hence a finitely generated non-systolic subgroup. In particular, systolic and even 7 -systolic groups are not coherent in general.

Acknowledgments. I would like to express my gratitude to the Institute of Mathematics of the Polish Academy of Sciences for hospitality during my work on this project, and especially to Piotr Przytycki for suggesting this problem and for his indispensable advice and comments on previous drafts. I would also like to thank Tomasz Elsner for a useful discussion on the problem.

This research was supported by the Slovenian Research Agency and by the Foundation for Polish Science, project "Cubulating groups".

References

[BGS85] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of Non-Positive Curvature, Progr. Math. 61, Birkhäuser Boston, Boston, MA, 1985.
[Bie81] R. Bieri, Homological Dimension of Discrete Groups, Queen Mary College Math. Notes, Queen Mary College, Department of Pure Mathematics, London, 1981.
[BRS07] N. Brady, T. Riley and H. Short, The Geometry of the Word Problem for Finitely Generated Groups, Birkhäuser, Basel, 2007.
[BH99] R. M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss. 319, Springer, Berlin, 1999.
[EP11] T. Elsner and P. Przytycki, Square complexes and simplicial nonpositive curvature, Proc. Amer. Math. Soc., to appear; arXiv:1107.4182 (2011).
[GM13] R. Gaelan Hanlon and E. Martinez-Pedroza, Lifting group actions, equivariant towers and subgroups of non-positively curved groups, arXiv:1307.2640 (2013).
[Gro87] M. Gromov, Hyperbolic groups, in: Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987, 75-263.
[Hag03] F. Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prépublication d'Orsay 2003-71 (2003).
[HŚ08] F. Haglund and J. Świątkowski, Separating quasi-convex subgroups in 7-systolic groups, Groups Geom. Dynam. 2 (2008), 223-244.
[JŚ06] T. Januszkiewicz and J. Świątkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 85 pp.
[LS77] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergeb. Math. Grenzgeb. 89, Springer, Berlin, 1977.
[Rip82] E. Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), 45-47.
[Sta63] J. R. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541-543.
[Wis03] D. T. Wise, Sixtolic complexes and their fundamental groups, 2003, in preparation.

Gašper Zadnik
Inštitut za matematiko, fiziko in mehaniko
Jadranska ulica 19
SI-1111 Ljubljana, Slovenija and
Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8
00-656 Warszawa, Poland
E-mail: zadnik@fmf.uni-lj.si

Received 29 January 2014; in revised form 14 March 2014

