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Abstract. On the one hand, the ideals of a well quasi-order (wqo) naturally form a
compact topological space into which the wqo embeds. On the other hand, Nash-Williams’
barriers are given a uniform structure by embedding them into the Cantor space.

We prove that every map from a barrier into a wqo restricts on a barrier to a uniformly
continuous map, and therefore extends to a continuous map from a countable closed subset
of the Cantor space into the space of ideals of the wqo. We then prove that, by shrinking
further, any such continuous map admits a canonical form with regard to the points whose
image is not isolated.

As a consequence, we obtain a simple proof of a result on better quasi-orders (bqo);
namely, a wqo whose set of non-principal ideals is a bqo is actually a bqo.

1. Introduction. A quasi-order (qo) is a transitive and reflexive re-
lation. A quasi-order without any infinite antichain nor infinite descending
chain is called a well quasi-order (wqo). For historical references as well as
for a gentle and synthetic introduction to wqo theory we refer the reader to
[Kru72]. The notion of wqo admits of several different definitions as reviewed
in Proposition 2.5. In particular, using Ramsey’s Theorem, the above for-
bidden pattern definition is equivalent to the positive condition that every
sequence admits a monotone subsequence.

The notion of better quasi-order (bqo) was introduced by Nash-Williams
[NW65]. As its name indicates it is a stronger notion than well quasi-order.
The combinatorial definition of better quasi-order relies on a generalisation of
Ramsey’s Theorem to transfinite dimension, involving the notion of barrier.
It generalises the positive definition of wqo given above in the sense that it re-
quires every sequence of sequences—or 2-sequence—to admit a “monotone”
sub-2-sequence, every sequence of sequences of sequences—or 3-sequence—to
admit a “monotone” sub-3-sequence, and so on and so forth in the transfinite.
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These α-sequences are just maps from a barrier to some set. They are
sometimes called arrays, but for the purpose of this introduction we call
them supersequences. One aim of this paper is to show that these objects de-
serve this name since they share significant properties with usual sequences.

A crucial property for a sequence in a metric space is the Cauchy condi-
tion. In order to generalise the notion of being Cauchy to supersequences,
observe that a sequence (xn)n∈ω in a metric space satisfies the Cauchy con-
dition iff the mapping ω → X, n 7→ xn, is uniformly continuous when ω is
identified with a subspace of the Cantor space 2ω via n 7→ 0n10ω.

As observed notably in [AT05, Tod10], barriers can naturally be seen as
subsets of the Cantor space. Viewing every barrier as a uniform subspace
of 2ω, we say that a supersequence in a uniform space is Cauchy when it
is uniformly continuous. We then show the following theorem, which gener-
alises the usual sequential compactness for zero-dimensional metric spaces.

Theorem 1.1. Every supersequence in a zero-dimensional compact met-
ric space has a Cauchy sub-supersequence.

This combinatorial result should be compared with the Erdős–Rado The-
orem [ER50] and the Pudlák–Rödl Theorem [PR82], as a Ramsey theorem
for partitions into infinitely many classes. Note also that this result subsumes
Nash-Williams’ Theorem.

Given a complete metric space X, every Cauchy sequence f : ω → X
converges, and thus extends to a continuous map f̄ : ω → X, where ω is
the one-point compactification of ω. Similarly for a Cauchy supersequence:
any uniformly continuous map f : B → X from a barrier into a complete
metric space X continuously extends to the completion B of the barrier,
which coincides with the topological closure of the barrier inside the Cantor
space, to yield a continuous map f̄ : B → X.

Theorem 1.1 has a nice corollary in the context of wqo theory. Indeed
Pouzet and Sauer [PS06] show that the set I(Q) of ideals of a wqo Q is
naturally a compact topological partially ordered space in which Q embeds
densely. Without much more work we get

Theorem 1.2. Every supersequence f : B → Q in a wqo Q admits a
Cauchy sub-supersequence f ′ from a sub-barrier B′ of B to Q, which there-
fore extends to a continuous map f ′ : B′ → I(Q) into the ideals of Q.

We then turn to the study of continuous extension of Cauchy superse-
quences. In full generality, we will be concerned with continuous maps from
the topological closure of a barrier into some topological space.

Recall that a point x in a topological space is called isolated if the sin-
gleton {x} is open, and limit otherwise. The following simple fact exhibits
a property of converging sequences that can always be achieved by going to
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a subsequence: If (xn)n∈ω is a sequence converging in a topological space X
to some point x, then there is a subsequence (xn)n∈N such that

1. if x is isolated, then (xn)n∈N is constant equal to x;
2. if x is limit, then

either xn is isolated for all n ∈ N ;
or xn is limit for all n ∈ N .

This generalises to supersequences as follows:

Theorem 1.3. Let f̄ : B → X be a continuous extension of a superse-
quence f in a topological space X . Then there exists a sub-supersequence f ′

of f from a sub-barrier B′ of B to X such that

either f ′ : B′ → X is constant and equal to an isolated point;

or {s ∈ B′ | f(s) is limit} = C for some barrier C.

As observed by Pouzet and Sauer [PS06], the limit points of the com-
pact space I(Q) of ideals of a wqo Q are exactly the non-principal ideals.
Combining Theorems 1.2 and 1.3 we obtain

Corollary 1.4. Any supersequence in a wqo

either admits a constant sub-supersequence,

or yields a supersequence into the non-principal ideals of Q.

This allows us to give a proof of the following result, conjectured by
Pouzet in his thesis [Pou78]. Pouzet and Sauer advanced a proof of this
statement in [PS06], but this proof contains a gap, as clearly revealed by
Alberto Marcone and acknowledged by Pouzet and Sauer.

Theorem 1.5. If (Q,≤Q) is a wqo and the po of non-principal ideals

of Q, (I*(Q),⊆), is a bqo, then (Q,≤Q) itself is a bqo.

Theorem 1.5 can be very useful when one decomposes a qo into a sum
of bqos. Proving that the index set of the sum is a bqo implies indeed that
the whole class is. The following example drawn from [Car13] shows that it
can be at the same time very easy to prove that some index set is a wqo,
and not so easy to prove that it is a bqo without the help of Theorem 1.5.

Example 1.6. Consider the following qo on ω:

n ≤• m iff n = m or 2n < m.

Proving that (ω,≤•) is wqo is not difficult; then since there is a single
non-principal ideal—the whole qo—Theorem 1.5 implies immediately that
(ω,≤•) is bqo.
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Organisation of the paper. Section 2 is devoted to some classical
background. It can be skipped by the reader well versed in the subject, even
though it contains many notations, definitions and conventions.

In Section 3 we study the barriers as uniform spaces. A basic knowledge
of the classical material on uniform spaces is assumed. We give details on
the particular setting we need, namely uniform subspaces of compact and
0-dimensional spaces. This section ends with the proof of Theorem 1.1.

Pouzet and Sauer’s way to topologise the space of ideals of a wqo is
explained at the beginning of Section 4. We then show that Theorem 1.1
applies in this context.

Ideas of Sections 3 and 4 are exemplified on Rado’s typical counterex-
ample. Section 5 continues with the proof of Theorem 1.3. Finally, after
unearthing a shrewd trick first used by R. Rado [Rad54], we give a proof of
Theorem 1.5.

2. Preliminaries

2.1. Well quasi-orders

Definitions 2.1.

• A quasi-order (qo) is a set Q equipped with a reflexive and transitive
binary relation denoted ≤Q.
• An antisymmetric qo is a partial order (po).
• Every qo has an associated strict relation denoted<Q defined by p<Q q

iff p ≤Q q and q 6≤Q p.

Remark 2.2. If Q is a po then the strict relation <Q is just ≤Q\∆Q,
where ∆Q stands for the diagonal in Q2. This is far from being true in any
qo, since for instance the total relation Q2 on Q is a qo. However, every qo Q
can be turned into a po, its associated po, by quotienting by the equivalence
relation “p ≤Q q and p ≥Q q”.

In what follows, Q stands for a qo, and we will write ≤ instead of ≤Q as
long as the context remains clear.

Definitions 2.3.

• Say Q is well founded if there is no infinite <-decreasing sequence in Q.
• We say two elements p and q of Q are incomparable when both p 6≤ q

and q 6≤ p. In this case we write p ⊥ q. A set of pairwise incomparable
elements in Q is called an antichain.
• A sequence f : ω → Q is called good if there exist m < n < ω such

that f(m) ≤ f(n), otherwise f is called bad.
• A sequence f : ω → Q such that for all m,n ∈ ω the relation m ≤ n

implies f(m) ≤ f(n) is said to be perfect.
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• A subset D of Q is a downset if q ∈ D and p ≤ q implies p ∈ D. For
any S ⊆ Q, we write ↓S for the downset generated by S in Q, i.e. the
set {q ∈ Q | ∃p ∈ S q ≤ p}. We also write ↓ p for ↓{p}.
• We give the dual meaning to upset, ↑S and ↑ q.
• We denote by Down(Q) (resp. Up(Q)) the po of downsets (resp. up-

sets) of Q equipped with inclusion.
• A downset I ∈ Down(Q) is called an ideal if it is non-empty and

directed, i.e. for all p, q ∈ I there exists r ∈ I with p ≤ r and q ≤ r.
For any q ∈ Q the set ↓ q is a particular example of an ideal, called
a principal ideal.
• We denote by I(Q) the po of ideals of Q equipped with inclusion. We

let I*(Q) be the po of non-principal ideals of Q.
• The cofinality of an ideal I ∈ I(Q), denoted cof(I), is the least cardinal
λ such that there exists B ⊆ I with |B| = λ and I = ↓B. The principal
ideals are the ideals of cofinality 1. There are no ideals of cofinality k
for 2 ≤ k < ω.
• We denote respectively by I≤ω(Q) and Iω(Q) the po of ideals of Q

which have countable cofinality and the po of ideals with cofinality ω.
Observe that I≤ω(Q) = {↓ q | q ∈ Q} ∪ Iω(Q) and Iω(Q) ⊆ I*(Q).
• An upset U ∈ Up(Q) is said to admit a finite basis or to be finitely

generated if there exists a finite F ⊆ Q such that U = ↑F . We write
Up<∞(Q) for the po of finitely generated upsets with reverse inclusion.
• We say that Q has the finite basis property if every upset of Q admits

a finite basis, i.e. Up(Q) = Up<∞(Q).

We turn the power-set of Q, denoted P(Q), into a qo by letting X ≤ Y
exactly when ↓X ⊆ ↓Y . Then the po associated to P(Q) is Down(Q).

Definition 2.4. Finally, we say that Q is a well quasi-order (wqo) when
one of the equivalent conditions of the next proposition is fulfilled.

Proposition 2.5. Let Q be a qo. Then the following assertions are
equivalent:

(i) Q is well founded and has no infinite antichain.
(ii) There is no bad sequence f : ω → Q.

(iii) Every sequence f : ω → Q admits a perfect subsequence.
(iv) Q has the finite basis property.
(v) P(Q) is well founded.

(vi) Down(Q) is well founded.
(vii) Up(Q) is well founded under reverse inclusion.
(viii) Up<∞(Q) is well founded under reverse inclusion.

Proof. Folklore.
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Remark 2.6. In Proposition 2.5, we cannot replace Down(Q) by I(Q).
Consider for example the po A consisting of a countable set partially ordered
by equality. We have I(A) ∼= A, so in particular, even though A is not a wqo,
I(A) is well founded. Nonetheless, if Q is a wqo then I(Q) is well founded.

Observe also the following

Fact 2.7. For an infinite wqo Q, we have Card(I(Q)) ≤ Card(Q). If Q
is a po, equality holds.

2.2. Families of finite sets of natural numbers

Notations.

• We let ω be the set of natural numbers. We use the set-theoretic
definition n = {0, . . . , n − 1}. Given an infinite subset X of ω and
a natural number k, we denote by [X]k the set of subsets of X of
cardinality k, and by [X]<∞ the set of finite subsets of X. We have
[X]<∞ =

⋃
k∈ω[X]k. We write [X]∞ for the set of infinite subsets of X.

• For any X ∈ [ω]∞ and any s ∈ [ω]<∞, we let X/s = {k ∈ X | k >
max s} and we write X/n for X/{n}. For any non-empty set S ⊆ ω
we write ∗S for S \ {minS}.
• For any s ∈ [ω]<∞ we let xs ∈ 2ω be the characteristic function of s

on ω. So for instance x{2,4} = 001010000 . . . . Note that x∅ = 0ω.
• We write u v v when u is an initial segment or prefix of v, i.e. u = v or

there is n ∈ v such that u = {k ∈ v | k < n}. Note that this definition
coincides with the usual prefix relation on sequences when subsets of
ω are identified with their increasing enumeration with respect to the
usual order on ω.

We now gather several combinatorial operations on general families of
subsets of ω.

Definitions 2.8. Given a family F ⊆ P(ω) we make the following def-
initions:

• The base of F is the usual set-theoretic union, denoted by
⋃
F .

• For any X ∈ [ω]∞, the shrinkage of F to X, denoted by F |X, is defined
to be the family

F |X := {s ∈ F | s ⊆ X}.

• For every n ∈ ω, the ray of F at n is, by definition, the family

Fn := {s ∈ [ω/n]<∞ | {n} ∪ s ∈ F}.

• For every n ∈ ω, we will denote by F↑n the subset of F given by

F↑n := {s ∈ F | {n} v s}.
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Observe that for all n ∈ ω we have the bijection

Fn → F↑n, s 7→ {n} ∪ s.
Fact 2.9. Let F ⊆ P(ω) and X ∈ [ω]∞. For every n ∈ X we have

Fn|X = (F |X)n.

2.3. Nash-Williams’ fronts and barriers. We use the fundamental
definition first enunciated by Nash-Williams [NW65].

Definition 2.10. A family B ⊆ [ω]<∞ is a called a front on X ∈ [ω]∞

if:

1. Either B = {∅}, or X is the domain of B.
2. B is a v-antichain.
3. (Density) For all X ′ ∈ [X]∞ there is an s ∈ B such that s < X ′.
4. If moreover B is a ⊆-antichain, then B is called a barrier on X.

The barrier {∅} is called the trivial barrier.

Remark 2.11. In the literature, fronts are sometimes called blocks or
thin blocks. Since in Section 3 we will have another use for the term block
we follow the terminology of [Tod10].

Facts 2.12. Let X ∈ [ω]∞. If B is a front (resp. a barrier) on X, then:

(i) For all Y ∈ [X]∞, B|Y is a front (resp. a barrier) on Y .
(ii) If B is non-trivial and n ∈ X, then Bn is a front (resp. a barrier)

on X/n.

Remarks 2.13.

1. If B is a front on M and C ⊆ B is a front on N then N ⊆ M
and C = B|N . Therefore the fronts contained in B are exactly the
shrinkages of B.

2. If for M ∈ [ω]∞ and all m ∈ M the family F (m) is a front on M/m
then the family

F =
⋃

m∈M
{{m} ∪ s | s ∈ F (m)}

is a front on M . Observe though that there exist sequences of barriers
〈F (m) | m ∈ ω〉 such that F is not a barrier.

We now recall some important combinatorial results about barriers and
fronts for later use. We refer the reader to [Tod10, AT05] for proofs. Through-
out this paper we will extensively use the following fundamental theorem.

Theorem 2.14 (Nash-Williams).

(i) Let F be a front on N . For any subset S of F there exists a front
F ′ ⊆ F such that either F ′ ⊆ S or F ′ ∩ S = ∅.
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(ii) Let B be a barrier on N . For any subset S of B there exists a barrier
B′ ⊆ B such that either B′ ⊆ S or B′ ∩ S = ∅.

Theorem 2.15. Let F be a front on M . There exists N ∈ [M ]∞ such
that F |N is a barrier on N .

Notation. For a non-empty set A, we write A<ω (resp. Aω) for the set
of finite (resp. infinite) sequences of A. For u ∈ A<ω and x ∈ A<ω ∪Aω, we
write u v x (resp. u < x) when x extends (resp. properly extends) u. We
write uax for the concatenation operation. For n ∈ ω we write x�n for the
prefix of x of length n.

Definitions 2.16.

• Recall that a tree T on a set A is a prefix-closed subset of A<ω.
• A tree T on A is called well founded if it has no infinite branch, i.e.

there is no infinite sequence x ∈ Aω such that x�n ∈ T for all n ∈ ω.
• A well founded tree admits a canonical rank. It is a strictly decreasing

function ρ from T to the ordinals, defined by induction as follows:

ρT (t) = sup{ρT (s) + 1 | t < s ∈ T}

for all t ∈ T . It is easily shown to be equivalent to

ρT (t) = sup{ρT (ta(a)) + 1 | a ∈ A ∧ ta(a) ∈ T}.

The rank of T is by definition the ordinal ρT (∅). By convention, the
rank of the empty tree is 0.

Identifying any finite subset of ω with its increasing enumeration with
respect to the usual order on ω, we view any front as a subset of ω<ω. For
a front F we let T (F ) be the smallest tree on ω containing the set F , i.e.

T (F ) = {s ∈ ω<ω | ∃t ∈ F s v t}.

As a direct consequence of the definition of front we have

Lemma 2.17. For any front B on N , the tree T (B) is well founded.

Definition 2.18. Let B be a front. The tree-rank of B, denoted by
rkB, is the rank of the tree T (B).

Remarks 2.19.

• The trivial barrier is the only front of null tree-rank, and for all positive
integers n we have rk [ω]n = n.
• Let B be a non-trivial front on N and let n ∈ N . The tree T (Bn) of

the front Bn is naturally isomorphic to the subset

{s ∈ T (B) | {n} v s}
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of T (B). The tree-rank of the front B is therefore related to the tree-
ranks of its rays through the following formula:

rkB = sup{rkBn + 1 | n ∈ N}.
In particular, rkBn < rkB for all n ∈ N .

• This allows one to prove by induction results on the tree-rank by
applying the induction hypothesis to the rays, following [PR82].

• As an example, Nash-Williams’ Theorem 2.14 can be proved by in-
duction on the tree-rank.

The tree T (B) associated to a front B also enjoys a topological descrip-
tion to which we now turn.

The Cantor space is the product space 2ω where 2 is the discrete two-
point space. A basis of clopen sets is given by the sets of the form

Nu = {x ∈ 2ω | u < x}
for a finite sequence u in 2. For a point x ∈ 2ω a neighbourhood basis is
given by the sets Nx�n for n ∈ ω.

We embed every subset of [ω]<∞ into the Cantor space via s 7→ xs.
By abuse of language, we sometimes identify fronts and barriers with their
image in the Cantor space. For a front B, the closure of B denoted B is
the topological closure of the set {xs | s ∈ B} in the Cantor space. We now
recall some results about this closure operation on fronts. More results along
these lines are to be found in [Tod10, AT05].

Proposition 2.20. Let B be a front on X. We have

B = {xs ∈ 2ω | s ∈ T (B)}.
Proof. ⊇: Let s be in T (B) \B, so s < t holds for some t ∈ B. Let now

n be in ω/s. Since B is a front there is a u ∈ B with u < s ∪X/n. If u v s
then we have B 3 u < t ∈ B, contradicting the fact that B is a <-antichain.
Hence we must have s < u; we have thus found a u ∈ B with xu ∈ Nxs�n. It
follows that xs ∈ B.
⊆: Conversely suppose that an element x of 2ω belongs to B. We first

show that x is the characteristic function of a finite subset of X. Since
2X = {xE | E ∈ P(X)} is closed in 2ω and B ⊆ 2X , necessarily x is the
characteristic function of a subset of X. Now suppose towards a contra-
diction that x is the characteristic function of an infinite set M ⊆ X. For
every finite prefix u of M , there is by definition of B some s ∈ B such that
xs ∈ Nx�max(u)+1, and hence u v s. But then M should be an infinite branch
of T (B), contradicting well foundedness.

Hence x = xs for some s ∈ [X]<∞. It only remains to show that there
exists a t ∈ B with s v t. By definition of the closure in 2ω, for all n ∈ ω
there is a t ∈ B with xs�n < xt. For n ∈ ω/s, xs�n < xt means s v t.



256 R. Carroy and Y. Pequignot

Corollary 2.21. Let B be a front on X.

(i) For all M ∈ [X]∞ we have B|M = B|M .
(ii) For all n ∈ X we have Bn = (B)n.

Proof. (i) It is enough to prove that B|M ⊆ B|M . So let s < t ∈ B
with s a subset of M . Since B is a front there is a u ∈ B with u < s ∪M/s
and necessarily u ∈ B|M . If u v s < t we have a contradiction. Hence
s v u ∈ B|M .

(ii) Since Bn is a front on ω/s, we have Bn = {xt ∈ 2ω | ∃u ∈ Bn t v u}.
Now if t v u ∈ Bn then {n} ∪ t v {n} ∪ u ∈ B and thus t ∈ (B)n.
Conversely, if xt ∈ (B)n then {n} ∪ t ∈ B and thus there exists u ∈ B with
{n} ∪ t v u ∈ B. Now t v ∗u ∈ Bn and therefore xt ∈ Bn.

2.4. Better quasi-orders

Definitions 2.22.

• We define the following binary relation, denoted �, on [ω]<∞. We write
s� t iff there exists X ∈ [ω]∞ such that

s < X and t < ∗X.

• Given a family F ⊆ [ω]<∞ and a set X endowed with a binary relation
R, we say that a function f : F → X is good if there exists a pair (s, t)
in F such that both s� t and f(s)Rf(t); otherwise f is said to be bad.
• If for all s, t ∈ F , when s� t holds then so does f(s)Rf(t), i.e. f is a

relational morphism, then f is said to be perfect.

Remark 2.23. If s, t belong to a barrier B, then s� t implies |s| ≤ |t|.

Definition 2.24. Given a qo Q, we say that Q is a better quasi-order
(bqo) if any map from some barrier to Q is good.

Definition 2.25. For B ⊆ [ω]<∞, let B2 = {s ∪ t | s, t ∈ B ∧ s� t}. If
B is a front (resp. a barrier) on N , then B2 is a front (resp. a barrier) on N
and for any u ∈ B2 there exist unique s, t ∈ B such that s� t and u = s∪ t.

Lemma 2.26. Let B be a front on N , R be a binary relation on a set X,
and f : B → (X,R) be any function. There exists an infinite M ⊆ N such
that f : B|M → (X,R) is either bad or perfect.

Proof. Consider the subset of the front B2 given by

S = {s ∪ t ∈ B2 | s, t ∈ B ∧ s� t ∧ f(s) ≤ f(t)}.

By Nash-Williams’ Theorem there is an infinite M ⊆ N such that B2|M ⊆ S
or B2|M ∩ S = ∅. Then f : B|M → Q is perfect or bad accordingly.
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3. Fronts as uniform spaces. Regarded as a topological subspace
of 2ω, any front is a discrete space. Indeed, for any element s of a front
F we have Nxs�(1+max s) ∩ F = {xs}. However, as any compact Hausdorff
space, 2ω is really more than a topological space: it is a uniform space.
Viewed as a uniform subspace of 2ω, every non-trivial front is endowed with
a non-discrete uniform structure.

3.1. Uniform continuity in compact 0-dimensional spaces. This
subsection is devoted to a description of uniform subspaces of compact Haus-
dorff zero-dimensional spaces.

A compact Hausdorff space is called zero-dimensional (0-dim) if it admits
a basis of simultaneously closed and open sets, or clopen sets. Such a space
is also called a Boolean space in the context of Stone duality. Any such space
is a closed subset of a generalised Cantor space 2X .

A general reference on uniform spaces is [Bou06]. Recall that any com-
pact Hausdorff topological space admits a unique uniform structure that
agrees with its topology.

Every compact Hausdorff space is thus unambiguously seen as a complete
totally bounded uniform space.

The appropriate framework for this paper is in fact the totally bounded
“0-dimensional” uniform spaces, that is, the uniform spaces whose com-
pletion is a compact Hausdorff 0-dimensional space. These are exactly the
uniform subspaces of Boolean spaces. The following notion greatly simplifies
the study of these uniform subspaces:

Definition 3.1. Let S be a subset of a Boolean space X. A subset B of
S is called a block of S (relative to X) if there exists a clopen C of X such
that B = C ∩ S. We write Blocks(S) for the Boolean subalgebra of P(S) of
blocks of S.

The uniform structure of a uniform subspace of a Boolean space X is
essentially given by its blocks: see Lemma 3.6 below (see also [Bou06, Exer-
cice 12, II.38]). As a consequence, uniform continuity between such spaces
admits of the following simple characterisation:

Proposition 3.2. Let X and Y be two Boolean spaces, and let S ⊆ X
and T ⊆ Y be endowed with the induced uniform structure. Then a function
f : S → T is uniformly continuous iff for all B ∈ Blocks(T ) we have
f−1(B) ∈ Blocks(S).

When the condition of Proposition 3.2 is met, there exists a unique
continuous map f̄ : S → T such that f̄�S = f .

Although Proposition 3.2 is folklore, we give a series of lemmas that lead
to its proof.
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Lemma 3.3. Let X be a Boolean space. The unique compatible uniform
structure on X admits

• as a basis the entourages of the form U(Ci) =
⋃

iCi×Ci where (Ci) is
a finite partition of X into clopen sets;
• as a subbasis the entourages of the form UC = (C×C)∪(X\C×X\C)

where C is a clopen set of X.

Lemma 3.4. Let X be a Boolean space and let F be a closed subspace
of X. Then the clopen sets of F coincide with the blocks of F .

Fact 3.5. Let X be a Boolean space, and let S ⊆ T ⊆ X. Then we have
Blocks(S) = {B ∩ S | B ∈ Blocks(T )}.

Lemma 3.6. Let X be a Boolean space and let S be a subset of X. Then
the uniform structure induced on S by X admits

• as a basis the entourages of the form U(Ci) =
⋃

iCi×Ci where (Ci) is
a finite partition of S into blocks;
• as a subbasis the entourages of the form UC = (C×C)∪(S \C×S \C)

where C is a block of S.

Proof of Proposition 3.2. ⇒: Suppose f is uniformly continuous and let
f̂ : S → T be its continuous extension. Then for all clopen C of Y the set
f−1(C ∩ T ) = f̂−1(C) ∩ S is a block of S.
⇐: Suppose f : S → T preserves blocks by preimage. By Lemma 3.6, it

is enough to show that for each block B of T the preimage of UB by f × f
is an entourage of S. In fact, (f × f)−1(UB) = Uf−1(B).

Fact 3.7. Let X and Y be Boolean, S ⊆ X, T ⊆ Y , f : S → T be
a function and Im f be the image of f . Then f is uniformly continuous iff
f : S → Im f is uniformly continuous.

3.2. Cauchy sub-supersequences. We give every front B the uniform
structure inherited from the Cantor space through the identification

B → 2ω, s 7→ xs.

For each front B we write Blocks(B) for the Boolean algebra of subsets
of B given by

Blocks(B) = {C ∩B | C is a clopen of 2ω}.
Example 3.8. For the barrier [ω]1, the Boolean algebra Blocks([ω]1)

consists of the finite or cofinite subsets of [ω]1.

Lemma 3.9. Let B be a front on N . Then for all n ∈ N we have the
isomorphism

Blocks(Bn)→ Blocks(B↑n) = {C ∈ Blocks(B) | ∀s ∈ C {n} v s},
A 7→ {{n} ∪ t | t ∈ A}.
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Proof. The clopen N0n+1 = {x ∈ 2ω | 0n+1 v x} is homeomorphic to
the clopen N0n1 = {x ∈ 2ω | 0n1 v x} via P(ω/n) 3 S 7→ {n} ∪ S. This
homeomorphism induces a Boolean isomorphism

hn : {C ⊆ N0n+1 | C clopen in 2ω} → {D ⊆ N0n1 | D clopen in 2ω},
C 7→ {{n} ∪ s | s ∈ C}.

Now if S ∈ Blocks(Bn) then there is a clopen C of 2ω such that C ⊆
N0n+1 and S = C ∩Bn. Then hn(C) ∩B = {{n} ∪ s | s ∈ S} ∈ Blocks(B).

Conversely, if T ∈ Blocks(B) with T ⊆ N0n1 then T = B∩C for a clopen
C ⊆ N0n1. We have T = hn(Cn ∩Bn).

Observe that for S ⊆ T ⊆ [ω]<∞ and N ∈ [ω]∞ we have

S|N = S ∩ [N ]<∞ = S ∩ 2N = S ∩ T ∩ 2N = S ∩ T |N,

hence the shrinkage of S to N equals the trace of S on T |N .

Notation. Let F ⊆ [ω]<∞. For a family S ⊆ P(F ) of subsets of F and
N ∈ [ω]∞ we denote by S|N the family

{S|N | S ∈ S} = {S ∩ F |N | S ∈ S}.

Lemma 3.10. Let B be a front on M and let N ⊆M be infinite. Then

Blocks(B)|N = Blocks(B|N).

Proof. If S ∈ Blocks(B) then there exists C clopen in 2ω with S = C∩B.
It follows that

S|N = S ∩B|N = S ∩B ∩B|N = C ∩B|N

is a block of B|N .

Conversely, if S = C ∩ B|N for some clopen C of 2ω then for the block
S′ = C ∩B of B we have S′|N = S′ ∩B|N = C ∩B ∩B|N = S.

Remark 3.11. Observe that for F a finite family of subsets of a front B
on M we can find by repeated application of Nash-Williams’ Theorem 2.14
an infinite N ⊆M such that for all S ∈ F , S|N = S ∩B|N is either empty
or equal to B|N . In other terms, for F a finite family of subsets of a front
B on M , there exists N ∈ [M ]∞ such that F|N ⊆ {∅, B|N}.

For a countably infinite family we have:

Theorem 3.12. Let B be a front on ω and let S be a countable family
of subsets of B. For all M ∈ [ω]∞ there exists N ∈ [M ]∞ such that S|N
consists of blocks of B|N , i.e. S|N ⊆ Blocks(B|N).

Proof. By induction on the tree-rank of B. For the trivial barrier, the
theorem is trivial.
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Suppose that B is a front of non-zero tree-rank on ω and that the
statement of the theorem holds for fronts of strictly smaller tree-rank. Let
M ∈ [ω]∞.

Claim. There exists X ∈ [M ]∞ such that for all m ∈ X and all S ∈ S
we have (S|X)↑m ∈ Blocks(B|X).

Proof of the Claim. For each n ∈ ω, since Bn is a front of strictly smaller
tree-rank than B, we can apply our induction hypothesis to the countable
family Sn = {Sn | S ∈ S} of subsets of Bn. We thus build recursively a
sequence (Xi)i∈ω of infinite subsets of ω with ki = min(Xi) such that

1. Xi+1 ∈ [Xi/ki]
∞;

2. for all i ∈ ω we have

Ski |Xi+1 ⊆ Blocks(Bki)|Xi+1.

Set X0 = M , and suppose that the sequence is defined up to i. Then
let ki = minXi and consider the front Bki . Its tree-rank is strictly smaller
than the tree-rank of B. We consider the family Ski of subsets of Bki . By
our induction hypothesis there exists Xi+1 ∈ [Xi/ki]

∞ such that Ski |Xi+1 ⊆
Blocks(Bki)|Xi+1. We can then set X = {ki | i ∈ ω}.

To see that X satisfies the Claim, let ki ∈ X and S ∈ S. Since X/ki ⊆
Xi+1 we have

(S|X)ki = Ski |X = Ski |X/ki = Ski |Xi+1|X/ki.
Hence by Lemma 3.10, Ski |Xi+1 ∈ Blocks(Bki)|Xi+1 implies

Ski |Xi+1|X/ki ∈ Blocks(Bki)|Xi+1|X/ki = Blocks(Bki |X/ki).
Finally,

{{ki} ∪ s | s ∈ (S|X)ki} = (S|X)↑ ki

is a block of B|X by Lemma 3.9.

Fig. 1. A block of the barrier [ω]2
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By the Claim, there is no loss of generality in assuming that B is a front
on M and that for all m ∈M and all S ∈ S we have S↑m ∈ Blocks(B).

We fix an enumeration {Si | i ∈ ω} of S. By applying repeatedly Nash-
Williams’ Theorem we can build a sequence N0 ⊇ N1 ⊇ N2 ⊇ · · · of infinite
subsets of M such that for i ∈ ω, Ni+1 ⊆ Ni/min(Ni) and for all j ≤ i the
set Sj |Ni = Sj ∩B|Ni is either empty or equal to B|Ni.

For all i ∈ ω set ki = minNi and set N = {k0, k1, . . .}. We claim that
for all S ∈ S, S|N is a block of B|N . To see this let Sj ∈ S. We have
{ki | j ≤ i} ⊆ Nj . We can partition B|N as

B|N =
( j−1⋃

i=0

B↑ ki |N
)
∪B|{ki | j ≤ i}.

We also have

Sj |N =
( j−1⋃

i=0

Sj
↑ ki |N

)
∪ Sj |{ki | j ≤ i}.

On the one hand, Sj
↑ ki ∈ Blocks(B) and thus Sj

↑ ki |N belongs to Blocks(B|N)

by Lemma 3.10. On the other hand Sj |{ki | j ≤ i} is either empty or equal
to B|{ki | j ≥ i}, and thus is a block of B|N . Therefore Sj |N is a block of
B|N as a finite union of blocks of B|N .

We can now come to the main result of this section, which is Theorem
1.1 of the Introduction.

Theorem 3.13. Let B be a front on some infinite subset M ⊆ ω. For
all f : B → 2ω there exists an infinite N ⊆ M such that the restriction
f : B|N → 2ω is uniformly continuous.

Proof. Applying Theorem 3.12 to S = {f−1(C) | C is clopen in 2ω}
yields an infinite set N for which f |N : B|N → X satisfies, for all clopen
sets C,

(f |N)−1(C) = f−1(C) ∩B|N = f−1(C)|N ∈ Blocks(B|N).

Therefore f |N is uniformly continuous by Proposition 3.2.

4. The space of ideals of a wqo. We present the space of ideals of a
wqo Q as endowed with the topology induced from the generalised Cantor
space 2Q. Recall that the clopen subsets of 2Q are finite unions of sets of
the form

N(F,G) = {P ⊆ Q | F ⊆ Q ∧G ∩Q = ∅}
for F,G ∈ [Q]<∞. Clopen ⊆-upsets of 2Q, i.e. clopen subsets C such that
P ∈ C and P ⊆ P ′ implies P ′ ∈ C, are finite unions of sets of the form
〈F 〉 = N(F, ∅). For q ∈ Q we write 〈q〉 instead of 〈{q}〉.
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4.1. The space of ideals of a wqo. The results of this subsection
come from [PS06, BPZ07]. In order to keep our exposition self-contained we
nonetheless provide proofs.

Let Q be any qo. We embed Q, or more precisely the po associated with
Q, in the Cantor space 2Q via q 7→ ↓ q. We have Q ⊆ I(Q) ⊆ Down(Q). We
denote by Q the closure of Q in 2Q through the above identification.

Lemma 4.1. Let Q be a qo. The set Down(Q) is closed, and Q is dense
in I(Q) so I(Q) = Q.

Proof. The set Down(Q) of ≤-downward closed subsets of Q is closed in
2Q since

Down(Q) =
⋂
p≤q
〈q〉{ ∪ 〈p〉.

Let I be an ideal of Q and let N(F,G) be any basic neighbourhood of I
in 2Q for F,G ∈ [Q]<∞. Since I is directed and non-empty, F ⊆ I implies
that there exists q ∈ I with F ⊆ ↓ q. Since I is downward closed, G ∩ I = ∅
implies G ∩ ↓ q = ∅. Therefore ↓ q ∈ N(F,G). Hence I ∈ Q.

Lemma 4.2. If Q is a wqo, then I(Q) is closed in 2Q and therefore Q =
I(Q).

Proof. For F ⊆ Q let F ↑ denote the set of upper bounds of F , i.e.
F ↑ =

⋂
q∈F ↑ q = {p ∈ Q | ∀q ∈ F q ≤ p}. Since Q has the finite basis

property, for all F ∈ [Q]<∞ there exists G ∈ [Q]<∞ such that F ↑ = ↑G.
Therefore ⋃

p∈F ↑
〈p〉 =

⋃
r∈G
〈r〉

is clopen as a finite union of clopen sets.

Now we can see that

I(Q) = {I ∈ Down(Q) | ∀F ∈ [Q]<∞ (F ⊆ I → ∃p ∈ F ↑ (p ∈ I))}

= Down(Q) ∩
⋂

F∈[Q]<∞

(
〈F 〉{ ∪

⋃
r∈F ↑
〈p〉
)

is closed.

Recall that a point x of a topological space X is isolated in X if the
singleton {x} is open. A limit point of a topological space X is a point that
is not isolated, i.e. for every neighbourhood U of x there is a point y ∈ U
with y 6= x. A topological space with no isolated points is perfect. At the
other extreme, a topological space is called scattered if it has no perfect
subspace.

For wqos we have the additional property:
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Proposition 4.3 ([PS06]). Let Q be a wqo. The space I(Q) is scattered,
compact and its isolated points coincide with the principal ideals.

Proof. We first show that Down(Q) is scattered. Let X ⊆ Down(Q) be
non-empty. Since Q is a wqo, Down(Q) is well founded and there exists D
which is ⊆-minimal in X. Then for a finite F with ↑F = Q \ D we have
N(∅, F ) ∩X = {D}, showing that D is isolated in X.

We now show that for I ∈ I(Q), I is isolated iff I is principal. If I is
isolated then {I} is open, and since Q is dense in I(Q), I = ↓ q for some
q ∈ Q, so I is principal. Conversely, for q ∈ Q let F be a finite basis for
Q \ ↓ q. Then N({q}, F ) ∩ I(Q) = {↓ q}.

Remark 4.4. As a topological ordered space, the space I(Q) of ideals
of a wqo is dual under Priestley duality to the bounded distributive lattice
(Down(Q),⊆). From this point of view one directly deduces that any order
preserving map between wqos extends to a continuous order preserving map
between the corresponding ideal spaces.

4.2. Extending supersequences into the ideals. We now turn to
showing that any map from a front to a wqo restricts on a front to a uni-
formly continuous map, which therefore extends continuously to the space
of ideals.

However Theorem 3.13 makes essential use of the metrisability of the
codomain. In order to apply this result we need to show that if Q is a wqo
then for every countable subset P of Q the topological closure of P inside
I(Q) is metrisable; in fact, we show it is isomorphic to the ideal space of P .

Since the association of the topological space of ideals to any wqo is
actually functorial, the following lemma should come as no surprise.

Lemma 4.5. Let Q be a wqo and P ⊆ Q. Then the topological ordered
space (I(P ),⊆) is isomorphic to the closure of P in I(Q).

Proof. We first prove that the map

ι : Down(P )→ Down(Q), D 7→ ↓QD,

is an embedding.

To see it is injective, observe that D = P ∩ ↓QD for all D ∈ Down(P ).

To see it is an order embedding, observe that by monotonicity of the
closure operator, D ⊆ D′ implies ↓QD ⊆ ↓QD′. Conversely, if ↓QD ⊆ ↓QD′
and we take p ∈ D, then p ∈ P ∩ ↓QD′ = D′.

To show it is an embedding, it is enough to prove that it is continuous,
since both spaces are compact Hausdorff. For the continuity, it suffices to
show that for all q ∈ Q the set ι−1{E ∈ Down(Q) | q ∈ E} is clopen in
Down(P ). So let q ∈ Q. Since P is a wqo as a subset of a wqo, there exists
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a finite F ⊆ P such that (↑Q q) ∩ P = ↑P F . Now we obtain

ι−1{E ∈ Down(Q) | q ∈ E} = {D ∈ Down(P ) | q ∈ ↓QD}
= {D ∈ Down(P ) | F ∩D 6= ∅}.

Indeed, if q ∈ ↓QD then there is p ∈ D with q ≤ p. Thus p ∈ (↑Q q) ∩ P =
↑P F and so there exists r ∈ F with r ≤ p. Hence since D is a downset we
have r ∈ D.

Conversely, if there exists r ∈ F ∩ D then since (↑Q q) ∩ P = ↑P F we
have q ≤ r. It follows that q ∈ ↓QD.

We can thus identify Down(P ) as a subset of Down(Q). Under this iden-
tification, I(P ), which is the closure of P in Down(P ), is also the closure of
P in Down(Q).

Observe that if Q is a countable wqo, then I(Q) is a countable closed
subset of the Cantor space 2Q. Using the previous lemma, we see that The-
orem 3.13 applies to maps from fronts into wqos, yielding Theorem 1.2 of
the Introduction.

Theorem 4.6. Let B be a front on N and Q be a wqo. For every map
f : B → Q there exists M ∈ [N ]∞ such that f |M : B|M → Q is uniformly
continuous, so it extends uniquely to a continuous map f̄ : B → I(Q).

Proof. Let P = Im f . Then f : B → Q is uniformly continuous iff
f : B → 2Q is iff f : B → P is. By Lemma 4.5, P is homeomorphic to
I(P ). Since P is countable, I(P ) is a subspace of 2P , and we can apply
Theorem 3.13.

5. Continuous extensions into the ideals. By the previous section,
any map f : B → Q from a front into a wqo restricts on a front B′ to
a uniformly continuous map f ′ : B′ → Q. This map then extends to a
continuous map f ′ : B′ → I(Q). We now study such continuous maps going
from the closure of a front into the space of ideals of a wqo.

Here is a crucial example.

Example 5.1 (Rado’s poset). Let R be the poset [ω]2 ordered by

(m,n) ≤ (m′, n′) iff

{
m = m′ and n ≤ n′, or

n < m′.

We claim that I(R) = R ∪ {In | n ∈ ω} ∪ {>} where for all n ∈ ω, In =⋃
n<k ↓(n, k) and > = R. We have (m,n) ≤ Ik iff m = k or n < k, and a ≤ >

for all a ∈ I(R). It is clear that each In and > are non-principal ideals. We
show there are no other ideals. Let I be an ideal of R. First suppose that for
all k ∈ ω there is an (m,n) ∈ I with k < m; then I = >. Suppose now that
m = max{k | ∃l(k, l) ∈ I} exists. If there are infinitely many n such that
(m,n) ∈ I then I = Im. Otherwise I = ↓(m,n) for n = max{l | (m, l) ∈ I}.
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Fig. 2. A bad Cauchy supersequence in Rado’s poset

It is clear that I(R) is not a wqo. Now consider the supersequence id :
[ω]2 → R which is the identity on the underlying sets. It is bad and one can
show that it is actually uniformly continuous.

The closure of [ω]2 in 2ω is just [ω]≤2 = [ω]2∪ [ω]1∪{∅}. The continuous
extension id : [ω]≤2 → I(R) is simply given by id({m}) = Im and id(∅) = >.
Now the restriction of id to the barrier [ω]1 is a bad sequence in I*(R)
witnessing the fact that it is not a wqo. Hence this uniformly continuous
bad supersequence on R yields a bad supersequence in the non-principal
ideals of R. We will see that this is always the case.

5.1. Continuous extensions of supersequences. In Example 5.1,
the continuous map from the closure of the barrier [ω]2 to the ideals of

Rado’s poset enjoys interesting properties. Notably, the points of [ω]2 whose
image is a non-principal ideal form the closure of a barrier, namely [ω]1. In
fact, by shrinking, any continuous map has such a canonical form as we shall
now see.

Let f : B → X be a map from the closure of a front B on some N ∈ [ω]∞

to a topological space X . We write

Λf = {s ∈ B | f(s) is not isolated in X}
for the closed set of B of those points whose image is a limit point. Observe
that if g is the restriction of f to the closure of a shrinkage of B, then Λg is
a shrinkage of Λf . Formally, for all M ∈ [N ]∞ we have Λf�(B|M) = Λf |M .

Recall that by Corollary 2.21, for all M ∈ [N ]∞ we have B|M = B|M
and (B)n = Bn for all n ∈ N .

Here is Theorem 1.3 from the Introduction.

Theorem 5.2. Let B be a front on ω, X a topological space and f :B→X
a continuous map. For all N ∈ [ω]∞ there exists M ∈ [N ]∞ such that:
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1. Λf |M is either empty or the closure of a barrier on M .

2. For all s, t ∈ B|M , if s 6∈ Λf |M and s v t then f(s) = f(t).

Proof. By induction on the tree-rank of B. The theorem is obvious for
the trivial barrier. We suppose it holds for all continuous maps from the
closure of a front with tree-rank strictly smaller than α > 0. Let B be a
front on N with rkB = α.

Claim. There exists X ∈ [N ]∞ such that for all k ∈ X the map

(B|X)k → X , s 7→ f({k} ∪ s),
satisfies the requirements of the theorem.

Proof of the Claim. We build by induction a sequence (Xi)i∈ω, with ki
the minimum of Xi, such that for all i ∈ ω we have:

1. Xi+1 ∈ [Xi/ki]
∞.

2. (Λf )ki |Xi+1 is either empty or the closure of a barrier on Xi+1.
3. For all s, t ∈ Bki |Xi+1, if {ki} ∪ s 6∈ Λf and s v t then f({ki} ∪ s) =
f({ki} ∪ t).

Set N = X0, and suppose Xi is built. The family Bki is a front on Xi/ki
with rkBki < α, so we can apply the induction hypothesis to the continuous
map fki : Bki → X defined by s 7→ f({ki} ∪ s), and we get Xi+1.

Setting now X = {k0, k1, . . .} we find that for all i ∈ ω, X/ki ⊆ Xi+1

and thus

(Λ
f�B|X)ki = (Λf |X)ki = (Λf )ki |X/ki = (Λf )ki |Xi+1|X/ki

is either empty or the closure of a barrier on X/ki. Moreover let s, t ∈ B|Xki
with {ki} ∪ s 6∈ Λf and s v t. Then s, t ⊆ Xi+1 and thus f({ki} ∪ s) =
f({ki} ∪ t).

Therefore we can suppose without loss of generality that f : B → X is
such that for all n ∈ N the map

Bn → X , s 7→ f({n} ∪ s),
satisfies the requirements of the theorem.

We now distinguish two cases:

∅ 6∈ Λf : Since f is continuous we have f(∅) = limn∈N f({n}) and as
f(∅) is isolated in X there exists an M ∈ [N ]∞ such that f({m}) = f(∅) for
all m ∈ M . Then for all m ∈ M we have {m} 6∈ Λf , that is, ∅ 6∈ (Λf ){m}.
Therefore (Λf ){m} is empty for all m ∈M and thus Λf |M is empty.

∅ ∈ Λf : There exists X ∈ [N ]∞ such that either {k} 6∈ Λf for all k ∈ X,
or {k} ∈ Λf for all k ∈ X.

In the former case, we have Λf |X = {∅} and so we can set M = X,
which meets the conditions.
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In the latter case, for all k ∈ X the set (Λf |X)k is the closure of a barrier
B(k) on X/k. The family

L =
⋃
k∈X
{{k} ∪ s | s ∈ B(k)}

is a front on X, so by Theorem 2.15 there exists M ∈ [X]∞ such that L|M
is a barrier on M . We see that

Λf |M = L|M = L|M
is the closure of the barrier L|M on M . This M meets the requirements.

5.2. A proof of Pouzet’s conjecture. We need a result on the conver-
gence of sequences in the space of ideals of a wqo. Recall that for a sequence
(En)n∈ω of subsets of a set Q we have the usual relations⋂

n∈ω
En ⊆

⋃
i∈ω

⋂
j≥i

Ej ⊆
⋂
i∈ω

⋃
j≥i

Ej ⊆
⋃
n∈ω

En.

Moreover:

Fact 5.3. The sequence (En)n∈ω converges to E in 2Q if and only if⋃
i∈ω

⋂
j≥i

Ej =
⋂
i∈ω

⋃
j≥i

Ej = E.

Proof. Suppose that E =
⋃

i∈ω
⋂

j≥iEj =
⋂

i∈ω
⋃

j≥iEj . We show that

En → E. Let F,G ∈ [Q]<∞ be such that E ∈ N(F,G). Since we have
E =

⋃
i∈ω
⋂

j≥iEj and F finite, F ⊆ Ej for all sufficiently large j. Since
E =

⋂
i∈ω
⋃

j≥iEj and G is finite, G ∩ Ej = ∅ for all sufficiently large j.

Hence Ej ∈ N(F,G) for all sufficiently large j and therefore En → E.
Conversely, suppose that En → E for some E ⊆ Q. If q ∈ E, then

q ∈ Ej for all sufficiently large j and thus q ∈
⋃

i∈ω
⋂

j≥iEj . Now if q 6∈ E
then q 6∈ Ej for all sufficiently large j and thus q 6∈

⋂
i∈ω
⋃

j≥iEj . Therefore

E =
⋃

i∈ω
⋂

j≥iEj =
⋂

i∈ω
⋃

j≥iEj .

We found the following ingenious observation, inside a proof, in [Rad54]:

Lemma 5.4 (Rado’s trick). Let Q be a wqo and let (f(n))n∈ω ⊆ Down(Q).
Then there exists an infinite subset N of ω such that⋃

n∈N
f(n) =

⋃
i∈N

⋂
j∈N/i

f(j).

Proof. Towards a contradiction suppose that for all infinite N ⊆ ω we
have ⋃

i∈N

⋂
j∈N/i

f(j) ⊂
⋃
n∈N

f(n).

We construct a ⊂-descending chain (Di)i∈ω in Down(Q). We build recur-
sively a sequence (Ni)i∈ω of infinite subsets of ω, and set Di =

⋃
i∈Ni

f(i).
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Set N0 = ω and suppose we have defined Nk ∈ [ω]∞. Let n0 ∈ Nk be
minimal such that there exists qk ∈ f(n0) \

⋃
i∈Nk

⋂
j∈Nk/i

f(j). Then for all

i in Nk there exists ji ∈ Nk/i such that qk 6∈ f(ji). Setting ni+1 = jni we
obtain an infinite set Nk+1 = {n0, n1, n2, . . .} such that

qk ∈
⋃

j∈Nk

f(j) \
⋃

j∈Nk+1

f(j).

The sequence (Dk)k∈ω is strictly decreasing for inclusion, contradicting the
fact that Q is a wqo.

In the topological setting, Rado’s trick states that the space of downsets
of a wqo enjoys a much stronger property than sequential compactness, as
stated in

Proposition 5.5. Let (Dn)n∈ω be a sequence of downsets of a wqo Q.
Then there exists an infinite set N ⊆ ω such that (Dn)n∈N converges to⋃

n∈N Dn in 2Q.

We now turn to the proof of the following theorem on better quasi-orders.
This is Theorem 1.5 from the introduction.

Theorem 5.6. Let Q be a wqo. If I*(Q) is a bqo, then Q is a bqo.

Proof. We assume that Q is a wqo and that I*(Q) is a bqo. Let f
be any map from a barrier B on ω into Q. Shrinking B, we can assume
by Theorem 4.6 that f : B → Q uniquely extends to a continuous map
f̄ : B → I(Q). By shrinking further, we can assume by Theorem 5.2 that
Λ = {s ∈ B | f(s) ∈ I*(Q)} is either empty or the closure of a barrier C on,
say, ω and that for s, t ∈ B with s 6∈ Λ and s v t we have f(s) = f(t) ∈ Q.
Observe that in particular for every s ∈ C, on the one hand s 6∈ B, and on
the other hand for all n ∈ ω/s we have s ∪ {n} ∈ B and f(s ∪ {n}) ∈ Q.

Λ = ∅: Then f : B → Q is constant and thus good.

C is trivial : Then, since Q is a wqo, there is an M ∈ [ω]∞ such that the
restriction f̄ : [M ]1 → Q is perfect. Now pick any s, t ∈ B|M with s � t;
then f(s) = f(min s) ≤ f(min t) = f(t).

C is non-trivial : Then, since I*(Q) is a bqo, there is an M ∈ [ω]∞ such
that the restriction f̄ : C|M → I*(Q) is perfect. Choose any s′ ∈ C|M . Since
s′∪{m} ∈ B|M for all m ∈M/s′ and s′ = limm∈M/s′ s∪{m}, the continuity

of f̄ implies that f̄(s′) = limm∈M/s′ f̄(s′ ∪ {m}). By Proposition 5.5 there

is X ∈ [M/s′]∞ with f̄(s′) =
⋃

k∈X ↓ f̄(s′ ∪ {k}). Let k0 = minX. There
exists t′ ∈ C|M with t′ < ∗s

′ ∪ {k0} ∪X/k0. Necessarily, ∗s
′ ∪ {k0} v t′, for

otherwise t′ ⊂ s′, contradicting the fact that C|M is a barrier. Again, by
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Proposition 5.5 there is Y ∈ [M/t′]∞ such that f(t′) =
⋃

l∈Y ↓ f̄(t′ ∪ {l}).
Since f̄ : C|M → Iω(Q) is perfect and s′ � t′, we have⋃

k∈X
↓ f̄(s′ ∪ {k}) = f̄(s′) ⊆ f̄(t′) =

⋃
l∈Y
↓ f̄(t′ ∪ {l}).

In particular, there exists l0 ∈ Y such that f̄(s′ ∪ {k0}) ≤ f̄(t′ ∪ {l0}).
Finally, let t ∈ B satisfy t′ ∪ {l0} v t and let s ∈ B be such that

s < s′ ∪ t ∪M/t. Then necessarily s < s′ ∪ t for otherwise B 3 t ⊂ s ∈ B.
Thus we have found s, t ∈ B such that s � t, and since s′ ∪ {k0} v s and
t′ ∪ {l0} v t we have

f(s) = f̄(s′ ∪ {k0}) ≤ f̄(t′ ∪ {l0}) = f(t).

In each case we conclude that f : B → Q is good. It follows that Q is a
bqo.

In [PS06], a stronger result is actually stated, namely: if Q is a wqo and
the po Iω(Q) of ideals with cofinality ω is a bqo, then Q is a bqo.

To see that we have actually proved this stronger statement, recall that
I≤ω(Q)∩ I*(Q) = Iω(Q) and note the following simple corollary to Proposi-
tion 5.5:

Fact 5.7. Let f : B → Q be a uniformly continuous map from a barrier
into a wqo. Then its unique continuous extension f̄ has image in I≤ω(Q).

Proof. Since B is a metrisable uniform space, every point of its comple-
tion is the limit of a sequence. Let s ∈ B and let (sn)n∈ω ⊆ B converge to s.
Then by continuity of f̄ we have f̄(s) = limn∈ω f(sn). Then by Corollary 5.5
there exists an N ∈ [ω]∞ such that f̄(s) =

⋃
n∈N ↓ f(sn). Therefore f̄(s) has

countable cofinality.
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