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Selivanovski hard sets are hard
by

Janusz Pawlikowski (Wroctaw)

Abstract. Let H C Z C 2“. For n > 2, we prove that if Selivanovski measurable
functions from 2“ to Z give as preimages of H all £}, subsets of 2, then so do continuous
injections.

Let H C Z be subsets of the Cantor space C = 2*. Say that (H, Z) is
YL -hard if for any X! set Q C C there is a continuous function f: C — Z
with Q = f~1[H].

Kechris [I] proved @that using here Borel rather than continuous func-
tions we get the same family of pairs. For n > 2 Sabok [4] improved this by
replacing Borel functions with functions such that preimages of all sets from
the canonical subbasis of C are in X} UTI}.

We show for n > 2 that by changing in the definition of E}L—hardness
“continuous” to “Selivanovski measurable” we do not get more pairs, and by
changing “continuous” to “continuous injective” we do not get fewer pairs.

Recall that a function is Selivanovski measurable if preimages of open
sets belong to the o-field of Selivanovski sets (also called C-sets), which is
the least o-field that contains all Borel sets and is closed under the Suslin
operation.

Kechris and Sabok use effective descriptive set theory, and Kechris asked
about a classical proof of his theorem. Our proof is classical and can be
adapted to give Kechris’s theorem (see [3] for a direct classical proof of
Kechris’s theorem).

THEOREM. Letn >2 and H C Z C C. If Selivanovski measurable func-
tions from C to Z give as preimages of H all E%L subsets of 2%, then so do
continuous injections.
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Note that since for any separable metrizable space S there exists a Borel
injection e: C — S whose inverse is continuous (e.g., e(s)(i) = 1 < s € O,
where {O;}ie,, is a basis of S), and e can be chosen to be continuous if S is
zero-dimensional, we can change in the Theorem the range space Z to any
separable metrizable space and the domain space C to any zero-dimensional
uncountable Polish space.

Note also that the Theorem cannot be extended to n = 1: pick distinct
points z, and z, in C and let Z = {2y, }; if @ C C is £], then the map
sending @ to z; and C \ @ to z; is Selivanovski measurable; however, no
non-clopen @ C C is a continuous preimage of H = {z,}.

1. Spaces, pointclasses, functions. All our spaces are separable and
metrizable; let X, Y, and Z range over such spaces. We identify the Baire
space N = w* with

{zreC:Vidj>iz(j) =1}

ForQCXxY, f: XxY — Z,and x € X, define the sections Q, C Y
and f: Y = Zbyy € Q; & (2,9) € Q and fi(y) = f(z,y).

A pointclass is a map @ that assigns to any space X a family &x = &(X)
of subsets of X; we often drop X if context permits. Let &xy = ¢(X,Y)
be the family of all @ measurable functions from X to Y, i.e., functions such
that preimages of open subsets of Y are in @(X).

Let B and 8 be the pointclasses of Borel and Selivanovski sets. Seli-
vanovski sets have the Baire property, and thus Selivanovski measurable
functions are Baire measurable.

We shall also use the pointclases ., I, and Al n > 1. For an arbitrary
space X, the families X1 (X), IT} (X), and AL(X) are defined in the same
way as for a Polish space (see [2, 25.A]): the IT! (X) sets are the complements
of =1 (X) sets, and the 3!(X) sets are the projections of T} (X x N)
sets, if n > 1, and of closed subsets of X x N, if n = 1; also, A}L(X) =
SHX)NTIL(X).

We have

B(X) € AJ(X) S 8(X) € Ay(X);

if X is an uncountable Polish space, then the first inclusion is improper, and
the next two are proper (see [2]; for 8 # Al see Section 4).

LEMMA 1. Let & € {B,8,=L TIL AL}
(1) If X C X', then:

(a) Q@ €edx = XNQ' € Py,
(b) Qedx =3Q €Dy Q=XNQ, ifd# A,
(C) Qedx NX edxr = Q€ Dx.
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(2) If Y is L in a Polish space, then projections along Y of 3} subsets
of X x Y are L (X).

(3) @ is closed under countable unions, countable intersections, and sec-
tions. The class of @ measurable functions is closed under sections.

(4) If fo: Xo — Yo and f1: X1 — Y1 are & measurable, then the Carte-
stan product function (xg,z1) — (fo(zo), fi(x1)) is ® measurable.

(5) A function is @ measurable iff preimages of closed sets are ¢ sets.
For any function, the notions of 2711, H,lw and A}l measurability co-
incide.

(6) The graph of a ¢ measurable function is a P set.

(7) Preimages of @ sets under & measurable functions are & sets.

(8) If the domain of a AL measurable function is 3L in a Polish space,
then images of B} sets are T sets.

(9) If Y is 3} in a Polish space and the graph of f: X —Y is ZL then
feAl(X,Y).

Proof. (4) The open subsets of Yy x Y] are the countable unions of prod-
ucts Vg x Vp, with Vy and Vi open; the preimage of Vj x V; is fO_I(VO) X
fl_l(vl) € (pX0><X1 .

(5) Closed sets are G, and open sets are Fy.

(6) If f € dxy, then graph f is the preimage of the diagonal of Y2 under
the @ measurable function (z,y) — (f(z),y).

(7) We give a proof for & = 1. Embed Y into a Polish space Y”; given
any Q € BL(Y), get Q' € BL(Y') with Q' NY = Q; then

FF Q) ={reX:3yeY ye Q' A fx) =y}
is the projection along Y of the intersection of X1 (X x Y”) sets: X x Q' and
graph f.
(8) For @ C X, f(Q) is the projection of (@ x Y') N graph f along X.
(9) For Q C Y, f~1(Q) is the projection of (X x Q) Ngraph f along Y. =

Denote by P(X) the family of all Cantor (i.e., homeomorphic to C) sub-
sets of X endowed with the Vietoris topology. Note that if G is Gs in X then
P(G) is G5 in P(X). Also, if X is a perfect Polish space, then so is P(X),
and if G is comeager in such an X, then P(G) is comeager in P(X).

Recall that if g: X — Y is Baire measurable, then there is a comeager
set G C X such that ¢g|G is continuous. So, if X is a perfect Polish space,
then ¢ is continuous on comeagerly many p € P(X) (on any p € P(Q)).
Equivalently, if sets Q" C X, n € w, have the Baire property, then there is
a comeager set G C X such that the sets GNQ"™, n € w, are clopen in G. So,
if X is a perfect Polish space, then for comeagerly many p € P(X), the sets
pN Q"™ n € w, are clopen in p.
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Let P =P(C), and let m: P x C — C be a continuous function such that
each section 7,, p € P, is a homeomorphism from C onto p (e.g., let m, be
induced by the unique bijection from 2<% onto the split nodes of the tree
{s]l: s € p, | € w} which preserves the lexicographic ordering).

For z € C, define z* € C by z*(i) = 2(2i), and write

Cr={z€C: 2=z}, P, =P(,), ze€C.
Fix also a list {I}, }ne. all of clopen subsets of C, with Iy = &.

Finally, the main notion: if n > 1 and H C Z C C, we say that (H, Z) is

e Xl _hard if VQ € T1(C) 3 continuous f: C — Z with Q = f~[H],

o 83! -hard if VQ € X! (C) 3 Selivanovski measurable f: C — Z with

Q=f"'[H].

2. Injections. We first show how hardness can be realized via injections.

LEMMA 2. Suppose that (H,Z) is X -hard for some n > 1. Then any
L subset of C can be obtained as the preimage of H under a continuous
imjection from C into Z.

Proof. Define c: N x C — C by
c(s,9)(1) =1 & y € L.

Then ¢ is continuous, and {cs}sen is the family of all continuous functions
from C to C.

CrLamM. dp € Buyp Vs € N p(s) C Cs A cslp(s) is injective or constant.
Proof of Claim. Let
Q ={(s,p) e Nx P: p CCsAcs|pis injective or constant}.

We claim that (1) @ is Gg, and (2) Vs € N Qs is nonmeager in Py. Once
this is established, we can use the uniformization theorem for Borel sets with
“large sections” [2], 18.6] to get the desired p.

(1) Consider in NV x C? the open set V and the closed set A defined by

V= {(5’y07y1) € N'x C*: CS(?/O) e CS(yl)}7

A= {(s,90,y1) ENXC% yo=y1}.
Note that (s,p) € Q iff p C Cs and

{s}xp?CVUA V {s}xp*C (NxCH\V.
Now, “p C C4” defines a closed set in A/ x P. The displayed line defines, in
turn, a Gs set: the map (s,p) — {s} x p? is continuous, and the set
P(VUA)UP(N xC*)\V)

is Gy ;n P(N x C?) because the sets VU A and (N x C?) \ V are Gy in
N x C?.
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(2) Fix s € N. Either ¢, is constant on a nonempty open set U C Cs —
then P(U) is nonempty open in Ps, and p? C C2 \ V, for p € P(U); or else
C2 NV, is dense open in C2 —then there are comeagerly many p € P, with
p? C Vs U A, by the Kuratowski-Mycielski theorem [2, 19.1]. mciaim

Now, consider the following Borel injection from N x C into C:

h(s,y) = m(p(s), y)-
If Q € TL(C), then hN x Q] € ZL(C). As (H,Z) is Z}-hard, for some
continuous f: C — Z,

hlCx Q) = f~'[H].
Hence, since h is injective,

Cx Q=h"'[fH[H]].
Pick s with f = ¢s. Then
Q = hy e [H]] = (eshs) M [H].
But cshs is injective or constant, as hs is a bijection onto p(s), and cs|p(s)
is injective or constant.
If cshs is injective, we are done. Otherwise, it must be the case that @) €

{C,>}. Then there is also a continuous injective g: C — Z with Q = g~ [H]|
since both H and Z ~\ H contain copies of C @ =

3. Suslin operation. For any set A, aset T C A< is a tree if it is closed
under initial segments. A tree T is well-founded if -3t € A“ VI e w t|l € T.
Henceforth let A = w<%, and let € be the set of all nonempty well-founded
subtrees of A<%. Identifying Pow(A<%) with C, we view & as a IT} subset of C.
In the following:

o

(1) is the one-term sequence consisting of {;

1€ w;

o,s,T€A; 0,0 € A<V

@, resp. (), is the empty sequence in A, resp. A<Y;

for 6 # 0, last @ = the last term of 6;

¢"o and 90 denote the concatenations of the respective sequences; but
0" = o"(i) and ¥ = 9o); so last ") = last ¥ and last 'z = g;
cecel& e={00:0¢€e}; gg={0: 0 e}

o s,teN;s<tiff VI s(l) < t(l).

o

e}

(¢]

o

(?) Fix G € Gs(C) \ F»(C). Let g: C — Z be continuous with G = g~ *[H]. Then g[G]
is uncountable, as otherwise G = g~ '[g[G]] would be F,. Being an uncountable 3} set,
g[G] contains a copy of C. The same argument works for g with Q = ¢~ '[Z ~ H].
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We use the symbol @ A for the Suslin operation: given sets {Q7 },ea,

é‘czf’:UﬂQf’.

s 0Cs

Note that if a family 7 C Pow(X) is closed under the operation X ~\ A, Q7,
then F is a o-field closed under the Suslin operation; so, if F also contains
a basis of X, then F D 8x.

LEMMA 3. Suppose that X is compact and {Q }sca C Pow(X). If each
A, Q°7, o € A, is clopen, then there exists t € N such that

Ae=UNe.
o s<toCs
Proof. Let Q7 = A, Q° 7. Note that Q° = A, Q7, and for each o,
Qo _ U Qo”i.
€W

Since the tilded sets above are compact and clopen, there exist k, € w such
that if £ > k, and if “¢ € w” is changed to “i < k”, then the equality is
preserved. It follows that t € A/ given by

t(¢) = max{k,: |[o| =L AVI< lo(l) <t()}

works. =

4. Coding. We construct a A} measurable function that is universal
for 8cc. Define U C C by

Ug: {I|Iast0|a 0¢e,

CNA U, Oee,
and then define u: € x C — C by
u(e,z)(i) =1 & = c U
LEMMA 4. u € A3(ExC,C) and {u.}.ce = Scc.
Proof. For the first part it is enough to see that € U? is A}. We have
relUl & 3dCeprfed & YdCep=0cd,
where ¢ is
Vo (0¢e=uac€ Liastg)) N (0 €e = ~Is Vo Cs 00 € d)).
For the second part it is enough to see that {U? }.ce = 8¢ whenever

0 = (7). In fact, this is true for any 6.

(3) \DeclareMathOperator™ {\suslin} {\vphantom{\bigwedge} \mathpalette\souslin\bigwedge}
\def \souslin#1#2{#1\overline{\smash{#2}}}
\suslin {\sigma} Q"{\sigma} ~~ Ao’ QU, A QU.

o
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The C inclusion is clear. To see the D inclusion note first that Ue ¥ — =Ug, v
for all # and 9. Also, for any 0 and any {¢%},ca4, if

e={0l1: 1< |0y ul J00)e,

then

:C\AUG

It follows that {U?} .ce is a o-field closed under the Suslin operation.

We still need to see that {U’}, . contains a basis of C. First, if 6 is
terminal in €, then U?? = I, = @, so A, U7 = @, hence Uf = C. Next,
given any n # 0, let

e=A{0|l: 1< |0} U{0c: |o| #n}.
Now, if |o| # n then 6’0 is terminal in ¢, so U?? = C, and if |o| = n then
00 ¢ ¢, s0 U7 = Iy = In. Altogether this gives A U9 = I, hence
Ul=C~1, =

5. Uniformization
LEMMA 5. There is p € AL(E,P) such that for each e,
p(e) € P and wuc|p(e) is continuous.

Proof. The desired p is obtained by the 33 uniformization theorem ap-
plied to the set @ of all (g,p) € € x P with p € P. for which there exist
i€ wd™ and 5 € N4™ such that V6 ¢ ¢ |last 0] = 7i(#) and

VGGE(Apﬂ a0c) S P~ ITng U ﬂpﬂ (90>
o SSS(Q) 0Cs
Note that u. is continuous on any p € Q. since V8 pN Ug =pN Iz
We will show: (1) Q € 23(€ x P), and (2) Ve Q. # @.
(1) The Conditlons p € P and “V0 ¢ ¢ |last 8] = n(0)” define closed sets
in Ex P and €x wA™". The dlsplayed condition, in turn, defines a II} set in

ExPxwt ./\/'A<w

Its first inclusion gives clearly a TI} set in Px w™". Tts second inclusion gives
a closed set in P x wA™x NA<W, as it says that the compact set p \ I (g) is
contained in the projection of the compact set

{(z,5) eCxN:s<50)A\VYo CsxepNlpe}

(2) Since for any 6 and ¢, the set C. N A, U< has the Baire property
in C., we can choose p € P. such that for any 6 and ¢, the set p N A, U<
is clopen in p. In particular, for any 6 € €, the set pNU? = p~ A, U@
is clopen in p.



24 J. Pawlikowski

To get 7 € wA™", if § ¢ & then let 7(f) = |lastd|, and if § € ¢ then let
n(#) be any n such that
pN Uf =pNI,.

To get 5 € NA™° if @ ¢  then let 5(8) be any element of A, and if 6 € ¢
then let 5(0) be the t of Lemma 3 applied to p and {p N I5(ps)}oeca so that

Apﬂfﬁ( U ﬂpﬂ[ () ™

)oCs

6. Proof of the Theorem. In view of Lemma 2, we just need to get
! hardness from 83} -hardness. Consider the following Al measurable in-
jection from £ x C to C:

g(e,z) = 7(p(e), @),
where p is from Lemma 5. If Q € XL(C), then g[§ x Q] € XL(C) by
Lemma 1(8). So, if (H, Z) is 8Z.-hard, then for some f € 8¢z,

gl€x Q= fH[H].

Hence, since g is injective,

Ex Q=g '[fH]).
Pick € with f = u.. Then

Q = gz '[uz '[H]] = (uege) ™ [H].

But u.g. is continuous because g. is a homeomorphism onto p(e) and u.|p(e)
is continuous.

7. Kechris’s Theorem. Change A to w, A<¥ to w<¥, 8 to B, 3 to
1, Al to A}, and A to |J. So, £ is now the set of all nonempty well-founded
subtrees of w<*, and u is A] measurable.

In Lemma 5, let Q) consist of all p € P. on which u,. is continuous. Then
Q- is comeager in P.. Also, Q is H%, since u.|p is continuous iff

VYn Im Ve € px € I, & ule,x) € I,

and “u(e, z) € I,,” gives a A} (ExCxw) set. To get p, use the uniformization
theorem for TI} sets with “large sections” [I, 36.23] that provides here a
Al measurable uniformization. (The IT} uniformization theorem may fail to
give a Al measurable function.)

Now, if g is as in Section 6 and @ € $1(C), then

glEx QI ={z€C: Ty e Q g(z*,y) = 2} € D{(y[E x C]),
as we have here the projection along Q € 31(C) of the Al(g[€ x C] x C) set
given by the preimage of {(z,2): z € C} via the A} measurable function

gIEXCIx C 3 (2,y) = (9(2",y), 2).



Selivanovski hard sets are hard 25

So, for some €, g[€ x Q] = g[€ x C] NuZt[H], hence € x Q = g~ uz'[H]),
and, as before, Q = (ucg:) "' [H].
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