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Regular spaces of small extent are ω-resolvable
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Abstract. We improve some results of Pavlov and Filatova, concerning a problem
of Malykhin, by showing that every regular space X that satisfies ∆(X) > e(X) is ω-re-
solvable. Here∆(X), the dispersion character ofX, is the smallest size of a non-empty open
set in X, and e(X), the extent of X, is the supremum of the sizes of all closed-and-discrete
subsets of X. In particular, regular Lindelöf spaces of uncountable dispersion character
are ω-resolvable.

We also prove that any regular Lindelöf space X with |X| = ∆(X) = ω1 is even
ω1-resolvable. The question whether regular Lindelöf spaces of uncountable dispersion
character are maximally resolvable remains wide open.

1. Introduction. We start by recalling a few basic definitions and facts
concerning resolvability. A topological space X is said to be λ-resolvable
(λ a cardinal) if X contains λ many mutually disjoint dense subsets. A nat-
ural upper bound on the resolvability of X is

∆(X) = min{|G| : G is non-empty open in X},

called the dispersion character of X. So, X is said to be maximally resolv-
able if it is ∆(X)-resolvable. The expectation is that “nice” spaces should
be maximally resolvable, as supported e.g. by the well-known facts that
compact Hausdorff, or metric, or linearly ordered spaces are all maximally
resolvable.

It is also well-known, however, that there is a countable regular (hence
“nice”) space with no isolated points that is irresolvable, i.e. not even 2-re-
solvable. Since countable spaces are (hereditarily) Lindelöf, this prompted
Malykhin [6] to ask the following natural question: Is every regular Lindelöf
space of uncountable dispersion character (at least 2-)resolvable? He also
noted that the answer to this question is negative if regular is weakened to
Hausdorff.
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Pavlov [7] proved the following very deep result that gave a partial affir-
mative answer to Malykhin’s question: If X is any regular space satisfying
∆(X) > e(X)+ then X is ω-resolvable. (In fact, he only needed the follow-
ing assumption on X that we call π-regularity and that is clearly weaker
than regularity: The regular closed sets in X form a π-network, i.e. every
non-empty open set includes a non-empty regular closed set.)

We recall that the extent e(X) of X is the supremum of the sizes of
all closed-and-discrete subsets of X. Since Lindelöf spaces have countable
extent, it follows that regular Lindelöf spaces of dispersion character > ω1

are ω-resolvable. Thus only the case ∆(X) = ω1 of Malykhin’s problem
remained, and this case was settled by Filatova [2]: Any regular Lindelöf
space X with ∆(X) = ω1 is 2-resolvable. However, her method of proof
did not seem to give even 3-resolvable, not to mention ω-resolvable as in
Pavlov’s result.

Our main result in this paper, Theorem 3.1, improves Pavlov’s above-
mentioned result by showing that the assumption ∆(X) > e(X)+ can be
relaxed to∆(X) > e(X). This, of course, immediately implies that Filatova’s
2-resolvable can also be improved to ω-resolvable. We think moreover that
the proof of our strengthening of Pavlov’s result is significantly simpler than
his original argument, especially in the case when ∆(X) is singular.

We do not know, however, if a regular space X satisfying ∆(X) > e(X)
is always maximally resolvable, or even if regular Lindelöf spaces of uncount-
able dispersion character are maximally resolvable. This problem should be
confronted with our result from [4] stating that any topological space X sat-
isfying ∆(X) > s(X) is maximally resolvable. Here s(X), the spread of X,
is the supremum of the sizes of all (relatively) discrete subsets of X.

Theorem 4.1 in the present paper implies that, for any infinite cardinal κ,
if all regular Lindelöf spaces of cardinality and dispersion character κ+ are
κ-resolvable then all such spaces are actually κ+-resolvable as well. This
then, together with Theorem 3.1, implies that any regular Lindelöf space X
with |X| = ∆(X) = ω1 is even ω1-resolvable, i.e. maximally resolvable. Con-
sidering that after Pavlov and before Filatova this was the unsolved “hard
case” of Malykhin’s problem, for which even 2-resolvability was unknown, it
seems not to be unreasonable to raise the question whether regular Lindelöf
spaces of uncountable dispersion character are maximally resolvable.

2. Preliminary results. In this section we have collected some known
and some new results that will play an essential role in the proof of our main
results, Theorems 3.1 and 4.1.

First we fix a couple of important pieces of notation: For a topological
space X, we denote by τ+(X) the collection of all non-empty open sets in
X and by RC+(X) the family of all non-empty regular closed subsets of X.
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As we have noted above, if X is regular then RC+(X) is a π-network in X.
We shall make very frequent use of the following simple but basic result.

Theorem 2.1 (El’kin, [1]). If X is a topological space, κ is any cardinal,
and the family

Rκ(X) = {Z ⊂ X : Z is κ-resolvable}
is a π-network in X then X ∈ Rκ(X), i.e. X is κ-resolvable.

Since for every G ∈ τ+(X) there is H ∈ τ+(X) such that H ⊂ G and
|H| = ∆(H), and moreover thenR ∈ RC+(X) andR ⊂ H imply |R| = ∆(R)
(= |H|), we obtain the following simple but useful corollary.

Corollary 2.2. Let C be a regular closed hereditary class of regular
spaces, i.e. such that X ∈ C implies RC+(X) ⊂ C. If every space X ∈ C
with |X| = ∆(X) has a κ-resolvable subspace then every member of C is
κ-resolvable.

In proving that certain spaces are ω-resolvable, like for Theorem 3.1, the
following result comes naturally handy.

Theorem 2.3 (Illanes, [3]). If a topological space X is k-resolvable for
each k < ω then X is ω-resolvable.

Now we turn to formulating and proving some new results that will be
needed in our reasonings. They may turn out to be of independent interest.

We begin with some, rather standard, notation: If A is any subset of a
topological space then A′ denotes the derived set of A, that is, the set of all
accumulation points of A, while we use A◦ to denote the set of all complete
accumulation points of A.

The following quite technical result is new, although it owes its basic
idea to Filatova’s work [2].

Lemma 2.4. Let X be a regular space, κ be a regular cardinal, and con-
sider the family

(2.1) D = {D ∈ [X]κ : D′ = D◦, D ∩D◦ = ∅, and ∀E ∈ [D]κ (E◦ 6= ∅)}.
If X has a dense subset Y with |Y |≤κ such that for each point y ∈ Y there
is a set D ∈ D with y ∈ D◦, then X is 2-resolvable.

Proof. First, let us fix a κ-type enumeration of Y (with repetitions per-
mitted): Y = {yα : α < κ}. We shall then, by induction on α < κ, define
Dα ∈ D and iα ∈ 2 in such a way that, putting for 0 < α ≤ κ and i < 2,

Eα,i =
⋃
{Dβ : β < α and iβ = i} ∪

⋃
{D◦β : β < α and iβ = 1− i},

for any α ≤ κ we have both

(2.2) Eα,0 ∩ Eα,1 = ∅
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and

(2.3) {yβ : β < α} ⊂ Eα,0 ∩ Eα,1.
To start with, we pick D0 ∈ D with y0 ∈ D◦0 and put i0 = 0. Then

(2.2) and (2.3) are trivially satisfied. Now, assume that 0 < α < κ, and that
{Dβ : β < α} and {iβ : β < α} have been defined and satisfy the inductive
hypotheses (2.2) and (2.3). We distinguish three cases.

First, if
yα ∈ Eα,0 ∩ Eα,1

then we may simply let Dα = D0 and iα = i0 = 0. Clearly, (2.2) and (2.3)
will remain valid for α+ 1.

Next, if
yα /∈ Eα,0 ∪ Eα,1

then, using the regularity of X, we can pick an open neighbourhood U of
yα for which U ∩

⋃
β<αDβ = ∅. Now choose D ∈ D with yα ∈ D◦ and set

Dα = U ∩D and iα = 0. Again, it is easy to check that with these choices,
(2.2) and (2.3) remain valid.

If none of the above two alternatives holds then yα ∈ Eα,0 4 Eα,1, i.e.
there is j ∈ 2 such that yα ∈ Eα,j \Eα,1−j . Suppose e.g. that j = 0; the case
j = 1 can be handled symmetrically.

We may then choose an open neighbourhood U of yα such that U ∩Eα,1
= ∅, and a set D ∈ D with yα ∈ D◦. For every β < α we have |U ∩Dβ| < κ:
Indeed, if iβ = 0 then |U ∩Dβ| = κ would imply

∅ 6= (U ∩Dβ)◦ ⊂ U ∩D◦β ⊂ U ∩ Eα,1,
a contradiction. And if iβ = 1 then we even have U ∩Dβ = ∅.

Consequently, as κ is regular, we have |
⋃
{D ∩Dβ : β < α}| < κ, hence

Dα = U ∩D \
⋃
{Dβ : β < α} ∈ D and yα ∈ D◦α. Let us now put iα = 1.

Then yα ∈ D◦α ⊂ Dα ⊂ Eα+1,1 implies yα ∈ Eα+1,0 ∩ Eα+1,1, hence (2.3)
remains valid for α+ 1.

To show the same for (2.2), note first that D◦β ⊂ Eα,1 for all β < α,

hence Dα ∩D◦β = ∅ for each β < α. Moreover, D◦α ⊂ U implies D◦α ∩Dβ = ∅
for any β < α with iβ = 1, which together with Dα ∩D◦α = ∅ yields

(Eα,0 ∪D◦α) ∩ (Eα,1 ∪Dα) = Eα+1,0 ∩ Eα+1,1 = ∅.
Of course, if j = 1 then we shall have iα = 0.

After having completed the inductive construction, it is trivial to con-
clude that Eκ,0 and Eκ,1 are two disjoint dense subsets of X.

We shall use Lemma 2.4 in the proof of our main result, in the induction
step of a procedure where we move from n-resolvability to (n+1)-resolvability.

In our subsequent preliminary result, rather than the extent e(X), its
“hat” version ê(X) will appear. We recall that ê(X) is defined as the smallest
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cardinal λ such that X has no closed-and-discrete subset of size λ. Thus we
clearly have ê(X) ≤ e(X)+; moreover, ê(X) ≤ κ is simply equivalent to the
statement that for every set A ∈ [X]κ we have A′ 6= ∅. We start by defining
an auxiliary concept that will be needed in this result.

Definition 2.5. Let X be a topological space and κ a cardinal. A subset
H ⊂ X is called κ-approachable in X if there are κ many pairwise disjoint
sets {Xα : α < κ} ⊂ [X]κ such that

∀Y ∈ [Xα]κ (Y ◦ 6= ∅) and H = X◦α

for all α < κ.

The following lemma shows that this definition is not empty.

Lemma 2.6. Assume that κ is a regular cardinal and X is a space for
which ê(X) ≤ κ. Then

(1) A ∈ [X]κ and |A′| < κ imply A◦ 6= ∅;
(2) if A ∈ [X]κ is such that |A◦| < κ and B◦ 6= ∅ for all B ∈ [A]κ then

there is a subset H ⊂ A◦ that is κ-approachable in X.

Proof. (1) Every point x ∈ A′ \A◦ has an open neighbourhood Ux such
that |Ux ∩ A| < κ. Then U =

⋃
{Ux : x ∈ A′ \ A◦} covers A′ \ A◦ and

|A ∩ U | < κ because κ is regular. So we have |A \ U | = κ, and hence
∅ 6= (A \ U)′ = A◦ by κ ≥ ê(X).

(2) We start by fixing κ pairwise disjoint sets {Aα : α < κ} ⊂ [A]κ, and
for any α < β < κ we write

Aα,β =
⋃

α≤ν<β
Aν .

For fixed α < κ the sequence

{A◦α,β : β ∈ κ \ α}
is increasing and hence must stabilize since |A◦| < κ. This means that there
is an ordinal f(α) < κ such that

A◦α,β = A◦α,f(α)

for all β ∈ κ \ f(α). Similarly, the sequence

{A◦α,f(α) : α < κ}
is decreasing and hence it stabilizes: There is an ordinal α∗ < κ such that

A◦α∗,f(α∗) = A◦α,f(α)

whenever α∗ ≤ α < κ. We claim that the set H = A◦α∗,f(α∗) is

κ-approachable in X.
To see this, choose I ∈ [κ \ α∗]κ in such a way that for any α, β ∈ I with

α < β we have f(α) < β. This is possible because κ is regular. Then the
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sets
{Aα,f(α) : α ∈ I} ⊂ [X]κ

are pairwise disjoint and, by definition, for all α ∈ I we have both

∀B ∈ [Aα,f(α)]
κ (B◦ 6= ∅) and A◦α,f(α) = H.

Our next resolvability result uses κ-approachable sets in an essential way.

Theorem 2.7. Assume that X is a space, κ = |X| is a regular cardinal,
and H is a disjoint family of sets κ-approachable in X such that

⋃
H is

dense in X. Then X is κ-resolvable.

Proof. For each H ∈ H let us fix a disjoint family {AH,α : α < κ} ⊂ [X]κ

which witnesses that H is κ-approachable in X, i.e.

∀B ∈ [AH,α]κ (B◦ 6= ∅) and A◦H,α = H

for all α < κ.
Note that if H,K ∈ H and α, β ∈ κ with 〈H,α〉 6= 〈K,β〉 then we

have |AH,α ∩ AK,β| < κ. Indeed, if H = K then AH,α ∩ AK,β = ∅. And if
H 6= K then |AH,α ∩ AK,β| = κ would imply ∅ 6= (AH,α ∩ AK,β)◦ ⊂ H ∩K,
contradicting H ∩K = ∅. This means that the family

A = {AH,α : H ∈ H, α < κ} ⊂ [X]κ

is almost disjoint.
But |H| ≤ |X| = κ implies |A| = κ, and then by the regularity of κ it

follows that A is also essentially disjoint. This means that for every pair
〈H,α〉 there is a set FH,α ∈ [AH,α]<κ such that the collection

{BH,α = AH,α \ FH,α : 〈H,α〉 ∈ H × κ}
is already disjoint. Note also that for each 〈H,α〉 ∈ H × κ we have

B◦H,α = A◦H,α = H.

We claim that for every α < κ the set

Dα =
⋃
{BH,α : H ∈ H}

is dense in X. Indeed, for any U ∈ τ+(X) there is a set H ∈ H with
H ∩ U 6= ∅, so we may pick a point x ∈ H ∩ U . But then x ∈ H = B◦H,α
implies |U ∩BH,α| = κ, so that U ∩Dα 6= ∅. Thus {Dα : α < κ} is a family
of κ many pairwise disjoint dense sets in X.

From Lemma 2.6 and Theorem 2.7 we may immediately deduce the fol-
lowing corollary that will be needed in the proof of Theorem 3.1. Maybe
ironically, it does not even mention κ-approachable sets, but its proof does.

Corollary 2.8. Assume that κ is a regular cardinal and X is a space
for which

ê(X) ≤ |X| = κ.
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If the family

A′ = {A′ : A ∈ [X]κ and |A′| < κ}
is a π-network in X then X is κ-resolvable.

Proof. By Lemma 2.6 every member A′ of A′ includes a set that is
κ-approachable in X, hence if A′ is a π-network in X then so is the family
G of all the sets that are κ-approachable in X. But then the union of any
maximal disjoint subfamily H ⊂ G is clearly dense in X, hence all the
assumptions of Theorem 2.7 are satisfied.

We now turn to another circle of preliminary results that will be used
in the proof of our main Theorem 3.1. Again, we have to start with some
definitions.

Definition 2.9. If X is a topological space, Y ⊂ X, and κ is an infinite
cardinal, then we call

Y
<κ

=
⋃
{S : S ∈ [Y ]<κ}

the <κ-closure of Y in X. We say that Y is <κ-closed in X if Y = Y
<κ

.
If κ = µ+ then instead of <µ+-closure (resp. <µ+-closed) we simply say
µ-closure (resp. µ-closed).

Definition 2.10. A chain decomposition of length β (for some ordinal β)
of a set X is an increasing and continuous sequence s = 〈Xα : α < β〉 such
that X =

⋃
{Xα : α < β}. (Continuity means that Xδ =

⋃
{Xα : α < δ} for

any limit ordinal δ < β. Since we also consider 0 a limit ordinal, this implies
X0 = ∅.)

Clearly, if s = 〈Xα : α < β〉 is a chain decomposition of X and Y ⊂ X
then s�Y = 〈Y ∩Xα : α < β〉 is a chain decomposition of Y . Moreover, if
C ⊂ β is a cub (closed and unbounded) subset of β and C = {γi : i < δ} is
the increasing enumeration of C then s[C] = 〈Xγi : i < δ〉 is again a chain
decomposition of X.

Lemma 2.11. Assume that κ = cf(κ) ≤ λ are infinite cardinals and
X is a topological space with |X| = λ. Then X has a chain decomposition
s = 〈Xα : α < cf(λ)〉 such that {Xα : α < cf(λ)} ⊂ [X]<λ, moreover,

(C1) Xα ∩X \Xα
<κ ⊂ Xα+1 \Xα

<κ
for each α < cf(λ).

If, in addition, X is π-regular and not cf(λ)-resolvable then there are a cub
set C ⊂ cf(λ) and a regular closed set Y ∈ RC+(X) such that we also have

(C2) Y \Xα is <κ-closed for each α ∈ C.

Hence Y has a chain-decomposition {Yα : α < cf(λ)} ⊂ [Y ]<λ such that

(2.4) Y \ Yα is <κ-closed for all α < κ.
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Proof. Let us consider first every pair 〈x, S〉 such that x /∈ S but x∈S<κ,
and assign to 〈x, S〉 a set A(x, S) ∈ [S]<κ with x ∈ A(x, S). Moreover, choose
a chain decomposition {Zα : α < cf(λ)} ⊂ [X]<λ of X in an arbitrary man-
ner. Then we define the sequence 〈Xα : α < cf(λ)〉 by transfinite recursion
on α as follows:

(i) X0 = ∅;
(ii) Xα =

⋃
{Xβ : β < α} if α > 0 is limit;

(iii) Xα+1 = Xα ∪ Zα ∪
⋃
{A(x,X \Xα) : x ∈ Xα ∩X \Xα

<κ}.
Since κ ≤ λ is regular, we can show by an easy transfinite induction that
|Xα| < λ for all α < cf(λ), moreover condition (C1) obviously follows from
case (iii) of our definition. This proves the first half of the lemma.

Now assume, in addition, that X is not cf(λ)-resolvable. For each A ⊂
cf(λ) let us set

RA =
⋃
α∈A

(Xα+1 \Xα).

If RA were dense in X for all A ∈ [cf(λ)]cf(λ), clearly X would be cf(λ)-
resolvable, hence there is a cofinal A ⊂ cf(λ) and an open set U ∈ τ+(X)
with U ∩RA = ∅.

We claim that then for every closed set F ⊂ U and for every α ∈ A the set

F \Xα is<κ-closed. Indeed, assume on the contrary that x ∈ F \Xα
<κ∩Xα.

Then, by (C1), there is a set S ∈ [Xα+1 \Xα]<κ with x ∈ S. Since x ∈ F ⊂ U ,
this implies U ∩ S 6= ∅, which contradicts U ∩ RA = ∅, as α ∈ A and
S ⊂ Xα+1 \Xα.

Now, if X is also π-regular then there is a regular closed set Y ∈ RC+(X)
with Y ⊂ U . Let us consider

C = {α < cf(λ) : Y \Xα is <κ-closed}.
Then C is clearly closed in cf(λ) and A ⊂ C by the above, hence C is cub
in cf(λ). Consequently, s[C]�Y is a chain decomposition of Y that satisfies
(2.4).

We have one more preparatory result involving chain decompositions
that will be used in the proof of our main theorem.

Lemma 2.12. Assume that Y is a π-regular space that is not ω-re-
solvable. Then for every chain decomposition {Yα : α < µ} of Y there
are T ∈ RC+(Y ) and a dense subset Z ⊂ T such that

(2.5) Yα ∩ Z ⊂ Yα for all α < µ.

Proof. By the continuity of chain decompositions, for each point x ∈ Y
there is a unique ordinal α(x) < µ such that

x ∈ Yα(x)+1 \ Yα(x).
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For any subset A ⊂ Y let us define

A∗ = {x ∈ A : x /∈ A ∩ Yα(x)}.
We claim that A∗ is dense in A for every A ⊂ Y .

Indeed, if U is open and U ∩ A 6= ∅ then pick a ∈ U ∩ A such that
α(a) is minimal. Then a ∈ A∗ because by the minimality of α(a) we have
U ∩ Yα(a) = ∅.

Consider now the recursive formula

Dj =
(
Y \

⋃
i<j

Di

)∗
.

The pairwise disjoint sets {Dj : j < ω} cannot be all dense in Y because Y
is not ω-resolvable, but D0 = Y ∗ is dense. So there is m ∈ ω such that Dm

is dense but Dm+1 is not, hence U ∩Dm+1 = ∅ for some U ∈ τ+(X). Now,
pick T ∈ RC+(Y ) with T ⊂ U . Then U ∩Dm+1 = U ∩ (Y \

⋃
i≤mDi)

∗ = ∅
implies

(2.6) T ⊂ U ⊂
⋃
j≤m

Dj ,

and clearly Z = T ∩Dm is dense in T .

Now it remains to show that

(2.7) Z ∩ Yα ⊂ Yα for all α < µ.

To see this, fix α < µ and consider first any point x ∈ T . Then x ∈ Dj

for some j ≤ m by (2.6). This means that x ∈ (Y \
⋃
i<j Di)

∗, i.e. x /∈
(Y \

⋃
i<j Di) ∩ Yα(x). But Dm ⊂ Y \

⋃
i<j Di, hence x /∈ Dm ∩ Yα(x).

On the other hand, for every x ∈ Z ∩ Yα (⊂T ) we have x ∈ Dm ∩ Yα
because Z ⊂ Dm. This together with x /∈ Dm ∩ Yα(x) implies α(x) < α
because the sets Yβ are increasing. So, by the definition of α(x) we have
x ∈ Yα(x)+1 ⊂ Yα, and this means that Z ∩ Yα ⊂ Yα.

Our next preliminary results will be used in the proof of Theorem 4.1,
a stepping-up result concerning resolvability of certain spaces.

Lemma 2.13. Assume that κ is an infinite cardinal, X a topological
space, and we have a disjoint subfamily H ⊂ Rκ(X) such that, for each
U ∈ τ+(X),

|{H ∈ H : H ∩ U 6= ∅}| = κ+.

Then X is κ+-resolvable.

Proof. Obviously, |H| = κ+, so we can fix a one-one enumeration H =
{Hξ : ξ < κ+} of H. Every Hξ is κ-resolvable, and so has a partition

(2.8) Hξ =
⋃
{H i

ξ : i < ξ}
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into dense subsets. Then for every i < κ+ the set

(2.9) Di =
⋃
{H i

ξ : i < ξ < κ+}

is dense in X. Indeed, for each U ∈ τ+(X) by our assumption there is ξ > i
with U ∩Hξ 6= ∅. But H i

ξ is dense in Hξ, so we have U ∩Di ⊃ U ∩H i
ξ 6= ∅

as well. As the dense sets {Di : i < κ+} are pairwise disjoint, our proof is
complete.

To formulate the following corollary of Lemma 2.13, we need one more
definition.

Definition 2.14. Let X be any topological space and κ an infinite car-
dinal. A (necessarily closed) subset F ⊂ X is called κ-nice in X if there is
a disjoint family {Aα : α < κ+} ⊂ Rκ(X) such that

F =
⋂
α<κ+

⋃
{Aβ : β ∈ κ+ \ α}.

Following the terminology of [5], we call a space λ-compact if every subset
of it of cardinality λ has a complete accumulation point.

Corollary 2.15. Let κ be an infinite cardinal and X be a κ+-compact
space. If there is a disjoint family F of both κ-resolvable and κ-nice subsets
of X such that |F| ≤ κ+ and

⋃
F is dense in X, then X has a κ+-resolvable

open subset.

Proof. If for every U ∈ τ+(X) we have |{F ∈ F : F ∩ U 6= ∅}| = κ+

then X itself is κ+-resolvable by Lemma 2.13. So assume that U ∈ τ+(X)
is such that F∗ = {F ∈ F : U ∩ F 6= ∅} has cardinality ≤ κ.

For each F ∈ F∗ let us fix a disjoint family

{AFα : α < κ+} ⊂ Rκ(X)

witnessing that F is nice, as required in Definition 2.14. We claim that for
every pair {F,G} ∈ [F∗]2 there is an α = α(F,G) < κ+ such that⋃

{AFβ : β ∈ κ+ \ α} ∩
⋃
{AGβ : β ∈ κ+ \ α} = ∅.

Indeed, otherwise we could select a set I ∈ [κ+]κ
+

and distinct points {xα :
α ∈ I} such that

xα ∈
⋃
{AFβ : β ∈ κ+ \ α} ∩

⋃
{AGβ : β ∈ κ+ \ α} 6= ∅

whenever α ∈ I. But then {xα : α ∈ I}◦ 6= ∅ would be a subset of⋂
α∈I

⋃
{AFβ : β ∈ κ+ \ α} ∩

⋂
α∈I

⋃
{AGβ : β ∈ κ+ \ α} = F ∩G,

contradicting F ∩G = ∅.
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Now, |F∗| ≤ κ implies that there is an ordinal γ < κ+ such that
α(F,G) < γ for all pairs {F,G} ∈ [F∗]2. Consequently, the elements of
the family

J = {AFα : F ∈ F∗ and α ∈ κ+ \ γ} ⊂ Rκ(X)

are pairwise disjoint and, by our assumptions, both
⋃
F∗ ∩U and

⋃
J ∩U

are dense in U .

Thus, for every V ∈ τ+(U) there is F ∈ F∗ for which V ∩ F 6= ∅. But
this clearly implies that |{α ∈ κ+ \ γ : V ∩AFα 6= ∅}| = κ+, hence U and the
family

H = J �U = {U ∩AFα : F ∈ F∗ and α ∈ κ+ \ γ}

satisfy the assumptions of Lemma 2.13, consequently U is κ+-resolvable.

3. The main result. We are now ready to formulate and prove our
main result.

Theorem 3.1. Let κ be an uncountable regular cardinal. Then every
regular space X satisfying

∆(X) ≥ κ ≥ ê(X)

is ω-resolvable. Consequently, every regular space X that satisfies ∆(X)
> e(X) is ω-resolvable.

Proof. For convenience, after fixing κ, we denote by C the class of all
regular spaces X that satisfy ∆(X) ≥ κ ≥ ê(X). Clearly, C is regular closed
hereditary, that is, for every X ∈ C we have RC+(X) ⊂ C. By Corollary
2.2, to prove that all members of C are ω-resolvable it suffices to show that
every X ∈ C with |X| = ∆(X) is ω-resolvable.

To achieve this, for any cardinal λ ≥ κ we set

Cλ = {X ∈ C : |X| = ∆(X) = λ},

and then we prove by induction on λ ≥ κ that

(∗λ) every member of Cλ is ω-resolvable.

So let us assume now that λ ≥ κ and (∗µ) holds whenever κ ≤ µ < λ.
Clearly, this implies that every space X ∈ C with |X| < λ is ω-resolvable.

To deduce (∗λ) from this, by Theorem 2.3 it suffices to show that every
member of Cλ is n-resolvable for all n ∈ ω \{0}. This, in turn, will be proved
by a subinduction on n ∈ ω \ {0}. Therefore we assume from here on that
for some n > 0,

(◦n) every member of Cλ is n-resolvable,

and we want to deduce (◦n+1) from this. (Of course, (◦1) holds trivially.)



38 I. Juhász et al.

To prove (◦n+1), we observe first that the class Cλ is also regular closed
hereditary, hence by Corollary 2.2 again, (◦n+1) is implied by the following
seemingly weaker statement:

(◦′n+1) every member of Cλ has an (n+ 1)-resolvable subspace.

Now, the proof of (◦′n+1) branches into two: the initial case λ = κ and
the case λ > κ of the induction on λ. These are handled differently.

Case 1: λ = κ. Consider any X ∈ Cκ and recall that our aim is to show
that X has an (n+ 1)-resolvable subspace. If X is κ-resolvable then we are
done. Otherwise by Corollary 2.8 there is Q ∈ RC+(X) such that

(3.1) |A′| = κ for all A ∈ [Q]κ.

It easily follows from (3.1) that for every Y ∈ [Q]<κ and B ∈ RC+(Q)
(⊂RC+(X)) we have B \ Y ∈ Cκ. Consequently, if Y ∩B is also dense in B
then B is (n+ 1)-resolvable because B \ Y is n-resolvable by (◦n). So from
here on we can assume that

(3.2) every set in [Q]<κ is nowhere dense.

Let us now apply Lemma 2.11 to the space Q, with the choice κ = λ. This
gives us some Y ∈ RC+(Q) and a chain decomposition {Yα : α < κ} ⊂ [Y ]<κ

of Y such that

(3.3) Y \ Yα is <κ-closed for each α < κ.

If Y happens to be ω-resolvable (or just (n + 1)-resolvable) then, of
course, we are done. Otherwise we may apply Lemma 2.12 to the chain
decomposition {Yα : α < κ} of Y to obtain T ∈ RC+(Y ) with a dense
subset Z ⊂ T such that

(3.4) Yα ∩ Z ⊂ Yα for all α < κ.

Write Rα = Yα+1 \ Yα for α < κ. For each x ∈ Y we let α(x) ∈ κ be the
unique ordinal with x ∈ Rα(x). We call a subset E ⊂ Y rare if |E ∩Rα| ≤ 1
for all α < κ. It is immediate from (3.3) and (3.4) that every rare subset E
of Z of size < κ is closed-and-discrete, i.e. satisfies E′ = ∅.

Let us now consider the family

D = {D ∈ [Z]κ : D is discrete and ∀E ∈ [D]<κ (E′ = ∅)}.
The derived set E′ of E above is always meant to be taken in T (or equiva-
lently in X), not in Z. It is obvious from the definition that for every D ∈ D
we have D′ = D◦ and [D]κ ⊂ D.

Claim 3.1.1. For every D∈D we have ∆(D◦)=κ, consequently D◦∈Cκ.

Proof. Assume that G is any open set with G∩D◦ 6= ∅, and pick a point
x ∈ G ∩D◦. By the regularity of the space X there is an open set H such
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that x ∈ H ⊂ H ⊂ G. Then we have |H ∩ D| = κ, as x ∈ D◦, and hence
|(H ∩D)◦| = κ by (3.1). But clearly

(H ∩D)◦ ⊂ H ∩D◦ ⊂ G ∩D◦,
hence |G ∩D◦| = κ and therefore ∆(D◦) = κ. Since D◦ is closed in X, it is
obvious that ê(D◦) ≤ ê(X) ≤ κ, and so D◦ ∈ Cκ.

We note that this proof used the full force of the regularity of our space.

Claim 3.1.2. Assume that V ∈ RC+(T ) and the set S ⊂ V ∩Z is dense
in V . If S is not κ-resolvable then there is some D ∈ D such that D ⊂ S.

Proof. Since every member of τ+(S) is somewhere dense in V and hence
in Q, it follows from (3.2) that ∆(S) = κ = cf(κ) > ω. If S is not κ-resolvable
then [4, Theorem 2.2] implies that S must have a (relatively) discrete subset
J of size κ. Clearly, there is D ∈ [J ]κ that is rare. But then D ∈ D because,
as was pointed out above, E′ = ∅ for all rare sets E of size < κ.

By the (sub)inductive assumption (◦n) we have a partition

T =
⋃
i<n

Zi

of T into n pairwise disjoint dense subsets Zi. Since Z ⊂ T is also dense,
it is not possible that Z ∩ Zi is nowhere dense for all i < n. Thus we can
assume, without loss of generality, that Z ∩Z0 is somewhere dense, say it is
dense in V ∈ RC+(T ).

If there is some W ∈ RC+(V ) for which W ∩ Z ∩ Z0 is κ-resolvable (or
just (n+ 1)-resolvable) then again we are done. Otherwise, by Claim 3.1.2,
for each W ∈ RC+(V ) the set W ∩ Z ∩ Z0 includes a member of D, hence
we may assume that

(3.5) E = {D ∈ D : D ⊂ V ∩ Z ∩ Z0} is a π-network in V .

Now we distinguish two subcases.

Subcase 1: The collection

E0 = {D ∈ E : D◦ ∩ Z ∩ Z0 = ∅}
is a π-network in V . In this case the family F = {D◦ : D ∈ E0} is also a
π-network in V because V is π-regular, hence by definition F is a π-network
in V \ (Z ∩ Z0) as well. But every D◦ ∈ F is n-resolvable by Claim 3.1.1
and (◦n), hence so is V \ (Z ∩ Z0) by Theorem 2.1. This, however, implies
that V is (n+ 1)-resolvable because V ∩ Z ∩ Z0 is also dense in V .

Subcase 2: E0 is not a π-network in V , i.e. there is U ∈ RC+(V ) such
that if D ∈ D and D ⊂ U ∩Z ∩Z0 then D◦ ∩U ∩Z ∩Z0 6= ∅. Observe that

E1 = {D ∈ D : D ⊂ U ∩ Z ∩ Z0} = {D ∈ E : D ⊂ U}
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is a π-network in U ∩ Z ∩ Z0. Therefore, the set

S = (U ∩ Z ∩ Z0) ∩
⋃
{D◦ : D ∈ E1}

is dense in U ∩ Z ∩ Z0.
Now, it is easy to check that then the space U∩Z∩Z0, the cardinal κ, the

family E1, and the dense subset S of U ∩Z ∩Z0 satisfy all the assumptions
of Lemma 2.4, hence U ∩ Z ∩ Z0, and thus U ∩ Z0 as well, is 2-resolvable.
But U \ Z0 is clearly (n− 1)-resolvable, and so it follows that U is (n+ 1)-
resolvable. This completes the proof of (◦′n+1) in the case λ = κ.

Case 2: λ > κ. Recall that our aim is to show that every space X ∈ Cλ
has an (n+1)-resolvable subspace. Assume first that there are B ∈ RC+(X)
and a dense subset A of B with |A| < λ such that B \ A is κ-closed. Then
∆(B \A) = λ because |A| < λ, and ê(B \A) ≤ κ because B \A is κ-closed,
consequently B\A ∈ Cλ. So the (sub)inductive assumption (◦n) implies that
B \A is n-resolvable and hence B is (n+ 1)-resolvable.

Thus we may assume from here on that

(3.6) if A ∈ [X]<λ and X \A is κ-closed then A is nowhere dense.

Let us now apply Lemma 2.11 to the space X and the cardinals λ and κ+,
which is possible because λ ≥ κ+. This way we obtain Y ∈ RC+(X) with a
chain decomposition

{Yα : α < cf(λ)} ⊂ [Y ]<λ

of length cf(λ) such that for each α < cf(λ),

(3.7) Y \ Yα is κ-closed for each α < λ.

Note that then each Yα is nowhere dense by (3.6).
For any point x ∈ Y we again define the ordinal α(x) < cf(λ) by the

formula x ∈ Yα(x)+1 \Yα(x) and call a set E ⊂ Y rare if |E∩ (Yα+1 \Yα)| ≤ 1
for all α < cf(λ).

If Y is ω-resolvable then we are done. Otherwise we may apply Lemma
2.12 to obtain T ∈ RC+(Y ) with a dense subset D ⊂ T such that

(3.8) Yα ∩D ⊂ Yα for all α < cf(λ).

We claim that D has no rare subset of cardinality κ. Indeed, for any rare
set E ∈ [D]κ we would have E′ = ∅, contradicting ê(X) ≤ κ.

To see this, we pick any point x ∈ Y . Then x /∈ D ∩ Yα(x) ⊂ Yα(x) by

(3.8), moreover x /∈ E \ Yα(x)+1 because Y \Yα(x)+1 is κ-closed by (3.7). But
|E ∩ (Yα(x)+1 \ Yα(x))| ≤ 1, hence clearly x /∈ E′.

Consequently, if we got this far, i.e. no (n+1)-resolvable subspace has been
found yet, we must have cf(λ) < κ. Indeed, since each Yα is nowhere dense
but D is not, there are cofinally many α < cf(λ) with D ∩ (Yα+1 \ Yα) 6= ∅,
hence cf(λ) ≥ κ would imply the existence of a rare subset of D of size κ.
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Let us now put Tα = T ∩ Yα and Zα = D ∩ Tα+1 \ Tα for α < cf(λ).
Then Zα ⊂ Tα+1 \ Tα by (3.8) and Zα is κ-closed, being the intersection of
a closed set and a κ-closed set. This clearly implies ê(Zα) ≤ κ.

Moreover,

Z =
⋃

α<cf(λ)

Zα ⊂ T

is dense in T because D ⊂ Z. We also have ê(Z) ≤ κ because ê(Zα) ≤ κ for
each α < cf(λ) and cf(λ) < κ = cf(κ).

The following observation will be crucial in the rest of our proof.

Claim 3.1.3. Every set H ∈ [Z]≤κ is nowhere dense.

Proof. Let us fix H ∈ [Z]≤κ and pick α < cf(λ). Then we have H ∩ Tα ⊂
D ∩ Tα ⊂ Tα by (3.8) and H \ Tα+1 ⊂ T \ Tα+1 by (3.7). Moreover,

H ∩ (Tα+1 \ Tα) ⊂ Zα ⊂ Tα+1 \ Tα
because Zα ⊂ Tα+1 \ Tα is κ-closed, hence

H ∩ (Tα+1 \ Tα) = H ∩ (Tα+1 \ Tα).

This then implies that {H ∩ (Tα+1 \ Tα) : α < cf(λ)} is a partition of H
into relatively clopen subsets of size < λ. Consequently, for all U ∈ τ+(H)
we have ∆(U) < λ, while for every W ∈ τ+(X) we have ∆(W ) = λ. But
this implies that Int(H) = ∅, i.e. H (equivalently H) is nowhere dense.

If there are an α < cf(λ) and an R ∈ RC+(Zα) with ∆(R) ≥ κ (≥ ê(R))
then, as R ∈ C and |R| < λ, our inductive hypothesis implies that R is
ω-resolvable, hence we are done.

Consequently, we may assume that

Pα = {U ∈ τ+(Zα) : |U | < κ}
is a π-base of Zα for each α < cf(λ). For any α < cf(λ) let Eα be a maximal
disjoint subfamily of Pα. It then follows that Eα =

⋃
Eα is a dense open

subset of Zα, consequently

E =
⋃

α<cf(λ)

Eα

is dense in Z and hence in T .
Let us now put Fα = Zα \ Eα for all α < cf(λ), and

F =
⋃

α<cf(λ)

Fα.

Since Fα is closed in Zα, we have ê(Fα) ≤ ê(Zα) ≤ κ and so, by cf(λ) < κ,

(3.9) ê(F ) ≤ κ
as well.
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We claim that F is also dense in Z. Assume on the contrary that F ∩ V
= ∅ for some V ∈ RC+(Z), i.e. V ⊂ E. Then V ∩ Zα ⊂ Eα for each
α < cf(λ), hence Uα = {U ∩ (V ∩ Zα) : U ∈ Eα} yields a partition of
V ∩ Zα into (relatively) clopen subsets of V ∩ Zα. But V ∩ Zα is closed in
Zα, and consequently ê(Zα) ≤ κ implies |Uα| < κ. But then we also have
|V ∩ Zα| < κ, because |U | < κ for each U ∈ Uα and κ is a regular cardinal.
This, in turn, implies |V ∩Z| < κ because cf(λ) < κ. But V ∩Z is somewhere
dense, and this contradicts Claim 3.1.3. So F is indeed dense in Z.

As F is dense in Z, applying Claim 3.1.3 again we conclude that

(3.10) λ ≥ ∆(F ) > κ.

Putting (3.9) and (3.10) together, our inductive hypotheses, including (◦n),
imply that F is n-resolvable, hence Z is (n+1)-resolvable because E is dense
in Z and E ∩ F = ∅. Thus (◦′n+1) is verified and the proof is complete.

Let us now make a few comments on the assumptions of our main The-
orem 3.1. Although the uncountability of κ was used in our proof when we
referred to [4, Theorem 2.2], Theorem 3.1 is valid for κ = ω as well. Indeed,
to see this we note that ê(X) = ω just means that X is countably compact,
and Pytkeev [8] proved that crowded countably compact regular spaces are
even ω1-resolvable.

The question whether the assumption of the regularity of κ is essential is
more interesting and we do not know the answer. We only have the following
partial positive result in the case when κ is a singular cardinal of countable
cofinality.

Theorem 3.2. Let κ be a singular cardinal of countable cofinality. Then
every regular space X satisfying

∆(X) ≥ κ ≥ ê(X)

is 2-resolvable.

Proof. Using Theorems 3.1 and 2.1 it clearly suffices to show that any
regular space X with

|X| = ∆(X) = ê(X) = κ

has a 2-resolvable subspace.
If there is R ∈ RC+(X) with e(R) < κ then R is ω-resolvable by Theorem

3.1, hence we may assume that ê(R) = κ for all R ∈ RC+(X). Also, if some
G ∈ τ+(X) has a dense subset Y of cardinality < κ then ∆(G) = ∆(X) = κ
implies that G \ Y is also dense in G, hence G is 2-resolvable. Thus we may
also assume that every set Y ∈ [X]<κ is nowhere dense in X.

Since cf(κ) = ω, we can fix a strictly increasing sequence of cardinals
〈κn : n < ω〉 with κ =

∑
{κn : n < ω}. Then we may choose a sequence

of sets {Yn : n < ω} ⊂ [X]<κ with |Yn| = κn and
⋃
n∈ω Yn = X. Each
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Yn is nowhere dense, hence by a straightforward induction we may define a
sequence {Un : n < ω} ⊂ τ+(X) such that Un+1 ( Un for all n < ω, and
moreover

⋂
{Un : n < ω} = ∅.

Then Rn = Un \ Int(Un+1) ∈ RC+(X), and {R2n : n < ω} is clearly
a discrete collection in X. But ê(R2n) = κ implies the existence of a set
Dn ∈ [R2n]κn that is closed discrete in R2n and hence in X. Consequently,

D =
⋃
{Dn : n < ω} ∈ [X]κ

is also closed discrete in X, contradicting ê(X) = κ and completing the
proof.

4. Stepping-up resolvability. Let κ be an infinite cardinal and denote
by Lκ the class of all regular spaces X that are κ+-compact and satisfy
|X| = ∆(X) = κ+. (We recall that the κ+-compactness of X means that

A◦ 6= ∅ for each A ∈ [X]κ
+

.) Our aim is then to prove the following stepping-
up result.

Theorem 4.1. If every member of Lκ is κ-resolvable then actually every
member of Lκ is κ+-resolvable.

We need the following lemma.

Lemma 4.2. Assume that X ∈ Lκ has no κ+-approachable subset. Then

(i) for any A ∈ [X]κ
+

we have A◦ ∈ Lκ;
(ii) there are κ+ many pairwise disjoint sets of the form A◦ with

A ∈ [X]κ
+

.

Proof. (i) It is immediate from Lemma 2.6(2), applied to κ+ instead

of κ, that for any A ∈ [X]κ
+

we have |A◦| = κ+. Also, as A◦ is closed
in X, it is κ+-compact. So, to prove A◦ ∈ Lκ it only remains to show that
∆(A◦) = κ+.

To see this, assume that U is open with U ∩ A◦ 6= ∅, say x ∈ U ∩ A◦.
By the regularity of X the point x has an open neighbourhood V such that
V ⊂ U . Then x ∈ A◦ implies |V ∩A| = κ+, hence |(V ∩A)◦| = κ+. This, in
turn, implies |U ∩A◦| = κ+ because (V ∩A)◦ ⊂ V ∩A◦ ⊂ U ∩A◦.

(ii) Let us note first of all that if we have A,B ∈ [X]κ
+

with A◦ \B◦ 6= ∅
then there is a set C ∈ [A]κ

+
such that C◦ ∩B◦ = ∅. Indeed, if x ∈ A◦ \B◦

and V is an open neighbourhood of x with |V ∩ B| ≤ κ then the choice
C = V ∩A clearly works.

Now we distinguish two cases.

Case 1: There is a disjoint family {Xξ : ξ < κ+} ⊂ [X]κ
+

such that
the increasing κ+-sequence {Y ◦ξ : 0 < ξ < κ+}, where Yξ =

⋃
η<ξXη, does

not stabilize. This means that the set I = {ξ < κ+ : Y ◦ξ+1 \ Y ◦ξ 6= ∅}
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has cardinality κ+. By our remark above, for each ξ ∈ I there is a set
Cξ ∈ [Yξ+1]

κ+ such that C◦ξ ∩ Y ◦ξ = ∅. But this means that the members of
the family {C◦ξ : ξ ∈ I} are pairwise disjoint, and we are done.

Case 2: For every disjoint family {Xξ : ξ < κ+} ⊂ [X]κ
+

the sequence
{Y ◦ξ : ξ < κ+}, as defined above, does stabilize. Let us then fix a disjoint

family {Xξ : ξ < κ+} ⊂ [X]κ
+

, and for any ξ < η < κ+ let us put Yξ,η =⋃
{Xi : ξ ≤ i < η}. But now for each fixed ξ < κ+ the sequence

{Y ◦ξ,η : ξ < η < κ+}
stabilizes, i.e. there is an η(ξ) < κ+ such that

Y ◦ξ,ζ = Y ◦ξ,η(ξ) = Fξ whenever η(ξ) ≤ ζ < κ+.

The sequence {Fξ : ξ < κ+} is clearly decreasing and we claim that it
cannot stabilize. Indeed, assume on the contrary that there is some ξ0 < κ+

such that Fξ = Fξ0 for all ξ0 < ξ < κ+. We may then select a set I in

[κ+ \ ξ0]κ
+

such that η(ξ) < ζ whenever {ξ, ζ} ∈ [I]2 and ξ < ζ. But then

the disjoint collection {Yξ,η(ξ) : ξ ∈ I} ⊂ [X]κ
+

would witness that the set
Fξ0 is κ+-approachable in X, contradicting our assumption.

Consequently, the set J = {ξ < κ+ : Fξ \ Fξ+1 6= ∅} has cardinality κ+

and by our introductory remark for each ξ ∈ J there is a set Cξ ∈ [Yξ,η(ξ)]
κ+

such that C◦ξ ∩ Fξ+1 = ∅. But we also have C◦ξ ⊂ Fξ for each ξ ∈ J , so the
sets {C◦ξ : ξ ∈ J} are pairwise disjoint, completing the proof of (ii).

Proof of Theorem 4.1. Let us assume, to begin with, that every member
of Lκ is κ-resolvable. Our aim is to show that then every member of Lκ
is κ+-resolvable. Since Lκ is regular closed hereditary, by Corollary 2.2 it
suffices to prove that every member of Lκ has a κ+-resolvable subspace.

Now, ifX ∈ Lκ is such that its κ+-approachable subsets form a π-network
in X then Theorem 2.7 implies that X is κ+-resolvable. Therefore, it will
suffice to show that any space X ∈ Lκ that has no κ+-approachable subset
contains a κ+-resolvable subspace.

To see this, we may apply Lemma 4.2 to obtain a family

{Cα : α < κ+} ⊂ [X]κ
+

such that the sets Aα = C◦α are pairwise disjoint. Since each Aα ∈ Lκ is
κ-resolvable by our assumption, it follows that the closed set

F =
⋂
α<κ+

⋃
{Aβ : β ∈ κ+ \ α}

is κ-nice in the sense of Definition 2.14.
We claim that F ∈ Lκ also holds, and this will follow if we can show

that ∆(F ) = κ+. So let U be open with U ∩ F 6= ∅, and pick x ∈ U ∩ F .
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By the regularity of X the point x has an open neighbourhood V such that
V ⊂ U . Clearly,

I = {α : V ∩Aα 6= ∅} ∈ [κ+]κ
+
.

Let us pick for each α ∈ I a point xα ∈ V ∩ Aα and consider the set
B = {xα : α ∈ I}. Then B ∈ [X]κ

+
and B◦ ⊂ V ∩ F ⊂ U ∩ F , hence

|U ∩ F | = κ+. So we indeed have F ∈ Lκ, and therefore F is both κ-nice
and κ-resolvable.

This argument can also be applied to any regular closed subset R in
RC+(X) to obtain a subset of R that is both κ-nice and κ-resolvable. Thus
we have concluded that the sets that are both κ-nice and κ-resolvable form
a π-network in X. So if F is any maximal disjoint collection of such subsets
of X then Corollary 2.15 can be applied to X and F to conclude that X
has a κ+-resolvable (open) subspace, and thus the proof is complete.

Since Lindelöf spaces are trivially ω1-compact, from Theorem 4.1 and
the case κ = ω1 of Theorem 3.1 we immediately obtain the following result.

Corollary 4.3. Every ω1-compact (hence every Lindelöf ) regular space
X with |X| = ∆(X) = ω1 is ω1-resolvable.

We have been unable to answer the natural question whether, in Corol-
lary 4.3, ω1-compactness can be relaxed to having countable extent.
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