A weakly chainable uniquely arcwise connected continuum without the fixed point property

by

Mirosław Sobolewski (Warszawa)

Abstract. A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping $f : X \to X$ has a fixed point. We give a counterexample.

1. Introduction. A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. A space X has the fixed point property (briefly: f.p.p.) if every mapping $f: X \to X$ has a fixed point, i.e., a point $x \in X$ such that f(x) = x. Two papers [Mi1, Mi2] of P. Minc throw light on the relation of weak chainability and fixed points in continua. In the first he shows that a non-separating plane continuum X such that every indecomposable continuum in the boundary of X is contained in a weakly chainable continuum has the fixed point property. In particular a planar non-separating continuum with weakly chainable boundary has the f.p.p. In the second he constructs a treelike (i.e., an inverse limit of trees) weakly chainable continuum without the f.p.p. (the first treelike continuum without the f.p.p. was constructed by D. P. Bellamy [Be1]).

There are many papers about fixed points in uniquely connected continua. In particular K. Borsuk [Bo] proved that each dendroid (arcwise connected tree-like continuum) has the f.p.p. He presented there the *pursuit method*, which became a standard tool in the fixed point theory of uniquely arcwise connected spaces. C. Hagopian has shown that planar uniquely arc-

²⁰¹⁰ Mathematics Subject Classification: Primary 54F15; Secondary 37C25.

Key words and phrases: continuum, arcwise connected, chainable, fixed point.

M. Sobolewski

wise connected continua have the f.p.p., and L. Mohler [Mo] has proved that any homeomorphism of a uniquely arcwise connected continum has a fixed point. On the other hand G. S. Young [Yo] gave an example of a uniquely arcwise connected continuum without the f.p.p. consisting of a 'circle' made of two $\sin 1/x$ -curves and a triod ending with a spiral approximating the 'circle'. Some vagueness in Young's description was removed by C. Hagopian and R. Mańka [HaMa]. They have shown that the fixed point property of the continuum depends on quite subtle details of the spiral.

In 1995 D. P. Bellamy [Be2] asked whether every weakly chainable uniquely arcwise connected continuum has the f.p.p. Here we will give a counterexample.

2. Description of the continuum. Let $S_0 \subset \mathbb{R}^2$ be the $\sin 1/x$ -curve represented as the union $S_0 = L \cup I$ of the ray $L = \left\{ \left(x, \sin \frac{3\pi}{2x}\right) : x \in (0,1] \right\}$ and the limit segment $I = \left\{ (0, y) : y \in [-1, 1] \right\}$. Let us denote by r the symmetry of \mathbb{R}^2 about the line x = 1. Set R = r(L) and I' = r(I) and let S denote the double $\sin 1/x$ -curve $S_0 \cup R \cup I'$. We distinguish in S the sequence of right maxima $R^i = \left(2 - \frac{3}{4i+1}, 1\right)$ for $i = 1, 2, \ldots$, the sequence of left maxima $L^i = \left(\frac{3}{4i+1}, 1\right)$ for $i = 1, 2, \ldots$ and the central minimum $Q_0 = (1, -1)$. Moreover $B_0 = (2, -1)$ is the lower endpoint of I', and $D_0 = (0, -1)$ is the lower endpoint of I. Let W be the countable set with two limit points defined by

$$W = \{1 + 1/n : n = 1, 2, \dots\} \cup \{1\} \cup \{-1 - 1/n : n = 1, 2, \dots\} \cup \{-1\}.$$

Our example is a quotient space of $S \times W$. For clarity we proceed in two stages. First we clamp together all right limit segments $I' \times \{w\}$ for $w \in W$, all left limit segments $I \times \{w\}$ for $w \in W$, i.e., we consider the quotient space $\mathcal{C} = (S \times W)/\mathcal{E}_0$, where \mathcal{E}_0 is the equivalence relation generated by $(y, w) \sim (y, w')$ for $y \in I$ and $w, w' \in W$, and $(y, w) \sim (y, w')$ for $y \in I'$ and $w, w' \in W$. In the following we will use the same notation for points in a quotient space and for their representatives. The space \mathcal{C} can be embedded in the plane as shown in Fig. 1.

Next, for i, j = 1, 2, ... let

$$\begin{split} R^{i}_{j} &= (R^{i}, 1+1/j) \in S \times W, \\ \tilde{R}^{i}_{j} &= (R^{i}, -1-1/j) \in S \times W, \\ L^{i}_{j} &= (L^{i}, 1+1/j) \in S \times W, \\ \tilde{L}^{i}_{j} &= (L^{i}, -1-1/j) \in S \times W. \end{split}$$

We consider in \mathcal{C} the equivalence relation \mathcal{E} generated by $R_i^i \sim \tilde{R}_i^i$ and $\tilde{L}_i^{i+1} \sim L_{i+1}^{i+1}$ for $i = 1, 2, \ldots$. The relations \mathcal{E}_0 and \mathcal{E} induce upper semicontinuous decompositions, hence the quotient space \mathcal{C}/\mathcal{E} is metric and compact (in fact a

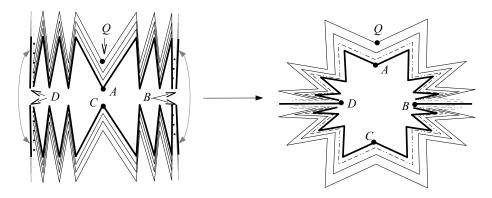


Fig. 1. $C = (S \times W)/\mathcal{E}_0$. Left: $S \times W$, consisting of two symmetric halves, the upper one with $A = (Q_0, 1)$ and the lower one with $C = (Q_0, -1)$.

continuum). We complete \mathcal{C}/\mathcal{E} to an arcwise connected continuum by adding a simple 5-od \mathcal{P} , being the union of five arcs J_A, J_B, J_C, J_D, J_Q with common endpoint O and otherwise disjoint. The endpoints of J_A, J_B, J_C, J_D, J_Q opposite to O are respectively $A = (Q_0, 1), B = (B_0, w), C = (Q_0, -1), D =$ $(D_0, w), Q = (Q_0, 2) \in \mathcal{C}/\mathcal{E}$. Moreover $\mathcal{P} \cap \mathcal{C}/\mathcal{E} = \{A, B, C, D, Q\}$. Finally our example is $X = \mathcal{C}/\mathcal{E} \cup \mathcal{P}$. One can easily check that X is uniquely arcwise connected.

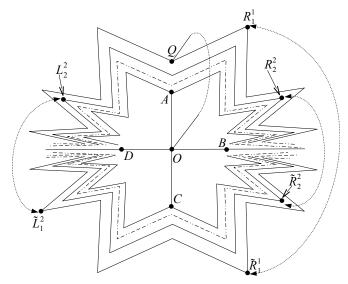


Fig. 2. The example X. Two-sided arrows indicate pairs of glued points.

3. X is weakly chainable. First we define on $S \times W$ an equivalence relation \mathcal{R} generated by the following identifications:

M. Sobolewski

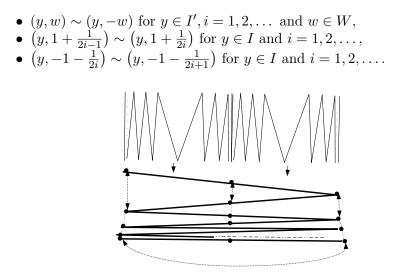


Fig. 3. Chainable continuous model \mathcal{Z} of X. Each interval between two consecutive marked points in the infinite polygonal curve represents a double $\sin 1/x$ -curve.

Denote $\mathcal{Z} = (S \times W)/\mathcal{R}$. The space \mathcal{Z} is an infinite accordion-like booklet whose pages are unions of two double $\sin 1/x$ -curves with a common limit segment, and it can be represented as an inverse limit of analogous finite booklets. But each of these booklets is chainable, hence \mathcal{Z} is also chainable. Let us remark that layers of \mathcal{R} are finer than those of \mathcal{E}_0 , hence \mathcal{C} is a continuous image of \mathcal{Z} . This means that \mathcal{C}/\mathcal{E} is weakly chainable. Finally we can map \mathcal{C}/\mathcal{E} onto X by forming the 5-od \mathcal{P} from an arc containing the point Q. Thus X is weakly chainable.

4. A fixed point free mapping on X. If there exists in a space only one arc with endpoints A, B we will denote it by \widehat{AB} . Now we define a homeomorphism $f: S \to S \subset \mathbb{R}^2$ by the conditions:

- $f(R^1) = R^2$ and f maps $\widehat{Q_0R^1}$ onto $\widehat{Q_0R^2}$,
- $f(R^i) = R^{i+1}$ and f maps $\widehat{R^iR^{i+1}}$ onto $\widehat{R^{i+1}R^{i+2}}$ for i = 2, 3, ... in such a way that the second coordinate of points remains unchanged,
- f restricted to $S_0 \cup I'$ is the identity.

Define $s: W \to W$ by s(-1-1/n) = -1 - 1/(n+1) for n = 1, 2, ...and s(w) = w for $w \neq -1 - 1/n$ for all n = 1, 2, ... Let $\tau: W \to W$ denote the symmetry $\tau(w) = -w$. Set $\sigma = r \times \tau: S \times W \to S \times W$ (it acts on \mathcal{C} like central symmetry, see Fig. 1).

Now we consider the composition $\phi = \sigma \circ (f \times s) : S \times W \to S \times W$. It transforms equivalence classes of \mathcal{E} into equivalence classes of \mathcal{E} , hence it induces a continuous mapping $\tilde{\phi}$ on the quotient space \mathcal{C}/\mathcal{E} . Its action is

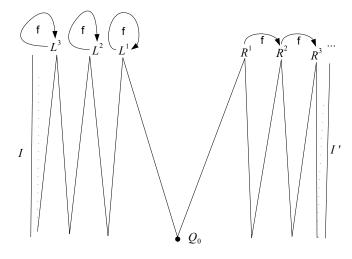


Fig. 4. Action of f on S

fixed point free. We can extend it to a fixed point free mapping $g: X \to X$ in the following way:

- g restricted to \mathcal{C}/\mathcal{E} is $\tilde{\phi}$,
- g(O) = Q and g maps J_Q homeomorphically onto the arc $Q\tilde{\phi}(Q)$ in \mathcal{C}/\mathcal{E} ,
- g(A) = C, g(B) = D, g(C) = A, g(D) = B and g stretches the arcs J_A, J_B, J_C, J_D homeomorphically onto $J_C \cup J_Q, J_D \cup J_Q, J_A \cup J_Q, J_B \cup J_Q$ respectively.

References

- [Be1] D. P. Bellamy, A tree-like continuum without the fixed-point property, Houston J. Math. 6 (1980), 1–13.
- [Be2] D. P. Bellamy, Fixed point in dimension one, in: Continua with the Houston Problem Book, Dekker, New York, 1995, 27–35.
- [Bo] K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. Cl. III 2 (1954), 17–20.
- [Ha] C. L. Hagopian, Uniquely arcwise connected plane continua have the fixed-point property, Trans. Amer. Math. Soc. 248 (1979), 85–104.
- [HaMa] C. L. Hagopian and R. Mańka, Simple spirals on double Warsaw circles, Topology Appl. 128 (2003), 93–101.
- [Mi1] P. Minc, A fixed point theorem for weakly chainable plane continua, Trans. Amer. Math. Soc. 317 (1990), 303–312.
- [Mi2] P. Minc, A weakly chainable tree-like continuum without the fixed point property, Trans. Amer. Math. Soc. 351 (1999), 1109–1121.
- [Mo] L. Mohler, The fixed point property for homeomorphisms of 1-arcwise connected continua, Proc. Amer. Math. Soc. 52 (1975), 451–456.

M. Sobolewski

[Yo] G. S. Young, Fixed point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), 880–884.

Mirosław Sobolewski Department of Mathematics, Informatics and Mechanics Warsaw University Banacha 2 02-097 Warszawa, Poland E-mail: msobol@mimuw.edu.pl

> Received 29 December 2013; in revised form 5 July 2014

86