
FUNDAMENTA

MATHEMATICAE

228 (2015)

Quantum mechanics and nonabelian theta functions
for the gauge group SU(2)

by
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Abstract. We propose a direction of study of nonabelian theta functions by estab-
lishing an analogy between the Weyl quantization of a one-dimensional particle and the
metaplectic representation on the one hand, and the quantization of the moduli space of
flat connections on a surface and the representation of the mapping class group on the
space of nonabelian theta functions on the other. We exemplify this with the cases of
classical theta functions and of the nonabelian theta functions for the gauge group SU(2).
The emphasis of the paper is on this analogy and on the possibility of generalizing this
approach to other gauge groups, and not on the results, of which some have appeared
elsewhere.

1. Introduction. The paper outlines a study of the nonabelian theta
functions that arise in Chern–Simons theory by adapting the method used
by André Weil for studying classical theta functions [35]. The goal is to
derive the constructs of Chern–Simons theory from quantum mechanics, as
opposed to quantum field theory. We exemplify with the case of the gauge
group SU(2). We envision two possible applications of our method: the gen-
eralization to other gauge groups, including noncompact ones, and the dis-
covery of the analytical model for the quantization that corresponds to the
quantum group quantization of the moduli space of flat SU(2)-connections
on the torus. The latter is a long standing problem on which modest progress
was made (see [2], [11], [23]).

In Weil’s approach, classical theta functions come with an action of
the finite Heisenberg group and a projective representation of the mapping
class group. By analogy, the theory of nonabelian theta functions consists
of:
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• the Hilbert space of nonabelian theta functions, namely the holomor-
phic sections of the Chern–Simons line bundle;
• an irreducible representation on the space of theta functions of the

algebra generated by quantized Wilson lines (i.e. of the quantizations
of traces of holonomies of simple closed curves);
• a projective representation of the mapping class group of the surface

on the space of nonabelian theta functions.

The representation of the mapping class group intertwines the quantized
Wilson lines; in this sense the two representations satisfy an exact Egorov
identity.

Our prototype is the quantization of a one-dimensional particle. The
paradigm is that the quantum group quantization of the moduli space of flat
SU(2)-connections on a surface and the Reshetikhin–Turaev representation
of the mapping class group are the analogues of the Schrödinger represen-
tation of the Heisenberg group and of the metaplectic representation. The
Schrödinger representation arises from the quantization of the position and
the momentum of a one-dimensional free particle, and is a consequence of
a fundamental postulate in quantum mechanics. It is a unitary irreducible
representation of the Heisenberg group, and the Stone–von Neumann the-
orem shows that it is unique. This uniqueness implies that linear changes
of coordinates (which act as outer automorphisms of the Heisenberg group)
are also quantizable, and their quantization yields an infinite-dimensional
representation of the metaplectic group.

Weil [35] observed that a finite Heisenberg group acts on classical theta
functions, and the action of the modular group is induced via a Stone–von
Neumann theorem. Then it was noticed that classical theta functions, the
action of the Heisenberg group, and of the modular group arise from the
Weyl quantization of Jacobian varieties. As such, classical theta functions
are the holomorphic sections of a line bundle over the moduli space of flat
u(1)-connections on a surface; by analogy, the holomorphic sections of the
similar line bundle over the moduli space of flat g-connections over a surface
(where g is the Lie algebra of a compact simple Lie group) were called
nonabelian theta functions. Witten [37] placed nonabelian theta functions
in the context of Chern–Simons theory, related them to the Jones polynomial
[14] and conformal field theory, and gave new methods for studying them.
We show how within Witten’s theory one can find the nonabelian analogues
of Weil’s constructs.

The paper runs the parallel between the Schrödinger and metaplectic
representations, the Weil representation of the Heisenberg group and the
action of the modular group on theta functions, and the quantum group
quantization of the moduli space of flat su(2)-connections on a surface and
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the Reshetikhin–Turaev representation. Among the features we mention the
translation of the quantum group quantization of the moduli space into
skein-theoretical language, and the derivation strictly from quantum me-
chanical considerations of the element Ω which is the building block of
the Witten–Reshetikhin–Turaev invariants, and of the Reshethikhin–Turaev
representation of the mapping class group. Our analogy suggests that any
analytical model for the quantization of the moduli space of flat su(2)-
connections should be similar to Weyl quantization. It also establishes a
programme for studying Chern–Simons theory with general gauge group.
For that reason, we present proofs of the results which could allow general-
izations.

2. The prototype

2.1. The Schrödinger representation. In this section we briefly
review the Schrödinger and the metaplectic representations. For details
see [22].

Consider a particle in a 1-dimensional space. The phase space is R2, with
coordinates the position x and the momentum y, symplectic form ω = dx∧dy
and Poisson bracket {f, g} = ∂f

∂x
∂g
∂y −

∂f
∂y

∂g
∂x . The symplectic form induces a

nondegenerate antisymmetric bilinear form on R2, also denoted by ω, given
by ω((x, y), (x′, y′)) = xy′ − x′y.

The Lie algebra of observables has a subalgebra generated by Q(x, y)
= x, P (x, y) = y, and E(x, y) = 1, called the Heisenberg Lie algebra.
Abstractly, this algebra is defined by [Q,P ] = E, [P,E] = [Q,E] = 0.

It is a postulate of quantum mechanics that the quantization of the
position, the momentum, and the constant functions is the representation
of the Heisenberg Lie algebra on L2(R, dx) defined by

Q 7→Mx, P 7→ ~
i

d

dx
, E 7→ i~ Id .

Here Mx denotes the operator of multiplication by the variable: φ(x) 7→
xφ(x) and ~ = h/2π is the reduced Planck’s constant. This is the Schrödin-
ger representation of the Heisenberg Lie algebra.

By exponentiation one obtains the Schrödinger representation of the
Heisenberg group H(R) with real entries:

exp(x0Q+ y0P + tE)φ(x) = e2πi(x0Q+y0P+tE)φ(x)

= e2πix0x+πihx0y0+2πitφ(x+ hy0).

Using this representation, Hermann Weyl gave a method for quantizing func-
tions f ∈ C∞(R2), using the Fourier transform

f̂(ξ, η) =
� �
f(x, y) exp(−2πixξ − 2πiyη) dx dy
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to define

Op(f) =
� �
f̂(ξ, η) exp(2πi(ξQ+ ηP )) dξ dη,

where for exp(ξQ+ ηP ) he used the Schrödinger representation.

Theorem (Stone–von Neumann). The Schrödinger representation of
the Heisenberg group is the unique irreducible unitary representation of this
group such that exp(tE) acts as e2πit Id for all t ∈ R.

There are two other important realizations of the irreducible represen-
tation that this theorem characterizes. One comes from the quantization of
the plane in a holomorphic polarization. The Hilbert space is the Bargmann
space of holomorphic square integrable entire functions with respect to the
measure e−2π|Im z|2 dz dz̄, with the Heisenberg group acting by

exp(x0Q+ y0P + tE)f(z) = eπih(y0+ix0)+2πix0z+2πitf(z + h(y0 + ix0)).

For the other realization, choose a Lagrangian subspace L of RP + RQ.
Then exp(L +RE) is a maximal abelian subgroup of the Heisenberg group.
Consider the character of this subgroup defined by χL(exp(l+ tE)) = e2πit,
l ∈ L. The Hilbert space of the quantization, H(L), is defined as the space
of functions φ(u) on H(R) satisfying

φ(uu′) = χL(u′)−1φ(u) for all u′ ∈ exp(L + RE)

and such that u 7→ |φ(u)| is a square-integrable function on the left equiv-
alence classes modulo exp(L + RE). The representation of the Heisenberg
group is given by

u0φ(u) = φ(u−1
0 u).

Choosing an algebraic complement L′ of L and writing RP + RQ =
L + L′ = R + R, H(L) is realized as L2(L′) ∼= L2(R). For L = RP and
L′ = RQ, one gets the standard Schrödinger representation.

2.2. The metaplectic representation. By the Stone–von Neumann
theorem, if we change coordinates by a linear symplectomorphism and then
quantize, we get a unitarily equivalent representation of the Heisenberg
group. Hence linear symplectomorphisms can be quantized by unitary op-
erators. Schur’s lemma implies that these operators are unique up to a mul-
tiplication by a constant. So we have a projective representation ρ of the
linear symplectic group SL(2,R) on L2(R). This can be made into a true
representation by passing to the double cover of SL(2,R), the metaplectic
group Mp(2,R). The representation of the metaplectic group is known as
the metaplectic representation or the Segal–Shale–Weil representation.
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The fundamental symmetry of the Weyl quantization is

Op(f ◦ h−1) = ρ(h) Op(f)ρ(h)−1

for every observable f ∈ C∞(R2) and h ∈ Mp(2,R), where Op(f) is the
operator associated to f through Weyl quantization. For other quantization
models this relation holds only mod O(~) (Egorov’s theorem). When satisfied
with equality, as in our case, it is called an exact Egorov identity.

The metaplectic representation can be defined using the third version
of the Schrödinger representation in §2.1, which identifies it as a Fourier
transform (see [22]). Let h be a linear symplectomorphism of the plane,
L1 a Lagrangian subspace of RP + RQ and L2 = h(L1). The quantization
of h is ρ(h) : H(L1)→ H(L2),

(ρ(h)φ)(u) =
�

expL2/exp(L1∩L2)

φ(uu2)χL2(u2) dµ(u2),

where dµ is the measure induced on the space of equivalence classes by the
Haar measure on H(R).

For explicit formulas for ρ(h) one needs to choose the algebraic comple-
ments L′1 and L′2 of L1 and L2 and unfold the isomorphism L2(L′) ∼= L2(R).
For example, for

S =

(
0 1

−1 0

)
,

if we set L1 = RP with variable y and L2 = S(L1) = RQ with variable x
and L′1 = L2 and L′2 = S(L′1) = L1, then

ρ(S)f(x) =
�

R

f(y)e−2πixy dy

is the usual Fourier transform, which establishes the unitary equivalence
between the position and the momentum representations. Similarly, for

Ta =

(
1 a

0 1

)
,

if we set L1 = L2 = RP =, L′1 = RQ, and L′2 = R(P +Q), then

ρ(Ta)f(x) = e2πix2af(x).

The cocycle of the projective representation of the symplectic group is

cL(h′, h) = e−
iπ
4
τ (L,h′(L),h′◦h(L)),

where τ is the Maslov index. This means that

ρ(h′h) = cL(h′, h)ρ(h′)ρ(h)

for h, h′ ∈ SL(2,R).



102 R. Gelca and A. Uribe

3. Classical theta functions

3.1. Classical theta functions from the quantization of the torus.
For an extensive treatment of theta functions the reader can consult [24],
[22], [25]. Here we only consider the simplest situation, that of theta func-
tions on the Jacobian variety of a 2-dimensional complex torus T2. Our
discussion is sketchy; details can be found, for all closed Riemann surfaces,
in [12].

Given the complex torus and oriented simple closed curves a and b with
algebraic intersection number 1, which define a canonical basis of H1(T2,R)
(or equivalently of π1(T2)), take a holomorphic 1-form ζ such that

	
a ζ = 1.

The complex number τ =
	
b ζ, which depends on the complex structure,

has positive imaginary part. The Jacobian variety of T2, denoted J (T2), is
a 2-dimensional torus with complex structure defined by τ (as an element
in its Teichmüller space). Equivalently, J (T2) = C/Z + Zτ . We introduce
real coordinates (x, y) on J (T2) by setting z = x+ τy. In these coordinates,
J (T2) is the quotient of R2 by Z2. We endow J (T2) with the symplectic
form ω = dx ∧ dy, which is a generator of H2(T2,Z). With its complex
structure and this symplectic form, J (T2) is a Kähler manifold.

Classical theta functions and the action of the Heisenberg group can
be obtained by applying Weyl quantization to J (T2) in the holomorphic
polarization. Theta functions are obtained by geometric quantization. We
start by setting Planck’s constant h = 1/N , with N a positive even integer.

The Hilbert space of the quantization consists of the classical theta func-
tions, which are the holomorphic sections of a line bundle over the Jacobian
variety. This line bundle is the tensor product of a line bundle of curvature
−2πiNω and a half-density. By pulling back the line bundle to C, we can
view these sections as entire functions with some periodicity. The line bundle
with curvature 2πiNω is unique up to tensoring with a flat bundle. Choos-
ing the latter appropriately, we can ensure that the periodicity conditions
are

f(z +m+ nτ) = e−2πiN(τn2+2nz)f(z).

An orthonormal basis of the space of classical theta functions is given by
the theta series

(3.1) θτj (z) =
∑
n∈Z

e2πiN [τ(j/N+n)2/2+z(j/N+n)], j = 0, 1, . . . , N − 1.

It is convenient to extend this definition to all indices j by the periodicity
condition θτj+N (z) = θτj (z), namely to take indices modulo N .

Let us turn to the operators. The only exponentials on the plane that
are doubly periodic, and therefore give rise to functions on the torus, are

f(x, y) = exp(2πi(mx+ ny)), m, n ∈ Z.
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Since the torus is a quotient of the plane by a discrete group, we can apply
the Weyl quantization procedure. In the complex polarization, Weyl quan-
tization is defined as follows (see [6]): A fundamental domain of the torus
is the unit square [0, 1]× [0, 1] (this is done in the (x, y) coordinates, in the
complex plane it is actually a parallelogram). The value of a theta function is
completely determined by its values on this unit square. The Hilbert space of
classical theta functions can be isometrically embedded into L2([0, 1]×[0, 1])
with the inner product

〈f, g〉 = (−iN(τ − τ̄))1/2
1�

0

1�

0

f(x, y) g(x, y) eiN(τ−τ̄)πy2 dx dy.

For a proof of the following result see [12].

Proposition 3.1. The Weyl quantization of the exponentials in the mo-
mentum representation is given by

Op(e2πi(px+qy))θτj (z) = e−πipq/N−2πijq/Nθτj+p(z).

The Weyl quantization of the exponentials gives rise to the Schrödinger
representation of the Heisenberg group H(Z) with integer entries with mul-
tiplication

(p, q, k)(p′, q′, k′) = (p+ p′, q + q′, k + k′ + (pq′ − qp′)).
The proposition implies that

(p, q, k) 7→ the Weyl quantization of eπik/N exp 2πi(px+ qy)

is a group morphism. This is the Schrödinger representation.
The Schrödinger representation of H(Z) is far from faithful. Because of

this we factor it out by its kernel. The kernel is the subgroup consisting
of the elements of the form (p, q, k)N , with k even [12]. Let H(ZN ) be the
finite Heisenberg group obtained by factoring H(Z) by this subgroup, and
let exp(pP + qQ+ kE) be the image of (p, q, k) in it.

The following is an analogue of the Stone–von Neumann theorem.

Theorem 3.2. The Schrödinger representation of H(ZN ) is the unique
irreducible unitary representation of this group with the property that
exp(kE) acts as eπik/N Id for all k ∈ Z.

The Schrödinger representation of the finite Heisenberg group can be
extended by linearity to a representation of the group algebra with coeffi-
cients in C of the finite Heisenberg group, C[H(ZN )]. Since the elements
of exp(ZE) act as multiplications by constants, this is in fact a represen-
tation of the algebra AN obtained by factoring C[H(ZN )] by the relations
exp(kE) − eπik/N for all k ∈ Z. By abuse of language, we call this the
Schrödinger representation as well. The Schrödinger representation of AN
defines the quantizations of trigonometric polynomials on the torus.
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Proposition 3.3.

(a) The algebra of Weyl quantizations of trigonometric polynomials con-
tains all linear operators on the space of theta functions.

(b) The Schrödinger representation of AN on theta functions is faithful.

Proof. For (a) see [12]. Part (b) follows from the fact that exp(pP +qQ),
p, q = 0, 1, . . . , N − 1, form a basis of AN as a vector space.

As explained in [12], the Schrödinger representation can be described as
the left regular action of the group algebra of the finite Heisenberg group on a
quotient of itself. The construction is like for the Schrödinger representation
in the abstract setting in §2.2.

3.2. Classical theta functions from a topological perspective.
In [12] the theory of classical theta functions was shown to admit a refor-
mulation in purely topological language, by interpreting topologically the
representation-theoretical model. Let us recall some of the facts.

Let M be a smooth oriented compact 3-manifold. A framed link in M
is a smooth embedding of a disjoint union of circles, with the framing of
each link component defined by a vector field orthogonal to it. We can view
the framed link as an embedding of several annuli, each having a specified
boundary component (which is the actual link component). We draw all
diagrams in the blackboard framing, so that the framing is parallel to the
plane of the paper.

Consider the free C[t, t−1]-module with basis the set of isotopy classes
of framed oriented links in M , including the empty link ∅. Factor it by all
equalities of the form shown in Figure 1. In each diagram, the two links
are identical except for an embedded ball in M , inside of which they look
as shown. Thus in a link we can smoothen a crossing provided that we
add a coefficient of t or t−1, and trivial link components can be ignored.
These are called skein relations. The skein relations are considered for all
possible embeddings of a ball. When strands are joined, framings should
agree. The result of the factorization is the linking number skein module of
M , denoted Lt(M). These skein modules were first introduced by Przytycki
in [26].

t t
−1

;

t ;
−1

t

Fig. 1
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If M = S3, then each link L is, as an element of Lt(S3), equivalent to
the empty link with the coefficient equal to t raised to the sum of the linking
numbers of ordered pairs of components and the writhes of the components,
hence the name.

For a fixed even positive integer N we define the reduced linking number
skein module of M , denoted L̃t(M), as the quotient of Lt(M) by t = eiπ/N

and γN = ∅ for every framed link component γ, where γN denotes N parallel
copies of γ. As a rule, in a skein module t is a free variable, while in a reduced
skein module it is a root of unity.

If M = T2×[0, 1], the topological operation of gluing a cylinder on top of
another induces a multiplication in Lt(T2× [0, 1]) turning Lt(T2× [0, 1]) into
an algebra, the linking number skein algebra of the cylinder over the torus.
The multiplication descends to L̃t(T2 × [0, 1]). We explicate its structure.

For p and q coprime integers, orient the curve (p, q) by the vector from
the origin to the point (p, q), and frame it so that the annulus is parallel to
the torus. Call this the zero framing, or the blackboard framing. Any other
framing of the curve (p, q) can be represented by an integer k, where |k| is
the number of full twists that are inserted on this curve, with k positive if the
twists are positive, and k negative otherwise. In Lt(T2 × [0, 1]), (p, q) with
framing k is equivalent to tk(p, q).

If p and q are not coprime and n is their greatest common divisor, let
(p, q) = (p/n, q/n)n. Finally, ∅ = (0, 0) is the empty link, the multiplicative
identity of Lt(T2 × [0, 1]).

Theorem 3.4 ([12]). The algebra Lt(T2 × [0, 1]) is isomorphic to the
group algebra C[H(Z)], with the isomorphism induced by

tk(p, q) 7→ (p, q, k).

This map descends to an isomorphism between L̃t(T2×[0, 1]) and the algebra
AN of Weyl quantizations of trigonometric polynomials.

Identifying the group algebra of the Heisenberg group with integer entries
with Ct[U±1, V ±1], we conclude that the linking number skein algebra of the
cylinder over the torus is isomorphic to the ring of trigonometric polynomials
in the noncommutative torus.

Let us look at the skein module of the solid torus Lt(S1×D2). Let α be the
curve that is the core of the solid torus, with a certain choice of orientation

and framing. The reduced linking number skein module L̃t(S1 × D2
) has

basis αj , j = 0, 1, . . . , N − 1.

Let h0 be a homeomorphism of the torus to the boundary of the solid
torus that maps the first generator of the fundamental group to a curve
isotopic to α (a longitude) and the second generator to the curve on the
boundary of the solid torus that bounds a disk in the solid torus (a merid-
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ian). The operation of gluing T2 × [0, 1] to the boundary of S1 × D2 via h0

induces a left action of Lt(T2 × [0, 1]) onto Lt(S1 ×D2). This descends to a

left action of L̃t(T2 × [0, 1]) onto L̃t(S1 × D2
).

Observe that Lt(S1×D2) and L̃t(S1 × D2
) are quotients of Lt(T2× [0, 1])

respectively Lt(S1 ×D2), with two framed curves equivalent on the torus if
they are isotopic in the solid torus.

Theorem 3.5 ([12]). There is an isomorphism that intertwines the action
of the algebra of Weyl quantizations of trigonometric polynomials on
the space of theta functions and the representation of L̃t(T2 × [0, 1]) onto

L̃t(S1 × D2
), and which maps the theta series θτj (z) to αj for all j = 0, 1,

. . . , N − 1.

Remark 3.6. The choice of generators of π1(T2) completely determines
the homeomorphism h0, allowing us to identify the Hilbert space of the
quantization with the vector space with basis α0 = ∅, α, . . . , αN−1. As we
have seen above, these basis elements are the theta series.

3.3. The discrete Fourier transform for classical theta functions
from a topological viewpoint. The symmetries of classical theta func-
tions are an instance of the Fourier transform. We put them in a topological
perspective (see [12]). An element

(3.2) h =

(
a b

c d

)
∈ SL(2,Z)

defines an action of the mapping class group on the Weyl quantizations of
exponentials given by

h · exp(pP + qQ+ kE) = exp[(ap+ bq)P + (cp+ dq)Q+ kE].

This action is easy to describe in the skein-theoretical setting, it just maps
every framed link γ on the torus to h(γ).

Theorem 3.7. There is a projective representation ρ of the mapping
class group of the torus on the space of theta functions that satisfies the
exact Egorov identity

h · exp(pP + qQ+ kE) = ρ(h) exp(pP + qQ+ kE)ρ(h)−1.

Moreover, for every h, ρ(h) is unique up to multiplication by a constant.

Proof. We will exhibit two proofs of this well-known result, to which we
will refer when discussing nonabelian Chern–Simons theory.

Proof 1. The map that associates to exp(pP + qQ + kE) the operator
that acts on theta functions as

θτj 7→ exp[(ap+ bq)P + (cp+ dq)Q+ kE]θτj
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is also a unitary irreducible representation of the finite Heisenberg group
which maps exp(kE) to multiplication by eiπ/N . By the Stone–von Neu-
mann theorem, this representation is unitarily equivalent to the Schrödinger
representation. This proves the existence of ρ(h) satisfying the exact Egorov
identity. By Schur’s lemma, the map ρ(h) is unique up to multiplication by
a constant. Hence, if h and h′ are two elements of the mapping class group,
then ρ(h′ ◦ h) is a constant multiple of ρ(h′)ρ(h). It follows that ρ defines a
projective representation.

Proof 2. The map exp(pQ+ qQ+ kE)→ h exp(pP + qQ+ kE) extends
to an automorphism of the algebra C[H(Z)]. Because the ideal by which
we factor to obtain AN is invariant under the action of the mapping class
group, this automorphism induces an automorphism Φ : AN → AN , which
maps each scalar multiple of the identity to itself. Since, by Proposition 3.3,
AN is the algebra of all linear operators on the N -dimensional space of theta
functions, Φ is inner [33], meaning that there is ρ(h) : AN → AN such that
Φ(x) = ρ(h)xρ(h)−1. In particular

h · exp(pP + qQ+ kE) = ρ(h) exp(pP + qQ+ kE)ρ(h)−1.

The Schrödinger representation of AN is obviously irreducible, so again we
apply Schur’s lemma and conclude that ρ(h) is unique up to multiplication
by a constant, and h 7→ ρ(h) is a projective representation.

The representation ρ is the well-known action of the modular group given
by discrete Fourier transforms.

As a consequence of Proposition 3.3, for any element h of the mapping
class group, the linear map ρ(h) is in L̃t(T2 × [0, 1]), hence it can be repre-
sented by a skein F(h). This skein satisfies

h(σ)F(h) = F(h)σ

for all σ ∈ L̃t(T2 × [0, 1]). Moreover F(h) is unique up to multiplication by
a constant. We recall the formula for F(h) derived in [12].

Every 3-dimensional manifold is the boundary of a 4-dimensional mani-
fold obtained by adding 2-handles D2 × D2 to a 4-dimensional ball along
the solid tori D2 × S1. On the boundary S3 of the ball, the operation
of adding handles gives rise to surgery on a framed link. Thus any given
3-dimensional manifold can be obtained as follows: Start with a suitable
framed link L ⊂ S3. Take a regular neighborhood of L made out of disjoint
solid tori, each with a framing curve on the boundary such that the core of
the solid torus and this curve determine the framing of the corresponding
link component. Remove these tori, then glue them back in so that meridi-
ans are glued to framing curves in a suitable way. The result is the desired
3-dimensional manifold.
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Sliding one 2-handle over another corresponds to sliding one link com-
ponent along another using a Kirby band-sum move [18]. A slide of K1

along K, denoted by K1 #K, is obtained as by cutting open the two knots
and then joining the ends along the opposite sides of an embedded rectangle.
The band sum is not unique.

An element h of the mapping class group of the torus can also be de-
scribed by surgery along a framed link L in the cylinder over the torus.
Surgery still yields a cylinder over the torus, but the homeomorphism to the
original cylinder is identity on T2 × {0} and h on T2 × {1}.

We introduce the element

ΩU(1) = N−1/2
N−1∑
j=0

αj ∈ L̃t(S1 × D2
).

The index stands for U(1) Chern–Simons theory (see §4.1). There is a well-
known analogue for the group SU(2), to be discussed in §6.1. For a framed
link L we denote by ΩU(1)(L) the skein obtained by replacing every link
component by ΩU(1) such that α becomes the framing.

Theorem 3.8 ([12]). Let h be an element of the mapping class group of
the torus obtained by performing surgery on a framed link Lh in T2 × [0, 1].

The discrete Fourier transform ρ(h) : L̃t(S1 × D2
) → L̃t(S1 × D2

) is given
by

ρ(h)β = ΩU(1)(Lh)β.

Remark 3.9. This result was proved using the exact Egorov identity.
For a framed curve γ on the torus, h(γ) is obtained by sliding γ along the
components of Lh. The exact Egorov identity for ΩU(1)(Lh) means that we
are allowed to perform slides in the cylinder over the torus along curves col-
ored by ΩU(1). This points to a surgery formula for U(1)-quantum invariants
of 3-manifolds [12].

Like for the metaplectic representation, the representation of the map-
ping class group can be made into a true representation by passing to an
extension of the mapping class group of the torus. While a Z2-extension
would suffice, we consider a Z-extension instead, in order to show the simi-
larity with the nonabelian theta functions.

Let L be a subspace of H1(T2,R) spanned by a simple closed curve.
Define the Z-extension of the mapping class group of the torus by the mul-
tiplication rule on SL(2,Z)× Z,

(h′, n′) ◦ (h, n) = (h′ ◦ h, n+ n′ − τ (L, h′(L), h′ ◦ h(L)),

where τ is the Maslov index [22]. Standard results in the theory of theta
functions show that the projective representation of the mapping class group
of the torus lifts to a true representation of this group.
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4. Nonabelian theta functions from geometric considerations

4.1. Nonabelian theta functions from geometric quantization.
Let G be a compact simple Lie group, g its Lie algebra, and Σg a closed
oriented surface of genus g ≥ 1. The moduli space of g-connections on Σg is
the quotient of the affine space of all g-connections on Σg (or rather on the
trivial principal G-bundle P on Σg) by the group G of gauge transformations
A 7→ φ−1Aφ+ φ−1dφ, with φ : Σg → G a smooth function. The space of all
connections has a symplectic 2-form given by

ω(A,B) = −
�

Σg

tr(A ∧B),

where A and B are connection forms in its tangent space. The group of gauge
transformations acts on the space of connections in a Hamiltonian fashion,
with moment map the curvature. The moduli space of flat g-connections,

Mg = {A | A a flat g-connection}/G,
arises as the symplectic reduction of the space of connections modulo gauge
transformations. This space is the same as the character variety of G-repre-
sentations of the fundamental group of Σg. It is an affine algebraic set over
the reals, and its smooth part is a symplectic manifold. If Σg is a Riemann
surface, then Mg can be identified with the moduli space of semistable
holomorphic G-bundles over Σg.

Each curve γ on the surface and irreducible representation V of G de-
fine a classical observable on Mg, Wγ,V (A) = trV holγ(A), called a Wilson
line, by taking the trace of the holonomy of the connection along γ in the
representation V . Wilson lines are regular functions onMg. For G = SU(2)
let the Wilson line for the n-dimensional irreducible representation be Wγ,n,
with Wγ = Wγ,2. The Wγ ’s span the algebra of regular functions on Mg.

The form ω induces a Poisson bracket, which for G = SU(2) was found
by Goldman [13] to be

{Wα,Wβ} =
1

2

∑
x∈α∩β

sgn(x)(Wαβ−1
x
−Wαβx)

−1

α

β

βα

βα

Fig. 2
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where αβx and αβ−1
x are computed as elements of the fundamental group

with base point x (see Figure 2), and sgn(x) is the signature of the crossing:
positive if the frame given by the tangent vectors to α and β is positively
oriented with respect to the orientation of Σg, and negative otherwise.

The space Mg, or rather the smooth part of it, is quantized in the
direction of Goldman’s Poisson bracket as follows. Set Planck’s constant
h = 1/N , with N an even positive integer.

The Hilbert space is obtained using the method of geometric quantization
as the space of sections of a line bundle overMg, which is the tensor product
of a line bundle with curvature −2πiNω and a half-density [31]. The half-
density is a square root of the canonical line bundle. Endow the surface with
a complex structure, which induces a complex structure on Mg as follows.
The tangent space to Mg at a nonsingular point A is the first cohomology
group H1

A(Σg, adP ) of the complex of g-valued forms

Ω0(Σg, adP )
dA−→ Ω1(Σg, adP )

dA−→ Ω2(Σg, adP ).

Here P denotes the trivial principal G-bundle over Σg. Each complex struc-
ture on Σg induces a Hodge ∗-operator on the space of connections on
Σg, hence a ∗-operator on H1

A(Σg, ad P ). The complex structure on Mg

is I : H1
A(Σg, ad P )→ H1

A(Σg, ad P ), IB = −∗B. For more details see [16].
The complex structure turns the smooth part of Mg into a complex mani-
fold. Since the moduli space has a complex structure, one can then perform
quantization in a Kähler polarization, so that the Hilbert space consists of
the holomorphic sections of the prequantization line bundle. These are the
nonabelian theta functions.

The analogue of the group algebra of the finite Heisenberg group is the
algebra of operators quantizing Wilson lines. They arise in the theory of the
Jones polynomial [14] as outlined by Witten [37], being defined via quantum
field theory as integral operators with kernel

〈A1|Op(Wγ,n)|A2〉 =
�

MA1A2

eiNL(A)Wγ,n(A)DA,

where A1, A2 are conjugacy classes of flat connections on Σg modulo the
gauge group, A is a conjugacy class under the action of the gauge group on
Σg × [0, 1] such that AΣg×{0} = A1 and AΣg×{1} = A2, and

L(A) =
1

4π

�

Σg×[0,1]

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
is the Chern–Simons Lagrangian. The Feynman path integral defining the
operator does not have a rigorous mathematical formulation, being thought
of as an average of the Wilson line computed over all connections that
interpolate between A1 and A2.
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The skein-theoretic approach to classical theta functions outlined in §3.2
can be motivated by the Chern–Simons–Witten field theory point of view.

Wilson lines can be quantized either by one of the classical methods
for quantizing the torus, or by using the Feynman path integrals as above.
The Feynman path integral approach allows localizations of computations
to small balls, in which a single crossing shows up. Witten [37] has explained
that in each such ball skein relations hold, in this case the skein relations
from Figure 1, of the linking number. As such, the path integral quantization
gives rise to the skein-theoretic model.

On the other hand, Witten’s quantization is symmetric under the ac-
tion of the mapping class group of the torus, a property shared by Weyl
quantization. And indeed, we have seen in §3.2 that Weyl quantization and
the skein-theoretic quantization are the same. The relevance of Weyl quan-
tization to Chern–Simons theory was first pointed out in [11] for the gauge
group SU(2). For the gauge group U(1), it was noticed in [2].

4.2. The Weyl quantization of the moduli space of flat SU(2)-
connections on the torus. The moduli space M1 of flat SU(2)-connec-
tions on the torus, called the pillow case, is the quotient of the torus

{(e2πix, e2πiy) | x, y ∈ R}

by the “antipodal” map x 7→ −y, y 7→ −y. It is the quotient of R2 by hori-
zontal and vertical integer translations and by the symmetry σ with respect
to the origin. Except for four singularities, M1 is a symplectic manifold,
with symplectic form ω = 2πidx ∧ dy and associated Poisson bracket

{f, g} =
1

2πi

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
.

The Weyl quantization of M1 in the complex polarization has been de-
scribed in [11] for one particular complex structure. We do it now in general.
Again Planck’s constant is the reciprocal of an even integer, ~ = 1/N = 1/2r.

The tangent space at an arbitrary point on the pillow case is spanned by
the vectors ∂/∂x and ∂/∂y. In the formalism of §4.1, these vectors are iden-
tified respectively with the cohomology classes of the su(2)-valued 1-forms

i

(
1 0

0 −1

)
dx and i

(
1 0

0 −1

)
dy.

It follows that a complex structure on the original torus induces exactly the
same complex structure on the pillow case. So we can think of the pillow
case as the quotient of the complex plane by the group generated by Z+Zτ
(Im τ > 0) and the symmetry σ with respect to the origin. As before, we
denote by (x, y) the coordinates in the basis (1, τ) and by z = x + τy
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the complex variable. A fundamental domain for the group action in the
(x, y)-coordinates is D = [0, 1/2]× [0, 1].

As seen in [11], a holomorphic line bundle L1 with curvature 4πirdx∧dy
on the pillow case is defined by the cocycle Λ1 : R2 × Z2 → C∗,

Λ1((x, y), (m,n)) = e4πir(τn2/2−2n(x+τy)) = e4πir(τn2/2−2nz),

Λ1((x, y), σ) = 1.

The square root of the canonical form is no longer the trivial line bundle,
since for example the form dz is not defined globally on the pillow case. The
obstruction for dz to be globally defined can be incorporated in a line bundle
L2 defined by the cocycle Λ2 : R2 × Z2 → C∗,

Λ2((x, y), (m,n)) = 1, Λ2((x, y), σ) = −1.

This line bundle can then be taken as the half-density.
The line bundle of the quantization is therefore L1 ⊗L2, defined by the

cocycle Λ1Λ2. The Hilbert space Hr(T2) of nonabelian theta functions on
the torus consists of the holomorphic sections of this line bundle, which
consists of the odd theta functions (this was discovered in [3]).

To specify a basis of Hr(T2) we need a pair of generators of the funda-
mental group. The complex structure and generators of π1(T2) determine a
point in the Teichmüller space of the torus, specified by the complex number
τ mentioned before. The orthonormal basis of the Hilbert space is

ζτj (z) = (θτj (z)− θτ−j(z)), j = 1, . . . , r − 1,

where θτj (z) are the theta series from §3.1. The definition of ζτj (z) is extended
to all indices by ζτj+2r(z) = ζτj (z), ζτ0 (z) = 0, and ζτr−j(z) = −ζτr+j(z).

The space Hr(T2) can be embedded isometrically into L2(D), with the
inner product

〈f, g〉 = 2(−2ir(τ − τ̄))1/2
� �

D
f(x, y)g(x, y)e−2πir(τ−τ̄)y2 dx dy.

We can apply the Weyl quantization procedure. If p and q are coprime
integers, then the Wilson line of the curve (p, q) of slope p/q on the torus
for the 2-dimensional irreducible representation is

W(p,q)(x, y) =
sin 4π(px+ qy)

sin 2π(px+ qy)
= 2 cos 2π(px+ qy),

when viewing the pillow case as a quotient of the plane (because the char-
acter of the 2-dimensional irreducible representation is sin 2x/sinx). If p
and q are arbitrary integers, then f(x, y) = 2 cos 2π(px + qy) is a linear
combination of Wilson lines. Indeed, if n = gcd(p, q) then

2 cos 2π(px+ qy) =
sin
[
2π(n+ 1)

( p
nx+ q

ny
)]

sin 2π
( p
nx+ q

ny
) −

sin
[
2π(n− 1)

( p
nx+ q

ny
)]

sin 2π
( p
nx+ q

ny
) ,
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so 2 cos 2π(px + qy) = Wγ,n+1 −Wγ,n−1 where γ is the curve of slope p/q
on the torus. This formula also shows that Wilson lines are linear combina-
tions of cosines, so it suffices to understand the quantization of the cosines.
Because

2 cos 2π(px+ qy) = e2πi(px+qy) + e−2πi(px+qy),

the Weyl quantization of cosines can be obtained from the Schrödinger rep-
resentation of the quantum observables that are invariant under the map
expP 7→ exp(−P ) and expQ 7→ exp(−Q), and restrict to odd theta func-
tions. We obtain

Op(2 cos 2π(px+ qy))ζτj (z) = e−
πi
2r
pq(e

πi
r
qjζτj−p(z) + e−

πi
r
qjζτj+p(z)).

In particular the ζτj ’s are the eigenvectors of Op(2 cos 2πy), corresponding
to the holonomy along the curve (0, 1) on the torus. This shows that they
are correctly identified as the analogues of the theta series.

5. Nonabelian theta functions from quantum groups

5.1. A review of the quantum group U~(sl(2,C)). For the gauge
group SU(2), Reshetikhin and Turaev [28] constructed rigorously, using
quantum groups, a topological quantum field theory that realizes Witten’s
programme. Within this theory, for each surface there is a vector space,
an algebra of quantized Wilson lines, and a projective finite-dimensional
representation of the mapping class group, the Reshetikhin–Turaev repre-
sentation. Quantum group quantization has the advantage over geometric
quantization that it does not depend on additional structures, such as the
polarization.

Set ~ = 1
N = 1

2r , and furthermore r > 1. Let t = e
iπ
2r and, for an integer n,

let

[n] =
t2n − t−2n

t2 − t−2
=

sin nπ
r

sin π
r

,

called a quantized integer.

The quantum group associated to SU(2), denoted U~(sl(2,C)), is ob-
tained by passing to the complexification SL(2,C) of SU(2), taking the uni-
versal enveloping algebra of its Lie algebra, then deforming this algebra with
respect to ~. It is the Hopf algebra over C with generators X,Y,K,K−1 sub-
ject to the relations

KK−1 = K−1K = 1, KX = t2XK, KY = t−2Y K,

XY − Y X =
K2 −K−2

t2 − t−2
.
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At the root of unity, namely when N = 2r, with r an integer, one has the
additional factorization relations Xr = Y r = 0, K4r = 1 (1).

As opposed to SU(2), at roots of unity U~(sl(2,C)) has only 4r− 4 irre-
ducible representations, among which we select one family V 1, V 2, . . . , V r−1

(for details see [28] or [19]). For each k, the space V k has basis ej , j =
−k0, . . . , k0 − 1, k0, where k0 = (k − 1)/2, and the quantum group acts on
it by

Xej = [k0 + j + 1]ej+1, Y ej = [k0 − j + 1]ej−1, Kej = t2jej .

The highest weight vector of this representation is ek0 ; it spans the kernel
of X, is a cyclic vector for Y , and an eigenvector of K.

The Hopf algebra structure of U~(sl(2,C)) makes duals and tensor prod-
ucts of representations be representations themselves. Moreover, there is a
(nonnatural) isomorphism of representations D : V k∗ → V k. A Clebsch–
Gordan theorem holds,

V m ⊗ V n =
⊕
p

V p ⊕B,

where p runs through all indices such that m+n+p is odd and |m−n|+1 ≤
p ≤ min(m+n−1, 2r−1−m−n) and B is a representation that is ignored
because it has no effect on computations.

A corollary of the Clebsch–Gordan theorem is the following formula:

V n =

bn/2c∑
j=0

(−1)j
(
n− j
j

)
(V 2)n−2j = Sn−1(V 2) for n = 1, . . . , r − 1.

Here Sn(x) is the Chebyshev polynomial of the second kind defined recur-
sively by

Sn+1(x) = xSn(x)− Sn−1(x), S0(x) = 1, S1(x) = x.

We define the restricted representation ring R(U~(sl(2,C))) as the ring
generated by V j , j = 1, . . . , r − 1, with multiplication V m ⊗ V n =

∑
p V

p,
where the sum is taken over all indices p that satisfy the conditions from
the Clebsch–Gordan theorem.

Proposition 5.1. The restricted representation ring R(U~(sl(2,C))) is
isomorphic to C[V 2]/Sr−1(V 2). If we define V n = Sn−1(V 2) in this ring for
all n ≥ 0, then V r+n = −V r−n, V r = 0, and V n+2r = V n for all n > 0.

5.2. The quantum group quantization of the moduli space of flat
SU(2)-connections on a surface of genus greater than 1. The quan-
tization of the moduli space Mg of flat SU(2)-connections on a surface Σg
uses ribbon graphs and framed links embedded in 3-dimensional manifolds.

(1) In this case the quantum group is denoted by Ut in [28] and by A in [19].
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A ribbon graph consists of the embeddings in the 3-dimensional manifold
of finitely many connected components, each of which is homeomorphic to
either an annulus or a tubular neighborhood of a planar trivalent graph in
the plane. Intuitively, one can think of the edges as being ribbons, hence
the name. When embedding the ribbon graph in a 3-dimensional mani-
fold, the framings keep track of the twistings of edges. A framed link is a
particular case of a ribbon graph. The link components and the edges of rib-
bon graphs are oriented. All ribbon graphs depicted below are taken with
the “blackboard framing”, meaning that the ribbon is in the plane of the
paper.

With these conventions, let us quantize Mg. The Hilbert space Hr(Σg)
is defined by specifying a basis, the analogue of the theta series. To specify a
basis of the space of theta functions we need a pair of generators of π1(T2);
analogously here we need an oriented rigid structure on the surface. This is
a collection of simple closed curves that decompose it into pairs of pants, to-
gether with “seams” that keep track of the twistings. The seams are simple
closed curves that, when restricted to any pair of pants, give three noninter-
secting arcs that connect pairwise the boundary components. An oriented
rigid structure is one in which the decomposing curves are oriented. An
example is shown in Figure 3(a), with decomposing curves drawn with con-
tinuous lines, and seams with dotted lines.

a)
V

V
V

V

V
V

k

l

m

n

p

qb)

Fig. 3

Given an oriented rigid structure, map Σg to the boundary of a handle-
body Hg so that the decomposition curves bound disks in Hg. The disks
cut Hg into balls. Take the oriented framed trivalent graph that is the core
of Hg, with a vertex at the center of each ball, an edge for each disk, and
frame edges parallel to the region of the surface that lies between the seams.
The disks are oriented by the decomposition curves on the boundary, and
the orientation of the edges should agree with that of the disks.

The vectors forming a basis of Hr(Σg) consist of all colorings of this
framed oriented trivalent graph by V j ’s so that at each vertex the three in-
dices satisfy the conditions from the Clebsch–Gordan theorem (the double
inequality is invariant under permutations of m,n, p). Such a coloring is
called admissible. For the rigid structure from Figure 3(a), a basis element
is shown in Figure 3(b). The inner product 〈·, ·〉 is defined so that these basis
elements are orthogonal. That we can represent nonabelian theta functions
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as such graphs follows from the relation between theta functions and con-
formal field theory, [37].

The matrix of the operator Op(Wγ,n) associated to the Wilson line Wγ,n :
A 7→ trV n holγ(A) is computed as follows. First, let 1 ≤ n ≤ r− 1. Place Σg
in standard position in S3 so that it bounds a genus g handlebody on each
side. Draw a curve γ on Σg, frame it parallel to the surface, and color it
by the representation V n of U~(sl(2,C)). Add two basis elements ep and eq,
viewed as admissible colorings by irreducible representation of the cores
of the interior, respectively exterior, handlebodies (see Figure 4(a)). The
oriented rigid structures on the boundaries of the two handlebodies should
coincide.

V

V

VV V
V

V
n

a

b

ci
j

k

a)

V

V

V

V

V

V

a

b

c

i

V j

k

n

t

x

b)

Fig. 4

Erase the surface to obtain an oriented tangled ribbon graph in S3

whose edges are decorated by irreducible representations of U~(sl(2,C))
(Figure 4(b)). Project this graph onto a plane while keeping track of the
crossings. Reshetikhin–Turaev theory [28] shows how to associate a number
to this ribbon graph, which is independent of the particular projection; the
Reshetikhin–Turaev invariant of the ribbon graph.

In short, the Reshetikhin–Turaev invariant is computed as follows. The
ribbon graph is mapped by an isotopy to one whose projection can be cut
by finitely many horizontal lines into slices, each containing one of the phe-
nomena from Figure 5 and some vertical strands. To each horizontal line
slicing the graph, associate the tensor product of the representations that
color the crossing strands, when pointing downwards, or their duals, when
pointing upwards. To the phenomena from Figure 5 associate, in order, the
following operators:

• the flipped universal R-matrix Ř : V m⊗V n → V n⊗V m (obtained by
composing the universal R-matrix with the flip v ⊗ w 7→ w ⊗ v),
• the inverse Ř−1 of Ř,
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• the projection operator βmnp : V m ⊗ V n → V p, whose existence and
uniqueness is guaranteed by the Clebsch–Gordan theorem,

• the inclusion βpmn : V p → V m ⊗ V n,
• the contraction E : V n∗ ⊗ V n → C, E(f ⊗ x) = f(x),
• its dual N : C→ V n ⊗ V n∗, N(1) =

∑
j ej ⊗ ej ,

• the isomorphism D : V n∗ → V n,
• and its dual D∗ : V n∗ → V n∗∗ = V n (see [19, Lemma 3.18] for the

precise identification of V n∗∗ with V n).

Compose the operators from the bottom to the top to obtain a linear
map from C to C, which must be of the form z 7→ λz. The number λ is
the Reshetikhin–Turaev invariant of the ribbon graph. The blank coupons,
i.e. the maps D, might be required in order to change the orientations of
the three edges that meet at a vertex, to make them look as depicted in
Figure 5.

V
n

n
V

n
VV V

n
V

m
V

n
V

m
V

n
V V

nm p

V
m

VV
p n

Fig. 5

Returning to the quantization of Wilson lines, the Reshetikhin–Turaev
invariant of the graph is equal to [Op(Wγ,n)ep, eq], where [·, ·] is the nonde-
generate bilinear pairing on Hr(Σg) defined by erasing the curve colored by
V n in Figure 4(b). We think of it as being the p, q-entry of the matrix of
the operator, although this is not quite true because the bilinear pairing is
not the inner product. But because the pairing is nondegenerate (see Ap-
pendix), the above formula completely determines the operator associated
to the Wilson line.

In view of Proposition 5.1, this definition of quantized Wilson lines is
extended to arbitrary n by the conventions

Op(Wγ,r) = 0, Op(Wγ,r+n) = −Op(Wγ,r−n),

Op(Wγ,n+2r) = −Op(Wγ,n).

It was shown [1] that the quantization is in the direction of Goldman’s
Poisson bracket.

Remark 5.2. It is interesting that not all irreducible representations
participate in the quantization of the moduli space. A similar phenomenon
happens in the case of abelian Chern–Simons theory [10]. This is worth
investigating.
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5.3. Nonabelian theta functions from skein modules. We re-
phrase the construction from §5.2 in the language of skein modules. The
goal is to express the quantum group quantization of Wilson lines as the
left representation of a skein algebra on a quotient of itself, similar to the
Schrödinger representation described as the left representation of the re-
duced linking number skein algebra of the cylinder over the torus on a quo-
tient of itself (§3.2).

One usually associates to SU(2) Chern–Simons theory the skein mod-
ules of the Kauffman bracket. The Reshetikhin–Turaev topological quantum
field theory has a Kauffman bracket analogue defined in [4]. However, the
Kauffman bracket skein relations introduce sign discrepancies in the com-
putation of the action of operators! Because Theorem 5.9 in §5.4 brings
evidence that quantum group quantization is the nonabelian analogue of
Weyl quantization, we define our modules by the skein relations found by
Kirby and Melvin [19] for the Reshetikhin–Turaev version of the Jones poly-
nomial.

First we replace oriented framed ribbon graphs colored by irreducible
representations of U~(sl(2,C)) by formal sums of oriented framed links col-
ored by the 2-dimensional irreducible representation. Two results are needed.

Lemma 5.3. For all n = 3, 4, . . . , r − 1 the identity from Figure 6(a)
holds.

VV

V

VV

V V V

VV

V V

2

2

2 2

2

n

n−1

n−1

n−1

n−1

n−2

n−1

.

a)

V

VV

V

V

V V

V

V
p

p

m

m

n
n

2

m−1

p−1

 b)

Fig. 6

Proof. This is a corollary of V n = V 2 ⊗ V n−1 − V n−2.

Lemma 5.4. For integers m,n, p satisfying m+n+p odd and |m−n|+1
≤ p ≤ min(m+ n− 1, 2r − 1−m− n), the identity in Figure 6(b) holds.

Proof. We assume familiarity with the proof of the quantum Clebsch–
Gordan theorem in [28]. Set m0 = m−1

2 , p0 = p−1
2 . The morphism described

by the diagram on the right is the composition of maps

V p
βp2,p−1−−−−→ V 2 ⊗ V p−1 1⊗βp−1

mn−−−−−→ V 2 ⊗ (V m−1 ⊗ V n)

= (V 2 ⊗ V m−1)⊗ V n β2,m−1
m ⊗1−−−−−−→ V m ⊗ V n.
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By Schur’s lemma and the quantum Clebsch–Gordan theorem, the compo-
sition is either zero or identity. To see that it is not the zero map, look at
the highest weight vector ep0 ∈ V p. We have

ep0 7→ e1/2 ⊗ ep0−1/2 7→ e1/2 ⊗
∑

i+j=p0

cijei ⊗ ej =
∑

i+j=p0

cije1/2 ⊗ ei ⊗ ej .

The Clebsch–Gordan coefficients cij are nonzero, and in the sum there is a
term cm0−1/2,je1/2 ⊗ em0−1/2 ⊗ ej .

The inclusion βm2,m−1 : V m → V 2⊗V m−1 maps the highest weight vector
em0 ∈ V m to e1/2 ⊗ em0−1/2, which is the product of the vectors of highest

weights in V 2, respectively V m−1. Hence if the 1/2,m0 − 1/2-component of
a vector v written in the basis ei⊗ej of V 2⊗V m−1 is nonzero, then βm2,m−1v
is nonzero in V m.

In particular, the above sum maps to a nonzero vector in V m ⊗ V n.
Hence the diagram on the right of Figure 6(b) equals the inclusion βpmn :
V p → V m ⊗ V n, proving the identity.

Proposition 5.5. There is an algorithm for replacing each connected
ribbon graph Γ in S3 colored by irreducible representations of U~(sl(2,C)) by
a sum of oriented framed links colored by V 2 that lie in an ε-neighborhood
of the graph, such that if in any ribbon graph Γ ′ that has Γ as a connected
component we replace Γ by this sum of links, we obtain a ribbon graph with
the same Reshetikhin–Turaev invariant as Γ ′.

Proof. For framed knots, the property follows from the cabling formula
given in [19, Theorem 4.15]; a knot colored by V n is replaced by Sn−1(V 2).

If the connected ribbon graph has vertices, then by using the isomor-
phism D to identify irreducible representations of U~(sl(2,C)), with their
duals, we can obtain the identity from Figure 6(b) with the arrows reversed.
Also, by taking the adjoint of the map described by the diagram, we can
turn it upside down, meaning that we can write a similar identity for βmnp .
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Fig. 7

Using the lemmas, the algorithm works as follows. First, use the identi-
ties in Figure 7 to remove all edges colored by V 1. Then apply repeatedly
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Lemma 5.4 until at each vertex of the new ribbon graph at least one of the
three edges is colored by V 2. Next, use Lemma 5.3 to obtain a sum of graphs
with the property that, at each vertex, two of the three edges are colored by
V 2 and one is colored by V 1. Then use the identities in Figure 7 for n = 2
to transform everything into a sum of framed links whose edges are colored
by V 2. Each of the links in the sum has an even number of blank coupons
(representing the isomorphism D or its dual) on each component. Cancel
the coupons on each link component in pairs, adding a factor of −1 each
time the two coupons are separated by an odd number of maxima on the
link component. The result is a formal sum of framed links with components
colored by V 2.

Theorem 4.3 in [19] allows us to compute the Reshetikhin–Turaev in-
variant of a framed link whose components are colored by V 2 using skein
relations. First, forget about the orientation of links. Next, if three framed
links L,H, V in S3 colored by V 2 coincide except in a ball where they
look like in Figure 8, then their Reshetikhin–Turaev invariants, denoted by
JL, JH , and JV satisfy

JL = tJH + t−1JV or JL = ε(tJH − t−1JV ),

depending on whether the two crossing strands come from different compo-
nents or not. Here ε is the sign of the crossing, obtained after orienting that
link component (either orientation produces the same sign). Specifically, if
the tangent vectors to the over and under strand form a positive frame then
the sign is positive, otherwise it is negative. Additionally, if a link compo-
nent bounds a disk inside a ball disjoint from the rest of the link, then it is
replaced by a factor of t2 + t−2.

L H V

Fig. 8

This prompts us to introduce skein modules defined by these skein rela-
tions. Let for now t be an abstract variable, rather than the root of unity
chosen at the beginning of §5.2. For an orientable 3-dimensional manifold M ,
consider the free C[t, t−1] module with basis the isotopy classes of framed
links in M including the empty link. Factor this module by the skein rela-
tions

L = tH + t−1V or L = ε(tH − t−1V ),

depending on whether the two crossing strands come from different compo-
nents or not, where the links L,H, V are identical except in an embedded
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ball, in which they look as in Figure 8. The same convention for ε is used
as before, with the orientation of the crossing decided inside the ball. Also
replace any trivial link component that lies inside a ball disjoint from the
rest of the link by a factor of t2 + t−2. We call the result of the factorization
the Reshetikhin–Turaev skein module and denote it by RTt(M). Notice that
RTt(M) is isomorphic as a module to the Kauffman bracket skein module.

If M = Σg × [0, 1], then the homeomorphism

Σg × [0, 1] ∪Σg Σg × [0, 1] ≈ Σg × [0, 1]

induces a multiplication on Rt(Σg × [0, 1]), turning it into an algebra, the
Reshetikhin–Turaev skein algebra. This algebra is not canonically isomor-
phic to the Kauffman bracket skein algebra except in genus one. In higher
genus the multiplication rules are different, as can be seen by examining the
product of a separating and a nonseparating curve that intersect.

The operation of gluing Σg × [0, 1] to the boundary of a genus g han-
dlebody Hg by a homeomorphism of the surface induces an RTt(Σg × [0, 1])
module structure on RTt(Hg). Moreover, by gluing Hg with the empty skein
inside to Σg × [0, 1], we see that RTt(Hg) is the quotient of RTt(Σg × [0, 1])
obtained by identifying the skeins in Σg × [0, 1] that are isotopic in Hg.

By Lemma 5.3 and the identities in Figure 7, the irreducible representa-
tions V n can be represented by skeins. Explicitly, V n = Sn−1(V 2) = fn−1,
where fn is defined recursively in Figure 9. These are the Jones–Wenzl
idempotents [15], [36].
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n−1

f n−1

1
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n−11n

n−2

1

n−1

n−1

2

f 2 =
1

[2]

Fig. 9

The condition Sr−1(V 2) = 0 translates to f r−1 = 0. This yields the

reduced Reshetikhin–Turaev skein module R̃Tt(M), obtained by factoring
RTt(M) by t = eiπ/2r and the skein relation f r−1 = 0, taken in every em-
bedded ball. The reduction is compatible with multiplication RTt(Σg×[0, 1])
and with its action on RTt(Hg).

Proposition 5.6. The quantum group quantization of the moduli space
of flat SU(2)-connections on a surface Σg and of Wilson lines is isomorphic

to the left action of R̃Tt(Σg × [0, 1]) on R̃Tt(Hg).

Proof. The proof is based on Propositions 5.5 and 5.1. Because each fn

involves n parallel strands, RTt(Hg) is a free C[t, t−1]-module with basis the
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skeins obtained by

• replacing each edge of the core of Hg by a Jones–Wenzl idempotent
in such a way that, if fm, fn, fp meet at a vertex, then m + n + p is
even, m+ n ≤ p, m+ p ≤ n, n+ p ≤ m, and
• replacing the vertices by the unique collection of strands that lie in a

disk neighborhood of the vertex and join the ends of the three Jones–
Wenzl idempotents meeting there in such a way that there are no
crossings.

By the Clebsch–Gordan theorem and Proposition 5.1, in R̃Tt(Hg), only
edges colored by fn with n ≤ r − 2 need be considered, and if fm, fn, fp

meet at a vertex, then m + 1, n + 1, p + 1 and their cyclic permutations
must satisfy the double inequality from the Clebsch–Gordan theorem. Each
element of this form comes from a basis element in the quantum group quan-
tization. A detailed explanation of this can be found, for Kauffman bracket
skein modules, in [21].

The computation in Figure 10, performed in the dotted annulus, shows
that for a simple closed curve γ on the torus, Op(Wγ,n) can be identified

with the skein Sn−1(γ) ∈ R̃Tt(Σg × [0, 1]). We conclude that the action
of quantum observables on the Hilbert space is modeled by the action of
R̃Tt(Σg × [0, 1]) on R̃Tt(Hg).
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Fig. 10

To identify the two quantization models, we also have to prove that the
skeins associated to admissible colorings of the core of the handlebody form
a basis, namely that they are linearly independent in R̃Tt(Hg).

The smooth part of Mg has real dimension 6g − 6, and is a completely
integrable manifold in the Liouville sense. Indeed, the Wilson lines Wαi ,
where αi, i = 1, . . . , 3g − 3, are the curves in Figure 11(a), form a maximal
set of Poisson commuting functions (meaning that {Wαi ,Wαj} = 0). The
quantum group quantization of the moduli space is thus a quantum inte-
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grable system, with the operators Op(Wα1), . . . ,Op(Wα3g−3) satisfying the
integrability condition.

The identity in Figure 11(b), which holds for any choice of orienta-
tion of strands, implies that the spectral decomposition of the commuting
(3g−3)-tuple of self-adjoint operators (Op(Wα1), . . . ,Op(Wα3g−3)) has only
1-dimensional eigenspaces consisting precisely of the colorings of the edges
following the given rule. Indeed, the basis elements are as described in §5.2
for the case where the curves that cut the surface into pairs of pants are
α1, . . . , α3g−3, and the identity in Figure 11(b) shows that the eigenvalues of
an ej with respect to the 3g−3 quantized Wilson lines completely determine
the colors of its edges.

Remark 5.7. Proposition 5.6 should be compared with Theorem 3.5.
Again the algebra of quantized observables is a skein algebra, the space of
nonabelian theta functions is a quotient of this algebra, and the factorization
relation is of topological nature: it is defined by gluing the cylinder over the
surface to a handlebody via a homeomorphism. The skein modules RTt(Σg×
[0, 1]) and R̃Tt(Σg × [0, 1]) are the analogues, for the gauge group SU(2), of
the algebras C[H(Z)] and AN .

Since we have not yet proved that the pairing [·, ·] from §5.2 is nondegen-

erate, we take for the moment this representation of R̃Tt(Σg × [0, 1]) to be
the quantum group quantization of the moduli space Mg. Nondegeneracy
is proved in Appendix.

The quantum group quantization is more natural than it seems. Quan-
tum groups were introduced by Drinfeld as means of finding operators that
satisfy the Yang–Baxter equation. They lead to the deformation quantiza-
tion of Mg in [1]. This gives rise to the skein algebra of the surface, and by
analogy with §3.2 we are led to consider the skein module of the handlebody.
The basis consisting of admissible colorings of the core of the handlebody
appears when looking at the spectral decomposition of the commuting op-
erators in Proposition 5.6.

5.4. The quantum group quantization of the moduli space of
flat SU(2)-connections on the torus. The quantum group quantization
of M1 is a particular case of the construction in §5.2 (see [11]). A basis for
the Hilbert space is specified by an oriented rigid structure on the torus.
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The curves a and b define such a structure with a the seam and b the curve
that cuts the torus into an annulus. Mapping the torus to the boundary
of the solid torus to make b null-homologous and a the generator of the
fundamental group, we get an orthonormal basis consisting of the vectors
V 1(α), . . . , V r−1(α)—the colorings of the core α of the solid torus by the irre-
ducible representations V 1, . . . , V r−1 of U~(sl(2,C)). These are the quantum
group analogues of the ζτj ’s. Here, the orientation of the rigid structure, and
hence of the core of the solid torus, is irrelevant: reversing the orientation
gives the same results in computations (orientation of link components is
irrelevant [37]).

The operator associated to the function f(x, y) = 2 cos 2π(px + qy) is
computed like for higher genus surfaces. The bilinear form on the Hilbert
space comes from the Hopf link and is

[V j(α), V k(α)] = [jk], j, k = 1, . . . , r − 1.

The value of [Op(2 cos 2π(px + qy))V j(α), V k(α)] is equal to the Reshetik-
hin–Turaev invariant of the three-component colored framed link consisting
of the curve of slope p/q on the torus embedded in standard position in S3,
colored by V n+1−V n−1 where n = gcd(p, q), the core of the solid torus that
lies on one side of the torus, colored by V j , and the core of the solid torus that
lies on the other side, colored by V k. Coloring the curve by V n+1− V n−1 is
the same as coloring it by Tn(V 2), where Tn(x) is the Chebyshev polynomial
of the first kind defined by T0(x) = 2, T1(x) = x, Tn+1(x) = xTn(x)−Tn−1(x)
for n ≥ 1. Again, the quantum group quantization is modeled as the action
of the reduced Reshetikhin–Turaev skein algebra of the torus on the reduced
Reshetikhin–Turaev skein module of the solid torus.

It was shown in [11] that the quantum group quantization of M1 is
unitarily equivalent to Weyl quantization. However, that proof uses the
Reshetikhin–Turaev representation of the mapping class group, and does
not serve our purpose of showing how the Reshetikhin–Turaev representa-
tion arises from quantum mechanics. For that reason we give here a different
proof of this result.

For p, q ∈ Z, let n = gcd(p, q), and let (p, q)T = Tn((p/n, q/n)) ∈
RTt(T2 × [0, 1]). The proof of the following result is identical to that of
Theorem 4.1 in [7], which covers the case of the Kauffman bracket.

Theorem 5.8. For any integers p, q, p′, q′ the following product-to-sum
formula holds:

(p, q)T (p′, q′)T = t

∣∣∣ p q
p′ q′

∣∣∣
(p+ p′, q + q′)T + t

−
∣∣∣ p q
p′ q′

∣∣∣
(p− p′, q − q′)T .

So the Reshetikhin–Turaev and the Kauffman bracket skein algebras of
the torus are isomorphic.



Quantum mechanics and theta functions 125

Theorem 5.9 ([11]). The Weyl quantization and the quantum group
quantization of the moduli space of flat SU(2)-connections on the torus are
unitarily equivalent.

Proof. We rephrase the quantum group quantization in terms of skein
modules. The Hilbert space is R̃Tt(S

1×D2). Indeed, R̃Tt(S
1×D2) is spanned

by the vectors Sj−1(α), j = 1, . . . , r− 1, and these are linearly independent
because they are eigenvectors with different eigenvalues of the operator de-
fined by (0, 1).

Considering the projection π : RTt(T2 × [0, 1])→ RTt(S
1 × D2) defined

by attaching the cylinder over the torus to the solid torus by the homeo-
morphism h0 from §3.2, and using Theorem 5.8, we find the recursion

π((p+ 1, q)T ) = t−qαπ((p, q)T )− t−2qπ((p− 1, q)T ).

Also π((0, q)T ) = t2q + t−2q, and π((1, q)T ) = t−2qα. Solving the recursion
we get

π((p, q)T ) = t−pq(t2qSp(α)− t−2qSp−2(α)).

Again using Theorem 5.8 we have

(p, q)TTj(α) = π[(p, q)T (j, 0)T ] = π[t−jq(p+ j, q)T + tjq(p− j, q)T ]

= t−pq[t−(2j−2)qSp+j(α)+t(2j+2)qSp−j(α)−t−(2j−2)qSp+j−2(α)−t(2j−2)qSp−j−2(α)].

Since Tn(x) = Sn(x)− Sn−2(x) for all n, we have

(p, q)TSj−1(α) = t−pq(t−2qjSp+j−1(α) + t2qjSp−j+1(α)), for j > 0.

Reducing to the relative skein modules and using the equality Sj−1(α) =
V j(α), we get

(5.1) Op(2 cos 2π(px+ qy))V j(α)

= e−
πi
2r
pq(e

πi
r
qjV j−p(α) + e−

πi
r
qjV j+p(α)).

This is the desired formula for the Weyl quantization of the pillow case from
§4.2.

5.5. A Stone–von Neumann theorem on the moduli space of flat
SU(2)-connections on the torus. Weyl quantization yields a representa-

tion of R̃Tt(T × [0, 1]) so that t acts as multiplication by eiπ/2r and every
simple closed curve on the torus acts as a self-adjoint operator. The last con-
dition is necessary, since for the group SU(2) Wilson lines are real-valued, so

their quantizations are self-adjoint operators. The algebra R̃Tt(T× [0, 1]) is
a nonabelian analogue of the group algebra of the finite Heisenberg group.
A Stone–von Neumann theorem also holds in this case.

Theorem 5.10. The representation of the reduced Reshetikhin–Turaev
skein algebra of the torus defined by the Weyl quantization of the moduli
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space of flat su(2)-connections on the torus is the unique irreducible rep-
resentation of this algebra that maps simple closed curves to self-adjoint
operators and t to multiplication by eπi/2r. Moreover, the quantized Wil-
son lines span the algebra of all linear operators on the Hilbert space of the
quantization.

Proof. We prove irreducibility by showing that any vector is cyclic. Be-
cause the eigenspaces of each quantized Wilson line are 1-dimensional, in
particular those of Op(2 cos 2πy), it suffices to check this property for the
eigenvectors of this operator, namely for ζτj , j = 1, . . . , r − 1. And since

Op(2 cos 2πx)ζτj = ζτj−1 + ζτj+1,

Op(2 cos 2π(x+ y))ζτj = t−1(t2ζτj−1 + t−2ζτj+1),

by taking linear combinations we see that from ζτj we can generate both
ζτj+1 and ζτj−1. Repeating, we can generate the entire basis. This shows that
ζτj is cyclic for each j = 1, . . . , r− 1, hence the representation is irreducible.

To prove uniqueness, consider an irreducible representation of R̃Tt(T2×
[0, 1]) with the required properties. The condition Sr−1(γ) = 0 for any simple
closed curve γ on the torus implies, by the spectral mapping theorem, that
the eigenvalues of the operator associated to γ are among the numbers
2 cos kπr , k = 1, . . . , r − 1.

For generators X = (1, 0), Y = (0, 1), and Z = (1, 1) of R̃Tt(T2 × [0, 1])
we write the relations

tXY − t−1Y X = (t2 − t−2)Z, tYZ − t−1ZY = (t2 − t−2)X,

tZX − t−1XZ = (t2 − t−2)Y,

t2X2 + t−2Y 2 + t2Z2 − tXYZ − 2t2 − 2t−2 = 0,

by analogy with the presentation of the Kauffman bracket skein algebra
of the torus found by Bullock and Przytycki [5]. In fact R̃Tt(T2 × [0, 1]) is
generated by just X and Y , since we can substitute Z from the first equation.
We thus have

(5.2)

(t2 + t−2)Y XY − (XY 2 + Y 2X) = (t4 + t−4 − 2)X,

(t2 + t−2)XYX − (Y X2 +X2Y ) = (t4 + t−4 − 2)Y,

(t6 + t−2 − 2t2)X2 + (t−6 + t2 − 2t−2)Y 2 +XYXY + Y XY X

− t2Y X2Y − t−2XY 2X = 2(t6 + t−6 − t2 − t−2).

On setting t = eiπ/2r the first equation in (5.2) becomes

2 cos
π

r
Y XY − (XY 2 + Y 2X) = 4 sin2 π

r
Y.

Let vk be an eigenvector of Y with eigenvalue 2 cos kπr for some k ∈
{1, . . . , r − 1}. We wish to generate a basis of the representation by acting
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repeatedly on vk by X. For this, set Xvk = w. The above relation yields

2 cos
π

r
· 2 cos

kπ

r
Y w − 4 cos2 kπ

r
w − Y 2w = 4 sin2 π

r
w.

Rewrite this as[
Y 2 − 4 cos

kπ

r
cos

π

r
Y − 4

(
sin2 π

r
+ cos2 kπ

r

)]
w = 0.

It follows that either w = 0 or w is in the kernel of the operator

(5.3) Y 2 − 4 cos
kπ

r
cos

π

r
Y − 4

(
sin2 π

r
+ cos2 kπ

r

)
Id.

The second equation in (5.2) shows that if Xvk = w = 0 then Y vk = 0.
This is impossible because of the third relation in (5.2). Hence w 6= 0, so w
lies in the kernel of the operator (5.3). Note that if λ is an eigenvalue of Y
which satisfies

λ2 − 4 cos
kπ

r
cos

π

r
λ− 4

(
sin2 π

r
+ 4 cos2 kπ

r

)
= 0,

then necessarily λ = 2 cos (k±1)π
r . It follows that

Xvk = vk+1 + vk−1,

where Y vk±1 = 2 cos (k±1)π
4 vk±1, and vk+1 and vk−1 are not simultaneously

equal to zero. We wish to enforce vk, vk+1, and vk−1 to be elements of a
basis. For that we need to check that vk+1, vk−1 6= 0, and understand Xvk+1

and Xvk−1.

Set Xvk+1 = αvk + vk+2 and Xvk−1 = βvk + vk−2, where Y vk±2 =

2 cos (k±2)π
r vk±2. It might be that the scalars α and β are zero. The vectors

vk+2, vk−2 might as well be zero; if they are not zero, then they are eigen-
vectors of Y , and their respective eigenvalues are as specified (which can be
seen by repeating the above argument).

Applying both sides of the second equation in (5.2) to vk and comparing
the vk coordinate of the results we obtain

cos
π

r
cos

(k + 1)π

r
α+ cos

π

r
cos

(k − 1)π

r
β − cos

kπ

r
(α+ β)

= cos
2π

r
cos

kπ

r
− cos

kπ

r
.

This is equivalent to(
cos

(k + 2)π

r
+ cos

kπ

r

)
(α− 1) +

(
cos

(k − 2)π

r
+ cos

kπ

r

)
(β − 1) = 0,

that is, sin (k+1)π
r (α− 1) + sin (k−1)π

r (β − 1) = 0. For further use, we write
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this as

(5.4) (t4k+4 − 1)(α− 1) + (t4k − t4)(β − 1) = 0.

Applying the two sides of the last equation in (5.2) to vk and comparing
the vk coordinate of the results we obtain

(t6 + t−2 − 2t2)(α+ β) + (t−6 + t2 − 2t−2)4 cos2 kπ

r

+ 8 cos
kπ

r
cos

(k + 1)π

r
α+ 8 cos

kπ

r
cos

(k − 1)π

r
β − 4t2 cos2 kπ

r
(α+ β)

− 4t−2 cos2 (k + 1)π

r
α− 4t−2 cos2 (k − 1)π

r
β = 2(t6 + t−6 − t2 − t−2).

This can be rewritten as

(t6 + t−2 − 2t2)(α+ β) + 4 cos
(2k + 1)π

r
α+ 4 cos

π

r
α+ 4 cos

(2k − 1)π

r
β

+ 4 cos
π

r
β − 2t2 cos

2kπ

r
α− 2t2 cos

2kπ

r
β − 2t2α− 2t2β

− 2t−2 cos
(2k + 2)π

r
α− 2t−2α− 2t−2 cos

(2k − 2)π

r
β − 2t−2β

= 2(t6 + t−6 − t2 − t−2)− 2(t−6 + t2 − 2t−2)− 2(t−6 + t2 − 2t−2) cos
2kπ

r
.

Using the fact that t = cos kπ2r + i sin kπ
2r we change this to

(t−4k−6 + t−4k+2 + 2t2 − 2t−4k−2 − t6 − t−2)(α− 1)

+ (t4k−6 + t4k+2 + 2t2 − 2t4k−2 − t6 − t−2)(β − 1) = 0.

Dividing through by t−6 + t2 − 2t−2 we obtain

(t−4k − t4)(α− 1) + (t4k − t4)(β − 1) = 0.

Combining this with (5.4), we obtain the system

(t4k+4 − 1)u+ (t4k − t4)v = 0,

(t−4k − t4)u+ (t4k − t4)v = 0

in the unknowns u = α− 1 and v = β − 1. Recall that t = eiπ/2r.

The coefficient of v equals zero if and only if k = 1, in which case we are
forced to have β = 0, because 0 is not an eigenvalue of Y . The coefficient of
u in one of the equations is equal to zero if and only if k = r − 1, in which
case we are forced to have α = 0, because −1 is not an eigenvalue of Y .

In any other situation, by subtracting the equations we obtain

(t4 − t−4k)(t4k + 1)u = 0.

This can happen only if t4k = −1, namely if 2k = r.
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So, if k 6= r
2 , then Xvk = vk+1 + vk−1 with vk+1 and vk−1 eigenvectors of

Y with eigenvalues 2 cos (k+1)π
r respectively 2 cos (k−1)π

r , and Xvk±1 = vk +

vk±2, where vk±2 lie in the eigenspaces of Y of the eigenvalues 2 cos (k±2)π
r .

When k = r
2 , one of vk+1 and vk−1 is nonzero, say vk+1. Applying

the above considerations to vk+1 we have Xvk+1 = αvk + vk+2 and
Xαvk = vk+1 + v′k−1, for some v′k−1 in the eigenspace of Y of the eigen-

value 2 cos (k−1)π
r . Then on the one hand Xvk = vk+1+vk−1 and on the other

αXvk = vk+1+v′k−1. This shows that α = 1, and because (α−1)+(β−1) = 0,
it follows that β = 1. A similar conclusion is reached if vk−1 6= 0.

Repeating the argument we conclude that the irreducible representation,
which must be the span of XmY nvk for m,n ≥ 0, has the basis v1, . . . , vr−1,
and X and Y act on these vectors by

Xvj = vj+1 + vj−1, Y vj = 2 cos
jπ

r
vj

(here v0 = vr = 0). This is the representation defined by Weyl quantization
of M1.

The fact that the algebra of all quantized Wilson lines consists of all
linear operators on the Hilbert space follows from [9, Theorem 6.1].

6. The Reshetikhin–Turaev representation as a Fourier
transform

6.1. The Reshetikhin–Turaev representation of the mapping
class group of the torus. In this section we deduce the existence of the
Reshetikhin–Turaev representation for the torus from quantum mechanical
considerations. The method shows how to derive the element that allows
handle slides without a priori knowing it, and should be generalizable to
other gauge groups.

There is an action of the mapping class group of the torus on the ring
of functions on the pillow case, given by

h · f(A) = f(h−1
∗ A),

where h−1
∗ A denotes the pull-back of the connection A by h. In particular the

Wilson line of a curve γ is mapped to the Wilson line of the curve h(γ). The
action of the mapping class group on functions on the pillow case induces
an action on the quantum observables by

h ·Op(f(A)) = Op(f(h−1
∗ A)),

which for Wilson lines is

h ·Op(Wγ) = Op(Wh(γ)).



130 R. Gelca and A. Uribe

Theorem 6.1. There exists a projective representation of the mapping
class group of the torus that satisfies the exact Egorov identity

Op(Wh(γ)) = ρ(h) Op(Wγ)ρ(h)−1

with the quantum group quantization of Wilson lines. Moreover, ρ(h) is
unique up to multiplication by a constant.

Proof. We follow the first proof of Theorem 3.7. The bijective map
L 7→ h(L) on the set of isotopy classes of framed links in the cylinder over the
torus induces an automorphism of the free C[t, t−1]-module with basis these
isotopy classes of links. Because this map leaves invariant the ideal defined
by the skein relations (for crossings and for the r− 1-st Jones–Wenzl idem-

potent), it defines an automorphism Φ : R̃Tt(T2× [0, 1])→ R̃Tt(T2× [0, 1]).

The representation of R̃Tt(T2× [0, 1]) given by V j(α) 7→ Op(Wh(γ))V
j(α) is

an irreducible representation of R̃Tt(T2× [0, 1]) which still maps t to multi-
plication by eiπ/2r and simple closed curves to self-adjoint operators. In view
of Theorem 5.10 this representation is equivalent to the standard represen-
tation. This proves the existence of the map ρ(h) that satisfies the exact
Egorov identity with quantizations of Wilson lines. Schur’s lemma implies
that ρ(h) is unique up to multiplication by a constant and that ρ is a pro-
jective representation of the mapping class group. (A computational proof
of the uniqueness can be found in [9].)

Theorem 5.10 implies that for every h in the mapping class group, the
map ρ(h) is multiplication by a skein F(h) ∈ R̃Tt(T2× [0, 1]). Let us explain
the algorithm of finding F(h) (this was applied to abelian Chern–Simons in
[12], and could be applied for other gauge groups as well). We start with
the case of the positive Dehn twist T along the curve (0, 1). Since the twist
leaves the curve (0, 1) invariant,

F(T )(0, 1)V k(α) = (0, 1)F(T )V k(α) for all k.

And because the eigenspaces of Op(W(0,1)) are 1-dimensional, the linear
operator defined by F(T ) on the Hilbert space is a polynomial in Op(W(0,1)).
The polynomials Sj(x), 0 ≤ j ≤ r − 1, form a basis for C[x]/Sr−1(x), so

F(T ) =

r−1∑
j=1

cjSj−1((0, 1)), cj ∈ C.

On the other hand, the exact Egorov identity gives

(6.1) (1, 1)F(T )V k(α) = F(T )(1, 0)V k(α).

Using (5.1) and the fact that Sj−1((0, 1))V k(α) = [jk]
[k] V

k(α) for all j and k,
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we rewrite (6.1) as∑
j

cj
[jk]

k
t−1(t−2kV k+1(α) + t2kV k−1(α))

=
∑
j

cj

(
[j(k + 1)]

[k + 1]
V k+1(α) +

[j(k − 1)]

[k − 1]
V k−1(α)

)
.

Equating the coefficients of V k+1 on both sides yields

r−1∑
j=1

cj [j(k + 1)] =
[k + 1]

[k]
t−2k−1

r−1∑
j=1

cj [jk].

Set
∑

j c
r−1
j=1[j] = t−1u to get the system of equations in cj , j = 1, . . . , r− 1,

r−1∑
j=1

[kj]cj = [k]t−k
2
u, k = 1, . . . , r − 1.

Recall that [n] = sin nπ
r

/
sin π

r , so the coefficient matrix is a multiple of
the matrix of the discrete sine transform. The square of the discrete sine
transform is the identity map, so there is a constant C such that cj =

C
∑

k[jk][k]t−k
2
. Standard results in the theory of Gauss sums [20] show

that
∑

k[jk][k]t−k
2

= C ′[j]tj
2

where C ′ is a constant independent of j. We

conclude that F(T ) is a multiple of
∑r−1

j=1[j]tj
2
Sj−1((0, 1)). We normalize

F(T ) to make it unitary by multiplying by

η =

√
r

2
sin

π

r
=
(r−1∑
j=1

[j]2
)−1/2

,

and also multiply it by t−1. This is the same as the skein consisting of the
standard surgery framed one-component link of the twist colored by

ΩSU(2) = η

r−1∑
j=1

[j]V j(α) = η

r−1∑
j=1

Sr−1(α) ∈ R̃Tt(S
1 × D2).

And we have recovered ΩSU(2), which is the fundamental building block
of Reshetikhin–Turaev theory. Note that the exact Egorov identity can be
interpreted as a handle slide, and thus our quantum-mechanical argument
hints at the handle-slide property of the element ΩSU(2).

Remark 6.2. The exact Egorov identity implies that γ can be slid over
the one-component surgery link of the twist colored by ΩSU(2). Once this is
noted, it is natural to try slides over knots, and to derive the Reshetikhin–
Turaev formula for 3-manifold invariants [28]. So instead of stating the
Reshetikhin–Turaev formula ad hoc, as always, we obtain it from quantum
mechanics.
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For a framed link L, let ΩSU(2)(L) be the skein obtained by replacing
each component of L by ΩSU(2) so that the curve (1, 0) on the boundary
of the solid torus is mapped to the framing. Then F(T ) is the coloring
by ΩSU(2) of the surgery curve of T . This is true for any twist, and since
any element of the mapping class group is a product of twists and ρ(h) is
unique, we obtain the well-known result (see [29]), which is an analogue of
Theorem 3.8:

Theorem 6.3. Let h be an element of the mapping class group of the
torus obtained by performing surgery on a framed link Lh in T2 × [0, 1]. Up

to multiplication by a constant, the map ρ(h) : L̃t(S1 × D2
) → L̃t(S1 × D2

)
is given by ρ(h)β = ΩSU(2)(Lh)β.

One should point out that this property is obvious if Lh is decomposed
as the union of the surgery curves of the Dehn twists that comprise h, but
it holds in general because of the handle-slide property of ΩSU(2).

6.2. The structure of the reduced Reshetikhin–Turaev skein
algebra of the cylinder over a surface. The next result is similar to
Theorem 3.6 in [29].

Lemma 6.4. The quantum group quantizations of all Wilson lines on a
surface generate the algebra of all linear operators on the Hilbert space of
the quantization.

Theorem 6.5. Given a genus g surface Σg, g ≥ 1, the representation

of R̃Tt(Σg × [0, 1]) on R̃Tt(Hg) is faithful. Moreover, R̃Tt(Σg × [0, 1]) is the

algebra of all linear operators on R̃Tt(Hg).

Proof. By Lemma 6.4, it suffices to show that the dimension of the space
R̃Tt(Σg × [0, 1]) is the square of the dimension of R̃Tt(Hg). In the case of
the Kauffman bracket, part of the proof is in [30] and the case where r is
an odd prime is in [8].

For compact, orientable 3-manifolds M and N , let M # N be the con-
nected sum, obtained by removing a ball from M and N , then gluing the
results along the new boundary spheres. In M #N , M and N are separated
by a sphere Ssep. By turning one Hg inside out, we get Hg #Hg as S3 with
two handlebodies removed.

Lemma 6.6. Given 3-dimensional manifolds M and N , the map

R̃Tt(M)⊗ R̃Tt(N)→ R̃Tt(M #N)

defined by (L,L′) 7→ L ∪ L′, where L and L′ are framed links in M and N
respectively, is an isomorphism of vector spaces.

Proof. The proof was inspired by [27]. Any skein in R̃Tt(M # N) can

be written as
∑k

j=1 cjσj , where cj ’s are complex coefficients and each σj is
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a skein intersecting Ssep along the jth Jones–Wenzl idempotent. Taking a
trivial knot colored by ΩSU(2) and sliding it over Ssep we get, by Lemma 22

(the Encirclement Lemma) in [17], the equality η−1
∑r−2

j=0 cjσj = η−1c0.
So any skein equals one disjoint from Ssep. Hence the map from the

statement is an epimorphism. It is a monomorphism since the skein module
of a regular neighborhood of Ssep is trivial. So it is an isomorphism.

Now we continue as in [30]. We can obtain Σg × [0, 1] from Hg # Hg

by surgery on a g-component framed link Lg (see Figure 12(a)). Let N1 ⊂
Hg # Hg be a regular neighborhood of Lg, consisting of g solid tori. Let
N2 ⊂ Σg × [0, 1] be the union of the g surgery tori, and L′g the framed link
in Σg × [0, 1] consisting of the cores of these tori. Then Hg #Hg is obtained
from Σg × [0, 1] by surgery on L′g.

a)
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Fig. 12

Every skein in Hg#Hg respectively Σg×[0, 1] can be isotoped to miss N1

respectively N2. The homeomorphism φ : (Hg #Hg)\N1 → (Σg × [0, 1])\N2

induces an isomorphism

φ : R̃Tt((Hg #Hg)\N1)→ R̃Tt((Σg × [0, 1])\N2).

But φ does not induce a well-defined map between R̃Tt(Hg # Hg) and

R̃Tt(Σg × [0, 1]). Sikora defined F1 : R̃Tt(Hg # Hg) → R̃Tt(Σg × [0, 1])
by F1(σ) = φ(σ) ∪ ΩSU(2)(L

′
g). The Lickorish trick (see [17]) allows us to

slide φ(σ) along L′g; hence this map is well defined. Its inverse is F2(σ) =

φ−1(σ)∪ΩSU(2)(Lg). To see this, push L′g off N2 in the direction of the fram-

ing of L′g. Then each component of φ−1(L′g) is the meridian of the surgery
torus, and it surrounds once the corresponding component of Lg. Again by

[17, Lemma 22], ΩSU(2)(Lg) ∪ΩSU(2)(φ
−1(L′g)) = ∅ ∈ R̃Tt(Hg #Hg). Hence

F2 ◦ F1 = Id. Similarly F1 ◦ F2 = Id, and we are done.

Note that this result is the nonabelian analogue of Proposition 3.3.

6.3. The quantization of Wilson lines determines the Resheti-
khin–Turaev representation. Just as for the torus, there is an action of
the mapping class group of a surface Σg on the ring of regular functions on
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the moduli space Mg of flat SU(2)-connections on Σg given by h · f(A) =
f(h−1

∗ A). This induces the action on the quantum observables

h ·Op(Wγ) = Op(Wh(γ)).

Theorem 6.7. There is a projective representation ρ of the mapping
class group of a closed surface that satisfies the exact Egorov identity

Op(Wh(γ)) = ρ(h) Op(Wγ)ρ(h)−1

with the quantum group quantization of Wilson lines. Moreover, for every h,
ρ(h) is unique up to multiplication by a constant.

Proof. We mimic the second proof of Theorem 3.7. The bijective map
L 7→ h(L) on the set of isotopy classes of framed links in the cylinder over
the torus induces an automorphism of the free C[t, t−1]-module with basis
these isotopy classes of links. Because the ideal defined by the skein relations
is invariant under this map, the map defines an automorphism

Φ : R̃Tt(Σg × [0, 1])→ R̃Tt(Σg × [0, 1]).

By Theorem 6.5 the representation R̃Tt(Σg×[0, 1])→ L(R̃Tt(Hg)) is faithful
(this is essential) and onto. So the automorphism Φ is inner [33]. This proves
the existence of ρ(h). That ρ is a representation of the mapping class group
and its uniqueness are consequences of Schur’s lemma.

Remark 6.8. Another way to prove this, as well as to prove Theo-
rem 6.1, is to note that if h is an element of the mapping class group that
extends to the handlebody Hg, then for v ∈ R̃Tt(Hg) seen as image of a
skein on the boundary the exact Egorov identity implies F(h)v∅ = h(v)F∅,
or F(h)v = h(v) in R̃Tt(Hg). Then we use the results from §3 in [29] to de-
rive the conclusion. We gave the above proof to exhibit similarity with the
action of the mapping class group on theta functions and with the meta-
plectic representation, since we think that this approach can be generalized
to other gauge groups.

Each element of the mapping class group preserves the Atiyah–Bott sym-
plectic form, so it induces a symplectomorphism ofMg. Theorem 6.7 proves
that the symplectomorphisms of Mg arising from elements of the mapping
class group can be quantized. Their quantization plays the role of the Fourier
transform for nonabelian theta functions.

Recall also that the projective representation of the mapping class group
can be made into a true representation by passing to a Z-extension of the
mapping class group [32], [34].

Appendix. For completeness, we conclude with the proof of the follow-
ing result mentioned in §5.2 and whose importance was explained in §5.3.
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Proposition 6.9. The bilinear pairing used in the definition of the
quantum group quantization from §5.2 is nondegenerate.

Proof. We first give a description of the inner product on the Hilbert
space R̃Tt(Hg) by diagrams, following [8]. The handlebody Hg has a natural
orientation reversing symmetry s that leaves its core invariant. Glue two
copies of Hg along their boundaries by the restriction of s to the boundary
to obtain a connected sum of g copies of S1 × S2, #gS

1 × S2. This induces
a pairing

〈·, ·〉0 : R̃Tt(Hg)× R̃Tt(Hg)→ R̃Tt(#gS
1 × S2).

The manifold #gS
2 × S2 is obtained from S3 by performing surgery on the

trivial link with g components. Identifying R̃Tt(#gS
1 × S2) with R̃Tt(S

3)
via Sikora’s isomorphism as in Theorem 6.5, we find that the pairing takes
values in C.

The pairing by 〈·, ·〉0 of two basis elements is given by the Reshetikhin–
Turaev invariant of a graph like the one in Figure 12(b). We argue on this
figure, but one should keep in mind that there are many different graphs that
can be the cores of the same handlebody. By [17, Lemma 22], in order for this
Reshetikhin–Turaev invariant to be nonzero, in each pair of edges linked by
a circle colored by ΩSU(2) the colors must be equal. This is because in order

for the tensor product V ji ⊗ V ki to contain a copy of V 1, the dimensions of
the two irreducible representations must be equal. Note also that because
we work in S3, the pairs of edges like V j3 and V k3 are also linked by a circle
colored by ΩSU(2), namely the circle that links V j4 and V k4 . In general,
the edges corresponding to decomposition circles that do not disconnect the
surface fall in this category.

Let us next examine the pairs of edges that are not linked by surgery
circles, such as those colored by V j2 , V k2 in the figure. In general, the edges
that come from decomposition circles that disconnect the surface fall in this
category. Rotating the graph by 90◦ and evaluating the Reshetikhin–Turaev
invariant by the rules we obtain a homomorphism C = V 1 → V j2 ⊗ V k2 .
This homomorphism is nonzero if and only if j2 = k2. We conclude that the
pairing of two distinct basis elements is zero. On the other hand, computing
the pairing of a basis element with itself we can trace a V 1 from the bottom
to the top, and the value of the pairing is ΩSU(2)(O) = η−g. Hence 〈·, ·〉0 =
η−g〈·, ·〉, where 〈·, ·〉 is the inner product.

The bilinear pairing [·, ·] from §5.2 is defined by gluing two copies of
Hg along an orientation reversing homeomorphism so as to obtain S3. The
homeomorphism is of the form s ◦ h, so [ei, ej ] = 〈ei, ρ(h)ej〉. Because ρ(h)
is an automorphism of the Hilbert space of the quantization, the pairing is
nondegenerate.



136 R. Gelca and A. Uribe

Acknowledgements. Research of the first author was supported by
the NSF, award No. DMS 0604694.

Research of the second author was supported by the NSF, award No.
DMS 0805878.

References

[1] A. Yu. Alexeev and V. Schomerus, Representation theory of Chern–Simons observ-
ables, Duke Math. J. 85 (1996), 447–510.

[2] J. E. Andersen, Deformation quantization and geometric quantization of abelian
moduli spaces, Comm. Math. Phys. 255 (2005), 727–745.

[3] S. Axelrod, S. Della Pietra and E. Witten, Geometric quantization of Chern–Simons
gauge theory, J. Differential Geom. 33 (1991), 787–902.

[4] Ch. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Topological quantum field
theories derived from the Kauffman bracket, Topology 34 (1995), 883–927.

[5] D. Bullock and J. H. Przytycki, Multiplicative structure of Kauffman bracket skein
module quantizations, Proc. Amer. Math. Soc. 128 (2000), 923–931.

[6] G. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton,
NJ, 1989.

[7] Ch. Frohman and R. Gelca, Skein modules and the noncommutative torus, Trans.
Amer. Math. Soc. 352 (2000), 4877–4888.
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