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Abstract. We present a new forcing notion combining diagonal supercompact Prikry
forcing with interleaved extender based forcing. We start with a supercompact cardinal κ.
In the final model the cofinality of κ is ω, the singular cardinal hypothesis fails at κ, and
GCH holds below κ. Moreover we define a scale at κ which has a stationary set of bad
points in the ground model.

1. Introduction. Groundbreaking works of Cohen and Easton showed
that every reasonable behavior of the powerset operation for regular car-
dinals is consistent. In contrast, for singular cardinals, there are deep ZFC
constraints on the powerset function, and consistency results require large
cardinals. This leads to a longstanding project in set theory, known as the
Singular Cardinal Problem: find a complete set of rules for the behavior of
the operation κ 7→ 2κ for singular cardinals κ.

Obtaining consistency results about singular cardinals involves violating
the Singular Cardinal Hypothesis (SCH ). SCH states that if κ is singular
strong limit, then 2κ = κ+. One classical method of constructing a model
where SCH fails is to blow up the powerset of a large cardinal, and then
singularize it. Then κ remains strong limit, but GCH does not hold below κ.
The reason is that by reflection, adding many subsets of κ in advance requires
adding many subsets of α for a measure one set of α’s below κ.

So this construction does not achieve what we can refer to as “the ulti-
mate failure” of SCH: having a singular cardinal κ such that 2κ > κ+ and
GCH<κ holds. The same is true for Magidor’s original supercompact Prikry
forcing, with which he first showed that SCH at ℵω can be violated [5]. Start-
ing with a cardinal κ that is λ-supercompact, supercompact Prikry forcing
singularizes all cardinals in the interval [κ, λ]. An important variation of this
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is diagonal supercompact Prikry forcing, which singularizes cardinals in the
interval [κ, λ), where λ is a successor of a singular cardinal.

Another approach is to start with a cardinal that is already singular and
a limit of strong cardinals, and then add many Prikry sequences via extender
based forcing to increase its powerset. Extender based forcing is one of the
most direct ways to violate SCH, and it starts with strong cardinals in the
ground model. It first appeared in Gitik–Magidor [3]. Since no subsets are
added in advance, GCH below κ can be maintained.

Here we describe a construction that combines both strategies. More
precisely, we define a hybrid Prikry forcing that simultaneously singularizes
a large cardinal κ, singularizes and collapses an infinite interval of cardinals
above κ, and uses extenders to add many Prikry sequences to

∏
n κ, so that

SCH is violated. This way, since we are not adding subsets in advance and
our main forcing does not add bounded subsets of κ, we can maintain GCH
below κ. Our forcing combines diagonal supercompact Prikry forcing with
extender based forcing. The former is used to singularize κ, adding a generic
sequence 〈xn | n < ω〉, where each xn ∈ Pκ(κ+n). The latter is used to add
many Prikry sequences to

∏
n κ ∩ xn+1.

Theorem 1.1. Suppose that κ is supercompact. Then there is a forcing
notion, P, which we call the hybrid Prikry, such that:

(1) P does not add bounded subsets of κ.
(2) If µ := (κ+ω+1)V , then P preserves cardinals τ ≥ µ.
(3) P adds an ω-sequence cofinal in κ and makes µ the successor of κ.
(4) P adds µ+ many new ω-sequences in

∏
n κ.

Finer analysis shows:

Theorem 1.2. Suppose that in V , κ is supercompact and GCH holds.
Let µ = κ+ω+1. Then after forcing with the hybrid Prikry, in the generic
extension we have:

(1) κ is singular of cofinality ω, µ is the successor of κ, and cardinals
above µ are preserved.

(2) GCH holds below κ, and 2κ = κ++. And so SCH fails at κ.

Moreover, there is a scale at κ whose set of bad points is stationary in the
ground model.

Scales are a central concept in PCF theory. Given a singular cardinal
κ = supn κn, where each κn is regular, a scale of length κ+ is a sequence
〈fα | α < κ+〉 of functions in

∏
n κn that is increasing and cofinal with

respect to the eventual domination ordering, <∗. That is, f <∗ g if for all
large n, f(n) < g(n). A point α < κ+ with cf(α) > ω is good if there is an
unbounded A ⊂ α such that {fβ(n) | β ∈ A} is strictly increasing for all
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large n. Otherwise α is bad. A scale is good if on a club every point of un-
countable cofinality is good, and a scale is bad if it is not good, i.e. there are
stationary many bad points. The existence of a bad scale is a reflection type
property. For example, every scale above a supercompact cardinal is bad.

The paper is organized as follows. In Section 2 we define the main forc-
ing and prove some of its main properties, including the Prikry property,
cardinal preservation, and violating SCH. In Section 3 we define the scale.

2. The forcing. Suppose that in V , GCH holds and κ is a supercompact
cardinal, and set µ := κ+ω+1. Let U be a normal measure on Pκ(µ), and for
all n < ω let Un be the projection of U to Pκ(κ+n). Also let σ : V → M
witness that κ is κ+ω+2 + 1-strong, and let E = 〈Eα | α < κ+ω+2〉 be κ
complete ultrafilters on κ, where Eα = {Z ⊂ κ | α ∈ σ(Z)}. As in [2], we
define a strengthening of the Rudin–Keisler order: for α, β < κ+ω+2, we set
α ≤E β if α ≤ β and there is a function f : κ → κ such that σ(f)(β) = α.
For α ≤E β, fix projections πβ,α : κ → κ to witness this ordering, setting
πα,α to be the identity. We do this as in [2, Section 2] with respect to κ, so
that:

(1) σπβ,α(β) = α.
(2) For all a ⊂ κ+ω+2 with |a| < κ, there are unboundedly many β <

κ+ω+2 such that α <E β for all α ∈ a.
(3) For α < β ≤ γ, if α, β ≤E γ, then {ν < κ | πγ,α(ν) < πγ,β(ν)} ∈ Eγ .
(4) If {αi | i < τ} ⊂ α < κ+ω+2 with τ < κ are such that for all i < τ ,

αi <E α, then there is A ∈ Eα such that for all ν ∈ A and all i, j < τ ,
if αi ≤E αj , then πα,αi(ν) = παj ,αi(πα,αj (ν)).

Definition 2.1. The poset Q = Q0 ∪Q1 is defined as follows:

Q1 = {f : κ+ω+2 ⇀ κ | |f | < κ+ω+1},

and ≤1 is the usual ordering. Q0 has conditions of the form p = 〈a,A, f〉
such that:

• a ⊂ κ+ω+2, |a| < κ, and β ≤E max(a) for all β ∈ a.
• f ∈ Q1 and a ∩ dom(f) = ∅.
• A ∈ Emax a.
• For all α ≤E β ≤E γ in a, and ν ∈ πmax a,γ”A, πγ,α(ν) = πβ,α(πγ,β(ν)).
• For all α < β in a, and all ν ∈ A, πmax a,α(ν) < πmax a,β(ν).

Furthermore, 〈b, B, g〉 ≤0 〈a,A, f〉 if:

(1) b ⊃ a.
(2) πmax bmax a”B ⊂ A.
(3) g ⊃ f .
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Define ≤∗ = ≤0 ∪ ≤1 and for p, q ∈ Q, p ≤ q if p ≤∗ q or p ∈ Q1,
q = 〈a,A, f〉 ∈ Q0 and:

(a) p ⊃ f and a ⊂ dom(p).
(b) p(max a) ∈ A.
(c) For all β ∈ a, p(β) = πmax a,β(p(max a)).

Basically Q is the Prikry type forcing notion Qn from [2, Section 2] with
κ replacing κn. Note that Q1 is dense in Q, and Q1 is equivalent to the
Cohen poset for adding κ+ω+2 many subsets to κ+ω+1. In particular, we
have the following:

Proposition 2.2. Q has the κ+ω+2-chain condition.

We also remark that just forcing with Q0 will collapse κ+ω+1 to κ (see
Assaf Sharon’s thesis [7]).

Definition 2.3. For a condition p = 〈a,A, f〉 ∈ Q0 and ν ∈ A, set
p_ν = f ∪ {〈β, πmax a,β(ν)〉 | β ∈ a}. That is, p_ν is the weakest extension
of p in Q1 with ν in its range.

Note that if g ∈ Q1 with g ≤ p = 〈a,A, f〉, then there is a unique
ν ∈ A such that g ≤ p_ν (take ν = g(max a)). Furthermore, if g ≤ q ≤ p,
q = 〈aq, Aq, f q〉, p = 〈ap, Ap, fp〉, and g ≤ q_ν, then g ≤ p_ν ′, where
ν ′ = πmax aq ,max ap(ν).

Proposition 2.4. Q has the Prikry property. That is, given a condi-
tion p and a formula in the forcing language φ, there is q ≤∗ p such that
q decides φ.

Proof. The proof is standard and appears in [2]. We include it for com-
pleteness. Let p = 〈a,A, f〉 be a condition and φ be a formula. For each
ν ∈ A, let gν ≤ p_ν be such that gν ‖ φ and set fν = gν�(dom gν \ a).

Since the domain of the fν ’s is bigger than the size of A, we can arrange
that the fν ’s are compatible. Shrink A to a set A′ ∈ Emax a such that for all
ν ∈ A′, gν decides φ the same way. Let f ′ =

⋃
ν∈A′ fν . Then p′ = 〈a,A′, f ′〉

decides φ.

We are ready to define the main forcing. For x, y ∈ Pκ(κ+ω), we will de-
note κx = κ ∩ x and use the notation x ≺ y to mean x ⊂ y and o.t.(x) < κy.
Since on a measure one set, κx is an inaccessible cardinal, we assume this is
always the case.

Definition 2.5. Conditions in P are of the form

p = 〈x0, f0, . . . , xl−1, fl−1, Al, Fl, Al+1, Fl+1, . . .〉

where l = lh(p) and:
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(1) For n < l,

(a) xn ∈ Pκ(κ+n), and for i < n, xi ≺ xn,
(b) fn ∈ Q1.

(2) For n ≥ l,
(a) An ∈ Un, and xl−1 ≺ y for all y ∈ Al.
(b) Fn is a function with domain An, and for y ∈ An, Fn(y) ∈ Q0.

(3) For x ∈ An, denote Fn(x) = 〈anx, Anx, fnx 〉. Then for l ≤ n < m,
y ∈ An, z ∈ Am with y ≺ z, we have any ⊂ amz .

For a condition p, we will use the notation

p = 〈xp0, f
p
0 , . . . , x

p
l−1, f

p
l−1, A

p
l , F

p
l , . . .〉,

and for n ≥ l and y ∈ Apn,

F pn(y) =
〈
a(F pn(y)), A(F pn(y)), f(F pn(y))

〉
.

The stem of p is h = 〈xp0, f
p
0 , . . . , x

p
l−1, f

p
l−1〉.

For conditions p, q, set q ≤ p if p = 〈x0, fp0 , . . . , xn−1, f
p
n−1, A

p
n, F

p
n , . . .〉,

q = 〈x0, f q0 , . . . , xn+m−1, f
q
n+m−1, A

q
n+m, F

q
n+m, . . .〉, and:

(i) For i < n, f qi ⊃ f
p
i .

(ii) For i < m, xn+i ∈ Apn+i.
(iii) For i < m, f qn+i ≤Q F pn+i(xn+i) and if ν < κ is unique such that

f qn+i ≤Q F
p
n+i(xn+i)

_ν, then:

• if i < m− 1, we have ν < κxn+i+1 ,
• if i = m− 1, we have ν < κz for all z ∈ Aqn+m.

(iv) For i ≥ n+m, Aqi ⊂ A
p
i , and for all y ∈ Aqi , F

q
i (y) ≤Q F

p
i (y).

We say that q is a direct extension of p, denoted by q ≤∗ p, if q ≤ p and
lh(q) = lh(p).

Sometimes we will say that we shrink a condition p when replacing p
with a direct extension.

Lemma 2.6. 〈P,≤∗〉 is κ-closed.

Proof. Let τ < κ, and 〈pα | α < τ〉 be a ≤∗-decreasing sequence in P of
conditions with some fixed length l. Let ~x = 〈x0, . . . , xl−1〉 be such that for

some (equivalently all) α, stem(pα) = 〈~x, ~fpα〉. First let fi be stronger than
each fpαi for i < l. Also, for n ≥ l, let An =

⋂
α<τ A

pα
n

Next we will define 〈Fn | l ≤ n < ω〉 by induction on n, so that each Fn
has domain An, and for x∈An, Fn(x) = 〈a(Fn(x)), A(Fn(x)), f(Fn(x))〉∈Q1.
We will maintain that for all l ≤ k < n, x ∈ Ak, y ∈ An, if x ≺ y, then
a(Fk(x)) ⊂ a(Fn(y)). Note that this implies a(Fk(x)) ∩ dom(f(Fn(y))) = ∅.
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Let d =
⋃
α<τ, l≤n<ω, x∈An dom(f(F pαn (x))). Then d is a bounded subset

of κ+ω+2. Note that taking lower bounds of elements in Q0 requires more
than just taking the union of the first coordinate, i.e. the a’s. We also have
to take a maximal element. Thus when defining the lower bound, we will
make sure that the maximal element of each a(Fk(x)) is above max(d). To
do so, we use the fact that there are always unboundedly many choices for
a maximal element.

Fix n and suppose we have defined Fk for all l ≤ k < n. For y ∈ An, let
a′y =

⋃
α<τ a(F pαn (y)) and a′′y =

⋃
k<n, x∈Ak, x≺y a(Fk(x)). Let ρ > max(d) be

a maximal element for a′y ∪ a′′y and set ay = a′y ∪ a′′y ∪ {ρ}.
Finally, set fy =

⋃
α<τ f(F pαn (y)) and let Ay be the intersection of all

π−1
ρ,max(a(F pαn (y)))

(A(F pαn (y))) for α < τ . Then define Fn(y) = 〈ay, Ay, fy〉.

Claim 2.7. We have ay ∩ dom(fy) = ∅.

Proof. By construction ρ /∈ dom(fy). Now, suppose that ξ ∈ a(F pαn (y))
for some α < τ . Then for any β < τ , setting γ = max(α, β), we have
a(F pαn (y)) ⊂ a(F

pγ
n (y)) and dom(f(F

pβ
n (y))) ⊂ dom(f(F

pγ
n (y))). Since

a(F
pγ
n (y)) ∩ dom(f(F

pγ
n (y))) = ∅, we have ξ /∈ dom(f((F

pγ
n (y))). It follows

that a′y ∩ dom(fy) = ∅.
Finally, to show that a′′y ∩ dom(fy) = ∅, we argue that for all k < n and

x ∈ Ak with x ≺ y, a(Fk(x)) ∩ dom(fy) = ∅. Use induction on k. Denote
a(Fk(x)) = a′x∪a′′x∪{max(a(Fk(x)))}, where a′x, a

′′
x are defined as above but

for x. By construction the maximal element is not in the domain of fy. Also
since x ≺ y, we have a′x ⊂ a′y, and so a′x is disjoint from dom(fy). Lastly,
since z ≺ x ≺ y implies z ≺ y, by induction a(Fm(z))∩dom(fy) = ∅ for any
m < k, z ∈ Am and z ≺ x. So a′′x ∩ dom(fy) = ∅.

This concludes the argument that a′′y ∩ dom(fy) = ∅, and finishes the
claim.

Finally, define p by p = 〈x0, f0, . . . , xl−1, fl−1, Al, Fl, Al+1, Fl+1, . . .〉.
Then p is a lower bound.

Next we show that P has the Prikry property. First we introduce some
more notation.

Definition 2.8. Let p be a condition with length l. For y ∈ Apl and
ν ∈ A(F pl (y)), define

p_〈y, ν〉 = 〈xp0, f
p
0 , . . . , x

p
l−1, f

p
l−1, y, F

p
l (y)_ν,Ay,νl+1, F

y,ν
l+1, . . .〉,

where for n > l:

• Ay,νn = Apn ∩ {z | y ≺ z, ν < κz},
• F y,νn = F pn�A

y,ν
n .
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Similarly, for any n > l, a sequence ~y = 〈yl ≺ · · · ≺ yn〉 of points in∏
l≤i≤nA

p
i , and ~ν ∈

∏
l≤i≤nA(F pi (yi)) with each νi < κyi+1 , define p_〈~y, ~ν〉

to be the weakest extension of p with length n + 1 such that the stem is
derived from ~y and ~ν.

Also, if p, q are conditions, n < lh(p), lh(q), we say that [F pn ]Un ≤ [F qn ]Un
if for almost all x ∈ Apn, F pn(x) ≤Q0 F

q
n(x).

Lemma 2.9 (Diagonal lemma). Suppose p is a condition with length l,
and for all y ∈ Apl and ν ∈ A(F pl (y)), there are conditions py,ν ≤∗ p_〈y, ν〉
such that:

(1) For all i < l, y1, y2 ∈ Apl and ν1 ∈ A(F pl (y1)), ν2 ∈ A(F pl (y2)),

fp
y1,ν1

i and fp
y2,ν2

i are compatible.
(2) For each y ∈ Apl , 〈f

y,ν
l �(dom(fy,νl ) \ apl (y)) | ν ∈ A(F pl (y))〉 are

pairwise compatible.
(3) For all n, 〈[F p

y,ν

n ]Un | y ∈ A
p
l , ν ∈ A(F pl (y))〉 are pairwise compatible.

Then there is p′ ≤∗ p such that if q ≤ p′ with lh(q) ≥ lh(p)+1, then q ≤ py,ν
for some y, ν.

Proof. Write p = 〈x0, f0, . . . , xl−1, fl−1, Al, Fl, . . .〉, Fn(y) = 〈any , Any , fny 〉,
py,ν = 〈x0, fy,ν0 , . . . , xl−1, f

y,ν
l−1, y, f

y,ν
l , Ay,νl+1, F

y,ν
l+1, . . .〉, and F y,νn (z) =

〈ay,νn (z), Ay,νn (z), fy,νn (z)〉. Define p′ = 〈x0, f ′0, . . . , xl−1, f ′l−1, A′l, F ′l , . . .〉 as
follows:

• f ′i =
⋃
y∈Al,ν∈Aly f

y,ν
i for i < l.

• A′l = Al.
• F ′l (y) = 〈aly, Aly,

⋃
ν∈Aly f

y,ν
l �(dom(fy,νl ) \ aly)〉.

• For n > l, A′n = 4y∈Al, ν∈AlyA
y,ν
n = {z ∈ An | z ∈

⋂
y≺z, ν∈Aly∩κz A

y,ν
n }.

• For n > l, let [F ′n]Un be stronger than each [F y,νn ]Un for y ∈ Al and
ν ∈ Aly. Here we use the fact that the number of such pairs is κ+l, and
jn(Q0) is closed under sequences of length κ+n. By further shrinking
A′n we can arrange that for all y ∈ A′n, F ′n(y) ≤Q F

z,ν
n (y) for all z ≺ y

and ν ∈ Alz ∩ κy. Also, arguing as in Lemma 2.6 we arrange that the
F ′n’s satisfy the last item of the definition of P.

Then p′ is as desired.

Corollary 2.10. Let 0 < n < ω. For every condition p and every
formula in the forcing language φ, there is p′ ≤∗ p such that for all q ≤ p′

with lh(q) = n+ lh(p), if there is r ≤∗ q which decides φ, then q decides φ.

Proof. By induction on n. If n = 0, the result is immediate. So, suppose
that n > 0, and the corollary holds for n− 1. Fix p and φ. For all y ∈ Aplh(p)
and ν ∈ Aplh(p)(y), by the inductive assumption there is py,ν ≤∗ p_〈y, ν〉
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such that for all q ≤ py,ν with lh(q) = n + lh(p), if there is r ≤∗ q which
decides φ, then q decides φ.

Defining these condition inductively, we can arrange that they satisfy the
assumptions of the diagonal lemma. Apply that lemma to the conditions py,ν

and p to get p′ ≤∗ p such that if q ≤ p′ with lh(q) ≥ lh(p) + 1, then q ≤ py,ν
for some y, ν. Then p′ is as desired. For if q ≤ p′ with lh(q) = n+ lh(p), let
y and ν be such that q ≤ py,ν . Now, if r ≤∗ q decides φ, then by the way we
chose py,ν , it follows that q decides φ.

Lemma 2.11 (The Prikry property). Suppose p is a condition and φ is
a formula in the forcing language. Then there is q ≤∗ p which decides φ.

Proof. We start by showing two claims. The first claim states that we
can restrict ourselves to a fixed length when looking at extensions of p
deciding φ. The second claim applies the diagonal lemma to shrink p so that
the weakest extensions of the fixed length decide φ.

Claim 2.12. There are lh(p) ≤ n < ω and p′ ≤∗ p such that for all
q ≤∗ p′, there is r ≤ q with length n such that r decides φ.

Proof. Suppose otherwise, that is,

(†) for all n ≥ lh(p), for all direct extensions p′ of p, there is q ≤∗ p′
such that for all r ≤ q with length n, r ∦ φ.

We will build a decreasing sequence 〈pn | l ≤ n < ω〉 of conditions, where
l = lh(p), such that pn ≤∗ p for each n, and for all r ≤ pn of length n,
the condition r does not decide φ. Set pl = p. Suppose n > l and we have
defined pn−1. Let pn be given by applying (†) to n and pn−1. Finally, let q be
stronger than every pn. It follows that no r ≤ q decides φ, a contradiction.

By the above claim and Corollary 2.10 we can shrink p and fix n so that:

• for all direct extensions p′ of p, there is q≤ p′ of length n that decides φ,
• for all q ≤ p with lh(q) = n, if there is r ≤∗ q which decides φ, then q

decides φ.

Assume for simplicity that lh(p) = 1 and n = 3. The general case is similar.
Write p = 〈x0, f0, A1, F1, . . .〉, and for y ∈ A, n > 0, Fn(y) = 〈any , Any , fny 〉.
For x ∈ A1, y ∈ A2, x ≺ y, and ν ∈ A1

x, let B+
x,ν,y = {δ ∈ A2

y |
p_〈〈x, y〉, 〈ν, δ〉〉  φ}, B−x,ν,y = {δ ∈ A2

y | p_〈〈x, y〉, 〈ν, δ〉〉  ¬φ}, and

Bc
x,ν,y = A2

y \ (B+
x,ν,y∪B−x,ν,y). One of these sets, say Bx,ν,y, has measure one.

Set Bx,y =
⋂
ν∈A1

x∩κy Bx,ν,y.

Let A+
x,ν = {y ∈ A2 | Bx,ν,y = B+

x,ν,y}, A−x,ν = {y ∈ A2 | Bx,ν,y = B−x,ν,y},
and Acx,ν = A2 \ (A+

x,ν ∪A+
x,ν). One of these, say Ax,ν , has measure one.
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Write A′2 = 4Ax,ν = {y ∈ A2 | y ∈
⋂
x≺y, ν<κy Ax,ν}. Define F ′2 by

dom(F ′2) = A′2 and F ′1(y) = 〈ay,
⋂
x≺y Bx,y, fy〉.

Let B+
x = {ν ∈ A1

x | Ax,ν = A+
x,ν}, B−x = {ν ∈ A1

x | Ax,ν = A−x,ν}, and

Bc
x = A1

x \ (B+
x ∪ B−x ). Set Bx to be B+

x if it is measure one, B−x if it is
measure one, and Bc

x otherwise.

Let A+ = {x ∈ A1 | Bx = B+
x }, A− = {x ∈ A1 | Bx = B−x }, and

Ac = A1 \ (A+ ∪A−). One of these, say A′1, has measure one. Define F ′1 by
dom(F ′1) = A′1 and F ′1(x) = 〈ax, Bx, fx〉.

Set p′ = 〈x0, f0, A′1, F ′1, A′2, F ′2〉_p�[3, ω). We will show that p′ is as de-
sired.

By the way we choose p, we can fix a condition r ≤ p′ with length 3 and
such that r ‖ φ. We have to show that p′ decides φ.

Claim 2.13. We have A′1 = A+ or A′1 = A−.

Proof. Let x, y, ν, δ be such that r ≤∗ p′_〈〈x, y〉, 〈ν, δ〉〉. Then since p
was chosen to satisfy Corollary 2.10 for n = 2, we see that p′_〈〈x, y〉, 〈ν, δ〉〉
decides φ. Now, suppose for contradiction that A′1 = Ac; then x ∈ Ac and
so Bx = Bc

x. Thus, since ν ∈ Bx = Bc
x, we have Ax,ν = Acx,ν . Since y ∈ A′2,

x ≺ y, and ν < κy, we observe that y ∈ Ax,ν = Acx,ν . So, Bx,ν,y = Bc
x,ν,y.

Then δ ∈ Bx,y ⊂ Bx,ν,y = Bc
x,ν,y. Hence, p′_〈〈x, y〉, 〈ν, δ〉〉 does not decide φ,

a contradiction.

Therefore p′ decides φ.

Corollary 2.14. P does not add bounded subsets of κ.

It follows that all cardinals less than or equal to κ are preserved and
GCH holds below κ. Next we show that µ is preserved. We use the following
fact.

Proposition 2.15. Suppose that D is a dense set and p is a condition
with length l. Then there are n and q ≤∗ p such that for all ~y ∈

∏
l≤i<nA

p
i

and ~ν ∈
∏
l≤i<nA

p
yi, we have q_〈~y, ~ν〉 ∈ D.

Proof. This is essentially the Prikry property, so we only outline the
proof. First by shrinking measure one sets, we may assume that for some
fixed n, and all q ≤ p of length n + l, there is some r ≤∗ q such that
r ∈ D. Then diagonalize over ~y ∈

∏
l≤i<nA

p
i and ~ν ∈

∏
l≤i<nA

p
i (yi) to get

a condition q ≤∗ p such that q_〈~y, ~ν〉 is in D for all ~y, ~ν.

Let G be P generic, and let 〈x∗n | n < ω〉, with each x∗n in Pκ(κ+n), be
the added generic sequence. Set λn = x∗n ∩ κ. Standard density arguments
yield the following.
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Proposition 2.16.

(1) If 〈An | n < ω〉 ∈ V is a sequence of sets such that every An is
in Un, then x∗n ∈ An for all large n.

(2)
⋃
n x
∗
n = (κ+ω)V .

(3) For each n ≥ 0, the cofinality of (κ+n)V in V [G] is ω.

Proposition 2.17. µ := (κ+ω+1)V remains a cardinal after forcing
with P.

Proof. Suppose otherwise. Then in V [G] the cofinality of µ is less than κ.
Let n and p ∈ G with lh(p) > n be such that p  “ḟ : τ → µ is unbounded
and τ < λ̇n”. For all γ < τ , let Dγ = {q ≤ p | (∃η)(q  ḟ(γ) = η)}. Then
Dγ is dense below p. For each γ < τ , let pγ ≤∗ p, and let nγ be given
by Proposition 2.15. By defining 〈pγ | γ < τ〉 inductively, we arrange that
〈pγ | γ < τ〉 is a decreasing sequence. Let p′ be such that p′ ≤∗ pγ for all γ.

Fix γ and 〈~x, ~ν〉 of length nγ compatible with pγ . Let α
〈~x,~ν〉
γ be such that

pγ_〈~x, ~ν〉  ḟ(γ) = α〈~x,~ν〉γ .

Let αγ = sup〈~x,~ν〉 α
〈~x,~ν〉
γ <µ, and let α = supγ<τ αγ <µ. Then pγ  ḟ(γ)≤αγ

for each γ, and so p′  (∀γ)(ḟ(γ) ≤ α), a contradiction.

Our next goal is to show that µ+ is preserved. Let

P0 := {〈xp0, . . . , x
p
n−1, A

p
n, . . .〉 | p ∈ P},

with the induced ordering from P. Since conditions with the same stem are
compatible, P0 has the µ-chain condition. A characterization of genericity
of P0 is given by condition (1) above, i.e. the condition is both necessary
and sufficient for a generic sequence. This follows by adapting Mathias’
arguments in [6] to diagonal supercompact Prikry. Then we deduce that G
generates a generic filter for P0. Next we show that P/P0 has the µ+-chain
condition.

Lemma 2.18. Suppose that G0 is P0-generic over V . Then P/G0 has the
µ+-chain condition.

Proof. Say G0 generates the generic sequence 〈x∗n | n < ω〉. Suppose that
〈pα | α < µ+〉 are conditions in P/G0. Then there is an unbounded S ⊂ µ+,
k < ω, such that:

(1) for all α ∈ S, lh(pα) = k,
(2) for all n < k, {dom(fpαn ) | α ∈ S} forms a ∆-system, with fpα and

fpβ having the same values on the kernel for α, β ∈ S,
(3) for all n ≥ k, {a(F pαn (x∗n)) ∪ dom(f(F pαn (x∗n))) | α ∈ S} forms a

∆-system, with f(F pαn (x∗n)) and f(F
pβ
n (x∗n)) having the same values

on the kernel for α, β ∈ S. Also, a(F pαn (x∗n))∩dom(f(F
pβ
n (x∗n))) = ∅.



Hybrid Prikry forcing 149

Then for any α, β ∈ S, n ≥ k, F pαn (x∗n) and F pαn (x∗n) are compatible in Q0. To
find a lower bound, just pick a maximal element for a(F pαn (x∗n))∪a(F

pβ
n (x∗n))

that is above sup(dom(f(F pαn (x∗n)))) and sup(dom(f(F
pβ
n (x∗n)))).

Let α, β ∈ S. Since for all n ≥ k, F pαn (x∗n) and F pαn (x∗n) are compatible,
by genericity of the x∗n’s it follows that for all large n, say for all n ≥ k′,
Bn = {x ∈ Apαn ∩A

pβ
n | F pαn (x) and F pαn (x) are compatible} ∈ Un.

Define a condition p with length k′ as follows. For n < k, let fn =
fpαn ∪f

pβ
n , and for k ≤ n < k′, let Fn(x∗n) ∈ Q0 be stronger than F pαn (x∗n) and

F pαn (x∗n), and then let fn ≤Q Fn(x∗n)_ν for some ν < κx∗n+1
. Since the condi-

tions are inP/G0,we can take such a ν. Set stem(p) = 〈x∗0,f0, . . . , x∗k′−1,fk′−1〉.
Also for n ≥ k′, set Apn = Bn, and for x ∈ Apn, let F pn(x) be stronger than
F pαn (x) and F pαn (x). Then p is stronger than pα and pβ.

It follows that forcing with P preserves µ+. Next we show that, in the
generic extension, κ has µ+ = (κ+ω+2)V many subsets. We have the added
generic functions fn : (κ+ω+2)V → κ for each n. Define tα(n) = fn(α). Then
each tα is in

∏
n κ. Let (in V [G]) Fn =

⋃
p∈G, l(p)≤n a

p
n(xn). Here F pn(x) =

〈apn(x), Apn(x), fpn(x)〉. Set F =
⋃
n Fn.

Proposition 2.19.

(1) If α < β are both in F , then tα <
∗ tβ.

(2) F is unbounded in (κ+ω+2)V .

Proof. For (1), suppose that α < β are both in F . Let p, q ∈ G be such
that for all large n, α ∈ apn(xn) and β ∈ aqn(xn). Let r ∈ G be a common
extension of p, q. Then for some k, and all n ≥ k, {α, β} ⊂ arn(xn). So, if
r′ ≤ r is in G and has length n + 1 for n ≥ k, by the last condition of the
definition of Q0 we get f r

′
n (α) < f r

′
n (β). So, for all large n, tα(n) < tβ(n).

For (2), suppose that β < (κ+ω+2)V . We claim that D = {p | (∃γ <
(κ+ω+2))V \ β)(γ ∈

⋂
n≥lh(p), y∈Apn a

p
n(y))} is dense. For if p is a condition,

let γ ∈ (κ+ω+2)V \ (
⋃
n≥lh(p), y∈Ap(a

p
n(y)∪ dom(fpn(y)))) be such that β < γ.

Then extend each F pn(y) to obtain 〈any , Any , fny 〉 such that γ ∈ any . Let q ≤ p
satisfy F qn(y) = 〈any , Any , fny 〉. Then q ∈ D. Now, let r ∈ D ∩ G. Then r
witnesses that there is γ ∈ F such that γ > β.

Remark 1. Using the above and by the definition of the ordering of the
forcing we can show that if α ∈ F , then for each n, tα ∈

∏
n λn+1.

Remark 2. We can use F ∩µ to define a good scale as described in [1].

It follows that in V [G], 2κ = (κ+ω+2)V = (κ++)V [G]. So, SCH fails at κ.

3. The scale. Fix a scale 〈g∗α | γ < µ〉 ∈ V in
∏
n κ

+n+1. Define S :=
{γ < µ | γ is a bad point for 〈g∗α | γ < µ〉}. Since κ is supercompact in V ,
by standard reflection arguments S is stationary in V . In this section we



150 D. Sinapova

define a scale at κ in the generic extension, such that every γ ∈ S is bad for
this new scale.

First we show a bounding lemma. We will use it to make sure that the
scale we define in V [G] is indeed cofinal. Recall that G generates the generic
sequence 〈x∗n | n < ω〉, and we defined λn = κx∗n for n < ω.

Lemma 3.1. Suppose that in V [G], h ∈
∏
n λ

+n+1
n . Then there is a se-

quence 〈Hn | n < ω〉 of functions in V such that dom(Hn) = Pκ(κ+n),
Hn(x) < κ+n+1

x for all x, and h(n) < Hn(x∗n) for all large n.

Proof. Let p force that ḣ is as in the statement of the lemma. For sim-
plicity assume that the length of p is 0.

Fix n < ω and x ∈ Apn. For all ~z ∈
∏
i≤nA

p
i and ~ν ∈

∏
i≤nA

p
i (zi)

of length n + 1 with zn = x, we have p_〈~z, ~ν〉  ḟ(n) < κ+n+1
x . Here

zn denotes the last element of ~z. By the Prikry property we can build a
decreasing sequence 〈qγ | γ < κ+n+1

x 〉 such that for each γ, qγ ≤∗ p_〈~z, ~ν〉
and qγ decides “ḣ(n) = γ”. Let q〈~z,~ν〉 ≤∗ qγ for each γ. Then q〈~z,~ν〉 decides
the value of ḣ(n). By defining the q〈~z,~ν〉’s inductively, we can arrange that
they satisfy the assumptions of the diagonal lemma.

DefineHn(x, ν) = sup{γ < κ+n+1
x | (∃~z, ~ν)(lh(~z) = lh(~ν) = n+1, zn = x,

νn = ν, q~z,~ν  ḣ(n) = γ)}+ 1. Here zn and νn denote the last elements of ~z
and ~ν respectively.

Then Hn(x, ν) < κ+n+1
x . So, there is a measure one set An(x) such that

for all ν ∈ An(x) this has some constant value, say Hn(x). Let p′ be obtained
from p by shrinking the sets Apn(x) to An(x).

We apply the diagonal lemma to q〈~z,~ν〉 for all 〈~z, ~ν〉 of length n+ 1, and
get qn ≤∗ p′ such that if r ≤ qn has length at least n+1, then for some 〈~z, ~ν〉,
r ≤ q〈~z,~ν〉. Let q be stronger than each qn. Then q forces that 〈Hn | n < ω〉
is as desired.

The next lemma will be used to show that a witness of goodness in the
generic extension gives rise to a witness of goodness in the ground model.
In particular, if a point is bad in V , then it is bad in V [G].

Lemma 3.2. Let τ < κ be a regular uncountable cardinal in V (and so
in V [G]), and suppose V [G] |= A ⊂ ON, o.t.(A) = τ . Then there is a B ∈ V
such that B is an unbounded subset of A.

Proof. Let p ∈ G, p  ḣ : τ → Ȧ enumerate Ȧ. By the Prikry lemma,
define a ≤∗-decreasing sequence 〈pα | α < τ〉 such that for every α < τ ,
pα ≤∗ p and there is nα < ω such that every q ≤ pα with length nα decides
ḣ(α). Then there is an unbounded I ⊂ τ and n < ω such that n = nα for
all α ∈ I. Let p′ be stronger than all pα for α < τ . By appealing to density,
we may assume that p′ ∈ G. Let q ≤ p be a condition in G with length n,
and set B = {γ | (∃α ∈ I)(q  ḣ(α) = γ)}. Then B is as desired.



Hybrid Prikry forcing 151

Recall that µ = (κ+ω+1)V , and that we fixed in advance a bad scale
〈g∗β | β < µ〉 in

∏
n κ

+n+1 in V ’ such that it has a stationary set S of bad
points of cofinality less than κ.

For all n < ω and all η < κ+n+1, fix fηn : Xn → V such that for all x,
fηn(x) < κ+n+1

x , and [fηn ]Un = η. In V [G] define 〈gβ | β < µ〉 in
∏
n λ

+n+1
n by

gβ(n) = f
g∗β(n)
n (x∗n).

Corollary 3.3. 〈gβ | β < µ〉 is a scale in V [G] whose set of bad points
is stationary in V .

Proof. By Lemma 3.1 and by the way we defined 〈gβ | β < µ〉, we see
that it is a scale (see for example the arguments in [1]). Also, if γ is a good
point in V [G] for 〈gβ | β < µ〉 with cofinality τ with ω < τ < κ, then γ is
a good point in V for 〈g∗β | β < µ〉. This follows from Lemma 3.2, which
implies that if there is a witness for goodness in V [G], then there is a witness
for goodness in V .

We conclude with some questions.

Question 1. How much failure of square can we get in the final generic
extension?

In [4], it is shown that failure of weak square is consistent with not SCH
at κ, but there GCH also fails below κ. It is open whether failure of SCH at
κ together with GCH below κ is consistent with ¬�∗κ, or even with ¬�κ,λ

for all λ < κ. Another question concerns smaller cardinals:

Question 2. Can we interleave collapses and obtain the present con-
struction for κ = ℵω?

A positive answer to the last question will probably involve using short
extenders.
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