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Abstract. A structure A = (A; E;)icn where each E; is an equivalence relation on
A is called an n-grid if any two equivalence classes coming from distinct E;’s intersect
in a finite set. A function x : A — n is an acceptable coloring if for all i € n, the
set x ! (i) intersects each E;-equivalence class in a finite set. If B is a set, then the n-cube
B™ may be seen as an n-grid, where the equivalence classes of E; are the lines parallel
to the ith coordinate axis. We use elementary submodels of the universe to characterize
those n-grids which admit an acceptable coloring. As an application we show that if an
n-grid A does not admit an acceptable coloring, then every finite n-cube is embeddable

in A.

1. Introduction. Following [3], for a natural number n > 2 we define
an n-grid to be a structure of the form A = (A4; E;);c, such that each E; is
an equivalence relation on the set A and [a]; N [a]; is finite whenever a € A
and i < j < n (where [a]; denotes the equivalence class of a with respect to
the relation E;). An n-cube is a particular kind of n-grid where A is of the
form A = Ay x---x A,_1 and each Ej; is the equivalence relation on A whose
equivalence classes are the lines parallel to the ith coordinate axis (i.e. two
n-tuples are F;-related if and only if all of their coordinates coincide except
perhaps for the ith one). An acceptable coloring for an n-grid A is a function
X : A — n such that [a]; N x~!(7) is finite for all a € A and i € n.

In [3], J. H. Schmerl gives a nice characterization of those semialgebraic
n-grids which admit an acceptable coloring;:

THEOREM 1.1 (Schmerl). Suppose that 2 < n < w, A is a semialgebraic
n-grid and 280 > R, _1. Then the following are equivalent:

(1) Some finite n-cube is not embeddable in A.
(2) R™ is not embeddable in A.
(3) A has an acceptable n-coloring.
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In this note, we present a characterization that works for any n-grid
(see Definition and Theorem . Then we use this characterization to
show that (1)=(3) in the previous theorem holds for arbitrary n-grids (see
Theorem . In fact, the size of the continuum turns out to be irrelevant
for this implication. The implication (3)=-(2) for arbitrary n-grids follows
from a result of Kuratowski, as mentioned in [3]. None of these implications
can be reversed for arbitrary n-grids, regardless of the size of the continuum.

2. Twisted n-grids. In this section we use elementary submodels of
the universe to obtain a characterization of those n-grids which admit an
acceptable coloring. At first sight this characterization seems rather cum-
bersome, but it is the key to our results in the next section. The case n = 3
was already obtained in [I] with a bit different terminology and later used
in [2].

As has become customary, whenever we say that M is an elementary
submodel of the universe, we in fact mean that (M, €) is an elementary
submodel of (H (), €), where H(0) is the set of all sets of hereditary cardi-
nality less than 6, and 0 is a large enough regular cardinal (e.g. when we are
studying a fixed n-grid A on a transitive set 4, § = (214)T is large enough).

Given an equivalence relation F on a set A, we say that B C A is
FE-small if the E-equivalence classes restricted to B are all finite. Note that
the F-small sets form an ideal in the power set of A. Using this terminology,
an n-coloring x : A — n is acceptable for the n-grid (A; E;)iep, if and only
if x~1(i) is E;-small for each i € n.

A test set for an n-grid A is a set M of elementary submodels of the
universe such that A € M, |IM| =n —1 and M is linearly ordered by €.

DEFINITION 2.1. We say that that an n-grid A = (A4; E;)iey is twisted
if for every test set M for A and every k € n, the set

{r e ANUM : [z]; e UM for all i # k}
is Eg-small.

The rest of this section is devoted to showing that twisted n-grids are
exactly the ones that admit acceptable colorings. For this, let us fix an
arbitrary n-grid A = (A; E;)ien; our first task is to cover A with countable
elementary submodels in a way that allows us to define a suitable rank
function for elements of A and for E;-equivalence classes of elements of A.

We fix M, an elementary submodel such that AU{A} C M, and we let
k = |My|. Thinking of s as an initial ordinal, we let T' = J,,c,, v be the
set of finite sequences of ordinals in k. We have two natural orders on 7,
the tree (partial) order C and the lexicographic order <. In both orders we
have the same minimum element A, the empty sequence. For ¢ € T and
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a € k we write 0" a = o U {(|o|,a)}. Given o € T'\ {A} we write o + 1 for
the successor of ¢ in the lexicographic order of kol that is,

o+1=(ol(lo] =1))"(o(lo] = 1) +1).

We shall write o A 7 for the infimum of ¢ and 7 with respect to the tree
order; thus for ¢ # 7 we have

oANT=clloANT|=7[lcAT| and o(lo AT|)#7(lo AT]).

Now we can find inductively (on the length of o € T') elementary sub-
models M, such that:

(i) the sequence (M~ : o € cof(|M,]|)) is a continuous (increasing)
elementary chain,

(i) M, C U{M,q : o € cof ((M,])},

(iii) {A}U{M,:7+1C 0o} C M,~,

(iv) if 7 € o and M; is uncountable then |M;| > |M,|.

We actually do not need to (and will not) define M~
countable or if a > cof(|My|).

Although the lexicographic order on T is not a well-order, it is not hard
to see that conditions (ii) and (iv) allow the following definition of rank to
make sense:

o When M, is

DEFINITION 2.2. For x € M, we define rk(x) as the minimum o € T
(in the lexicographic order) such that M, is countable and = € M, for all
T Co.

Note that by the continuity of the elementary chains in condition (i),
we know that rk(z) is always a finite sequence of ordinals which are either
successor ordinals or 0. In particular, if o, = rk(z), oy = rk(y), 0, < 0y
and m = |0, A oy|, then oy(m) is a successor ordinal, say a + 1, and we can
define

Az, y) = (02 Noy) .

This last definition will only be used in the proof of Lemma The
following remark summarizes the basic properties of A(z,y) that we will be
using; all of them follow rather easily from the definitions.

REMARK 2.3. If rk(z) < rk(y) then

® 1€ My and y & Moy,

o A(z,y) +1 Crk(y),

o if 0 D A(x,y) + 1 then MA(ey) € My (by conditions (i) and (iii)).

After assigning a rank to each member of M4, we need a way to order
in type w all the elements of M, of the same rank. This is easily done by
fixing an injective enumeration

My, ={t], :m € w}
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for each o for which M, is countable, and defining the degree of an element
of M, as follows:

DEFINITION 2.4. For z € M, we define deg(x) as the unique natural

number satisfying
rk(z)
deg(z)

The following two lemmas will be used to construct an acceptable col-
oring for A in the case that A is twisted, although the second one does not
make any assumptions on A.

LEMMA 2.5. If A is twisted then there is a set B C A and a partition
B = Uen Br such that:

(a) each By is Ey-small,

(b) |{i € n:rk([z];) =rk(x)}| > 2 for any x € A\ B.

Proof. For each k € n we let By be the set of all x € A such that
rk([z]r) > rk([z];) for all i # k. Let B = J;.c,, Bk

Note that for any z € A and ¢ € n we have rk([z];) < rk(z). On the
other hand, if o = rk([z];) = rk([z];) for some k # j, then by elementarity
and the fact that [z], N [z]; is finite, it follows that rk(z) < ¢ and hence
rk(z) = 0. This observation easily implies that condition (b) is met. It also
implies that if x € By then

rk([z]ry) < -+ < rk([a]p, ) < rk([z]r) < rk(z)

for some numbers ko, ..., k,—o such that {ko,..., kn_2,k} = n.

Now we put M = {Mx([),. 2) : © € n—1}, and use M as a test set for A
to conclude that, since A is twisted, By, is Ej-small.

To see that M is indeed a test set, it is enough to show that Ma ([, ) €
MA(a],,. @) for i < j. So fix i < j and note that since [z]x, N 7]y, is finite we

J
have A([z]x,, ) = A([z];, [z]k,;), and therefore by Remark
A([z]g;, ) + 1 C rk(z) A rk([:v]kj).

But then A([z]g,,r) +1 € A([x]x,;,z), and again by Remark we get
Ma(ali; ) € Ma(a)y; a)-

LEMMA 2.6. For all i,k € n with i # k, the set

Cir ={x € A:1k([z];) = rk([z]x) and deg([z];) < deg([z]x)}

18 Ey-small.

Proof. Fix a € A and let 0 = rk([a]x) and d = deg([a]x). Note that if
x € Cji N [aly then there is an m < d (namely m = deg([z];)) such that
x € t7, Nt and t7, Nt9 is finite. Hence C; N [a]; is contained in a finite
union of finite sets. =

r=1t

We are finally ready to prove the main result of this section.



Coloring grids 287

THEOREM 2.7. The following are equivalent:

(1) A is twisted.
(2) A admits an acceptable coloring.

Proof. Suppose first that A is twisted. Let B and B, for k € n be as in
Lemma and let Cj for 4,k € n be as in Lemma [2.6] For each k € n
define C}, as the set of all z € A\ B such that:

(i) rk(z) = rk([z]x),
(ii) for all i € n\ {k}, if rk([z];) = rk([z]x) then deg([z];) < deg([z]k)-

By condition (b) in Lemma we have Cy C |J,¢,, Cir and therefore each
C} is Ex-small. It also follows that the C}’s form a partition of A\ B so that
we can define an acceptable coloring for A by

x(z) =k if and only if z € B U Cy.

Now suppose that 4 admits an acceptable coloring and fix a test set M
and k € n. We want to show that the set

X={zxe A\UM :[z]; e UM for all i # k}

is Ei-small. For this let y : A — n be an acceptable coloring such that
(using elementarity and the fact that M is linearly ordered by €) x belongs
to each M € M. Now if z € X and i # k then there is an M € M such that
[z]; N x~1(i) € M and hence [z]; N x~'(i) C M (since x is acceptable); this
implies that x(z) # i. Consequently, X C x~!(k) so that X is Ej-small. =

3. Embedding cubes into n-grids. Given an n-grid A = (A4; E;);en
it will be convenient in this section to have a name p; : A — A/E; for the
quotient maps (p;(-) = [-]i). Note that if i # k, C' C A is infinite and p;[C
is constant, then there is an infinite D C C such that p;[D is injective. We
will make repeated use of this fact, without explicit mention, in the proof
of the following:

THEOREM 3.1. If A is a non-twisted n-grid then any finite n-cube ™
(with | € w) can be embedded in A.

Proof. By definition, since A is not twisted, there is a test set M and a
k € n such that for some a € A, the set

B={xz€ea]y \UM :[z]; e UM for all i # k}

is infinite. For each € B and each i € n\ {k} there is an M} € M such
that [z]; € MF. Since M is finite, there must be an infinite C' C B on which
the map z — (M} : i € n\{k}) is constant, say with value (M; : i € n\{k}).
Note that since C' is disjoint from | J.M, the map i — M; must be injective
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and hence M = {M; : i € n\ {k}}, because |[M| = n — 1. Finally, we can
find an infinite set D C C such that p;[C' is injective for all i # k.

Now taking k1 = k and letting ¢ be any injection from [ into D, we
easily see that the following statement is true for j = 1:

P(j) There are distinct ki1,...,k; € n and an embedding ¢ : I/ —
(A; By, - - ., Ey;) such that:

(a) for i e n\ {ki,...,k;}, pi o ¢ is injective and belongs to M;,
(b) ¢ takes values in A\ |J{M; : i € n\ {k1,...,k;}}.

Note that when j = n, conditions (a) and (b) become trivially true, and
P(n) just says that there is an embedding (modulo an irrelevant permutation
of coordinates) of the finite cube " into A, which is exactly what we want
to show. We already know that P(1) is true, so we are done if we can show
that P(j) implies P(j + 1) for 1 < j < n.

Assuming P(j),let p : 17 — (A; By, ... , E;) be such an embedding, and
let kj11 € n\{k1,...,k;} be such that My, is the €-maximum element of
{M; :ien\{ki,...,k;j}}. Let us call

6= Pkjy, O® S Mkj+1~
Now note that ¢ ¢ My, , and at the same time ¢ satisfies the following

conditions (on the free variable @), all of which can be expressed using

parameters from My, :

DV — (A; By, ... , Ex;) is an embedding,

Prjp ©P =0,

for i € n\ {k1,...,kj,kj+1}, pi o @ is injective and belongs to M;,
& takes values in A\ |J{M; :i e n\ {k1,...,kj,kj+1}}.

This means that there must be an infinite set (in fact there must be
an uncountable one, but we will not be using this) {¢,, : m € w} of dis-
tinct functions satisfying those properties. Going to a subsequence I/ times,
we may assume without loss of generality that for each ¢ € I/, the map
m — @ (t) is either constant or injective. Now since they cannot all be con-
stant, it is not hard to see that in fact all these maps have to be injective:
just note that if ¢,# € I are in a line parallel to the (r — 1)th coordinate axis
then it cannot be the case that the map associated with ¢ is constant while
the one associated with ' is injective, since otherwise {p;, (') : m € w}
would be an infinite set contained in [po(t)]x, N [po(t')]k,,,- To see this, just
note that in that situation we would have [0, (t')]k, = [@m ()], = [@o(t)]k,
and [P ()]t 1 = (ks 11 © Pm) (1) = 8(E) = (piy s © 90)(E) = [P0k, -

Next we can find an infinite I C w such that for each ¢ € I/ and each
i € n\ {kj+1} the map m — [pp(t)]; is injective when restricted to I. Con-
sequently, here one can find (one at a time) [ distinct elements my, ..., m;_1
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of I such that for all t,¢’ € 7, for all r,r' € | with r # ' and for all
i € n\{kjr1}, we have [om, (t)]i # [om,, ().

Finally we let ¢ : 't — (A; By, . . ., FEy,,,) be the function defined by
P(t, 1) = @m, (). From the way we constructed the m,’s and using the fact
that all the ¢,,’s are embeddings and § is injective, one can see that ¢ is
in fact an embedding. From the fact that 1) is essentially a finite union of
some ¢p,’s and from the choice of those ¢p,’s, it follows that conditions (a)
and (b) in P(j + 1) are satisfied. =

This last theorem only goes one way: for example, the n-cube w™ is
twisted for n > 2, but of course any finite n-cube can be embedded in it.
I suspect that only for very “nice” classes of n-grids can one reverse this
theorem. Schmerl’s theorem does it for semialgebraic n-grids; perhaps some
form of o-minimality is what is required.

The question of when an infinite cube can be embedded in an arbitrary
n-grid seems more subtle. For instance, let us consider the case n = 2. Using
the same idea as in the proof of one can easily show:

THEOREM 3.2. If A is a non-twisted 2-grid then either | X wy can be
embedded in A for alll € w, or wy X | can be embedded in A for alll € w.

However, it is not true that w x w embeds in any non-twisted 2-grid. For
example, fix an uncountable family {A, : & € w;} of almost disjoint subsets
of wandlet A= {(n,a) € wxwy:n € Ay}. Think of A as a subgrid of the
2-cube w x wi. It is easy to see that this is a non-twisted grid, but not even
w X 2 can be embedded in it.
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