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Abstract. A structure A = (A;Ei)i∈n where each Ei is an equivalence relation on
A is called an n-grid if any two equivalence classes coming from distinct Ei’s intersect
in a finite set. A function χ : A → n is an acceptable coloring if for all i ∈ n, the
set χ−1(i) intersects each Ei-equivalence class in a finite set. If B is a set, then the n-cube
Bn may be seen as an n-grid, where the equivalence classes of Ei are the lines parallel
to the ith coordinate axis. We use elementary submodels of the universe to characterize
those n-grids which admit an acceptable coloring. As an application we show that if an
n-grid A does not admit an acceptable coloring, then every finite n-cube is embeddable
in A.

1. Introduction. Following [3], for a natural number n ≥ 2 we define
an n-grid to be a structure of the form A = (A;Ei)i∈n such that each Ei is
an equivalence relation on the set A and [a]i ∩ [a]j is finite whenever a ∈ A
and i < j < n (where [a]i denotes the equivalence class of a with respect to
the relation Ei). An n-cube is a particular kind of n-grid where A is of the
form A = A0×· · ·×An−1 and each Ei is the equivalence relation on A whose
equivalence classes are the lines parallel to the ith coordinate axis (i.e. two
n-tuples are Ei-related if and only if all of their coordinates coincide except
perhaps for the ith one). An acceptable coloring for an n-grid A is a function
χ : A→ n such that [a]i ∩ χ−1(i) is finite for all a ∈ A and i ∈ n.

In [3], J. H. Schmerl gives a nice characterization of those semialgebraic
n-grids which admit an acceptable coloring:

Theorem 1.1 (Schmerl). Suppose that 2 ≤ n < ω, A is a semialgebraic
n-grid and 2ℵ0 ≥ ℵn−1. Then the following are equivalent:

(1) Some finite n-cube is not embeddable in A.
(2) Rn is not embeddable in A.
(3) A has an acceptable n-coloring.
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In this note, we present a characterization that works for any n-grid
(see Definition 2.1 and Theorem 2.7). Then we use this characterization to
show that (1)⇒(3) in the previous theorem holds for arbitrary n-grids (see
Theorem 3.1). In fact, the size of the continuum turns out to be irrelevant
for this implication. The implication (3)⇒(2) for arbitrary n-grids follows
from a result of Kuratowski, as mentioned in [3]. None of these implications
can be reversed for arbitrary n-grids, regardless of the size of the continuum.

2. Twisted n-grids. In this section we use elementary submodels of
the universe to obtain a characterization of those n-grids which admit an
acceptable coloring. At first sight this characterization seems rather cum-
bersome, but it is the key to our results in the next section. The case n = 3
was already obtained in [1] with a bit different terminology and later used
in [2].

As has become customary, whenever we say that M is an elementary
submodel of the universe, we in fact mean that (M,∈) is an elementary
submodel of (H(θ),∈), where H(θ) is the set of all sets of hereditary cardi-
nality less than θ, and θ is a large enough regular cardinal (e.g. when we are
studying a fixed n-grid A on a transitive set A, θ = (2|A|)+ is large enough).

Given an equivalence relation E on a set A, we say that B ⊆ A is
E-small if the E-equivalence classes restricted to B are all finite. Note that
the E-small sets form an ideal in the power set of A. Using this terminology,
an n-coloring χ : A → n is acceptable for the n-grid (A;Ei)i∈n if and only
if χ−1(i) is Ei-small for each i ∈ n.

A test set for an n-grid A is a set M of elementary submodels of the
universe such that A ∈

⋂
M, |M| = n− 1 and M is linearly ordered by ∈.

Definition 2.1. We say that that an n-grid A = (A;Ei)i∈n is twisted
if for every test set M for A and every k ∈ n, the set

{x ∈ A \
⋃
M : [x]i ∈

⋃
M for all i 6= k}

is Ek-small.

The rest of this section is devoted to showing that twisted n-grids are
exactly the ones that admit acceptable colorings. For this, let us fix an
arbitrary n-grid A = (A;Ei)i∈n; our first task is to cover A with countable
elementary submodels in a way that allows us to define a suitable rank
function for elements of A and for Ei-equivalence classes of elements of A.

We fix MΛ an elementary submodel such that A∪{A} ⊆MΛ and we let
κ = |MΛ|. Thinking of κ as an initial ordinal, we let T =

⋃
m∈ω κ

m be the
set of finite sequences of ordinals in κ. We have two natural orders on T ,
the tree (partial) order ⊆ and the lexicographic order ≤. In both orders we
have the same minimum element Λ, the empty sequence. For σ ∈ T and
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α ∈ κ we write σaα = σ ∪ {〈|σ|, α〉}. Given σ ∈ T \ {Λ} we write σ + 1 for
the successor of σ in the lexicographic order of κ|σ|, that is,

σ + 1 = (σ�(|σ| − 1))a(σ(|σ| − 1) + 1).

We shall write σ ∧ τ for the infimum of σ and τ with respect to the tree
order; thus for σ 6= τ we have

σ ∧ τ = σ�|σ ∧ τ | = τ�|σ ∧ τ | and σ(|σ ∧ τ |) 6= τ(|σ ∧ τ |).
Now we can find inductively (on the length of σ ∈ T ) elementary sub-

models Mσ such that:

(i) the sequence 〈Mσaα : α ∈ cof(|Mσ|)〉 is a continuous (increasing)
elementary chain,

(ii) Mσ ⊆
⋃
{Mσaα : α ∈ cof(|Mσ|)},

(iii) {A} ∪ {Mτ : τ + 1 ⊆ σ} ⊆Mσa0,
(iv) if τ ( σ and Mτ is uncountable then |Mτ | > |Mσ|.
We actually do not need to (and will not) define Mσaα when Mσ is

countable or if α ≥ cof(|Mσ|).
Although the lexicographic order on T is not a well-order, it is not hard

to see that conditions (ii) and (iv) allow the following definition of rank to
make sense:

Definition 2.2. For x ∈ MΛ we define rk(x) as the minimum σ ∈ T
(in the lexicographic order) such that Mσ is countable and x ∈ Mτ for all
τ ⊆ σ.

Note that by the continuity of the elementary chains in condition (i),
we know that rk(x) is always a finite sequence of ordinals which are either
successor ordinals or 0. In particular, if σx = rk(x), σy = rk(y), σx < σy
and m = |σx ∧ σy|, then σy(m) is a successor ordinal, say α+ 1, and we can
define

∆(x, y) = (σx ∧ σy)aα.
This last definition will only be used in the proof of Lemma 2.5. The

following remark summarizes the basic properties of ∆(x, y) that we will be
using; all of them follow rather easily from the definitions.

Remark 2.3. If rk(x) < rk(y) then

• x ∈M∆(x,y) and y /∈M∆(x,y),
• ∆(x, y) + 1 ⊆ rk(y),
• if σ ) ∆(x, y) + 1 then M∆(x,y) ∈Mσ (by conditions (i) and (iii)).

After assigning a rank to each member of MΛ, we need a way to order
in type ω all the elements of MΛ of the same rank. This is easily done by
fixing an injective enumeration

Mσ = {tσm : m ∈ ω}
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for each σ for which Mσ is countable, and defining the degree of an element
of MΛ as follows:

Definition 2.4. For x ∈ MΛ we define deg(x) as the unique natural
number satisfying

x = t
rk(x)
deg(x).

The following two lemmas will be used to construct an acceptable col-
oring for A in the case that A is twisted, although the second one does not
make any assumptions on A.

Lemma 2.5. If A is twisted then there is a set B ⊆ A and a partition
B =

⋃
k∈nBk such that:

(a) each Bk is Ek-small,
(b) |{i ∈ n : rk([x]i) = rk(x)}| ≥ 2 for any x ∈ A \B.

Proof. For each k ∈ n we let Bk be the set of all x ∈ A such that
rk([x]k) > rk([x]i) for all i 6= k. Let B =

⋃
k∈nBk.

Note that for any x ∈ A and i ∈ n we have rk([x]i) ≤ rk(x). On the
other hand, if σ = rk([x]k) = rk([x]j) for some k 6= j, then by elementarity
and the fact that [x]k ∩ [x]j is finite, it follows that rk(x) ≤ σ and hence
rk(x) = σ. This observation easily implies that condition (b) is met. It also
implies that if x ∈ Bk then

rk([x]k0) < · · · < rk([x]kn−2) < rk([x]k) ≤ rk(x)

for some numbers k0, . . . , kn−2 such that {k0, . . . , kn−2, k} = n.
Now we putM = {M∆([x]ki ,x)

: i ∈ n−1}, and useM as a test set for A
to conclude that, since A is twisted, Bk is Ek-small.

To see thatM is indeed a test set, it is enough to show that M∆([x]ki ,x)
∈

M∆([x]kj ,x)
for i < j. So fix i < j and note that since [x]ki ∩ [x]kj is finite we

have ∆([x]ki , x) = ∆([x]ki , [x]kj ), and therefore by Remark 2.3,

∆([x]ki , x) + 1 ⊆ rk(x) ∧ rk([x]kj ).

But then ∆([x]ki , x) + 1 ( ∆([x]kj , x), and again by Remark 2.3 we get
M∆([x]ki ,x)

∈M∆([x]kj ,x)
.

Lemma 2.6. For all i, k ∈ n with i 6= k, the set

Ci,k = {x ∈ A : rk([x]i) = rk([x]k) and deg([x]i) < deg([x]k)}
is Ek-small.

Proof. Fix a ∈ A and let σ = rk([a]k) and d = deg([a]k). Note that if
x ∈ Ci,k ∩ [a]k then there is an m < d (namely m = deg([x]i)) such that
x ∈ tσm ∩ tσd and tσm ∩ tσd is finite. Hence Ci,k ∩ [a]k is contained in a finite
union of finite sets.

We are finally ready to prove the main result of this section.
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Theorem 2.7. The following are equivalent:

(1) A is twisted.
(2) A admits an acceptable coloring.

Proof. Suppose first that A is twisted. Let B and Bk for k ∈ n be as in
Lemma 2.5, and let Ci,k for i, k ∈ n be as in Lemma 2.6. For each k ∈ n
define Ck as the set of all x ∈ A \B such that:

(i) rk(x) = rk([x]k),
(ii) for all i ∈ n \ {k}, if rk([x]i) = rk([x]k) then deg([x]i) < deg([x]k).

By condition (b) in Lemma 2.5, we have Ck ⊆
⋃
i∈nCi,k and therefore each

Ck is Ek-small. It also follows that the Ck’s form a partition of A\B so that
we can define an acceptable coloring for A by

χ(x) = k if and only if x ∈ Bk ∪ Ck.

Now suppose that A admits an acceptable coloring and fix a test setM
and k ∈ n. We want to show that the set

X = {x ∈ A \
⋃
M : [x]i ∈

⋃
M for all i 6= k}

is Ek-small. For this let χ : A → n be an acceptable coloring such that
(using elementarity and the fact thatM is linearly ordered by ∈) χ belongs
to each M ∈M. Now if x ∈ X and i 6= k then there is an M ∈M such that
[x]i ∩ χ−1(i) ∈M and hence [x]i ∩ χ−1(i) ⊂M (since χ is acceptable); this
implies that χ(x) 6= i. Consequently, X ⊆ χ−1(k) so that X is Ek-small.

3. Embedding cubes into n-grids. Given an n-grid A = (A;Ei)i∈n
it will be convenient in this section to have a name ρi : A → A/Ei for the
quotient maps (ρi(·) = [·]i). Note that if i 6= k, C ⊆ A is infinite and ρk�C
is constant, then there is an infinite D ⊆ C such that ρi�D is injective. We
will make repeated use of this fact, without explicit mention, in the proof
of the following:

Theorem 3.1. If A is a non-twisted n-grid then any finite n-cube ln

(with l ∈ ω) can be embedded in A.

Proof. By definition, since A is not twisted, there is a test set M and a
k ∈ n such that for some a ∈ A, the set

B = {x ∈ [a]k \
⋃
M : [x]i ∈

⋃
M for all i 6= k}

is infinite. For each x ∈ B and each i ∈ n \ {k} there is an Mx
i ∈ M such

that [x]i ∈Mx
i . SinceM is finite, there must be an infinite C ⊆ B on which

the map x 7→ 〈Mx
i : i ∈ n\{k}〉 is constant, say with value 〈Mi : i ∈ n\{k}〉.

Note that since C is disjoint from
⋃
M, the map i 7→Mi must be injective
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and hence M = {Mi : i ∈ n \ {k}}, because |M| = n − 1. Finally, we can
find an infinite set D ⊆ C such that ρi�C is injective for all i 6= k.

Now taking k1 = k and letting ϕ be any injection from l into D, we
easily see that the following statement is true for j = 1:

P (j) There are distinct k1, . . . , kj ∈ n and an embedding ϕ : lj →
(A;Ek1 , . . . , Ekj ) such that:

(a) for i ∈ n \ {k1, . . . , kj}, ρi ◦ ϕ is injective and belongs to Mi,
(b) ϕ takes values in A \

⋃
{Mi : i ∈ n \ {k1, . . . , kj}}.

Note that when j = n, conditions (a) and (b) become trivially true, and
P (n) just says that there is an embedding (modulo an irrelevant permutation
of coordinates) of the finite cube ln into A, which is exactly what we want
to show. We already know that P (1) is true, so we are done if we can show
that P (j) implies P (j + 1) for 1 ≤ j < n.

Assuming P (j), let ϕ : lj → (A;Ek1 , . . . , Ekj ) be such an embedding, and
let kj+1 ∈ n \ {k1, . . . , kj} be such that Mkj+1

is the ∈-maximum element of
{Mi : i ∈ n \ {k1, . . . , kj}}. Let us call

δ := ρkj+1
◦ ϕ ∈Mkj+1

.

Now note that ϕ /∈Mkj+1
and at the same time ϕ satisfies the following

conditions (on the free variable Φ), all of which can be expressed using
parameters from Mkj+1

:

• Φ : lj → (A;Ek1 , . . . , Ekj ) is an embedding,
• ρkj+1

◦ Φ = δ,
• for i ∈ n \ {k1, . . . , kj , kj+1}, ρi ◦ Φ is injective and belongs to Mi,
• Φ takes values in A \

⋃
{Mi : i ∈ n \ {k1, . . . , kj , kj+1}}.

This means that there must be an infinite set (in fact there must be
an uncountable one, but we will not be using this) {ϕm : m ∈ ω} of dis-
tinct functions satisfying those properties. Going to a subsequence lj times,
we may assume without loss of generality that for each t ∈ lj , the map
m 7→ ϕm(t) is either constant or injective. Now since they cannot all be con-
stant, it is not hard to see that in fact all these maps have to be injective:
just note that if t, t′ ∈ lj are in a line parallel to the (r−1)th coordinate axis
then it cannot be the case that the map associated with t is constant while
the one associated with t′ is injective, since otherwise {ϕm(t′) : m ∈ ω}
would be an infinite set contained in [ϕ0(t)]kr ∩ [ϕ0(t

′)]kj+1
. To see this, just

note that in that situation we would have [ϕm(t′)]kr = [ϕm(t)]kr = [ϕ0(t)]kr
and [ϕm(t′)]kj+1

= (ρkj+1
◦ ϕm)(t′) = δ(t′) = (ρkj+1

◦ ϕ0)(t
′) = [ϕ0(t

′)]kj+1
.

Next we can find an infinite I ⊆ ω such that for each t ∈ lj and each
i ∈ n \ {kj+1} the map m 7→ [ϕm(t)]i is injective when restricted to I. Con-
sequently, here one can find (one at a time) l distinct elements m0, . . . ,ml−1
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of I such that for all t, t′ ∈ lj , for all r, r′ ∈ l with r 6= r′ and for all
i ∈ n \ {kj+1}, we have [ϕmr(t)]i 6= [ϕmr′ (t

′)]i.

Finally we let ψ : lj+1 → (A;Ek1 , . . . , Ekj+1
) be the function defined by

ψ(t, r) = ϕmr(t). From the way we constructed the mr’s and using the fact
that all the ϕm’s are embeddings and δ is injective, one can see that ψ is
in fact an embedding. From the fact that ψ is essentially a finite union of
some ϕm’s and from the choice of those ϕm’s, it follows that conditions (a)
and (b) in P (j + 1) are satisfied.

This last theorem only goes one way: for example, the n-cube ωn is
twisted for n ≥ 2, but of course any finite n-cube can be embedded in it.
I suspect that only for very “nice” classes of n-grids can one reverse this
theorem. Schmerl’s theorem does it for semialgebraic n-grids; perhaps some
form of o-minimality is what is required.

The question of when an infinite cube can be embedded in an arbitrary
n-grid seems more subtle. For instance, let us consider the case n = 2. Using
the same idea as in the proof of 3.1, one can easily show:

Theorem 3.2. If A is a non-twisted 2-grid then either l × ω1 can be
embedded in A for all l ∈ ω, or ω1 × l can be embedded in A for all l ∈ ω.

However, it is not true that ω×ω embeds in any non-twisted 2-grid. For
example, fix an uncountable family {Aα : α ∈ ω1} of almost disjoint subsets
of ω and let A = {(n, α) ∈ ω×ω1 : n ∈ Aα}. Think of A as a subgrid of the
2-cube ω× ω1. It is easy to see that this is a non-twisted grid, but not even
ω × 2 can be embedded in it.
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