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∆1-Definability of the non-stationary ideal at
successor cardinals

by

Sy-David Friedman, Liuzhen Wu and Lyubomyr Zdomskyy (Wien)

Abstract. Assuming V = L, for every successor cardinal κ we construct a GCH and
cardinal preserving forcing poset P ∈ L such that in LP the ideal of all non-stationary
subsets of κ is ∆1-definable over H(κ+).

1. Introduction. In this paper we prove the following result, which
solves in the affirmative a question posed in [8].

Theorem 1.1. Let κ be a successor cardinal in L.

(1) There exists a GCH and cardinal preserving forcing poset P ∈ L
such that in LP the ideal NSκ of all non-stationary subsets of κ is
∆1-definable over H(κ+).

(2) There exists a cardinal preserving forcing poset P ∈ L such that in
LP the ideal NSκ of all non-stationary subsets of κ is ∆1-definable
over H(κ+), and 2κ = κ++.

The motivation for Theorem 1.1 comes from generalized descriptive set
theory, which, roughly speaking, is the study of “nice” subsets of 2κ for
κ > ω. Descriptive set theory looks very different in this generalized setting
compared to the classical case. For instance, the classical fact that ∆1

1 sets
are Borel is not anymore true. And the non-stationary ideal on κ (possibly
restricted to a certain stationary subset) considered in various forcing ex-
tensions is an important test space distinguishing various classes of “nice”
subsets of 2κ (see, e.g., [7, Theorem 49] and references therein).

Theorem 1.1 is proved using almost disjoint coding followed by local-
ization, a method invented by David [3] and further developed in works of
Friedman and collaborators. This is a new application of this method as the
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previous results regarding the definability of the ideal of non-stationary sub-
sets of κ were mainly achieved using combinatorics related to canary trees
(see [13] for the definition). For instance, Mekler and Shelah [13] proved
that NSω1 is ∆1-definable over H(ω2) iff there is a canary tree, and canary
trees may or may not exist in models of GCH. The proof presented in [13]
had some inaccuracies which were fixed by Hyttinen and Rautila in [10],
where they also obtained the result that NSκ+ restricted to the ordinals of
cofinality κ can be ∆1-definable over H(κ+) for any regular κ. The results
of [10] were further improved in [7], where it is also shown that NSκ is not
∆1-definable in L.

This topic also has connections with large cardinal theory: Using meth-
ods similar to those of [7], Friedman and Wu proved [8] that NSκ restricted
to a measure 0 set can be ∆1-definable for a measurable κ. They also show
that the unrestricted NSκ cannot be ∆1-definable for a weakly compact κ.
Also note that NSκ is ∆1-definable if there exists a collection S of stationary
subsets of κ such that |S| = κ and each stationary subset of κ contains some
S ∈ S. For κ = ω1 this is consistent relative to the existence of infinitely
many Woodin cardinals (see [14, Section 6.2]).

With the exception of the case κ = ω1, prior results on the ∆1-definability
of NSκ are limited to restrictions of NSκ. In the present paper our methods
allow us to obtain the ∆1-definability of the full unrestricted NSκ for all
successor κ.

Throughout this paper we work over the constructible universe L, thus
unless otherwise specified V = L.

2. Proof of Theorem 1.1. Let γ be the predecessor cardinal of κ, i.e.,
κ = γ+. First we prove the first part. At the end we shall indicate how to
modify it in order to obtain the proof of the second part.

We say that a transitive ZF− model M is suitable if γ+ 1 ⊂M , (γ++)M

exists and (γ++)M = (γ++)L
M

. From this it follows, of course, that (γ+)M =

(γ+)L
M

. We will need an appropriate sequence ~S = 〈Sα : α < κ+〉 of
stationary subsets of κ+ ∩ Cof(κ) such that (κ+ ∩ Cof(κ)) \

⋃
α∈κ+ Sα is

stationary. Let 〈Gξ : ξ ∈ κ+∩cof(κ)〉 be a ♦κ+(cof(κ)) sequence which is Σ1-
definable over Lκ+ . For every α < κ+ let us denote by Sα the set {ξ < κ+ :
Gξ = {κ · (α + 1)}}. It follows from the above that Sα’s are stationary

subsets of cof(κ) ∩ κ+ which are mutually disjoint and the sequence ~S =
〈Sα : α < κ+〉 is Σ1-definable over Lκ+ . Moreover,

⋃
{Sα : α < κ+} has fat

complement because the set S′ = {ξ < κ+ : Gξ = {0}} is disjoint from the
union considered above.

The idea of the proof will be to construct a poset P such that in V P

we will have the following Σ1 definition of the complement of NSκ: S ⊂ κ



∆1-Definability of NSγ+ 233

is stationary iff there exists Y ∈ [κ]κ such that for every suitable model
M of size γ containing Y ∩ (γ+)M , there is µ < (γ++)M such that for
all ζ ∈ T (S) ∩ (γ+)M we have M � “Sρ·µ+ζ is not stationary” (where
T (S) = {2i + 1 : i ∈ S} ∪ {2i : i ∈ κ \ S} and ρ = κ + 3). In the latter
definition by Sρ·µ+ζ we mean, of course, its M -version.

We shall force clubs disjoint from certain Sα’s by initial segments. This
forcing is well-studied, and it is known (see, e.g., [2, Theorem 1]) that under
GCH the poset consisting of closed bounded subsets of a stationary subset
S ⊂ λ, where λ is a successor cardinal, preserves cofinalities, introduces no
bounded subsets of λ, and creates a club subset of S if and only if S is fat in
the sense that for every club C ⊂ λ, C ∩S contains closed sets of ordinals of
arbitrarily large order-types below λ. Since Cof(<κ)∪S is easily seen to be
fat for any stationary subset S ⊂ Cof(κ), the posets shooting clubs disjoint
from Sα’s will have all of these nice properties.

Similarly, but using this time the (κ+-many) L-least codes for ordi-
nals below κ+ and a Σ1-definable ♦κ(cof(γ)) sequence, we can obtain a

Σ1-definable sequence ~A = 〈Aζ : ζ < κ+〉 of stationary subsets of cof(γ)∩ κ
which are mutually almost disjoint (that is, for all ζ0 6= ζ1 the set Aζ0 ∩Aζ1
is bounded in κ).

Let us fix a function F : κ+ → L and set ρ = κ+3. Next, we shall define
an iteration 〈Pξ, Q̇ξ : ξ < κ+〉 depending (1) on F . Later we will choose a
particular F such that the poset associated to it makes NSκ, the ideal of
non-stationary subsets of κ, ∆1-definable over H(κ+). The choice of this F
is made after Corollary 2.12.

Suppose that we have already defined Pξ for some ξ < κ+. Let us write
ξ in the form ρ · α+ ζ, where ζ < ρ, and suppose that together with Pξ we

have also defined a sequence 〈Ẏβ : β < α〉 such that Ẏβ is a Pρ·(β+1)-name for

a subset of κ. If F (α) is not a Pρ·α-name for a subset of κ then Q̇ξ is trivial.
Otherwise let G denote the Pξ-generic filter. If F (α)G is not stationary in

V [G�ρ · α], then Qξ = Q̇G
ξ is trivial. So suppose that F (α)G is stationary in

V [G�ρ · α]. Four cases are possible. Before passing to them we shall set the
following notation: if A is a subset of κ, then T (A) = {2i+ 1 : i ∈ A}∪ {2i :
i ∈ κ \A}.

Case 1: ζ < κ. If ζ 6∈ T (F (α)G), then Qξ is the trivial poset. Otherwise
Qξ is the standard poset shooting a club Cξ disjoint from Sξ via initial

segments. The Pξ-name of Cξ will be denoted by Ċξ.

Case 2: ζ = κ. Before defining Q̇ξ we need to fix some notation and
introduce some auxiliary objects. Given a set X of ordinals, let Even(X)

(1) Formally we should have written 〈PFξ , Q̇Fξ : ξ < κ+〉 instead of 〈Pξ, Q̇ξ : ξ < κ+〉,
but this would only burden the notation.
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and Odd(X) be the sets of even and odd ordinals in X, respectively. In the
following we treat 0 as a limit ordinal. Let Dα ⊂ κ+ be a set coding the
sequences 〈Ẏ G

β : β < α〉 and 〈Cρ·α+ζ : ζ < κ〉. That is, letting φl, φt be

the L-minimal injections of α× κ and κ× κ+ into Even(κ+) and Odd(κ+),
respectively, Dα is such that Even(Dα) = φl[{〈β, i〉 : β < α, i ∈ Ẏ G

β }]
and (2) Odd(Dα) = φt[{〈ζ, ν〉 : ζ ∈ T (F (α)G), ν ∈ Cζ}]. Then Qξ adds a
subset X0

α of κ which almost disjointly codes Dα. More precisely, let Qξ be
the poset of all pairs 〈s, s∗〉 ∈ [κ]<κ × [Dα]<κ, where 〈t, t∗〉 extends 〈s, s∗〉
if and only if t end-extends s and t\s ∩ Aν = ∅ for every ν ∈ s∗. Given a
Qξ-generic filter G(ξ) over L[G], we set X0

α =
⋃
{s : ∃s∗ (〈s, s∗〉) ∈ G(ξ)}.

By genericity we have Dα = {ν : Aν ∩X0
α is bounded in κ}.

Case 3: ζ = κ+ 1. Let us fix a strictly increasing continuous sequence
〈Nν : ν < κ+〉 of elementary submodels of Lθ[X

0
α] of size κ which contain

κ ∪ {X0
α} as a subset, where θ is a large enough cardinal. Denote by Eα

the set {(κ+)N̄ν : ν < κ+}, where N̄ν is the Mostowski collapse of Nν , and
observe that Eα is a club in κ+. Now choose Zα to be a subset of κ+ such
that Even(Zα) = Dα, and if β < κ+ is (γ++)M = (κ+)M for some suitable
model M such that Zα ∩ β ∈M , then β belongs to Eα. (This is easily done
by placing in Zα a code for a bijection φ : β1 → κ on the odd part of the
interval (β0, β0 +κ) for each adjacent pair β0 < β1 from Eα.) Then Qξ adds
a subset X1

α of κ which almost disjointly codes Zα. More precisely, let Qξ

be the poset of all pairs 〈s, s∗〉 ∈ [κ]<κ× [Zα]<κ, where 〈t, t∗〉 extends 〈s, s∗〉
if and only if t end-extends s and t\s ∩ Aν = ∅ for every ν ∈ s∗. Given a
Qξ-generic filter G(ξ) over L[G], we set X1

α =
⋃
{s : ∃s∗ (〈s, s∗〉) ∈ G(ξ)}.

By genericity we find that Zα = {ν : Aν ∩X1
α is bounded in κ}.

As a result we have:

(∗)α If M is any suitable model such that κ ∪ {X0
α, X

1
α} ⊂ M and

(γ++)M < γ++, then (3) M � ψ(γ+, γ++, α, F (α)G, X0
α), where

ψ(γ+, γ++, µ, S,X) is the formula “Using the sequence ~A, the set X
almost disjointly codes a subset D of γ++ such that using φl and φt,
D codes (4) µ < γ++, S ⊂ γ+, and a sequence 〈Cζ : ζ ∈ T (S)〉,
where Cζ is a club in γ++ disjoint from Sρ·µ+ζ .”

The proof of (∗)α is analogous to that of (∗)α in [4]. However, for the
sake of completeness we shall present it. Given a suitable model M with

(2) Here we implicitly use that neither κ nor κ+ is collapsed by Pξ. This will be
proved in Lemmas 2.2 and 2.7. To be formally correct we should have presented this proof
simultaneously with the inductive construction of P.

(3) In this case κ = γ+ in M .

(4) Whenever we verify that M � ψ(γ+, γ++, µ, T,X) for some suitable model M we
mean by γ+, γ++, ~A, φt, φl, Sι, as may be expected, their M -versions.
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(γ++)M = β and κ ∪ {X0
α, X

1
α} ⊂ M , observe that Zα ∩ β ∈ M be-

cause Zα ∩ β = {ν < β : |Aν ∩ X1
α| = κ} and ~AM = ~AL�β, which

yields β ∈ Eα by the construction of Zα. Also, Dα ∩ β ∈ M because
Dα = Even(Zα). Let ν < κ+ be such that (γ++)N̄ν = β. By the con-
struction we see that Lθ[X

0
α] � ψ(γ+, γ++, α, F (α)G, X0

α), and hence also
N̄ν � ψ(γ+, γ++, α, F (α)G, X0

α) by elementarity. Since the coding apparatus
as well as stationary subsets involved in the formula ψ are referring to L, for
any two suitable models M0,M1 ⊃ {X} we have M0 � ψ(γ+, γ++, µ, S,X)
iff M1 � ψ(γ+, γ++, µ, S,X), provided that (γ++)M0 = (γ++)M1 . In particu-
lar, M � ψ(γ+, γ++, α, F (α)G, X0

α) because N̄ν � ψ(γ+, γ++, α, F (α)G, X0
α)

and (γ++)N̄ν = (γ++)M = β, which completes the proof of (∗)α.

Case 4: ζ = κ + 2. In this case the poset Qξ localizes the property
(∗)α of X0

α in the style of [3]. More precisely, Qξ consists of all functions
r : |r| → 2, where the domain |r| of r is a limit ordinal less than κ, such
that:

(1) if η < |r| then η ∈ X0
α iff r(3η + 1) = 1,

(2) if η < |r| then η ∈ X1
α iff r(3η + 2) = 1,

(3) if η ≤ |r|, M is a suitable model of size γ containing r�η as an
element and η = (γ+)M , then M � ψ(γ+, γ++, µ, F (α)G ∩ η,X0

α ∩ η)
for some ordinal µ.

The order relation is given by extension. Observe that the poset Qξ produces
a generic function from κ into 2, which is the characteristic function of a
subset Yα of κ whose Pξ-name will be denoted by Ẏα.

Finally, assuming that 〈Pξ, Q̇ξ : ξ < δ〉 has been defined for some limit
δ < κ+, we define Pδ as follows. Let Sδ be the set of all functions p with
domain δ such that p�ξ ∈ Pξ for all ξ < δ. For p ∈ Sδ we shall denote the
sets {

ξ < δ : ξ is of the form ρ · α+ ζ for some ζ < κ and p(ξ) 6= 1Q̇ξ

}
and{
ξ<δ : ξ is of the form ρ·α+ζ for some ζ∈{κ, κ+1, κ+2} and p(ξ) 6=1Q̇ξ

}
by suppκ+(p) and suppκ(p), respectively, and their union will be denoted by
supp(p). The poset Pδ consists of those p ∈ Sδ such that |suppκ(p)| < κ and
|suppκ+(p)| < κ+. This completes our definition of P = Pκ+ depending on
the arbitrary bookkeeping function F .

Even though the following remark has already been used, we isolate it
here for future use.

Remark 2.1. Tracing back the statement of the formula ψ as well as the
coding apparatus involved, one can see that if N,M are suitable models such
that (γ+)M = (γ+)N , (γ++)M = (γ++)N , and S,X ⊂ (γ+)M are elements
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of M ∩N , then M � ψ(γ+, γ++, µ, S,X) iff N � ψ(γ+, γ++, µ, S,X) for any
µ < (γ++)M .

Lemma 2.2. The poset P is (<κ)-distributive.

Before passing to the proof of Lemma 2.2 we shall introduce some nota-
tion. Let Dδ be the set of conditions p ∈ Pδ such that

• for all ξ of the form ρ·α+ζ, where ζ ∈ {κ, κ+1}, we have p(ξ) =

̂

〈sξ, s∗ξ〉
for some s∗ξ ∈ [κ+]<κ and sξ ∈ [κ]<κ;

• for all ξ of the form ρ ·α+κ+ 2 we have p(ξ) =

̂

r for some r : |r| → 2;
• 
ξ p(ξ) ∈ Q̇ξ for all ξ ∈ supp(p).

If Q is a poset, q ∈ Q ∈ N , then we say that q is strongly (N,Q)-generic if
for every open dense subset O of Q which is an element of N there exists
p ∈ O ∩N such that q ≤ p.

Proof of Lemma 2.2. We shall prove by induction on ξ < κ+ that Pξ has
some property which is formally stronger than (<κ)-distributivity and that
Dξ is dense in Pξ. In order to formulate this property we shall introduce
some auxiliary notions.

Let us fix some large enough regular cardinal θ and some large n ∈ ω.
Given a set X ∈ Lθ, let N0 be the least Σn- elementary submodel of Lθ
such that {X} ∪ (γ + 1) ⊂ N0. The least means here that N0 is the closure
of {X} ∪ (γ + 1) with respect to all Σn Skolem functions given by the well-
ordering <L of Lθ. Suppose that for some ζ < κ we have already constructed
an increasing chain 〈Nξ : ξ < ζ〉 of Σn-elementary submodels of Lθ. If ζ is
limit then we set Nζ =

⋃
ξ<ζ Nξ. If ζ = ζ0 + 1 let Nζ be the minimal

Σn-elementary submodel of Lθ such that Nζ0 ∈ Nζ . This completes the
construction of the sequence 〈Nζ : ζ < κ〉 which will be called the minimal
sequence generated by X throughout the proof (5).

By induction on ξ < κ+ we shall show that Dξ is dense in Pξ, and

(†ξ) for every q ∈ Pξ and X ∈ Lθ there exists a condition q′ ≤ q which
is strongly (Nζ ,Pξ)-generic for all limit ζ ≤ γ, where 〈Nζ : ζ < κ〉
is the minimal sequence (6) generated by {q,X}.

Notice that if X = 〈Bζ : ζ < γ〉 is a sequence of open dense subsets of Pξ,
then it follows from the above that q′ ∈

⋂
ζ<γ Bξ, and hence (†ξ) implies the

(<κ)-distributivity of Pξ.
(†)0 is vacuously true. So let us consider three non-trivial cases: ξ is a

successor ordinal, ξ is limit of cofinality at most γ, and ξ is limit of co-

(5) In this proof we will only use the first γ+1 elements of minimal sequences. Longer
initial segments of minimal sequences will be considered in the proof of Lemma 2.5.

(6) Here we have ξ ∈ N0 because q ∈ N0 and ξ is the domain of q.
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finality κ. The latter two cases will be addressed on pages 240 and 241,
respectively.

1. ξ = ξ0 + 1. Let us write ξ in the form ρ · α + ι for some ι < ρ. If
ι ≤ κ+ 1 then Qξ0 is a Pξ0-name for a (<κ)-closed poset, which makes this
case straightforward. So let us assume that ι = κ+ 2, i.e., ξ = ρ · α+ κ+ 2.

First we shall prove that Pξ is (<κ)-distributive. Let us denote by µ the
ordinal ρ · α + κ and fix a collection X = {Oζ+1 : ζ < γ} of open dense
subsets of Pξ and a condition q ∈ Pξ. Let also 〈Nζ : ζ < κ〉 be the minimal
sequence generated by {q,X}. We shall show that 1Pµ forces the poset

˙̄Qµ := Q̇µ ∗ Q̇µ+1 ∗ Q̇µ+2 = Q̇ρ·α+κ ∗ Q̇ρ·α+κ+1 ∗ Q̇ρ·α+κ+2

to be (<κ)-distributive.

Using the inductive assumption we can find a condition q′ ∈ Pµ such
that q′ ≤ q�µ and q′ is strongly (Nζ ,Pµ)-generic for all limit ζ ≤ γ. Let G
denote a Pµ-generic filter containing q′ and note that Nζ [G] ∩ κ = Nζ ∩ κ
for all limit ζ < γ. For every (not necessarily limit) ζ ≤ γ we shall denote
the intersection Nζ ∩ κ by κζ . Since X, γ ∈ N0, there exists an enumeration

〈Oζ+1 : ζ < γ〉 ∈ N0 of X. We shall denote Q̇G
µ by Qµ and the Qµ-names

Q̇G
µ+1 and Q̇G

µ+2 by Q˜µ+1 and Q˜µ+2, respectively.

For every ζ ≤ γ let us denote by O′ζ+1 the open dense subset {τG :
there exists u ∈ G such that 〈u, τ〉 ∈ Oζ+1} of Q̄µ = ˙̄QG

µ . Observe that
〈O′η+1 : η + 1 ≤ ζ〉 ∈ N0[G] for all ζ ≤ γ. The (<κ)-distributivity of Pµ
combined with the (<κ)-closedness of Qµ,Q˜µ+1 implies that the set U of
conditions r ∈ Q̄µ such that r(µ), r(µ + 1), r(µ + 2) are of the form

̂

a for
some set a ∈ L of size < κ, is dense in Q̄µ.

Set p0 = (q�{µ, µ + 1, µ + 2})G. From now on we shall work in L[G].
The sequence 〈Nζ [G] : ζ < γ〉 will guide our inductive construction of a
decreasing sequence 〈pζ : ζ ≤ γ〉 of conditions in U such that pγ ∈ Nγ+1[G]
belongs to all O′ζ+1’s as follows. Let <G be the canonical wellordering of
L[G]: x <G y iff τx <L τy, where τx, τy are the <L-minimal Pµ-names such
that τGx = x and τGy = y. Suppose that a condition pζ ∈ Nζ+1 ∩ U has
already been constructed. Since Qµ∗Q˜µ+1 is (<κ)-closed, we can inductively

extend 〈pζ(µ), pζ(µ+ 1)〉 to a strongly (Nζ+1[G],Qµ ∗Q˜µ+1)-generic in L[G]

condition 〈p′ζ(µ), p′ζ(µ + 1)〉 ∈ Qµ ∗ Q˜µ+1. We shall additionally assume

that 〈p′ζ(µ), p′ζ(µ + 1)〉 is the <G-minimal condition in Qµ ∗ Q˜µ+1 with the

properties described above. It follows that we can find r ∈ Nζ+1[G] such

that 〈p′ζ(µ), p′ζ(µ + 1),

̂

r〉 ∈ O′ζ+1. In addition, we shall assume that r is

the <G-minimal element of 2<κ with this property. Let rζ+1 be the <G-
minimal extension of r with domain κζ+1 and such that rζ+1�

(
{3η : η < κ}
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∩ [|r|, |r| + γ)
)

codes a bijection between κζ+1 and γ. Letting pζ+1 be the

condition 〈p′ζ(µ), p′ζ(µ + 1),

̂

rζ+1〉, by the construction above we conclude

that pζ+1 ∈ Nζ+2[G] ∩ U ∩O′ζ+1.
If ζ is limit, then we set

pζ(µ) =

̂〈 ⋃
η<ζ

sµ,η,
⋃
η<ζ

s∗µ,η

〉
and

pζ(µ+ 1) =

̂〈 ⋃
η<ζ

sµ+1,η,
⋃
η<ζ

s∗µ+1,η

〉
,

where pη(µ) =

̂

〈sµ,η, s∗µ,η〉 and pη(µ + 1) =

̂

〈sµ+1,η, s
∗
µ+1,η〉 for all η < ζ. In

addition, we set pζ(µ + 2) =

̂⋃
η<ζ rη, where

̂

rη = pη(µ + 2) for all η < ζ.
Since pη for η < ζ have been constructed by choosing <G-minimal conditions
fulfilling certain requirements, the sequence 〈pη : η < ζ〉 is an element of
Nζ+1[G], and hence pζ ∈ Nζ+1[G] as well.

We claim that pζ ∈ Q̄µ. Observe that 〈pζ(µ), pζ(µ+1)〉 ∈ Qµ∗Q˜µ+1 by the

(<κ)-closeness of the latter poset. It suffices to show that 〈pζ(µ), pζ(µ+1)〉 

pζ(µ + 2) ∈ Q˜µ+2. Let pζ(µ) = 〈sµ,ζ , s∗µ,ζ〉, pζ(µ + 1) =

̂

〈sµ+1,ζ , s
∗
µ+1,ζ〉,

and pζ(µ+ 2) =

̂
rζ . Notice that the condition 〈pζ(µ), pζ(µ+ 1)〉 is strongly

(Nζ [G],Qµ∗Q˜µ+1)-generic in L[G]. This means that if H := H(µ)∗H(µ+1)

is a Qµ ∗Q˜µ+1-generic filter over L[G] containing 〈pζ(µ), pζ(µ+1)〉, then the

isomorphism π of the transitive collapse N̄ζ [ḡ] of Nζ [G], onto Nζ [G], extends
to an elementary embedding from

¯̄Nζ := N̄ζ [ḡ ∗ h̄(µ̄) ∗ h̄(µ̄+ 1)]

into Lθ[G][H]. Here µ̄ = π−1(µ), h̄(µ̄) is the π−1(Qµ)-generic filter over
N̄ζ [ḡ] determined by pζ(µ), i.e., h̄(µ̄) consists of the images under π−1 of
all conditions in Qµ which are weaker than pζ(µ) and belong to Nζ [G]; and
h̄(µ̄+ 1) is defined in the same way.

By the genericity of H we know that, if we let X0
α and X1

α be the
unions of the first coordinates of elements of H(µ) and H(µ + 1), respec-

tively, then property (∗)α holds. By elementarity, ¯̄Nζ is a suitable model

and ¯̄Nζ � ψ(γ+, γ++, π−1(α), π−1(F (α)G), x0
α), where x0

α and x1
α are the

unions of the first coordinates of elements of h̄(µ̄) and h̄(µ̄ + 1) (equiv-
alently, the first coordinates of pζ(µ) and pζ(µ + 1)), respectively. Ob-

serve that by the construction of P we have ¯̄Nζ = N̄ζ [ḡ, x
0
α, x

i
α] and hence

N̄ζ [ḡ, x0, xi] � ψ(γ+, γ++, π−1(α), π−1(F (α)G), x0
α).

Let M be any suitable model containing rζ and such that (γ+)M = |rζ |,
which is equal to κ ∩Nζ = κζ . We have to show that

M � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x0
α).
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Let us denote by ν and λ the intersections M ∩Ord and ¯̄Nζ ∩Ord, respec-
tively. Three cases are possible.

Case (a): ν > λ. Since Nζ was chosen to be the least sufficiently
elementary submodel of Lθ[G] containing certain objects, it follows that
κζ = (γ+)M is collapsed to γ in Lν , and hence this case cannot happen.

More precisely, Lν can compute (and hence contains) the sequence
〈π−1[Nη] : η < ζ〉. Indeed, N̄ζ ∈ Lν since N̄ζ =Lξ, π

−1[Nη]=
⋃
η′<η π

−1[Nη′ ]

for limit η < ζ, and π−1[Nη+1] is the closure of {π−1[Nη]} under the Σn

Skolem functions of Lξ, and these are elements of Lν . Therefore Lν con-
tains the sequence 〈N̄η : η < ζ〉, where N̄η is the Mostowski collapse of Nη

(the Mostowski collapse of Nη coincides with that of π−1[Nη]), and hence

〈κη = (γ+)N̄η : η < ζ〉 ∈ Lν , whereas the latter sequence is cofinal in κζ .

Case (b): ν = ξ. Since (γ+)N̄ζ [ḡ,x0α,x
1
α] = (γ+)M and (γ++)N̄ζ [ḡ,x0α,x

1
α] =

(γ++)M and N̄ζ [ḡ, x
0
α, x

1
α] � ψ(γ+, γ++, π−1(α), F (α)G∩κζ , x0

α), we conclude
that M � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x0

α) (see Remark 2.1).

Case (c): ν < ξ. In this case M1 := Lν [x0
α, x

1
α] is an element of

N̄ζ [ḡ, x
0
α, x

1
α]. Since Lθ[G][H] satisfies (∗)α, by elementarity so does the

model N̄ζ [ḡ, x
0
α, x

1
α] with X0

α, X1
α, and α replaced by x0

α, x1
α, and π−1(α),

respectively. In particular, M1 � ψ(γ+, γ++, π−1(α), F (α)G∩κζ , x0
α). Apply-

ing Remark 2.1 we conclude that M � ψ(γ+, γ++, π−1(α), F (α)G ∩ κζ , x0
α),

which finishes our proof of pζ ∈ Q̄µ and hence completes the construction
of the sequence 〈pζ : ζ ≤ γ〉.

By the construction we have pγ ∈
⋂
ζ<γ O

′
ζ+1 ∩Nγ+1[G], and hence Q̄µ

as well as Pξ are (<κ)-distributive. Let τ be a Pµ-name such that τG = pγ
and for every ζ < γ let qζ ∈ G be such that qζ ≤ q�µ and 〈qζ , τ〉 ∈ Oζ+1.
Since Pµ is (<κ)-distributive, there exists q′′ ∈ G such that q′′ ≤ qζ for all ζ.
In addition, we can assume that q′′ ∈ Dµ and it forces all coordinates of τ
to be equal to certain ground model objects. It follows from the above that
q ≥ 〈q′′, τ〉 ∈

⋂
ζ<γ Oζ+1 ∩ Dξ, and hence Dξ is dense in Pξ. Combined with

the following claim, this implies (†ξ) and thus completes the successor case.

Claim 2.3. Let β < κ+. If Pβ is (<κ)-distributive and Dβ is dense,
then (†β) holds.

Proof. Let q ∈ Pβ, X ∈ Lθ, and 〈Nζ : ζ < κ〉 be the minimal sequence
generated by {q,X}. We need to find a condition q′ ≤ q which is strongly
(Nζ ,Pβ)-generic for all limit ζ ≤ γ.

Set p0 = q and assume that conditions 〈pη : η < ζ〉 have already been
defined for some ζ ≤ γ so that pη ∈ Nη+1 ∩ Dβ for all η < ζ. If ζ = η + 1,
then pζ is the <L-minimal condition extending pη such that pζ ∈ Dβ and it
belongs to the intersection of all open dense subsets of Pβ which are elements
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of Nζ . Since Nζ ∈ Nζ+1, we have pζ ∈ Nζ+1 as well, as β belongs to N0.
If ζ is limit, then using the fact that pη ∈ Dβ for all η < ζ we can define
pζ to be the “coordinatewise” union of pη over η < ζ. More precisely, for
ξ ∈

⋃
η<ζ suppκ(pη) we set

pζ(ξ) =

̂〈 ⋃
η<ζ

sξ,η,
⋃
η<ζ

s∗ξ,η

〉
and pζ(ξ) =

̂⋃
η<ζ

rξ,η,

where pη(ξ) =

̂

〈sξ,η, s∗ξ,η〉 for all (7) η < ζ provided that ξ ∈ {ρ · ι+ κ, ρ · ι+

κ+1} for some ι, and pη(ξ) =

̂

rξ,η for all η < ζ if ξ is of the form ρ · ι+κ+2.
For ξ ∈

⋃
η<ζ suppκ+(pη) we denote by pζ(ξ) a Pξ-name τ which is forced

by 1Pξ to be the union of pη(ξ) over all η < ζ.
Since pη for η < ζ have been constructed by choosing <G-minimal condi-

tions fulfilling certain requirements, the sequence 〈pη : η < ζ〉 is an element
of Nζ+1, and hence pζ ∈ Nζ+1 as well. Thus, once we know that pζ is a
condition in Pβ, it is a consequence of its definition that pζ ∈ Dβ ∩ Nζ+1.
In order to show that pζ ∈ Pβ it is enough to establish by induction on
ξ ∈ supp(pζ) that pζ�ξ ∈ Pξ. The only non-trivial case here is when ξ has
the form ρ · α + κ + 2. Assuming that pζ�(ρ · α + κ + 2) ∈ Pρ·α+κ+2 for

some α, the property pζ�(ρ ·α+κ+ 2) 
 pζ(ρ ·α+κ+ 2) ∈ Q̇ρ·α+κ+2 can be
established in the same way as above, using the fact that pζ�(ρ · α+ κ+ 2)
is strongly (Nη,Pρ·α+κ+2)-generic for all limit η ≤ ζ and considering three
cases depending on the height of a suitable model under consideration. It
suffices to note that q′ = pγ is as required.

2. ξ is a limit ordinal of cofinality ≤ γ. Here we shall work in L. We
need the following auxiliary statement.

Claim 2.4. Suppose that (†β) holds and Dβ is dense in Pβ for each
β < ξ, where ξ is a limit ordinal of cofinality ≤ γ. Then for every p ∈ Pξ
and X0 ∈ Lθ there exists an extension q ∈ Dξ ∩ Nγ·cof(ξ)+1 of p such that
q�β is strongly (Nγ·cof(ξ),Pβ)-generic for all β < ξ, where 〈Nζ : ζ < κ〉 is
the minimal sequence generated by {p,X0}.

Proof. Since p ∈ N0, we have ξ ∈ N0, and henceN0 contains a continuous
sequence ξ0 < ξ1 < · · · cofinal in ξ of order type cof(ξ). Set p0 = p�ξ0 and
assume that conditions 〈pη : η < ζ〉 have already been defined for some
ζ ≤ cof(ξ) so that

(i) pη ∈ Nγ·η+1 ∩ Dξη for all η < ζ;
(ii) pη1�ξη0 ≤ pη0 for all η0 < η1 < ζ;
(iii) pη�β is strongly (Nγ·η,Pβ)-generic for all η < ζ and β ≤ ξη.

(7) We assume here that if ξ 6∈ supp(p) then p(ξ) =

̂

〈∅, ∅〉 provided that ξ = ρ · α+ ζ

for some ζ ∈ {κ, κ+ 1} and p(ξ) =

̂

∅ otherwise.
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Notice that (iii) is vacuous unless β is an element of Nγ·η because oth-
erwise Pβ 6∈ Nγ·η. If ζ = η + 1, then let pζ be the <L-minimal condition
extending pη ˆp0�[ξη, ξζ) so that (i)–(iii) hold. Its existence is guaranteed by
(†ξζ ) applied to X = Nγ·η and the inductive assumption that Dξζ is dense
in Pξζ .

If ζ is limit, then we define pζ in exactly the same way as in Claim 2.3.
In addition, almost literal repetition of the proof there shows that (i)–(iii)
are satisfied for all η, η0, η1 ≤ ζ, the essential part here being to prove that
pζ ∈ P. It suffices to set q = pcof(ξ).

We are now in a position to prove the (<κ)-distributivity of Pξ. Moreover,
the construction below gives a condition in Dξ which lies in the intersection
of γ open dense subsets of Pξ, and consequently it establishes that Dξ is
dense in Pξ. Combined with Claim 2.3, this will complete the proof that the
inductive assumption holds for ξ.

Given p ∈ Pξ and fewer than κ open dense sets {Oζ+1 : ζ < γ}, let
〈Nζ : ζ < κ〉 be the minimal sequence generated by {p, 〈Oζ+1 : ζ < γ〉}. Set
γ′ = γ · cof(ξ), p = p0, and assume that conditions 〈pη : η < ζ〉 have already
been defined for some ζ ≤ γ so that

(iv) pη ∈ Nγ′·η+1 ∩ Dξ for all η < ζ;
(v) pη1 ≤ pη0 for all η0 < η1 < ζ;

(vi) pη�β is strongly (Nγ′·η,Pβ)-generic for all η < ζ and β < ξ;
(vii) pη+1 ∈ Oη+1 for all η + 1 < ζ.

If ζ = η + 1, let pζ be the <L-minimal condition extending pη so that
(iv)–(vii) hold for all η, η0, η1 ≤ ζ. Its existence is guaranteed by Claim 2.4
applied to X = Nγ′·η and pη. If ζ is limit, then we define pζ in exactly the
same way as in Claim 2.3. Once we know that pζ ∈ Pξ, the verification of
(iv)–(vi) is straightforward, whereas (vii) is vacuous. The verification that
pζ ∈ Pξ is exactly the same as in Claim 2.3, which in turn uses of course the
ideas from the successor case. It suffices to note that pγ ∈

⋂
ζ<γ Oζ+1.

3. ξ is a limit ordinal of cofinality κ. Here we shall also work in L. Given
p ∈ Pξ and fewer than κ open dense sets {Oζ+1 : ζ < γ}, let 〈Nζ : ζ < κ〉 be
the minimal sequence generated by {p, 〈Oζ+1 : ζ < γ〉}. Set ξζ = sup(Nζ∩ξ)
for all ζ < κ, p = p0, and assume that conditions 〈pη : η < ζ〉 have already
been defined for some ζ ≤ γ so that

(i) pη ∈ Nγ·η+1 ∩ Dξ for all η < ζ;
(ii) pη1 ≤ pη0 for all η0 < η1 < ζ;
(iii) pη�β is strongly (Nγ·η,Pβ)-generic for all η < ζ and β < ξγ·η;
(iv) pη+1 ∈ Oη+1 for all η + 1 < ζ.

Assume first that ζ = η+1. Let p′η+1 be the <L-minimal condition extending
pη so that p′η+1 ∈ Oη+1.Then p′η+1 ∈ Nγ·η+1. Let r′′η+1 <L p

′
η+1�ξγ·(η+1) be the
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<L-minimal element of Dξγ·(η+1)
such that r′′η+1�β is strongly (Nγ·(η+1),Pβ)-

generic for all β < ξγ·(η+1). Its existence follows from the density of Dξγ·(η+1)

and (†ξγ·(η+1)
). Note that r′′η+1 ∈ Nγ·(η+1)+1. Now set

pη+1 = r′′η+1 ˆp′η+1�[ξγ·(η+1), ξ).

It is clear that pη+1 ∈ Nγ·(η+1)+1 and conditions (ii)–(iv) hold. Since p′η+1 ∈
Nγ·η+1, we have suppκ(p′η+1) ⊂ Nγ·η+1 ∩ ξ ⊂ ξγ·(η+1). Combining this with
r′′η+1 ∈ Dξγ·(η+1)

we conclude that pη+1 ∈ Dξ.
If ζ is limit, then we define pζ in exactly the same way as in Claim 2.3.

Once we know that pζ ∈ Pξ, the verification of (i)–(iii) is straightforward,
whereas (iv) is vacuous. The verification that pζ ∈ Pξ is exactly the same as
in Claim 2.3. It suffices to note that pγ ∈ Dξ ∩

⋂
ζ<γ Oζ+1.

As in the case of cof(ξ) ≤ γ, we have established the existence of a
condition in Dξ which lies in the intersection of given γ open dense subsets
of Pξ. Combined with Claim 2.3, this completes the proof that the inductive
assumption holds for ξ. Lemma 2.2

Lemma 2.5. Let p ∈ Pξ for some ξ < κ+ and τ be a Pξ-name. If p 
Pξ
“τ is a stationary subset of κ”, then p 
P “τ is a stationary subset of κ”.

In other words, every tail of the iteration 〈Pξ, Q̇ξ : ξ < κ+〉 preserves
stationary subsets of κ.

Proof. In light of Lemma 2.2 we may restrict our attention to conditions
p ∈ Dξ. Given p ∈ Dξ and ζ ∈ suppκ(p), from now on we shall write simply

p(ζ) = a instead of p(ζ) =

̂

a.

Let ξ < κ+ and G be a Pξ-generic filter over L. Note that L[G] has the
same sequences of ordinals of length < κ as L. From now on we shall work
in L[G]. Set P′ = PG[ξ,κ+), D

′ = {p�[ξ, κ+)G : p ∈ Dκ+ , p�ξ ∈ G}, P′β = PG[ξ,β),

and D′β = {p�[ξ, β)G : p ∈ Dβ, p�ξ ∈ G}.
Fix a stationary subset S of κ in L[G]. Given any p ∈ P′ and a P′-name

Ċ such that p 
 Ċ is a club in κ, we shall construct q ∈ P′ stronger than p
such that q 
 Ċ ∩ S 6= ∅.

Let us fix some large enough regular cardinal θ and some large enough n.
Given a set X ∈ Lθ[G], let N0 be the least Σn-elementary submodel of
Lθ[G] such that {X} ∪ (γ + 1) ⊂ N0. Least means here that N0 is the
closure of {X} ∪ (γ + 1) with respect to all Σn Skolem functions given by
the well-ordering <G of Lθ[G]. Suppose that for some ζ < κ we have already
constructed an increasing chain 〈Nε : ε < ζ〉 of Σn-elementary submodels of
Lθ[G]. If ζ is limit then we set Nζ =

⋃
ε<ζ Nε. If ζ = ζ0 + 1 we let Nζ be the

minimal Σn-elementary submodel of Lθ[G] such that (γ + 1)∪ {Nζ0} ⊂ Nζ .
This completes the construction of the sequence 〈Nζ : ζ < κ〉 which will be
called the G-minimal sequence generated by X throughout the proof.
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Let ~C = 〈Cε : ε ∈ Lim(κ)〉 be a �γ sequence and 〈Nζ : ζ < κ〉 be the

G-minimal sequence generated by {P′, G, S, Ċ, ~C, p, . . .}. Set κζ = Nζ ∩ κ.

Since S is stationary, we can find a limit ordinal ζ < κ such that κζ ∈ S.

We shall find q ≤ p such that q 
 κζ ∈ Ċ. Set η = cof(ζ). Two cases are
possible: η > ω and η = ω. The latter will be addressed on page 245.

1. η > ω. Letting 〈κζβ : β ≤ η〉 be the increasing enumeration of {κζ} ∪
({κυ : υ < ζ} ∩Cκζ ), we shall construct a decreasing sequence of conditions
〈pβ : β ≤ η〉 such that

(a) pβ+1 ∈
⋂
{O : O ∈ Nζβ+1

is open dense in P′} for all β < η;
(b) pβ ∈ Nζβ+1 ∩ D′ for all β ≤ η;
(c) for every β ≤ η, λ ∈ supp(pβ) of the form ρ · α + κ + 2, and υ < ζ,

if κυ ∈ |pβ(λ)|, then pβ(λ)(κυ) = 0 if and only if υ ∈ {ζµ : µ < η}.
Then as a consequence of (a) and (b) we shall have

(d) pβ+1 
 [κζβ , κζβ+1+1) ∩ Ċ 6= ∅ for all β < η.

Let p0 = p and suppose that for some ε ≤ η we have already constructed a
decreasing sequence 〈pβ : β < ε〉 satisfying (a)–(c).

If ε = β + 1 for some β, let p′β+1 be the <G-least condition u ≤ pβ in

D′ such that for every λ ∈ supp(u) of the form ρ · α + κ + 2 the following
conditions hold:

(e) κζβ ∈ |u(λ)|;
(f) if κυ ∈ |u(λ)| for some υ < ζ, then u(λ)(κυ) = 0 if and only if

υ ∈ {ζµ : µ < η};
(g) |u(λ)| = |pβ(λ)| + γ and u(λ)�([|pβ(λ)|, |pβ(λ)| + γ) ∩ {3ε : ε < κ})

is the <G-least code for a bijection between γ and κζβ+1
.

It is clear that p′β+1 ∈ Nζβ+1+1. Since (g) makes the third condition of the

definition of Q̇λ for λ of the form ρ ·α+ κ+ 2 vacuous for ordinals between
|pβ(λ)| and κζβ+1

+γ, we can find a condition u ≤ p′β+1 in D′∩Nζβ+1+1 such
that for every λ ∈ supp(u) as above the following conditions hold:

(h) κζβ+1
∈ |u(λ)|;

(i) u(λ)(κυ) = 0 if and only if υ ∈ {ζµ : µ < η}.
Let p′′β+1 be the <G-least u as above. Then p′′β+1 ∈ Nζβ+1+1. Now let pβ+1

be the <G-least condition w ∈ D′ below p′′β+1 so that w ∈
⋂
{O : O ∈ Nζβ+1

is open dense in P′}. It follows that pβ+1 satisfies conditions (a)–(c) (and
hence also (d)) with β + 1 instead of β.

If ε is limit then we define pε to be the “coordinatewise” union of {pβ :
β < ε} (see Claim 2.3). It follows from the construction of 〈pβ : β < ε〉 that
pε ∈ Nζε+1. Indeed, pε is determined by the sequence 〈pβ : β < ε〉 which has
been constructed using Cκζ ∩ {κυ : υ < ζε} by always choosing <G-minimal
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conditions with certain properties. Since Cκζ ∩ {κυ : υ < ζε} = Cκζε ∩ {κυ :

υ < ζε} ∈ Nζε+1 by the choice of ~C, we conclude that pε ∈ Nζε+1.

In order to show that pε ∈ P′ it is enough to establish by induction on
λ ∈ supp(pε) that pε�λ ∈ P′λ. The only non-trivial case here is when λ has
the form ρ · (α + 1) = ρ · α + κ+ 3 for some α. In this case, assuming that
pε�(λ− 1) ∈ P′λ−1, the property

pε�(λ− 1) 
P′λ−1
pε(λ− 1) ∈ Q̇λ−1

can be established as follows: Given a P′λ−3-generic filter R 3 pε�(λ − 3)
over L[G], the strong (Nζε ,P′)-genericity of pε�(λ−1) (in L[G]) by the same
argument as in item 1 of the proof of Lemma 2.2 implies that in L[G ∗ R]
we have

〈pε(λ− 3), pε(λ− 2)〉G∗R 
(Q̇λ−3∗Q̇λ−2)G∗R pε(λ− 1)G∗R ∈ Q̇G∗R
λ−1 ,

which yields pε�λ ∈ P′λ. The only difference from the proof given in Lemma 2.2
is the case (a) where suitable models M of height Ord ∩M > Ord ∩ N̄ζε

have to be treated (here N̄ζε is the Mostowski collapse of Nζε). Now the
sequence 〈κυ : υ < ζε〉 might have length larger than γ. However, any such

suitable model M still has a bijection between γ and (γ+)N̄ζε by the fact
that M contains the sequence {κυ : υ < ζε} ∩ Cκζε which has length ≤ γ

and is cofinal in κζε . Since (γ+)N̄ζε = (γ+)M for suitable models as above,
the latter is impossible, and hence such suitable models M are again ruled
out.

The following statement completes the informal argument given above.

Claim 2.6. Let M be a suitable model of size γ containing pε(λ − 3),
pε(λ−2) and such that Ord∩M > Ord∩N̄ζε. Then M contains the sequence
〈κυ : υ < ζε〉.

Proof. Let H = H(λ−3)∗H(λ−2) be a (Q̇λ−3 ∗ Q̇λ−2)G∗R-generic filter

over L[G ∗R] containing 〈pε(λ− 3), pε(λ− 2)〉G∗R, and π : Nζε [R ∗H]→ ¯̄N
be the Mostowski collapsing function. Observe that by elementarity we
have

¯̄N = π[Nζε ][π(R) ∗ π(H)] = π[Nζε ][x
0
α, x

1
α] = LOrd∩ ¯̄N [x0

α, x
1
α],

where x0
α and x1

α are the unions of the first coordinates of all elements
of π(H(λ − 3)) and π(H(λ − 2)) (equivalently, are the first coordinates of
pε(λ − 3) and pε(λ − 2)), respectively. Indeed, letting X0

α and X1
α be the

unions of the first coordinates of all elements of H(λ− 3) and H(λ− 2), we
can easily conclude from the definition of P that L[G ∗R ∗H] = L[X0

α, X
1
α],

and hence also Nζε [R ∗H] = Nζε [X
0
α, X

1
α] = (Nζε ∩ L)[X0

α, X
1
α].
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Since M 3 pε(λ − 1) = pε(ρ · α + κ + 2) and the latter is of the form

̂

r
for some r : κζε → 2 such that r(3ι+ 1) = 1 iff ι ∈ x0

α and r(3ι+ 2) = 1 iff
ι ∈ x1

α, we conclude that x0
α, x

1
α ∈M , and consequently

π[Nζε ][π(R) ∗ π(H)] = LOrd∩ ¯̄N [x0
α, x

1
α] ∈M

because Ord ∩ ¯̄N < Ord ∩M . In π[Nζε ] we find that π[Nυ+1] is the closure
of {π[Nυ]} under Σn Skolem functions of π[Nζε ] with respect to <π(G). Thus
the sequence 〈π[Nυ] : υ < ζε〉 is definable (as a class) over π[Nζε ], and hence
the sequence

〈min(Ord \ π[Nυ]) : υ < ζε〉 = 〈κυ : υ < ζε〉

is definable over π[Nζε ]. As a result, this sequence is an element of M .

2. η = ω. In this case let C ′κζ ⊂ {κµ : µ < ζ} be a cofinal subset of κζ
of order type ω which is an element of Nζ+1. Using C ′κζ instead of Cκζ , we
can repeat the argument from case 1 and construct a decreasing sequence
〈pβ : β ≤ η〉 satisfying conditions (a)–(d).

In both of the cases considered above we have pη ≤ p0 = p and pη forces

that Ċ has non-empty intersection with [κζβ , κζβ+1+1) for all β < η, and

hence it forces that κζ = sup{κζβ : β < η} is an element of Ċ. Since κζ ∈ S
this completes our proof. Lemma 2.5

Let us denote by Suppκ+ the set of all ξ ∈ κ+ of the form α · ρ + ζ for
some ζ < κ and set Suppκ = κ+ \ Suppκ+ .

Let p, q ∈ D. We say that q ≤∗ p if q ≤ p, suppκ(p) = suppκ(q) and
q�suppκ(q) = p�suppκ(p). Suppose that q ≤ p. We shall define a new con-
dition qp called the reduction of q to p by induction as follows. Suppose
that qp�ξ has already been defined. If ξ ∈ Suppκ then (qp)(ξ) = p(ξ). If
ξ ∈ Suppκ+ then qp(ξ) is a Pξ-name τ such that q�ξ 
 τ = q(ξ) and
u 
 τ = p(ξ) for all Pξ 3 u ≤ qp�ξ which are incompatible with q�ξ.
A direct verification shows that qp ∈ P and q ≤ qp ≤∗ p.

For a pair c = 〈a, b〉 we shall use the following notation: a = c0, b = c1.
From now on we shall consider only conditions p ∈ D such that 
ξ p(ξ) ∈ Q̇ξ

for all ξ ∈ suppκ+(p). It is easy to see that for every q ∈ D there exists p ∈ D
with this property such that p ≤ q ≤ p.

The next lemma shows, in particular, that P does not collapse κ+. Its
proof is patterned after that of [5, Proposition 2.3]. Here our choice of the
support comes into play.

Lemma 2.7. Let p ∈ P and µ < κ+ be an ordinal of the form ρ · α + ζ
with ζ < κ such that p 
P ζ 6∈ T (F (α)). Suppose also that Ċ is a P-name
for a club in κ+. Then there exists q ≤ p such that q 
P Sµ ∩ Ċ 6= ∅.
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In particular, if G is a P-generic filter such that ζ 6∈ T (F (α))G, then Sµ
remains stationary in L[G].

Proof. Without loss of generality we may assume that p ∈ D. Let 〈Mi :
i < κ+〉 be an increasing chain of elementary submodels of Lθ of size κ,
where θ is large enough, such that

(i) Mi ⊃ [Mi]
γ for all i ∈ κ+;

(ii) Mi =
⋃
j<iMj for all i ∈ κ+ of cofinality κ;

(iii) κ ∪ {p,P, Ċ, α, . . .} ⊂M0.

Now a standard Fodor argument yields i ∈ κ+ such that i = Mi ∩ κ+ ∈ Sµ
and i 6∈ Sξ for any ξ ∈Mi \ {µ}. Let 〈〈Oυ, φυ〉 : υ < κ〉 ∈Mκ

i be a sequence
in which all pairs 〈O,φ〉 ∈ Mi appear cofinally often, where O is an open
dense subset of P and φ is a function of size ≤ γ such that dom(φ) ⊂ i,
φ(ξ) ∈ [κ]≤γ × [κ+]≤γ if ξ is of the form ρ · β + κ or ρ · β + κ + 1, and
φ(ξ) ∈ 2<κ if ξ is of the form ρ · α + κ + 2. Let also 〈iυ : υ < κ〉 be an
increasing sequence of ordinals cofinal in i.

Construct by induction on υ a ≤∗-decreasing sequence 〈qυ : υ ≤ κ〉 ∈
Dκ+1 such that 〈qυ : υ < κ〉 ∈ (D∩Mi)

κ as follows. Set q0 = p and suppose
that 〈qη : η < υ〉 has already been constructed. If υ is limit then we set
qυ(ξ) = p(ξ) if ξ ∈ Suppκ and let qυ(ξ) be a Pξ-name which is forced by
qυ�ξ to be the union of all qη(ξ), η < υ, together with its supremum. Since
the Sξ’s consist of ordinals of cofinality κ for all ξ < κ+, we conclude that
qυ ∈ P provided that υ < κ. Now suppose that υ = η + 1. Let us first
consider the case that there exists a condition r ∈ Oη ∩ D stronger than qη

such that, letting ψ = r�suppκ(r), the following conditions hold:

(iv) dom(φη) ⊂ dom(ψ);
(v) 
ξ ψ(ξ) ≤ φη(ξ) for all ξ ∈ dom(φη);
(vi) ψ(ξ)0 = φη(ξ)0 for all ξ ∈ dom(φη) of the form ρ·β+κ or ρ·β+κ+1.

In this case we fix such a condition rη ∈Mi and set qυ0 = rηqη. If there is no
such condition r then we set qυ0 = qη. Now let qυ ≤∗ qυ0 be such that for all
ξ ∈ suppκ+(qυ0 ), 
ξ “qυ(ξ) = qυ0 (ξ) ∪ {max(qυ0 (ξ)) + iυ} if ς ∈ T (F (β)) and
qυ(ξ) = ∅ otherwise”, where ξ = ρ · β + ς.

We claim that qκ ∈ P and it is (Mi,P)-generic. We shall prove this in
several steps.

Claim 2.8. If ξ ∈ Suppκ+ ∩Mi and qκ�ξ is (Mi,Pξ)-generic (8), then
qκ�(ξ + 1) ∈ Pξ+1.

Proof. It suffices to show that r 
ξ qκ(ξ) ∩ Sξ = ∅ for every r ≤ qκ�ξ
which forces ς ∈ T (F (β)), where ξ = ρ · β + ς. Suppose, contrary to our

(8) In particular, here we assume that qκ�ξ ∈ Pξ.
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claim, that there exists r ≤ qκ�ξ such that r 
ξ ς ∈ T (F (β)) but

(1) r 
ξ
[ ⋃
υ<κ

qυ(ξ) ∪
{

sup
(⋃
υ<κ

qυ(ξ)
)}]
∩ Sξ 6= ∅.

Then ξ 6= µ. Indeed, otherwise r ≤ qκ�µ ≤ p�µ, and the latter forces ζ 6∈
T (F (α)) by our assumptions. Thus r 
µ ζ 6∈ T (F (α)), and hence r 
ξ ς 6∈
T (F (β)) because 〈ξ, β, ς〉 = 〈µ, α, ζ〉, which contradicts the choice of r.

Without loss of generality we may assume that r 
ξ sup(
⋃
υ<κ q

υ(ξ)) = j
for some j. Note that j ≤ i because r is (Mi,Pξ)-generic and therefore forces
max qυ(ξ) < i for each υ. And by the definition of the qυ’s we know that
r 
ξ max qυ(ξ) ≥ iυ for all υ < κ and therefore i ≤ j, so i = j. But (1) is
possible only if j belongs to Sξ, and since ξ belongs to Mi \ {µ}, we have
j 6= i by our choice of i, contradiction.

Claim 2.9. Suppose that j≤ i and qκ�ξ is (Mi,Pξ)-generic for all ξ<j.

• If j < i, then qκ�j is (Mi,Pj)-generic;
• If j = i, then qκ�j = qκ is (Mi,P)-generic.

Proof. Let us first consider the case j < i. It follows that qκ�j ∈ Pj , the
case of a successor j is handled by Claim 2.8.

Fix an open dense subset E ∈Mi of Pj and w ≤ qκ�j. We need to show
that there exists w1 ∈ E ∩Mi such that w and w1 are compatible. Without
loss of generality, w ∈ D ∩ E.

Consider the set K = suppκ(w)∩Mi and note that K ∈Mi and K ⊂ j.
For every ξ ∈ K let φ(ξ) = w(ξ) if ξ is of the form ρ · β + κ + 2 and
φ(ξ) = 〈w(ξ)0, w(ξ)1 ∩Mi〉 otherwise. Observe that φ ∈ Mi. Let O be the
set of those r ∈ P such that r�j ∈ E. Then O ∈Mi is an open dense subset
of P. Let η < κ be such that 〈O,φ〉 = 〈Oη, φη〉 and υ = η+1. It follows from
the above that we have made the non-trivial choice in the construction of qυ.
More precisely, there exists r ∈ Oη ∩ D (namely w extended by qη�[j, κ+))
such that conditions (iv)–(vi) are satisfied. Thus there exists rη ∈ O∩D∩Mi

satisfying (iv)–(vi) such that qυ ≤∗ rηpη. In particular, w ≤ qκ�j ≤∗ rηpη�j
and rη�j ∈ E ∩Mi. We claim that w1 = rη�j is compatible with w. Let us
define a sequence w2 of length j as follows:

(vii) w2(ξ) = w(ξ) if ξ ∈ Suppκ+ ;
(viii) w2(ξ) = 〈w(ξ)0, w(ξ)1 ∪ rη(ξ)1〉 if (9) ξ ∈ suppκ(w) is of the form

ρ · α+ κ or ρ · α+ κ+ 1;
(ix) w2(ξ) = w(ξ) if (10) ξ is of the form ρ · α+ κ+ 2.

(9) w(ξ)0 = rη(ξ)0 = φη(ξ)0 in this case.

(10) w(ξ) = rη(ξ) = φη(ξ) in this case.
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We are left with the task of showing that w2 ∈ Pj , since then it becomes
straightforward that w2 is a lower bound for w and w1. We shall show by
induction on ξ < j that if w2�ξ ∈ Pξ then w2�ξ 
 w2(ξ) ∈ Q̇ξ. In light of our
convention regarding conditions in D made before Lemma 2.7 we have to
consider only the case ξ ∈ suppκ(w). By (ix) and w2�ξ ≤ w�ξ, w1�ξ we may
further restrict ourselves to ξ’s in suppκ(w) of the form ρ·α+κ or ρ·α+κ+1.
In the latter case w2�ξ, being a lower bound of w1�ξ = rη�ξ, w�ξ, forces both
w(ξ) and rη(ξ) to be elements of Q̇ξ. Moreover, w2�ξ forces rη(ξ) and w(ξ)

to be compatible in Q̇ξ (because so are any two conditions in the almost
disjoint coding forcing with the same first coordinate), and w2(ξ) defined as
in (viii) to be their largest lower bound. In particular, w2�ξ 
 w2(ξ) ∈ Q̇ξ,
which completes our proof in case of j < i.

The case j = i can be proved by almost literal repetition of the above
proof: We just have to take O = E and replace most of the instances of j
in it by κ+ (or, alternatively, remove them). However, we shall present this
proof for the sake of completeness.

Fix an open dense subset E ∈ Mi of P and w ≤ qκ. We need to show
that there exists w1 ∈ E ∩Mi such that w and w1 are compatible. Without
loss of generality, w ∈ D ∩ E. Let K,φ, η, υ be as in the previous case.
It follows from the above that we have made the non-trivial choice in the
construction of qυ. More precisely, there exists r ∈ Oη ∩D (namely w) such
that conditions (iv)–(vi) are satisfied. Thus there exists rη ∈ E ∩ D ∩Mi

satisfying (iv)–(vi) such that qυ ≤∗ rηpη. In particular, w ≤ qκ ≤∗ rηpη and
rη ∈ E ∩Mi. We claim that w1 = rη is compatible with w. Let us define a
sequence w2 of length κ+ as follows:

(vii)′ w2(ξ) = w(ξ) if ξ ∈ Suppκ+ ;
(viii)′ w2(ξ) = 〈w(ξ)0, w(ξ)1 ∪ rη(ξ)1〉 if ξ ∈ suppκ(w) is of the form

ρ · β + κ or ρ · β + κ+ 1;
(ix)′ w2(ξ) = w(ξ) if ξ is of the form ρ · β + κ+ 2.

The fact that w2 ∈ P can be verified in exactly the same way as in the case
j < i, and then it becomes straightforward that w2 is a lower bound for w
and w1. This completes our proof.

By induction on j ≤ i using Claim 2.9 we can prove that qκ is (Mi,P)-
generic. Since Ċ ∈Mi this implies qκ 
 i ∈ Ċ. It remains to note that i ∈ Sµ
and qκ ≤ p. Lemma 2.7

Let H be a poset. An H-name ḟ is called a nice name for an element of κκ

if ḟ =
⋃
υ∈κ{〈

̂

〈υ, ηυp 〉, p〉 : p ∈ Aυ(ḟ)}, where Aυ(ḟ) is a maximal antichain

in H for all υ ∈ κ and ηυp ∈ κ for all p ∈ Aυ(ḟ). Then p 
 ḟ(υ) = ηυp for
all υ ∈ κ and p ∈ Aυ. From now on we will assume that all names for an
element of κκ are nice.
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Lemma 2.10. Let ḟ =
⋃
υ∈κ{〈

̂

〈υ, ηυp 〉, p〉 : p ∈ Aυ} be a nice name for an

element of κκ. Then for every p ∈ P there exists q ≤ p and a P-name σ ⊂ ḟ
of size |σ| ≤ κ such that q 
 ḟ = σ.

Proof. Let 〈Mi : i < κ+〉 be as in Lemma 2.7, where instead of (iii) we
require κ ∪ {p,P, ḟ , . . .} ⊂ M0. As established in the proof of Lemma 2.7,
there exists i < κ+ and a (Mi,P)-generic condition q ≤∗ p. In partic-
ular, Aυ ∩ Mi is predense below q, and hence no elements of Aυ \ Mi

are compatible with q. It follows from the above that q 
 ḟ = σ, where
σ =

⋃
υ∈κ{〈

̂

〈υ, ηυp 〉, p〉 : p ∈ Aυ ∩Mi}.

The same proof as above also works for Pξ when ξ < κ+.

Corollary 2.11. The poset Pξ has a dense subset of size κ+ for every
ξ ≤ κ+.

Proof. We shall prove by induction on ξ ≤ κ+ that there exists a ≤∗-
dense subset D′ξ of Dξ of size κ+.

The successor case is easily handled by Lemma 2.10. Notice that it is
essential here that the generic condition q considered in its proof can be
chosen ≤∗-below the given one.

Suppose that cof(ξ) = η ≤ κ and fix an increasing sequence 〈ξυ : υ < η〉
of ordinals, cofinal in ξ, such that ξ0 = 0. Let p ∈ Dξ andM be an elementary
submodel of Lθ of size κ, where θ is large enough, such that M ⊃ [M ]γ and
κ ∪ {p,Pξ, 〈ξυ : υ < η〉, . . .} ⊂ M . By a standard Fodor argument we may
additionally assume that i 6∈ Sµ for all µ ∈M , where i = M∩κ+: this can be
ensured by picking M out of an increasing continuous chain of elementary
submodels of Lθ as in Lemma 2.7. Let also 〈iυ : υ < κ〉 be an increasing
sequence of successor ordinals cofinal in i. By the inductive assumption we
can construct by induction on υ a sequence 〈qυ : υ < η〉 ∈Mη such that the
following conditions hold:

(i) qυ ∈ D′ξυ ;

(ii) qυ+1 ≤∗ qυ ˆp�[ξυ, ξυ+1);
(iii) if υ is limit, then qυ is ≤∗-below the condition rυ ∈ Pξυ defined

as follows: for all µ ∈ Suppκ+ ∩ ξυ, 
µ“rυ(µ) =
⋃
υ′<υ q

υ′(µ) ∪
{sup(

⋃
υ′<υ q

υ′(µ)) + iυ} if ς ∈ T (F (β)) and rυ(µ) = ∅ otherwise”,
where µ = ρ · β + ς; moreover, rυ(µ) = p(µ) for all µ ∈ Suppκ ∩ ξυ.

Now let rη be defined as in (iii). Observe that rη ∈ Dξ: This is obvious if
η < κ and follows from i 6∈

⋃
µ∈M∩ξ Sµ if η = κ. In addition, rη ≤∗ p by the

construction and it is uniquely determined by the sequence 〈qυ : υ < η〉 ∈⋃
µ<ξ D′µ. Now, it suffices to note that there are at most (κ+)κ = κ+ such

sequences.
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And finally, the case ξ = κ+ is straightforward because the supports of
conditions have size ≤ κ.

Combining Lemma 2.10 with Corollary 2.11 we conclude that 2κ = κ+

holds in V Pξ for all ξ ≤ κ+. Recall that our main poset P depends on a
particular bookkeeping function F : κ+ → L, so we may write PF instead
of P. The following statement is a direct corollary of Lemma 2.10 and Corol-
lary 2.11.

Corollary 2.12. There exists a bookkeeping function F : κ+ → L such
that for every PF -name σ for a subset of κ and p ∈ PF there exists α < κ+

such that F (α) is a PF -name, and a condition q ∈ PF below p which forces
σ = F (α).

From now on we shall fix a bookkeeping function F0 with the prop-
erties described in Corollary 2.12 and assume that P = PF0 . Combining
Lemmas 2.5 and 2.7 we obtain the following

Corollary 2.13. Let G be a P-generic filter over L and ξ < κ+ be an
ordinal of the form ρ · α + ζ for some ζ < κ. Then Sξ is non-stationary in
L[G] iff F (α)G is a stationary subset of κ and ζ ∈ T (F (α)G).

The following statement is reminiscent of [4, Lemma 4].

Lemma 2.14. Let G be P-generic over L and S a subset of κ in L[G]. If
S is stationary, then there exists Y ∈ [κ]κ such that for every suitable model
M of size γ containing Y ∩(γ+)M , the set S∩(γ+)M belongs to M and there
is µ < (γ++)M such that for all ζ ∈ T (S) ∩ (γ+)M we have M � “Sρ·µ+ζ is
not stationary”.

Proof. Using Corollary 2.12 we may find α < κ+ such that S = F (α)G.
We claim that Yα (this is the subset of κ added in Case 4 of the definition
of P) is as required. Indeed, let M be a suitable model of size γ containing
Yα∩(γ+)M . Then by the definition of Qρ·α+κ+2 we know that S∩(γ+)M ∈M
andM � ψ(γ+, γ++, µ, S∩(γ+)M , X0

α∩(γ+)M ) for some µ < (γ++)M , where
X0
α = {υ < κ : 3υ + 1 ∈ Yα}. It suffices to analyze the statement of ψ.

The next fact resembles [4, Lemma 5].

Lemma 2.15. Let G be a P-generic over L and let S be a subset of
κ in L[G]. If there exists Y ∈ [κ]κ such that for every suitable model M
of size γ containing Y ∩ (γ+)M , there is µ < (γ++)M such that for all
ζ ∈ T (S) ∩ (γ+)M we have M � “Sρ·µ+ζ is not stationary”, then S is
stationary in κ.

Proof. Let N be an elementary submodel of Lθ[G] of size γ containing
(γ+1)∪{S, Y }, where θ is a large enough cardinal. Let M be the Mostowski
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collapse of N and π : N →M be the collapsing function. Then

M � ∃µ < π(κ+) ∀ζ ∈ π(T (S)) (Sρ·µ+ζ is not stationary in π(κ+)),

which implies

N � ∃α < κ+ ∀ζ ∈ T (S) (Sρ·α+ζ is not stationary in κ+),

and hence in L[G] there exists α < κ+ such that for all ζ ∈ T (S) the set
Sρ·α+ζ is not stationary in κ+. This means that P destroys the stationarity
of Sρ·α+ζ for some ζ, and hence Corollary 2.13 implies that F (α)G is a
stationary subset of κ and Sρ·α+ζ is non-stationary in L[G] iff ζ ∈ T (F (α)G).
It follows from the above that T (S) ⊂ T (F (α)G), which gives S = F (α)G

and thus completes our proof.

Theorem 1.1(1) is a direct consequence of Lemmas 2.14 and 2.15, as they
easily imply that in V P we have the Σ1 definition of the complement of NSκ
presented on page 233.

The proof of Theorem 1.1(2) is completely analogous to that of the first
part. In this case we consider the same iteration but proceed until κ++. In
order to be able to do this we need a suitable sequence 〈Sα : α < κ++〉
of mutually almost disjoint stationary subsets of κ+. It may be obtained
in the same way as in the first part, the only difference being that now
we have to use the diamond to “convert” all subsets of κ+ (previously we
restricted ourselves to singletons) into stationary subsets of κ+. Then we can
repeat the same proof with κ+ replaced with κ++ whenever the length of the
iteration is concerned. The only new thing here will occur in Corollary 2.11.
The same proof shows that it remains true for all ξ < κ++. The poset Pκ++

will obviously have size (i.e., a dense subset of size) κ++. By a standard
argument it has κ++-c.c. Indeed, in order to prove this it is enough to
basically replace ω with κ in the proof of [1, Theorem 2.10], and be a little
more careful with the choice of elementary submodels. More precisely, given
{rξ : ξ < κ++} ⊂ Pκ++ , for every ξ choose an elementary submodel Mξ 3 rξ
of Lλ of size κ for some large enough λ such that [Mξ]

γ ∪{Pκ++} ⊂Mξ and
there exists an (Mξ,Pκ++)-generic condition (11) below rξ, and apply the
fact that κ++ of these submodels have the same isomorphism type to find
ξ1 6= ξ2 in κ++ such that rξ1 is compatible with rξ2 . The existence of the
Mξ’s is established in the proof of Lemma 2.7.

3. Final remarks and open problems. In this section we shall con-
sider the set κκ with the (<κ)-box topology, i.e., the topology with the base
{[s] : s ∈ κ<κ}, where [s] = {x ∈ κκ : x extends s}. Following [9] we say
that a subset A of κκ is meager if it is a union of κ nowhere dense subsets.

(11) In [1] one can take any Mξ 3 rξ because the poset under consideration is proper.
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A is said to have the Baire property if A4O is meager for some open subset
O of κκ. It is well-known [9, Theorem 4.2] (see also [7, Theorem 49]) that
NSκ does not have the Baire property, even though it is Σ1

1-definable. This
is one of the main differences from the classical case κ = ω.

One may however hope that there is an analogy between the Baire prop-
erty of ∆1

1-definable subsets of κκ and that of ∆1
2-definable subsets of ωω:

informally, in the uncountable case there is no need for an extra quantifier
to express that a relation under consideration is well-founded. It turns out
that there is no such analogy, as we can see using the model constructed in
the proof of Theorem 1.1 (12). Recall that in the classical setting κ = ω, the
Baire property of all ∆1

2-definable sets of reals is equivalent to the statement
that for every real x there exists a Cohen real y over L[x] (see [11]).

Proposition 3.1. In the model constructed in the proof of Theorem
1.1(1) for every X ⊂ κ there is Y ⊂ κ which is Add(κ, 1)-generic over
L[X], where Add(κ, 1) = 2<κ ordered by extension. Thus the κ-analogue of
the condition guaranteeing the Baire property of all ∆1

2-definable sets does
not imply the Baire property of all ∆1

1-definable subsets of κκ, as witnessed
by NSκ.

Proof. By Corollary 2.12 it is enough to show that posets Q̇ξ addAdd(κ, 1)
generics over LPξ for cofinally many ξ ∈ κ+. For every (<κ)-complete filter F
on κ there is a natural poset M(F) (“M” comes from “Mathias”) producing
a pseudointersection of F . This poset consists of all pairs 〈s, F 〉 ∈ [κ]<κ×F
where 〈s′, F ′〉 extends 〈s, F 〉 if and only if s′ end-extends s, F ′ ⊂ F , and
s′\s ⊂ F . Observe that for every ξ of the form ρ ·α+κ, in V Pξ the poset Qξ

is order isomorphic to M(F) for the (<κ)-complete filter on κ generated by
{κ \ Aν : ν ∈ Dα}. The following statement may be thought of as folklore.
We have learned it from an unpublished manuscript of Brendle.

Claim 3.2. Let F be a (<κ)-complete filter on κ such that there exists a
function f : [κ]2 → 2 for which f [[F ]2] = 2 for all F ∈ F . Then there exists
an Add(κ, 1)-generic filter in V [M(F)].

Proof. Let G be a M(F)-generic and g =
⋃
{s : ∃F ∈ F (〈s, F 〉 ∈ G)}.

Set c(α) = f(γ2α, γ2α+1), where {γα : α < κ} is the increasing enumeration
of g. We claim that {c�α : α ∈ κ} is Add(κ, 1)-generic. Indeed, let D ⊂
Add(κ, 1) be dense and 〈s, F 〉 ∈ M(F) be such that the order type of s
equals 2α for some α ∈ κ. Thus 〈s, F 〉 determines c�α, say 〈s, F 〉 
 c�α = σ.
By the density of D there exists an extension τ ∈ D of σ. Since f [[F \ξ]2] = 2
for all ξ ∈ κ, we can easily find an end-extension t of s such that t \ s ⊂ F ,

(12) We would like to thank Yurii Khomskii for asking us whether such an analogy
holds.
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order type of t equals 2β, where β = dom(τ), and (t, F \sup t+1) 
 c�β = τ .
This completes our proof.

In our case κ is a successor cardinal. In particular it is not measurable.
It suffices to note that for every (<κ)-complete filter F which is not an
ultrafilter there exists a function f as in the claim above. Indeed, take A ⊂ κ
such that each element of F intersects both A and κ\A and set f({α, β}) = 1
iff {α, β} ⊂ A or {α, β} ⊂ κ \A.

Instead of arguing as in Proposition 3.1 we could just change the con-
struction of P by letting Q̇ξ be the Pξ-name for Add(κ, 1) for cofinally many
ξ ∈ κ+. It is easy to check that this would not interfere with the proof of
the ∆1-definability of NSκ.

Finally we mention two open questions related to Theorem 1.1 whose
solution seems to require essentially different approaches.

Problem 3.3. Is it consistent that NSκ is ∆1-definable over H(κ+) and
2κ ≥ κ+++?

Problem 3.4. Is 2γ ≥ γ++ together with NS γ+ being ∆1-definable over
H(γ++) consistent? What if γ = ω? In the latter case, can we additionally
have MA instead of ¬CH? In case the answer to some of these questions is
affirmative, can the corresponding consistency be forced over L?

Let us note that the existence of a collection S of stationary subsets
of ω1 such that |S| = ω1 and each stationary subset of ω1 contains some
S ∈ S, which may be thought of as a strong form of the ∆1-definability of
the NSω1 , implies the existence of a Suslin tree: see, e.g., [6, Theorem 5.28].
Thus it contradicts MA.
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