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Abstract. Using the theory of rudimentary recursion and provident sets expounded
in [MB], we give a treatment of set forcing appropriate for working over models of a theory
PROVI which may plausibly claim to be the weakest set theory supporting a smooth theory
of set forcing, and of which the minimal model is Jensen’s Jω. Much of the development
is rudimentary or at worst given by rudimentary recursions with parameter the notion of
forcing under consideration. Our development eschews the power set axiom. We show that
the forcing relation for ∆̇0 wffs is propagated through our hierarchies by a rudimentary
function, and we show that the construction of names for the values of rudimentary and
rudimentarily recursive functions is similarly propagated. Our main result is that a set-
generic extension of a provident set is provident.
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0. Introduction. There is a certain finitely axiomatisable theory which
we call PROV, which is weaker than Kripke–Platek set theory KP, but
stronger than Gandy–Jensen set theory GJ. All three theories are true in
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HF = Vω = J1 = Lω; if an axiom of infinity be added to each theory, giv-
ing the theories KPI, PROVI and GJI, the minimal transitive models are then
respectively the Jensen fragments JωCK1

, Jω and J2.

The provident sets are HF and the transitive models of PROVI. We show
that every provident set A supports the definition of the forcing relation ‖−P
when P ∈ A; our main result is that a set-generic extension of a provident
set is provident.

For most of this paper we avoid use of the power set axiom; the paper
[M4] discusses the problems and possibilities of set forcing over models of
Mac Lane or of Zermelo set theory, two theories which include the power
set axiom.

We draw on the notation (1) and results of [MB], and in particular we
make heavy use of the rudimentary function T which was introduced in [M3]:
its properties are that if u is transitive, then T(u) is transitive, with u both
a member and a subset of it; every member of T(u) is a subset of u; further,
the union over all n of Tn(u) is the rudimentary closure of u ∪ {u}.

Provident sets. Let p be a set. Call a function x 7→ F (x) p-rud-rec
(short for p-rudimentarily recursive) if there is a rud function H such that
for every set x,

F (x) = H(p, F �x).

Examples: the rank function, %, and transitive closure, tcl, are ∅-rud-rec,
meaning no parameters required; the evaluation valG(·) of the names of a
forcing language using a generic G is G-rud-rec.

Rud recursion without parameters is treated in [MB, Section 4]; param-
eters are discussed in Section 5.

The axioms of PROV are such that its transitive models are those transitive
sets A such that for each p, each p-rud-rec F and each x ∈ A, F (x) is in A.

Let c be a transitive set; using T we define in §2 a hierarchy giving an
initial segment of L(c) by a recursion on the ordinals. The novelty of the
definition is that the whole of c is not included at the start, but its members
are fed in according to their rank: if we put cν = {x ∈ c | %(x) < ν}, then
the following c-rud recursion on the ordinals holds:

c0 = 0, cν+1 = c ∩ {x | x ⊆ cν}, cλ =
⋃
{cν | ν < λ} at limit λ.

The canonical progress towards c is the hierarchy P cν defined by setting

P c0 = ∅, P cν+1 = T(P cν ) ∪ {cν} ∪ cν+1, P cλ =
⋃
{P cν | ν < λ} at limit λ.

(1) Examples: (a, b)2, sometimes more informally written (a, b), is the Kuratowski
ordered pair defined as {{a}, {a, b}}. (a, b, c)3 is the Kuratowski ordered triple, defined as
(a, (b, c)2)2. 〈a, b, c〉 denotes this function with domain {0, 1, 2}: {(a, 0)2, (b, 1)2, (c, 2)2}.



Provident sets and rudimentary set forcing 101

0.0. Remark. As cν = c ∩ P cν , we might have defined P cν by a single
c-rudimentary recursion on ordinals:

P c0 = ∅, P cν+1 = T(P cν ) ∪ {c ∩ P cν} ∪ (c ∩ {x | x ⊆ P cν}), P cλ =
⋃
ν<λ

P cν .

The axiomatisation of PROV may then be summarised as

extensionality

+ the empty set exists

+ all rudimentary functions are defined everywhere

+ every set has a rank

+ every set has a transitive closure

+ for every transitive c and ordinal ν the set P cν exists

Gentle functions. Let us review some material from [MB].

Definition. A gentle function is one of the form G ◦ F where G is
rudimentary and F is rud-rec.

A p-gentle function is one of the form G◦F where G is rudimentary and
F is p-rud-rec.

If A is a set, then a function is (A)-gentle if it is p-gentle for some p ∈ A.

To emphasise the absence of a parameter we may write ∅-gentle or, more
accurately, (∅)-gentle. In that paper, Proposition 4.5 gives Bowler’s example
of two rud-rec functions whose composite is not rud-rec, and Theorem 4.9
his result that the composite of two gentle functions is gentle.

A point to note is that the composition of two p-gentle functions is liable
not to be p-gentle but will be q-gentle for some parameter q in the provident
closure of {p}. So for provident A the composition of (A)-gentle functions
is (A)-gentle.

Proposition 4.12 of [MB] proves that the characteristic function of a
predicate B is gentle iff the separator x 7→ x ∩ B is gentle. That yields the
following principle:

0.1. Gentle Separation. Let A be provident, a and p in A, and B a
p-gentle predicate; then a ∩B ∈ A.

Proof. There will be some attempt f ∈ A at χB, that is, a fragment
of χB, with a included in its domain, and then x ∩ {y | f(y) = 1} will be a
set by ∆0 separation. 0.1

Set forcing over provident sets. Let A be a transitive model of
PROVI; let P be a separative partial ordering which is a member of A, and
let P be the provident closure of {P}. Many functions and relations involved
in the development of forcing are if not actually P-rud-rec, (P)-gentle.
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The first goal of the paper is to prove that for each ` the forcing relation
p ‖−P ϕ, restricted to those sentences of the language of forcing that are ∆̇0

and of length at most `, is (P)-gentle.

The second goal is to analyse the construction of names for the values
of functions applied to objects in a generic extension. We speak of this task
as the construction of nominators for the functions concerned.

The first stage of that is to show that for each rudimentary function R,
say of two variables, there is a (P)-gentle function RP of two variables such
that for (A,P)-generic G and all x, y in A,

valG(RP(x, y)) = R(valG(x), valG(y)).

In many cases, we can do better, and indeed certain rudimentary functions
have basic nominators.

We shall then find P-rud-rec functions %P and tclP that similarly build
names for the rank and the transitive closure of a given object from its
forcing name.

Finally we must build names for the stages of a progress ν 7→ P dν for d
a transitive set in the generic extension. Here we shall repeatedly use the
principle that functions rudimentary recursive in the (P)-gentle ternary re-
lation p ‖−P a = b are (P)-gentle, which follows from the results of Section 5
of [MB].

The main theorem will then follow easily for provident sets of the
form P eθ , and will immediately extend to all provident sets containing P,
using the fact—a special case of [MB, Theorem 7.0]—that every provident
set is the union of a directed family of sets each of the form P cθ .

In the rest of this paper gentle will normally be used to mean (P)-gentle:
where it is necessary to emphasize the absence of parameters we shall write
∅-gentle.

1. Heuristic. We begin with some reminders of the general character
of forcing: the present discussion is heuristic, to give the reader a feel for
the way the forcing relation will operate. In particular, the methods used in
this section for naming old and new objects are, dangerously, simpler than
the methods of the formal development to be given in subsequent sections.

Suppose we face the following challenge:

given a transitive M , to find a transitive N ⊇M with On∩N = On∩M
but where N contains a subset of ω not in M .

If M and N are both provident, such an N will necessarily violate the
axiom of constructibility, for (L)N = (L)M . Thus we are aiming to add a
set a ⊆ ω to M .
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1.0. We begin by asking questions about a. Suppose we have some infor-
mation p about a: what statements about a will be forced to be true? For
example if p is the statement that 5 ∈ a, then Not all members of a are

even is forced by p.
Our beginning intuition for forcing is the idea that we have pieces of

partial information about the new object we are adding, and that we build
up a picture of the new model from this partial information.

Our pieces of information are called conditions, and to start with we
suppose that the collection of conditions is a set, P . Experience shows that
we should make the following assumptions about P :

(1.0.0) P is partially ordered by a relation ≤; if p ≤ q we think that p
contains more information than q.

(1.0.1) To get something interesting we allow the possibility of two con-
ditions being incompatible: we say that p is compatible with q
if there is some r stronger than both: r ≤ p & r ≤ q; and we
say that p is incompatible with q, in symbols p ⊥ q, if no such r
exists.

(1.0.2) We assume that any condition can be strengthened in two in-
compatible ways:

∀p ∃q≤p ∃r≤p q ⊥ r.
(1.0.3) We suppose that P has a greatest element 1P, where this con-

dition is the one that gives us no information at all. Thus 1P is
compatible with every condition.

(1.0.4) Finally we suppose that P =df (P ,1P,≤)3 is separative, that is,

∀p ∀q (p 6≤ q ⇒ ∃r≤p r ⊥ q).
Such a P is called a notion of forcing. Let us look at two examples.

Cohen’s original forcing. We take

P =
⋃
{n2 | n ∈ ω} = <ω2,

the set of finite maps from ω to 2 = {0, 1}.
We define the ordering by reverse inclusion:

p ≤P q ⇔ q ⊆ p.
This forcing is intended to add a “generic” a : ω → 2. We take a symbol ȧ

and use it as a name for the new a that we are trying to add.
The intended meaning of a condition p : n → ω is that ȧ �n = p. So if

n = 6 and p(3) = 1, then p will force the statement that ȧ(3̂) = 1̂.
We suppose that we are in one universe, which we call the ground model,

describing a larger universe, which we call the generic extension; the new
objects are only partially known to us, so we use dotted letters as names for
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them, as ȧ. The objects in the ground model are fully known to us, and we
name them with hatted letters: thus 3̂ is our name for 3 in the language of
forcing.

Continuing our discussion of Cohen’s original forcing, we show now that
the new real ȧ is not the same as any old real b̂: precisely, we prove the
following:

1.1. Proposition. Let b : ω → 2. Then ∀p ∃q≤p q ‖−P b̂ 6= ȧ.

Notice the topological flavour to this proposition: it is saying that the set
of conditions forcing a certain statement is dense. Indeed we may topologize
P so that is exactly what is happening.

Proof of 1.1. Given p, let n = dom(p); n is of course the least natural
number not in the domain of p. Look at b(n), and let

q = p ∪ {(1− b(n), n)2}. 1.1

So in any model in which everything that is forced on a dense set is true,
ȧ will be a new subset of ω.

This notion of density is central to the concept of forcing. One of the
properties of the forcing relation, which we shall refer to as the density
property, is that

p ‖−P ϕ ⇔ ∀q≤p ∃r≤q r ‖−P φ.
As we progressively extend the definition of the forcing relation to ever wider
classes of formulæ, we shall check at each stage that the density property
and other characteristic properties of forcing are preserved.

Another example. Let η be an infinite ordinal. This time take

P = {p | ∃n∈ω p : n
1-1−−→ η}.

As before, order by reverse inclusion:

p ≤P q ⇔ q ⊆ p.

This forcing adds a generic ḟ : ω̂
1-1−−→ η̂: a condition p with domain n is

a description of ḟ � n̂.
So

1P ‖−P ḟ � ̂̀(p) = p̂.
1.2. Exercise. 1P ‖−P ḟ is 1-1.

1.3. Proposition. 1P ‖−P η̂ is countable.

Proof. By a density argument. Given p, n not in dom(p) and an ordinal
ξ < η, suppose that ξ is not in the image of p. We find q ≤P p such that
n ∈ dom(q) and q(n) = ξ.

Thus we have shown that ∀ξ≤η ∀p∃q≤p q ‖−P ξ̂ ε the image of ḟ .
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2. Forcing in provident sets. Let M be a provident set, and P =
(P ,1P,≤)3 a separative partial order in M , with a top point 1P. We suppose
that ω ∈M .

We aim to define within M a relation ‖−, more exactly ‖−P, describing an
extension M [G] of M , where G is an (M,P)-generic filter. Each object in M
potentially names an element of M [G]. ‖− is a relation between elements
of P and sentences in a language of set theory that we shall gradually build
up. In fact the full relation can only be defined schematically within M .

This language will start from two two-place relations = and ε and will
broadly resemble the formal languages introduced in [M2]. We shall use our
devices of dots and type-writer face as before; but the constants will play a
different role, and hence we shall use a different mark. To each set x in the
universe corresponds a name x for an object in the generic extension. Thus
the statement p ‖−P x ε y expresses information about the evaluation of the
objects x and y functioning as names of sets to be created in the forcing
extension given by the notion of forcing P.

2.0. Definition. p ‖−
0
a ε b ⇔df (p, a) ∈ b.

‖−
0

is our first approximation to the relation ‖−.

2.1. Lemma. If p ‖−
0
a ε b then a ∈

⋃⋃
b.

2.2. Definition. In future we shall write
⋃2 x for

⋃⋃
x.

2.3. Lemma. ‖−
0

is ∆0, indeed rudimentary.

2.4. Remark. For relations, ∆0 and rud are the same: cf. Devlin [De,
VI.1.5].

2.5. Definition. p ‖−
1
a ε b ⇔df ∃q∈⋃2 b [q ≥ p & (q, a) ∈ b].

2.6. Lemma. For all p ∈ P, a and b:

(2.6.0) p ‖−
0
a ε b ⇒ p ‖−

1
a ε b;

(2.6.1) if p ‖−
1
a ε b then a ∈

⋃2 b;
(2.6.2) ‖−

1
is rudimentary in P.

2.7. Lemma. If p ‖−
1
a ε b and r ≤ p then r ‖−

1
a ε b.

This last statement shows that ‖−
1

improves ‖−
0

and starts to resemble a
forcing relation.

We define the relation p ‖− b = c by recursion:

2.8. Definition.

p ‖− b = c ⇔df

∀β∈⋃2b ∀r≤p
[
r ‖−

1
β ε b ⇒ ∃t≤r ∃γ∈⋃2c (t ‖− β = γ & t ‖−

1
γ ε c)

]
&

∀γ∈⋃2c∀r≤p
[
r ‖−

1
γ ε c ⇒ ∃t≤r ∃β∈⋃2b (t ‖− γ = β & t ‖−

1
β ε b)

]
.
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The above definition is P-rud recursive in a suitable sense, which we must
now articulate, and therefore will succeed in provident sets of which P is a
member, or, more generally, in P-provident sets.

2.9. Definition. Let χ=(p, b, c) be the characteristic function of the re-
lation p ‖−P b = c, so that it takes the value 1 if p ‖−P b = c and 0 otherwise.
Our plan is to show that the graph of χ= on transitive sets is definable by a
P-rudimentary recursion.

2.10. The Definability Lemma. “f is a χ= attempt” is ∆0(P, f).

Proof. We must first say that everything in the domain of f is an or-
dered triple, of which the first component is a member of P ; and whenever
(p, b, c) ∈ Dom(f) and β and γ are in b and c respectively, and q ∈ P then
(q, c, b) and (q, β, γ) are in the domain too. But all that is ∆0(P, f).

Then we must say that f respects the recursive definition: but all that
is also a ∆0 statement about P and f . 2.10

2.11. The Propagation Lemma. Let F (u) = χ= � (P×u×u). There is
a rudimentary function H= such that for any transitive P , if P ⊆P+⊆P(P ),

F (P+) = H=(P, F (P ), P+).

In the following argument, and elsewhere, (·)3
i are basic “un-tripling”

functions such that for a poset P = (P ,1P,≤)3, (P)3
0 = P , (P)3

1 = 1P,
and (P)3

2 = ≤. On this occasion, but not in future, the restricted nature
of a quantifier such as ∀r≤p has been made manifest by re-writing it as
∀r∈(≤“{p}) .

Proof of the Propagation Lemma. Let Ψ(x, f, p, b, c) be the ∆0 formula

∀β∈⋃2b ∀r∈((x)32“{p})[
r ‖−

1
β ε b ⇒ ∃t∈((x)32“{r})∃γ∈⋃2c (f(t, β, γ) = 1 & t ‖−

1
γ ε c)

]
& ∀γ∈⋃2c∀r∈((x)32“{p})[

r ‖−
1
γ ε c ⇒ ∃t∈((x)32“{r}) ∃β∈⋃2b (f(t, γ, β) = 1 & t ‖−

1
β ε b)

]
.

Define H=(x, f, v) to be(
{0, 1} × ((x)3

0 × (v × v))
)

∩
(
{(1, p, b, c)4|p,b,cΨ(x, f, p, b, c)} ∪ {(0, p, b, c)4|p,b,c¬Ψ(x, f, p, b, c)}

)
. 2.11

2.12. Definition.

χ= ��Q =df {χ= � (P × u× u) | u transitive & u ∈ Q}.

2.13. Proposition. Let e be a transitive set of which P is a member,
and let η0 be minimal such that P ∈ P eη0, so that η0 = %(P) + 1. Then

(2.13.0) χ= ��P
e
ω ⊆ P eη0+ω;
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(2.13.1) there are integers s= and g= such that if λ is a limit ordinal, and
χ= ��P

e
λ ⊆ P eη0+λ, then for each k ∈ ω, χ= �P

e
λ+k ∈ P eη0+λ+s=+g=k

;

(2.13.2) for each limit ordinal λ, χ= ��P
e
λ ⊆ P eη0+λ.

Proof. Much as in [MB]. Iterating H= from χ= �∅ gives χ= ��P
e
ω ⊆ P eη0+ω;

and then continue the induction by showing for each limit λ that

[i] if χ= ��P
e
λ ⊆ P eη0+λ then χ= �P

e
λ is a member of P eη0+λ+ω;

[ii] if χ= �P
e
λ is a member of P eη0+λ+ω, then so is χ= �P

e
λ+k for each k ∈ ω.

The proof of [i] uses the Definability Lemma 2.10 and the presence of the
parameter P; and the proof of [ii] uses the Propagation Lemma 2.11. The
integers s= and g= are the separational and generational delays calculated
by [MB, Theorem 6.12 and Proposition 6.32]. 2.13

Propagation of χ=. The progress (P cν )ν was defined in §6 of [MB] for
c a transitive set.

We could continue to work with progresses of the above kind, but a
problem would then arise at the end of the paper, in the proof that a set-
generic extension of a provident set is provident. It is better to change tack
now and work with other progresses, which might be called construction
from e as a set and χ= as a predicate, with the definition of χ= evolving
during the construction. An easy extension of [MB, Proposition 4.3] will
assure us that the three functions we are about to define by simultaneous
recursion are P-rud-rec.

2.14. Definition. Let e be a transitive set of which P is a member,
and let η = %(P). We define by a p-rudimentary recursion a sequence
((eν , P

e;=
ν , χeν)3)ν of triples, thus obtaining a new progress (P e;=ν )ν . For every

ν, eν will be defined as before; for ν 6 η we set P e;=ν = P eν ; for ν < η, we set
χeν = ∅ but at η, we set χeη = χ= �P

e
η , which will be a set by Proposition

2.13. Thereafter we set

eν+1 = e ∩ {x | x ⊆ eν}, eλ =
⋃
ν<λ eν ,

P e;=ν+1 = T(P e;=ν ) ∪ {eν} ∪ eν+1 ∪ {χeν ∩ P e;=ν }, P e;=λ =
⋃
ν<λ P

e;=
ν ,

χeν+1 = H=(P, χ
e
ν , P

e;=
ν+1), χeλ =

⋃
ν<λ χ

e
ν .

2.15. Proposition. Let e be transitive, with P ∈ e, and let θ be inde-
composable and strictly greater than %(P). Then P e;=θ = P eθ .

Proof. First consider the special case that θ > %(e). By [MB, Proposi-
tion 6.35], P eθ is provident and therefore supports all p-rud recursions with
p ∈ P eθ ; the sequence of triples ((eν , P

e;=
ν , χeν)3)ν is defined by such a re-

cursion, with parameter the triple (e,P, χe%(P))3. So the left side is included

in the right. On the other hand, (P e;=ν )ν6θ is a θ-progress, continuous at θ;
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e ∈ P e;=%(e)+1; and so by [MB, Proposition 6.35], the right side is included in

the left.

Now for the general case: the special case tells us that for each ζ with

%(P)<ζ<θ, P
eζ ;=
θ =P

eζ
θ . Taking the union over all such ζ gives P eθ;=

θ =P eθθ ;
the equalities P e;=θ = P eθ;=

θ and P eθθ = P eθ , proved (as) in [MB, Proposition
6.35], complete the proof. 2.15

This reconstruction of P eθ shortens the delay for most χeν :

2.16. Proposition. For any ordinal ν > η, and any limit ordinal λ > η:

(2.16.0) χeν = χ= �P
e;=
ν ;

(2.16.1) χeν ⊆ P
e;=
ν+6;

(2.16.2) χeλ ⊆ P
e;=
λ ;

(2.16.3) χ= �P
e;=
ν ∈ P e;=ν+12.

Proof. (2.16.0) is true by definition for ν = η; thereafter, the function
H= preserves its truth at successor stages, and at limit stages, we simply
take unions on both sides.

(2.16.1): The ‘6’ reflects the delay in the creation of Kuratowski ordered
pairs.

(2.16.2): At limit stages, that delay no longer exists.

(2.16.3): Fix ν > η. Let χ+ = χeν+6∩P
e;=
ν+6; then χ+ ∈ P e;=ν+7 by definition

of the progress. Since χeν ⊆ P
e;=
ν+6, χeν = χ+ ∩ (2× (P × (P e;=ν × P e;=ν ))).

By [MB, Lemmata 6.15 and 6.16], x, y ∈ P e;=ζ ⇒ x ∩ y = xr (xr y) ∈
P e;=ζ+2 & x× y ∈ P e;=ζ+3.

P e;=ν ∈ P e;=ν+1, so P e;=ν × P e;=ν ∈ P e;=ν+4, P × (P e;=ν × P e;=ν ) ∈ P e;=ν+7 and

{0, 1} ×
(
P × (P e;=ν × P e;=ν )

)
∈ P e;=ν+10.

We conclude that χeν ∈ P
e;=
ν+12. 2.16

Propagation of χε. We may now define p ‖− a ε b:

2.17. Definition.

p ‖− a ε b ⇔df ∀s≤p ∃t≤s∃β∈⋃2b

[
t ‖− β = a & t ‖−

1
β ε b

]
.

2.18. Remark. This is not a definition by recursion: indeed, it is visibly
rudimentary in p ‖− b = c.

2.19. Definition. Let χε(p, a, b) be the characteristic function of the
relation p ‖−P a ε b.

2.20. Proposition. There is a natural number sε such that for each
ordinal ν > η, χε �P

e;=
ν ∈ P e;=ν+sε, where e and η are as in Definition 2.14.
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Proof. There are rudimentary functions R and S such that

χε �P
e;=
ν = 2×Dom(χeν) ∩

(
{(1, p, a, b)4 | R(p, a, b, χeν) = 1}

∪ {(0, p, a, b)4 | R(p, a, b, χeν) = 0}
)

= S(χeν).

We may take sε = 12 + cS . 2.20

Familiar properties of forcing. We check as our definition of forc-
ing develops that it has the expected density properties, and we establish
familiar properties of equality and the substitution properties of = for ε:

2.21. Proposition. If p ‖− b = c and q ≤ p then q ‖− b = c.
p ‖− a = b ⇔ ∀q≤p ∃r≤q r ‖− a = b.
2.22. Proposition. For all p ∈ P, a, b and c:

(2.22.0) p ‖− b = b;
(2.22.1) if p ‖− b = a then p ‖− a = b;
(2.22.2) if p ‖− a = b and p ‖− b = c then p ‖− a = c.
Proof. (0) Let b be a counter-example of minimal rank. The definition

of p ‖− b = b involves various r, β ∈
⋃2 b, for which r ‖− β = β by the

minimality condition on b.
(1) From the symmetry of the definition.
(2) If q ‖−

1
α ε a then ∃r≤q ∃β (r ‖−

1
β ε b & r ‖− α = β), so ∃s≤r ∃γ (s ‖−

1
γ ε c & s ‖− β = γ); the t we seek is s; s ‖− α = β ∧ β = γ; so, assuming we
have minimised the rank of a possible failure b, s ‖− α = γ and s ‖−

1
γ ε c,

as required. 2.22

2.23. Lemma. q ≤ p & p ‖− a ε b ⇒ q ‖− a ε b.
2.24. Lemma. p ‖− a ε b ⇔ ∀q≤p ∃r≤q r ‖− a ε b.
2.25. Proposition. If p ‖−

1
a ε b then p ‖− a ε b.

Proof. Let r ≤ p; take s = r and β = a; then s ‖− β = a and
s ‖−

1
β ε b. 2.25

2.26. Proposition. If p ‖− a ε b and p ‖− a = c then p ‖− c ε b.
Proof. Let s ≤ p. We seek t ≤ s and β ∈

⋃2 b such that t ‖− β = c and

t ‖−
1
β ε b. We know that there are t ≤ s and β ∈

⋃2 b such that t ‖− β = a
and t ‖−

1
β ε b; since p ‖− a = c and t ≤ p, t ‖− β = c. 2.26

2.27. Proposition. If p ‖− a ε b and p ‖− b = d, then p ‖− a ε d.

Proof. Let s ≤ p. We seek t ≤ s and δ ∈
⋃2 d such that t ‖− δ = a

and t ‖−
1
δ ε d. Since p ‖− a ε b, there are r≤s and β ∈

⋃2 b such that
r ‖− β = a& r ‖−

1
β ε b. Since p ‖− b = d and r ≤ p, there are t ≤ r and

δ ∈
⋃2 d such that t ‖− β = δ and t ‖−

1
δ ε d; as t ‖− β = δ and t ‖− β = a,

t ‖− δ = a. 2.27
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Forcing the negation of a statement. We have defined p ‖− Φ̇ for Φ̇
of the form x ε y or x = y, and now wish to define p ‖− qΦ̇ in these cases. The
definition is characteristic of forcing; and we will maintain it as we extend
our definition of forcing to ever larger classes of formulæ.

2.28. Definition. p ‖− qΦ̇ ⇔ ∀q≤p q 6‖− Φ̇.

We shall use this definition in our next proposition: notice that it has
the immediate consequence that

∀p ∃q≤p
[
q ‖− Φ̇ v q ‖− qΦ̇

]
.

Further it renders Modus Ponens effective:

2.29. Proposition. If p ‖− Φ→ Ψ and p ‖− Φ then p ‖− Ψ.

Proof. if p ‖− qΦ ∨ Ψ then ∀q≤p ∃r≤q (r ‖− qΦ v r ‖− Ψ); but the first
alternative is impossible for r ≤ p if p ‖− Φ, and so r ‖− Ψ; by density
p ‖− Ψ. 2.29

2.30. Remark. We have given this proof now; it only applies, of course,
to those formulæ for which a forcing definition has been given.

Installing the ground model. Before we turn to the definition of the
generic extension of a model, we identify objects that will serve as names for
the elements of the ground model, and thus ensure that our generic structure
is indeed an extension of our ground model. It is convenient to assume that
1P is actually the ordinal 1.

2.31. Definition. Set ŷ =df {(1P, x̂) | x ∈ y}.
This is a rudimentary recursion in the parameter 1P, being of the form

F (a) = G(1P, F � a)

where G is the rudimentary function (i, f) 7→ {i} × Im(f); thus with our
convention that 1P = 1, the recursion may be regarded as pure.

2.32. Lemma. If q ‖−
1
ξ ε x̂ then ∃a∈x ξ = â.

Proof. If q ≤ p and (p, ξ) ∈ x̂ then p = 1P and ξ = â for some a ∈ x. 2.32

2.33. Proposition. For all x and y, the following hold:

x ∈ y ⇒ 1P ‖− x̂ ε ŷ,
x = y ⇒ 1P ‖− x̂ = ŷ,

∃p p ‖− x̂ = ŷ ⇒ x = y,

x 6= y ⇒ 1P ‖− q(x̂ = ŷ),

∃p p ‖− x̂ ε ŷ ⇒ x ∈ y,
x /∈ y ⇒ 1P ‖− q(x̂ ε ŷ).
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Proof. If x ∈ y, then (1P, x̂) ∈ ŷ, so 1P ‖−
0
x̂ ε ŷ and so 1P ‖− x̂ ε ŷ. If

x = y, x̂ = ŷ and so 1P ‖− x̂ = ŷ, by 2.22.

We prove the third line inductively: suppose p ‖− x̂ = ŷ for a ∈ x and
r ≤ p, r ‖−

1
â ε x̂, there will be a b and s ≤ r with s ‖− â = b and s ‖−

1
b ε ŷ;

but then b = ĉ for some c ∈ y; so s ‖− â = ĉ, so by induction a = c; and thus
x ⊆ y; similarly y ⊆ x and so x = y.

The next line is the contrapositive, by definition of forcing for negation.

If p ‖− x̂ ε ŷ then for some r ≤ p and some b, r ‖− x̂ = b and r ‖−
1
b ε ŷ

so for some c ∈ y, b is ĉ; so r ‖− x̂ = ĉ; by line 3, x = c, and thus x ∈ y.

Thus the fifth line is proved; and the sixth is its contrapositive. 2.33

3. Extension of the definition of forcing to all ∆̇0 sentences.
So far we have set up the beginnings of a definition of forcing, for atomic
sentences and their negations. We wish to extend the definition of ‖− to
all ∆̇0 sentences of the forcing language, on these lines:

3.0. Proposed Definition.

p ‖− ϕ ∧ ϑ ⇔ p ‖− ϕ & p ‖− ϑ,

p ‖− qϕ ⇔ ∀q≤p q 6‖− ϕ,

p ‖−
∧
xεy ϕ(x) ⇔ ∀q≤p ∀(s, β)∈y

(
q ≤ s ⇒ ∃r≤q r ‖− ϕ[β]

)
.

The Forcing Theorem for ∆̇0 sentences will follow if we can arrange that
such classes as P ∩ {p |p p ‖−P ϕ} and P ∩ {p |p p ‖−P qϕ} are sets, where ϕ

is a ∆̇0 sentence of the language of forcing.

The annotated language L. We must describe our language of forcing
in greater detail. The first step is to define in some recursive manner a
language L ⊆ HF, which is a first-order language with no constants other
than those that we shall call token constants, with the two binary predicate
symbols = and ε, connectives q and ∧, and the restricted quantifier

∧
xεy ,

where in the rules of formation y is required to be a distinct variable from x.
There are no unrestricted quantifiers. Other propositional connectives and
the existential restricted quantifier

∨
xεy may be introduced by definition.

We shall need the customary notions of free and bound occurrence of a
variable in a formula, and we imagine that each formula of L is accompanied
by an annotation saying which occurrences of variables are bound by which
occurrences of quantifiers. As we build up formulæ, we have to update the
annotations, and we imagine all that going on inside HF.

We then define Lu as the language resulting from L when all token
constants are replaced by constants a for a ∈ u, and Eu to be the set of
sentences of Lu, meaning those wffs with no free variables. If u is rud closed
and non-empty, and the map a 7→ a is basic, then L ⊆ Lu ⊆ u.
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We shall denote by Subst(ϕ, x/a) the result of substituting the constant a
for the free occurrences of the formal variable x in the formula ϕ; we give
the familiar recursive definition of this process below, but in fact we shall
think of it as accomplished by passing from ϕ ∈ Lu to the corresponding
formula ϕ0 in L, with the constants of ϕ replaced (in a 1-1 manner) by
token constants, then looking up inside HF the free occurrences of x in ϕ0

and replacing them by occurrences of an as yet unused token constant, and
then reverting to a formula of Lu by replacing each occurrence of the new
token constant by an occurrence of a, and reversing the other replacements of
constants of ϕ. In this way Subst will become a function that is rudimentary
in the subset of HF which is recursive in the ordinary sense and which codes
all the necessary information about L. As that subset is recursive, we shall
simply say that Subst is rudimentary.

3.1. Definition. We define the tree-rank τ of a formula, the substitu-
tion of a constant for a free occurrence of a variable in a formula, and, when
the formula is a sentence, the set Rub(ϕ) of sentences to which reference
will be made when deciding whether p ‖− ϕ. In the following, x and y are
distinct formal variables.

• ψ atomic:

τ(ψ) = 0, Rub(ψ) = ∅,

Subst(x = x, x/α) = α = α, Subst(x ε x, x/α) = α ε α,

Subst(x = y, x/α) = α = y, Subst(y = x, x/α) = y = α,

Subst(x ε y, x/α) = α ε y, Subst(y ε x, x/α) = y ε α.

• ψ = ϑ ∧ ϕ:

τ(ψ) = max(τ(ϑ), τ(ϕ)) + 1, Rub(ψ) = {ϑ, ϕ},
Subst(ψ, x/α) = Subst(ϑ, x/α) ∧ Subst(ϕ, x/α).

• ψ = qϑ:

τ(ψ) = τ(ϑ) + 1, Rub(ψ) = {ϑ},
Subst(ψ, x/α) = qSubst(ϑ, x/α).

• ψ =
∧
yεx ϑ:

τ(ψ) = τ(ϑ) + 1,

Subst(ψ, x/α) =
∧
yεα Subst(ϑ, x/α).

• ψ =
∧
yεa ϑ:

τ(ψ) = τ(ϑ) + 1, Rub(ψ) = {Subst(ϑ, x/α) | ∃p∈P (p, α) ∈ a},
Subst(ψ, x/α) =

∧
yεa Subst(ϑ, x/α).
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3.2. Remark. As we have defined it above, viewing formulæ as trees,
substitution is ∅-rud-rec. But we have seen that we may treat substitution
as rudimentary, by viewing formulæ as annotated sequences.

3.3. Remark. To go from
∧
x∈a ϕ(x) to {ϕ[α] | ∃s∈P (s, α) ∈ a} is to

form the image of the substitution function, and is thus rudimentary. The
annotations will tell us where are the free occurrences of x in ϕ.

3.4. Definition. Let χ`‖− �u, for u a transitive set and k ∈ ω, be the

characteristic function of the forcing relation restricted to those ∆̇0 sen-
tences ϕ of the forcing language with τ(ϕ) 6 ` and all a with a occurring
in ϕ being in u.

Let χ‖− �u be
⋃
`<ω χ

`
‖−.

3.5. Proposition. For u transitive and e and η as in Definition 2.14:

(3.5.0) χ0
‖− �u is rudimentary in χ= �u;

(3.5.1) for each `, χ`+1
‖− �u is rudimentary in χ`‖− �u, and thus rudimen-

tary in χ= �u;
(3.5.2) for each ` there is a natural number s` such that for each ordinal

ν > η, χ`‖− �P
e;=
ν ∈ P e;=ν+s`

;

(3.5.3) for each limit ordinal λ > η, χ‖− �P
e;=
λ is total and is a set, being

definable over P e;=λ .

Proof. For (3.5.0), note that χ0
‖− �u is rudimentary in χ= �u and χε �u,

which is rudimentary in χ= �u.

(3.5.1): The passage from χ`‖− �u to χ`+1
‖− �u is rudimentary in P and

Subst, being given uniformly by these clauses:

χ`+1
‖− (p, ϕ ∧ ϑ,~b,~c) = inf{χ`‖−(p, ϕ,~b), χ`‖−(p, ϑ,~c)},

χ`+1
‖− (p, qϕ,~a) = 1− sup{χ`‖−(q, ϕ,~a) |q q ≤ p},

χ`+1
‖− (p,

∧
xεy ϕ, y/a,~b) =


1 if ∀q≤p ∀(s, α)∈a

(q ≤ s ⇒ ∃r≤q χ`‖−(r, ϕ, x/α, y/a,~b) = 1),

0 otherwise.

The notation y/a indicates that the free occurrences of the variable y have
been replaced by occurrences of the constant a. Only certain substitutions
have been indicated explicitly: we think of wffs as accompanied by annota-
tions, as described above; so, for example, in the longest line of the above
equations, where visually ϕ should be Subst(ϕ, x/α), the details of the sub-
stitutions would be in the annotations.

(3.5.2): Argue as in the proofs of Proposition 2.16 and 2.20, using (3.5.1).

(3.5.3) now follows. 3.5
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Once we know that there is at least one rud-closed transitive v contain-
ing P with χ‖− � v total and a set, we may advance the definition of χ‖− more
generally, as we now show in Proposition 3.11.

Rudimentary generation of the sentences of the forcing lan-
guage. Suppose that u is transitive, that u ⊆ u+ ⊆ P(u), and that S is a
subset of Eu, so that S is a set of sentences, all of whose constants are in u.
We define a ternary function HE which will yield a larger set of sentences,
all of whose constants are in u+, thus:

HE(P, S, u+) =df

S ∪ {a = b | a, b ∈ u+}

∪ {a ε b | a, b ∈ u+}

∪ {ϕ ∧ ϑ | ϕ, ϑ ∈ S}

∪ {qϕ | ϕ ∈ S}

∪ {
∧
x∈a ϕ | a ∈ u+ & ∀(p, α)∈a (p ∈ P ⇒ Subst(ϕ, x/α) ∈ S)}.

3.6. Lemma. HE is rudimentary in the parameter HF; more exactly,
it is rudimentary in the subset of HF that codes the annotation, described
above, of formulæ of the language L.

3.7. Lemma. S ⊆ Eu ⇒ HE(P, S, u+) ⊆ Eu+.

3.8. Lemma. For each ϕ ∈ HE(P, S, u+), Rub(ϕ) ⊆ S.

3.9. Lemma. There is a rudimentary function H‖− such that for every P,
u and S as above,

χ‖− �HE(P, S, u+) = H‖−(P, χ‖− �S, u+).

Proof sketch. H‖− would be built from the rudimentary function H=
supplied by Lemma 2.11 and other rudimentary functions suggested by the
clauses of the Proposed Definition 3.0. 3.9

3.10. Lemma. Suppose that (un)n6ω is a strict continuous progress, and
that u0 is a rud-closed transitive set. Suppose that E0 = Eu0, that for each n,
En+1 = HE(P, En, un+1), and put Eω =

⋃
n<ω En. Then Eω = Euω .

Proof. Note that if ϑ ∈ Rub(ϕ) then τ(ϑ) < τ(ϕ). Now prove by induc-
tion on k ∈ ω that for each n ∈ ω, if τ(ϕ) = k and all a with a occurring
in ϕ are in un+1 then ϕ ∈ En+k+1. 3.10

3.11. Proposition. Suppose that (un)n6ω is a strict continuous
progress, with u0 a rud-closed transitive set containing P and χ‖− � Eu0 total
and definable over u0. Then the same is true of uω.
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Proof. By Lemma 3.10, any ϕ ∈ Euω r E0 is in some En+1, and Rub(ϕ)
⊆ En. By Lemma 3.9, we can build χ‖− � En+1 inside uω. So the definition of
p ‖− ϕ over uω will take the expected form “there is a set E closed under
Rub with φ ∈ E and a function χ defined on E that satisfies the recursive
definition of χ‖−; moreover, χ(p, ϕ,~a) = 1.” 3.11

A further speed-up. In [MB, Section 9], a definition of truth for ∆̇0

formulæ is given that begins by de-nesting restricted quantifiers. That
method could be used here: one would first define p ‖−P ϕ for quantifier-
free sentences ϕ and then extend that definition to de-nested ∆̇0 sentences,
adapting appropriately the steps of [MB, §9]. Finally one would argue that
every ∆̇0 sentence is logically equivalent to a de-nested one.

This device then makes it evident that for each ϕ ∈ L and constants
for ~a, p ‖−P ϕ[~a] is rudimentary in an appropriate fragment of χ= and thus a
gentle predicate of p, φ, and ~a.

Forcing ∆̇0 statements

3.12. Proposition. For every ∆̇0 wff ϕ,
q ≤ p ‖− ϕ ⇒ q ‖− ϕ,
p ‖− ϕ ⇔ ∀q≤p∃r≤q q ‖− ϕ,
p ‖−

∨
xεy ϕ ⇔ ∀q≤p ∃r≤q ∃(t, β)∈y (r ≤ t & r ‖− ϕ[β]),

p ‖− ϕ[α] ∧ α = β ⇒ p ‖− ϕ[β].

We shall often use the following general principle in our development.

3.13. Proposition. Suppose we have a name z such that

∀p ∀α (p ‖−
0
α ε z ⇒ p ‖− ϕ[α])

for some formal wff ϕ. Then ∀p ∀α (p ‖− α ε z ⇒ p ‖− ϕ[α]).

Proof. We gradually weaken the hypothesis. Suppose that p ‖−
1
α ε z.

Then for some q ≥ p, (q, α) ∈ z, so q ‖−
0
α ε z; so q and therefore also p

forces ϕ[α].
Now suppose that p ‖− α ∈ z. This tells us that

∀q≤p ∃r≤q ∃β r ‖−1 β ε z & r ‖− α = β.

So for such r, r ‖− ϕ[β]; and so r ‖− ϕ[α]. The class of such r being dense
below p, p ‖− ϕ[α]. 3.13

Axioms of Extensionality and Foundation. We may now prove
that the Axiom of Extensionality is forced: that reduces to proving the
following, which presents no difficulty.

3.14. Proposition. If p ‖−
∧
xεa x ε b and p ‖−

∧
xεb x ε a, then p ‖−

a = b.

3.15. Proposition. ‖− Foundation.
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Proof. Given x, consider A = {a | ∃p∈P (p, a) ∈ x}. Then A is a ∆0

subclass of
⋃2 x and therefore a set; assuming it is non-empty, let c be an

element of A of minimal rank. Then c ∈ A but
⋃2 c ∩ A is empty; so if

(p, c) ∈ x, p ‖− c ε x & c ∩̇ x = ∅̇. Thus

‖− x 6= ∅̇→
∨
yεx y ∩̇ x = ∅̇. 3.15

Preservation of ∆̇0 statements about the ground model. Now
that we have defined forcing for ∆̇0 statements and have seen how elements
of the ground model are named in the language of forcing, we may verify
that ∆̇0 statements about them, if true, are forced.

3.16. Lemma. ∀p∈P ∀y
(
p ‖−

∧
xεŷ ϕ⇔ ∀x∈y p ‖− ϕ(x̂)

)
.

Proof.
p ‖−

∧
xεŷ ϕ ⇔ ∀q≤p ∀(s, β)∈ŷ

(
q ≤ s ⇒ ∃r≤q r ‖− ϕ[β]

)
⇔ ∀q≤p ∀x∈y

(
∃r≤q r ‖− ϕ(x̂)

)
⇔ ∀x∈y ∀q≤p

(
∃r≤q r ‖− ϕ(x̂)

)
⇔ ∀x∈y p ‖− ϕ(x̂). 3.16

3.17. Proposition. Let Φ(x1, . . . , xn) be a ∆̇0 statement true of
a1, . . . , an. Then 1P ‖− Φ̇[â1, . . . , ân].

Proof. The cases that Φ are either atomic or the negation of atomic are
covered by Proposition 2.33. We then proceed by induction on the length
of Φ; propositional connectives are easily handled, as a 0-1 law applies in
this context; and the last lemma covers restricted quantifiers. 3.17

The above is a schema expressed in the metalanguage: the version when
we quantify over ∆̇0 wffs in the language of discourse would read

3.18. Proposition. Let ϕ(x1, . . . , xn) be a ∆̇0 statement such that

|=0 ϕ[a1, . . . , an]. Then 1P ‖− ϕ[â1, . . . , ân].

4. Generic extensions of a transitive set. Let M be a transitive set
and P a notion of forcing in M . The aim in life of an (M,P )-generic filter
G is to create a transitive set M [G] out of the Lindenbaum algebra of the
language of forcing, with the property that what is true in the model is what
is forced by some p ∈ G. That principle is known as the Forcing Theorem.

4.0. Definition. ∆ is dense open in P if

∀p∈P ∃q∈∆ q ≤ p and ∀p∈∆∀q≤p q ∈ ∆.

4.1. Definition. G ⊆ P is (M,P)-generic if ∀p∈G ∀q∈G ∃r∈G r ≤ p &
r ≤ q, ∀p∈G ∀q p ≤ q ⇒ q ∈ G, and G ∩∆ 6= ∅ for each ∆ ∈M that is dense
open in P .

Formally, those definitions work for any transitive set M .
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For forcing over models of ZF that definition of generic would suffice to
prove the Forcing Theorem; but for models of certain weaker theories such
as KP, it is inadequate: we shall find in a later section that if M is admissible,
we must require G to meet all dense open subsets of P that are unions of a
Σ1 and a Π1 class over M if we are to show that M [G] will be admissible.
Ironically, for models of the still weaker theory PROVI, all is well again: we
shall show in this section that if a filter G is generic as defined above, then
the Forcing Theorem will hold for ∆̇0 formulæ. We assume henceforth that
M models PROVI.

We know from its being a filter that G will be consistent in the sense
that for no sentence ϕ of the language LP can there be a p ∈ G with p ‖−P ϕ
and a q ∈ G with q ‖−P qϕ. Let ∆(ϕ) = {p ∈ P | p ‖−P ϕ v p ‖−P qϕ}; this is
a dense open subclass of P . If ϕ is ∆0, ∆(ϕ) will be a set of M by gentle
separation. If G meets ∆(ϕ), then some p ∈ G decides ϕ in the sense that
it forces either ϕ or qϕ. We shall refer to this property as the completeness
of G.

4.2. Definition. Suppose now that G is (M,P)-generic. Define (exter-
nally to M) valG : M → V by

valG(b) = {valG(a) | ∃p∈G (p, a) ∈ b}.

4.3. Remark. This is a rudimentary recursion with parameter G: φ(b) =
H(G, φ � b) where H(g, x) =df x“(Dom(x))“g). In [M4] it is shown that cer-
tain transitive models of Zermelo set theory fail to support such recursions:
thus it is necessary to assume that PROVI is true in the “background” set
theory.

4.4. Remark. An immediate consequence of the definition is that if
p ∈ G and either p ‖−

0
α ε a or p ‖−

1
α ε a, then valG(α) ∈ valG(a).

4.5. Proposition. For all a and b the following hold:

valG(a) = valG(b) ⇔ ∃p∈G p ‖− a = b,(4.6)

valG(a) ∈ valG(b) ⇔ ∃p∈G p ‖− a ε b.(4.7)

We divide the proof into four lemmata.

4.8. Lemma. If p ∈ G and p ‖− a = b then valG(a) = valG(b).

Proof by induction on rank. Let x ∈ valG(a). Let (q0, α) ∈ a with q0 ∈ G
and valG(α) = x. Let q ∈ G be below both p and q0. Consider the class

P ∩ {r | r ≤ q & ∃β∈⋃2 b r ‖−1 β ε b & r ‖− α = β}.

That is dense below q, and is a set by ∆̇0 separation, once one has replaced
the predicate r ‖− α = β by an evaluation by an appropriate fragment of χ=.
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It is therefore met by G; so let r ∈ G be below q and β ∈
⋃2 b with r ‖− α = β

and r ‖−
1
β ε b.

From the second property of r, valG(β) ∈ valG(b), and from the first,
applying the induction hypothesis, valG(α) = valG(β); thus x ∈ valG(b); as
x was arbitrary, valG(a) ⊆ valG(b).

A similar argument shows that valG(b) ⊆ valG(a). 4.8

4.9. Lemma. If p ∈ G and p ‖− a ε b then valG(a) ∈ valG(b).

Proof. {r ∈ P | ∃β∈⋃2 b r ‖− β = a & r ‖−
1
β ε b} is dense below p and is

a set, and so there is an r ∈ G and a β ∈
⋃2 b such that r ‖− β = a, which

by the previous lemma implies that valG(β) = valG(a), and, by Remark 4.4,
such that valG(β) ∈ valG(b); so valG(a) ∈ valG(b). 4.9

4.10. Lemma. If valG(a) = valG(b), then for some p ∈ G, p ‖− a = b.
Proof by induction. We show first that ∃p∈G p ‖−

∧
xεa x ε b. If not, then

by density, ∃p∈G p ‖−
∨
xεa q(x ε b); indeed there will then exist p ∈ G and

α ∈
⋃2 a such that p ‖−

1
α ε a and p ‖− q(α ε b). Given such p and α,

valG(α) ∈ valG(a); so there is a β ∈
⋃2 b and a q ∈ G with (q, β) ∈ b, and

valG(α) = valG(β).
By the induction hypothesis, there will be an r ∈ G, which we may

suppose to be below both q and p, such that r ‖− α = β and r ‖−
1
β ε b; so

r ‖− α ε b, contrary to our hypothesis on p.
A similar argument will show that ∃p∈G p ‖−

∧
xεb x ε a; and we may

now invoke the fact that Extensionality is forced, to conclude that there is
a p ∈ G such that p ‖− a = b. 4.10

4.11. Lemma. If valG(a) ∈ valG(b), then for some p ∈ G, p ‖− a ε b.
Proof. The hypothesis implies that there are q ∈ G and c such that

(q, c) ∈ b and valG(a) = valG(c). By the previous lemma, there is a p0 in G
such that p ‖− a = c; then if p ∈ G is below both p0 and q, then p ‖−

1
c ε b

and so p ‖− a ε b. 4.11

The proof of Proposition 4.5 is now complete. 4.5

4.12. Definition. MP[G] =df {valG(a) | a ∈M}.
We check that M ∪ {G} ⊆MP[G].

4.13. Proposition. For all x ∈ M , x̂ ∈ M and valG(x̂) = x; hence
M ⊆MP[G].

Proof. By the providence of M and an easy application of Proposition
2.33. 4.13

We have a canonical name for G:

4.14. Definition. Ġ =df {(p, p̂) | p ∈ P }.
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Note that Ġ ∈M as M is provident and a 7→ â is rud-rec.

4.15. Proposition. valG(Ġ) = G.

Proof. Both sides equal {valG(p̂) | p ∈ G}. 4.15

4.16. Corollary. G ∈MP[G] and hence

M ∪ {G} ⊆MP[G] ⊆ Prov(M ∪ {G}).

4.17. The Forcing Theorem. Given A, P and G, for each ∆̇0 for-
mula ϕ and a1, . . . an in A:

AP[G] |= ϕ[valG(a1), . . . , valG(an)] ⇔ ∃p∈G (p ‖−P ϕ[a1, . . . , an])A.

Proof. First, the case of atomic ϕ is covered by Proposition 4.5.
For Boolean conjunctions: ∃s∈G (s ≤ p & s ≤ q) iff p and q are both

in G.
For negations: there is a dense class to be met by G, and we must show

that the class in question is a set. Note that P ∩ {t | ¬∃r ≤ t (r ‖− ϕ[β])}
is a member of the provident set that is the ground model: take an attempt
at χ= that covers all; then this set is obtainable as a separator that is ∆0 in
that attempt.

Now consider the problem of a restricted quantifier (2). Suppose p ‖−∧
xεb ϕ(x), and let b = valG(b). Suppose A[G] |= ã ε b̃ where a = valG(a).

Then there is a q in G and an η such that q ‖−
1
η ε b and q ‖− a = η. Then

densely below q, there are r such that r ‖− ϕ[η]. So some such r is in G; so
A[G] |= ϕ[valG(η)]; but valG(η) = valG(a) = a. Thus A[G] |=

∧
xεb̃ ϕ(x).

Conversely, suppose that A[G] |=
∧
xεb̃ ϕ(x), and suppose that b ∈ A

with b = valG(b). Let

X = P ∩ {t | ∃β∈⋃2 b t ‖−1 β ε b & ¬∃r≤t (r ‖− φ[β])}.
X is a set and is downwards closed, i.e. open in the usual topology on P.
Let ∆ = X ∪ {p | Op ∩X = ∅}, where Op = {q | q ≤ p}.

∆ is a dense open set, and so meets G. Let p ∈ G ∩∆. If p ∈ X, then for
some β ∈

⋃2 b, p ‖−
1
β ε b, but for no r ≤ p does r ‖− ϕ[β]; so p ‖− qϕ[β]; so

A[G] |= qϕ[valG(β)]; but valG(β) ∈ valG(b).
Thus p /∈ X; and so there is no q below p with q ∈ X. So

∀q≤p ∀β∈⋃2 b

(
q ‖−

1
β ε b ⇒ ∃r≤q r ‖− ϕ[β]

)
,

which says precisely that p ‖−
∧
xεb ϕ(x). 4.17

5. Construction of nominators for rudimentary functions. Our
aim in this section is to prove a theorem about the construction of names
in a provident set for the values of a rudimentary function in a set-generic

(2) For explanation of the notation, please see the footnote on page 141.
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extension of that set. We state it now, and shall later give more precise
formulations of particular cases.

5.0. Theorem. Let R be a rudimentary function of some number of ar-
guments. Then there is a function RP, of the same number of arguments,
with the property that if A is a provident set and P ∈ A a notion of forc-
ing, then A is closed under RP and, further, if G is an (A,P)-generic, then
(to take the case of a function of two variables) for all x and y in A,
valG(RP(x, y)) = R(valG(x), valG(y)).

Definition. We shall call the function RP the nominator of the func-
tion R. Usually its definition is uniform in P and A. We shall use the phrase
“Cohen term” to speak of the value of a nominator given some arguments.

5.1. Corollary. Let A be provident, P ∈ A and G (A,P)-generic. Then
A[G] is rud-closed and so a model of GJ0.

Proof of the Corollary. Suppose (to take a function of two variables)
that R(x, y) is a rudimentary function and that x and y are in A[G]. Then
there are a and b in A so that x = valG(a) and y = valG(b). Applying
the nominator of R, the corresponding Cohen term RP(a, b) exists in A: let
z = valG(RP(a, b)). Then z ∈ A[G], and by the theorem R(x, y) = z. Since
R(x, y) = z is a ∆̇0 statement, and therefore absolute for transitive sets
containing x, y and z, we know that it is true in A[G] that R(x, y) = z. 5.1

Some general lemmata about forcing

5.2. Lemma. If a ⊆ b, valG(a) ⊆ valG(b).

Proof.

valG(a) = {valG(α) | ∃p∈G (p, α) ∈ a}
⊆ {valG(β) | ∃p∈G (p, β) ∈ b} = valG(b). 5.2

5.3. Lemma. Let u be transitive. Then valG(u) is transitive.

Proof. If x ∈ valG(u), then ∃α ∃p∈G (p, α) ∈ u & valG(α) = x. But
α ∈

⋃2 u ⊆ u so α ⊆ u; so valG(α) ⊆ valG(u). 5.3

5.4. We note alternative ways of naming an object. For given y, put

A0(y) = {(p, x) | p ‖−
0
x ε y},

A1(y) = {(p, x) | p ‖−
1
x ε y},

A(y) = {(p, x) | p ‖− x ε y}.

5.5. Remark. A0(y) ⊆ y; A0(y) ⊆ A1(y) ⊆ P ×
⋃2 y, so A0(y) and

A1(y) are sets, whereas A(y) is a proper class whose intersection with a set
will be a set provided one has rud-rec separation.
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5.6. Remark. A0(A1(y)) = A1(y) = A1(A0(y)) = A1(A1(y)) and
A0(A0(y)) = A0(y).

5.7. Lemma. If q ‖−
1
w ε A1(y), then q ‖−

1
w ε y; if q ‖−

1
w ε y, then

q ‖−
0
w ε A1(y).

5.8. Lemma. Let P ∈ M and let G be (M,P)-generic. Then if y ∈ M,
valG(A0(y)) = valG(A1(y)) = valG(y).

Proof. That valG(y) = valG(A0(y)) ⊆ valG(A1(y)) is immediate from the
definition of valG(·) and Lemma 5.2. It remains to show that valG(A1(y)) ⊆
valG(y).

Suppose that p ∈ G and z ∈ M are such that p ‖− z ε A1(y) and
p ‖− z 6 ε y. Then there are w ∈ M and q ∈ G with q ≤ p, q ‖−

1
w ε A1(y),

(so by the previous lemma, q ‖− w ε y), but also q ‖− w = z and therefore
q ‖− w 6 ε y, a contradiction. 5.8

The proof. To prove Theorem 5.0 we begin by working through the
list, given in [M3, p. 166] and discussed in greater detail at the beginning of
[MB, §2], of the nine functions R0, . . . , R8, the auxiliary function A14, and
some others, and show for each function how, given names (in the ground
model) for its arguments in the generic extension, we may build names for
its values. Certain of the nominators are rudimentary, even basic, functions
of their arguments, others will be P-gentle. We shall do the rudimentary
ones first. We assume that P = (P ,1P,≤P)3.

Although we shall not always obtain a nominator for a rudimentary
function as a rudimentary function of the names of its arguments, as we
shall see with xry, we may check as we go that we always find a nominator
that is rudimentary in the relation χ`‖− for some `.

5.9. Remark. Composition of rudimentary nominators will of course
be rudimentary.

A basic nominator for R0 : x, y 7→ {x, y}
5.10. Definition. {a, b}P =df {(1P, a)2, (1

P, b)2}.
5.11. Lemma. {a, b}P is a basic function of the variables shown.

5.12. Proposition. valG({a, b}P) = {valG(a), valG(b)}.
5.13. Corollary. 1P ‖−P {a, b}P = {̇a, b}̇.

Basic nominators for ordered pairs and triples. Those can be
obtained by composition.

5.14. Definition. {x}P =df {(1P, x)2}.
5.15. Definition. (x, y)P2 =df {{x}P, {x, y}P}P.

5.16. Definition. AP
2(x, y, z) =df {x, (y, z)P2}P.
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5.17. Definition. (x, y, z)P3 =df (x, (y, z)P2)P2 .

5.18. Lemma. The four functions just introduced are basic functions of
the variables shown.

A basic nominator for x ∪ y
5.19. Definition. x ∪P y =df x ∪ y.

A basic nominator for R2 : x 7→
⋃
x

5.20. Definition.⋃P x =df (P ×
⋃5x) ∩ {(p, α) | ∃(q, β)∈x (p ≤ q & p ‖−

1
α ε β)}.

5.21. Remark.
⋃P is a basic function, being the application of a ∆0

separator.

5.22. Lemma. If p ‖−
0
γ ε
⋃P x, then (p, γ)2 ∈ P ×

⋃5 x.

5.23. Lemma. If p ‖−
1
γ ε
⋃P x, then (p, γ)2 ∈ P ×

⋃5 x.

5.24. Remark. Hence if p ‖−P γ ∈
⋃P x, then there are many β and t

(dense below p) for which t ‖− β = γ and t ‖−
1
β ε
⋃P x.

5.25. Proposition. valG(
⋃P x) =

⋃
valG(x).

5.26. Corollary. 1P ‖−P
⋃P x =

⋃̇
x.

A basic nominator for R4 : x, y 7→ x× y
5.27. Definition.

x ×P y =df {(p, (α, β)P2) | p ‖−
1
α ε x & p ‖−

1
β ε y}.

5.28. Remark. · ×P · is evidently rudimentary, but it is actually basic
in P, being the result of applying a ∆0 separator to the set P × [{1P} ×
[{1P} × (x ∪ y)]62]62.

5.29. Proposition. valG(x ×P y) = valG(x)× valG(y).

5.30. Corollary. 1P ‖−P x ×P y = x ×̇ y.

A basic nominator for [x]1

5.31. Definition. F P
1 (x) =df {(p, {α}P)2 | (p, α)2 ∈ x}.

Again, this rudimentary term can be shown to be basic, using the fact
that F P

1 (x) ⊆ P × ({1P} ×
⋃2 x).

5.32. Proposition. ‖−P [̇x]̇
1
= F P

1 (x).

Proof. If q ‖−
1
z ε F P

1 (x), then there is a p ≥ q with (p, z)2 ∈ F P
1 (x), so

that there is an α with (p, α)2 ∈ x, 1P ‖−P z = {̇α}̇ and q ‖−
1
α ε x.
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Conversely, if q ‖−P
∨
yεx z = {̇y}̇, then there are y and r ≤ q with

r ‖−
1
y ε x and r ‖−P z = {̇y}̇. So (p, y)2 ∈ x for some p ≥ r, so that

(p, {y}P)2 ∈ F P
1 (x), r ‖−

1
{y}P ε F P

1 (x) and so r ‖−P z ε F P
1 (x). 5.32

A basic nominator for [x]62

5.33. Remark. [x]62 is easier to get than [x]2, because the latter will
require us to be certain that two names denote different things; we could
obtain such a term by using the identity [x]62 = ∪(x × x); the following is
slightly simpler.

5.34. Definition. F P
62(x) =df {(r, {α, β}P) | r ‖−

1
α ε x & r ‖−

1
β ε x}.

5.35. Remark. That function is basic since its value is a ∆0 subset of
P ×

⋃
(({1P} ×

⋃2 x)× ({1P} ×
⋃2 x)).

5.36. Proposition. ‖− [̇x]̇
62

= F P
62(x).

Proof. If t ‖−P a ε F P
62(x), there are s ≤ t and b such that s ‖− a = b

and s ‖−
1
b ε F P

62(x). So there are r ≥ s, α and β with b = {α, β}P, and

conditions p and q with

(r ≤ p & r ≤ q & (p, α) ∈ x & (q, β) ∈ x),

so that s ‖−P a = b = {̇α, β}̇ ε [̇x]̇
62

.

If s ‖−P a ε [̇x]̇
62

then there are t ≤ s, α, β such that t ‖−
1
α ε x &

t ‖−
1
β ε x & t ‖−P a = {̇α, β}̇, so that there are p and q with t ≤ p, t ≤ q,

(p, α) ∈ x and (q, β) ∈ x; so (t, {α, β}P)2 ∈ F P
62(x), so t ‖−P a ε F P

62(x). 5.36

A basic nominator for u?. We recall the definition:

u? =df u ∪ [u]62 ∪ (u× u),

and that for u transitive, u? is transitive.
Then a basic nominator for it can be found by composition using the

preceding ones.

Gentle nominators for the other rudimentary generators. We
show that for the remaining rud generators we get nominators of the form
G(P, x, y) ∩A where G is a rudimentary function and A is a separator that
is rudimentary in an appropriate segment of χ=; such nominators will be
gentle by the principle of gentle separation.

Remark. That that should be so is suggested by our theory of com-
panions, at least for DB functions. Each of them has a 2-companion W
that is generated by

⋃
and × and is therefore such that W P is basic; so

if R(x, y) ⊆ W ({x, y}), then we may expect RP(x, y) to be of the form
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W P({x, y}P∩{(p, α) | p ‖− α ε Ṙ(x, y)}; and as z ∈ R(x, y) is ∆0, α ε Ṙ(x, y)

will be ∆̇0.

A gentle nominator for R1 : x, y 7→ xr y. Set

xrP y =df A1(x) ∩ {(p, α) | p ‖−P α 6 ε y}.

Then x rP y, being a subclass of P ×
⋃2 x, will be a set if P is, being the

application of a separator that is ∆0 in some appropriate attempt at χε.
Let z = x rP y. For each p and α with p ‖−

0
α ε z, p ‖− α 6 ε y ∧ α ε x so

by our general principle, the same is true for each p and α with p ‖− α ε z.
Hence ‖− ∀tεz [t ε x ∧ t 6 ε y].

Conversely, suppose that q ‖− β ε x∧β 6 ε y. We seek s̄ ≤ r and (t̄, α) ∈ z
with s̄ ≤ t̄ and s̄ ‖− α = β. We know that

∃s≤r ∃(t, α)∈x s ≤ t & s ‖− α = β

so that for such an s, s ‖−
1
α ε x and s ‖− α 6 ε y, so (s, α) ∈ z. Hence we may

take s̄ = t̄ = s.

A gentle nominator for R3 : x 7→ Dom(x)

5.37. Definition.

DomP(x) =df (P×
⋃10 x) ∩

{
(p, α)2

∣∣ ∀q≤p ∃r≤q ∃β∈⋃10 x r ‖−P (β, α)P2 ε x
}
.

5.38. Proposition. 1P ‖−P RP
3(x) = Ṙ3(x).

A gentle nominator for R5 : x 7→ x ∩ {(a, b)2 |a,b a ∈ b}
5.39. Definition.

RP
5(x) =df {(p, γ) | ∃α∈⋃10 x∃β∈⋃10 x γ = (α, β)P2 & p ‖−P α ε β}.

That is a set since (α, β)P2 is basic, so we can easily find a companion (i.e.
a bounding set), and then apply the separator induced by the relation p ‖−
α ε β.

5.40. Proposition. 1P ‖−P RP
5(x) = Ṙ5(x).

A gentle nominator for R6 : x 7→ {(b, a, c)3 | (a, b, c)3 ∈ x}
5.41. Definition.

RP
6(x) =df

{
(p, δ)

∣∣ ∃(q, τ)∈x∃α∈⋃l x∃β∈⋃m x∃γ∈⋃n x[
q ≥ p & δ = (β, α, γ)P3 & p ‖−P τ = (α, β, γ)P3

]}
.

We have defined (·, ·, ·)P3 above; it is basic; so we can use it to predict the
whereabouts of δ; l,m, n must then be given appropriate values.

5.42. Proposition. 1P ‖−P RP
6(x) = Ṙ6(x).
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A gentle nominator for R7 : x 7→ {(b, c, a)3 | (a, b, c)3 ∈ x}

5.43. Definition.

RP
7(x) =df

{
(p, δ)

∣∣ ∃(q, τ)∈x∃α∈⋃l x∃β∈⋃m x∃γ∈⋃n x[
q ≥ p & δ = (β, γ, α)P3 & p ‖−P τ = (α, β, γ)P3

]}
.

5.44. Proposition. 1P ‖−P RP
7(x) = Ṙ7(x).

A gentle nominator for A14 : x,w 7→ x“{w}

5.45. Definition.

AP
14(x,w) =df

(
P ×

⋃10 x
)
∩
{

(p, α)
∣∣ p ‖−P (α,w)P2 ε x

}
.

5.46. Proposition. 1P ‖−P AP
14(x,w) = Ȧ14(x,w).

A gentle nominator for R8 : x, y 7→ {x“{w} |w w ∈ y}

5.47. Definition.

RP
8(x, y) =df

{
(p, γ)

∣∣ ∃(q, β)∈y p ≤ q & γ = AP
14(x, β)

}
.

5.48. Lemma. RP
8(x, y) is a set.

Proof. Define

F (x, y) =df ((P ×
⋃10 x)×

⋃2 y)

∩ {((p, α)2, β)2

∣∣ p ∈ P & p ‖−P {α, β}P2 ε x}.

Note that if u is any transitive set containing P, x and y, F � (u × u) is
rudimentary in χ= � (P × u× u).

Set G(x, y, β) = A14(F (x, y), β). Then G is rudimentary in F and β ∈⋃2 y ⇒ AP
14(x, β) = G(x, y, β).

Now set H(x, y) = {G(x, y, β) | β ∈
⋃2(y)}. Then H is rudimentary

in G, and RP
8(x, y) is the result of applying a ∆0 separator to P ×H(x, y).

Thus there is a rudimentary function E such that for all such u,RP
8 � (u×u) =

E
(
χ= � (P × u× u)

)
. 5.48

5.49. Proposition. 1P ‖−P RP
8(x, y) = Ṙ8(x, y).

5.50. Remark. Suppose that Q(~x) = R(S(~x), T (~x)), where Q, R, S, T
are rudimentary, and that we have already found functions RP, SP, T P as
in the statement of the theorem. We may obtain QP by composition: define
QP(~x) = RP(SP(~x), T P(~x)).

The proof of Theorem 5.0 as stated is now complete. 5.0

We must now prove that each of these functions is of uniform finite delay.



126 A. R. D. Mathias

Propagation of nominators for rudimentary functions

5.51. Proposition. Let R be a rudimentary function of some number
of arguments, and let RP be the corresponding nominator. There is a natural
number sR such that whenever e is a transitive set with P ∈ e, and ν is an
ordinal not less than %(P),

RP �P e;=ν ∈ P e;=ν+sR
.

Proof. We have seen that the nominators for R0, R2 and R4 proved to
be themselves rudimentary, and hence sR can be taken in these cases to be 1
plus the rudimentary constant for u 7→ R �u. The nominators corresponding
to the other functions in the standard generating set are all rudimentary in
appropriate fragments of χ=, and so the proof in those cases follows from
the corresponding result for χ=. We give the argument for R8.

Let ν > η. We know that χ= �P
e;=
ν ∈ P e;=ν+12, and that for some rudimen-

tary function E, RP
8 �P

e;=
ν = E(χ= �P

e;=
ν ), so we may take sR8 = 12 + cE .

Once the theorem has been established for the nine generators, it remains
only to observe that the property in question is preserved under composition.
If, for example, Q(~x) = R(S(~x), T (~x)), then sQ can be taken to be cR +
max{cS , cT }+ c◦, where c◦ is the constant of the rudimentary function that
composes fragments of RP, SP and T P to a fragment of QP. 5.51

5.52. Remark. At this point we know that all the axioms of GJ0 are
forced by the trivial condition.

No new ordinals! There is a long-established principle that a generic
extension will contain no ordinals not in the ground model. In [M4] an ad-
mittedly pathological example of forcing over an improvident but transitive
model of Zermelo set theory is presented where this principle breaks down.
So our task here is to present a proof, working in the theory PROVI, of the
following:

5.53. Proposition. If p ‖− x ε Ȯn then ∃q≤p ∃ζ≤%(x) q ‖− ζ̂ = x.

Plainly the statement of the proposition requires every ordinal to have a
hat; but hatting is 1P-rud-rec, so available in PROVI. Proposition 3.16 then
yields

5.54. Proposition. For each ordinal η, 1P ‖−P η̂ is an ordinal.

The second requirement is that there should be enough set theory to
prove that the principle of trichotomy for two ordinals is forced. So let ζ
and η be ordinals.

5.55. Lemma. Either ζ ∩ η = η or ζ ∩ η ∈ η.

Proof. η r ζ if non-empty has, by Foundation, a least element, ξ say;
then show that ξ = η ∩ ζ. 5.55
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5.56. Trichotomy for ordinals. ζ ∈ η, ζ = η or η ∈ ζ.

Proof. Consider the four statements

ζ ∩ η = η,1a

ζ ∩ η ∈ η,1b

ζ ∩ η = ζ,2a

ζ ∩ η ∈ ζ.2b

We know that [(1a or 1b) and (2a or 2b)] holds. Of the four possibilities,
(1b and 2b) is impossible, as it would imply ζ ∩ η ∈ ζ ∩ η, contradicting
Foundation; the three disjuncts of the proposition correspond to (1b and 2a),
(1a and 2a), (1a and 2b). 5.56

The final requirement is that rank should be definable in the ground
model; but % is ∅-rud-rec.

5.57. Lemma. ‖−P Ȯn is transitive.

5.58. Lemma. There are no p ∈ P and x such that p ‖− x ε Ȯn ∧
%̂(x) ε x.

Proof. Suppose such an x exists; let it be a member of the transitive
set u. By rewriting its definition in terms of the attempts χ‖− �u, % �u and
·̂ � %(u), we see that the class

u ∩ {x | ∃p∈P p ‖− x ε Ȯn & p ‖− %̂(x) ε x}
is a set by ∆0 separation, and non-empty by the initial supposition. Call
that set A.

Let x be a member of A with %(x) minimal. Then x ∈ A and
⋃2 x ∩ A

= ∅. Let η = %(x), and let p ‖− x ε Ȯn ∧ η̂ ε x. So ∃q≤p ∃r≥q (r, y) ∈ x
& q ‖− η̂ = y.

Let ζ = %(y). Since y ∈
⋃2 x, ζ ∈ η, so by Proposition 3.17, 1P ‖−P ζ̂ ε η̂;

q ‖− η̂ = y, so q ‖− %̂(y) ε y; so y ∈ A, in contradiction to the choice of x. 5.58

We complete the proof of Proposition 5.53 by noting that the law of
trichotomy for ordinals is forced:

5.59. Lemma. ‖−P Trichotomy for ordinals.

Proof. We have just seen that Trichotomy for ordinals is provable in GJ0,
and we know that all axioms of GJ0 are forced. 5.59

Now Lemma 5.58 implies that if p ‖−P x ε Ȯn, and η = %(x) then p ‖−P
η̂ 6 ε x. By Trichotomy, p ‖−P x ε η̂ ∨ x = η̂; which implies that there are q ≤ p
and ζ 6 η with q ‖−P x = ζ̂ as required. 5.53

5.60. Remark. In Section 6 of [M2], a forcing contruction is done over
a non-standard model N, and it was there blithely stated without proof
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that the generic extension would bring no new “ordinals”. Fortunately the
model N was power-admissible, and therefore certainly a model of PROVI,
which is a sub-theory of KP, so that the present remarks justify that blithe
statement; that is reassuring in view of the models presented in [M4].

We record two related arguments.

5.61. Lemma. %(valG(x)) 6 %(x).

Proof.
%(valG(x)) = sup{%(valG(y)) + 1 | (1, y) ∈ x}

6 sup{%(y) + 1 | (1, y) ∈ x}
6 %(x). 5.61

5.62. Lemma. If p ‖− ζ̂ ε x then ζ < %(x).

Proof by eps-recursion on x. If p ‖− ζ̂ ε x then there are q and r with

q ≤ p, q ≤ r, (r, y) ∈ x and q ‖− ζ̂ = y. Hence for all η < ζ, q ‖− η̂ ε y and so
by induction, η < %(y), so ζ ≤ %(y) < %(x). 5.62

6. Construction of rudimentarily recursive nominators for rank
and transitive closure. Rank and transitive closure are pure rud-rec; we
show here that P-rud-rec nominators exist for them.

6.0. Lemma. Let A be provident and closed under F and F“: for ex-
ample if F is gentle. Then

valG({(p, F (y)) |p,y (p, y) ∈ x}) = {valG(F (y)) |y ∃p∈G (p, y) ∈ x}.

Proof. Let Z = {(p, F (y)) |p,y (p, y) ∈ x}. Then Z is in A by the hy-
potheses concerning the closure of A under F , F“ and related functions.
Then valG(Z) = {valG(z) |z ∃p∈G (p, z) ∈ Z}.

So if w ∈ valG(Z), then ∃z ∃p∈G [w = valG(z) & (p, z) ∈ Z]. So
∃y [(p, y) ∈ x & z = F (y)]. So w = valG(F (y)) where for some p ∈ G,
(p, y) ∈ x. So the LHS is contained in the RHS.

Conversely, if (p, y) ∈ x and p ∈ G, then (p, F (y)) ∈ Z and p ∈ G; so
valG(F (y)) ∈ valG(Z). 6.0

Let S(·) be the basic function z 7→ z ∪ {z}.

6.1. Lemma. There is a rud function SP(·) such that valG(SP(x)) =
S(valG(x)).

Proof. By composition. 6.1

6.2. Definition. %P(x) =df
⋃P{(p, SP(%P(y)) | (p, y) ∈ x & p ∈ P }.

6.3. Remark. %P is rud-rec in the parameter P.
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6.4. Lemma. Let A be provident, and P ∈ A. For all x ∈ A,

valG(%P(x)) = %(valG(x)).

Remark. That all makes sense: if x is in A, the name %P(x) is in A.
Note that %(valG(x)) is evaluated in the universe. At present we do not know
that the evaluation can be carried out in AP[G].

Proof.

%(valG(x))

=
⋃
{%(y) + 1 |y y ∈ valG(x)} definition of %

=
⋃
{%(valG(w)) + 1 |w ∃p∈G (p, w) ∈ x} definition of valG(x)

=
⋃
{valG(%P(w)) + 1 |w ∃p∈G (p, w) ∈ x} induction hypothesis

=
⋃
{valG(SP(%P(w))) |w ∃p∈G (p, w) ∈ x} property of SP

=
⋃

valG({(p, SP(%P(w))) |p,w (p, w) ∈ x}) by Lemma 6.0

= valG(
⋃P({(p, SP(%P(w))) |p,w (p, w) ∈ x})) property of

⋃P

= valG(%P(x)) by the definition of %P. 6.4

6.5. Definition. tclP(x) =df x ∪P
⋃P({(p, tclP(z)) | (p, z) ∈ x}).

6.6. Remark. tclP is rud-rec in the parameter P.

6.7. Lemma. Let A be provident, and P ∈ A. For all x ∈ A,

valG(tclP(x)) = tcl(valG(x)).

Proof. By similar reasoning:

tcl(valG(x))

= valG(x) ∪
⋃
{tcl(y) |y y ∈ valG(x)} definition of tcl

= valG(x) ∪
⋃
{tcl(y) |y ∃p∈G∃z (p, z) ∈ x & y = valG(z)}

definition of val(x)

= valG(x) ∪
⋃
{tcl(valG(z)) |z ∃p∈G (p, z) ∈ x}

= valG(x) ∪
⋃
{valG(tclP(z)) |z ∃p∈G (p, z) ∈ x} induction hypothesis

= valG(x) ∪
⋃

valG({(p, tclP(z)) |p,z (p, z) ∈ x}) Lemma 6.0

= valG(x ∪P
⋃P({(p, tclP(z)) |p,z (p, z) ∈ x})) properties of ∪P and

⋃P

= valG(tclP(x)) by the definition of tclP. 6.7

6.8. Proposition. Let A be provident, and P ∈ A. Let G be (A,P, ∆̇0)-
generic. Then AP[G] is closed under rank and transitive closure.

6.9. Remark. A similar result will hold whenever F is rud-rec, given
by G, where GP is rudimentary; GP may be permitted to have as a parameter
a name a for a parameter valG(a) in the extension.
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We pause for breath. The next stage will be to show that the generic exten-
sion is closed under the formation of certain canonical progresses; but we di-
gress to discuss the case of primitive recursively closed sets, which is now easy.

7. Construction of primitive recursive nominators for primitive
recursive functions. Jensen and Karp give, following Gandy, this defini-
tion: there are some initial functions, which are all rudimentary; two versions
of substitution: F (~x, ~y) = G(~x,H(~x), ~y) and F (~x, ~y) = G(H(~x), ~y); and this
recursion schema:

F (z, ~x) = G(
⋃
{F (u, ~x) |u u ∈ z}, z, ~x).

7.0. Lemma. Let A be transitive and primitive recursively closed, and
let F be primitive recursive. Then

valG({(p, F (y)) |p,y (p, y) ∈ x}) = {valG(F (y)) |y ∃p∈G (p, y) ∈ x}.

Proof. As before. 7.0

For notational simplicity there is only one x in the following, but it could
easily be replaced by a finite sequence.

7.1. Proposition. Let A be transitive and primitive recursively closed.
Let P ∈ A, and let G be (A,P)-generic. Suppose that G(f, z, x) is primi-
tive recursive, and that it has a nominator, GP, primitive recursive in the
parameter P, so that for all f, z, x in A,

valG(GP(f, z, x)) = G(valG(f), valG(z), valG(x)).

Suppose that F (z, x) = G(
⋃
{F (u, x) | u ∈ z}, z, x). Define F P by

F P(z, x) = GP(
⋃P({(p, F P(u, x)) |p,u (p, u) ∈ z}), z, x).

Then F P is primitive recursive in the parameter P, and for all z, x in A,

valG(F P(z, x)) = F (valG(z), valG(x));

so that F P is a primitive recursive nominator for F .

Proof. For fixed x by recursion on z:

F (valG(z), valG(x))

= G
(⋃
{F (w, valG(x)) |w w ∈ valG(z)}, valG(z), valG(x)

)
= G

(⋃
{F (valG(u), valG(x)) |u ∃p∈G (p, u) ∈ z}, valG(z), valG(x)

)
= G

(⋃
{valG(F P(u, x)) |u ∃p∈G (p, u) ∈ z}, valG(z), valG(x)

)
= G

(⋃
valG({(p, F P(u, x)) |p,u (p, u) ∈ z}), valG(z), valG(x)

)
= G

(
valG(

⋃P({(p, F P(u, x)) |p,u (p, u) ∈ z})), valG(z), valG(x)
)

= GP(⋃P({(p, F P(u, x)) |p,u (p, u) ∈ z}), z, x
)

= valG(F P(z, x)). 7.1
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The above confirms an observation made some years ago by Jensen:

7.2. Corollary. A set-generic extension of a primitive recursively
closed set is primitive recursively closed.

8. Construction of nominators for the stages of a progress. Let
e be a transitive set in the ground model of which P is a member, and let θ
be indecomposable, exceeding η =df %(e). Then P eθ is provident. Let ḋ be the

Cohen term ê ∪ {Ġ}P, so that valG(ḋ) will be the transitive set d = e ∪ {G}.
8.0. Remark. ḋ will be a member of P e%(P)+k for some (small) k, given

the definition of Ġ, our convention that 1P=1 and the fact that ·̂ is 1-rud-rec.
Our task is to build for each ν < θ a name N(ν) for the stage P dν of the

progress towards d.

A simplified progress. Now %(G) 6 %(P ) < η, so that for ν > η,
dν = eν ∪{G}. It might be that %(G) < %(P ); to avoid building names which
make allowance for that uncertainty, we shall build names for the terms of
a slightly different progress (Qdν)ν .

8.1. Definition. For ν < η,

Qdν = P eν , Qdη = P eη ∪ {G};
for ν > η,

Qdν+1 = T(Qdν) ∪ {dν} ∪ dν+1, Qdλ =
⋃
ν<λ

Qdν for λ =
⋃
λ > η.

8.2. Proposition. If θ is indecomposable, then Qdθ is provident and
equals P dθ .

Proof. By [MB, Theorem 6.34]. 8.2

Names using dynamic predicates. With that in mind, we now define
names N(ν) such that valG(N(ν)) = Qdν .

8.3. Definition. ḋν =df êν ∪ {Ġ}P for ν > η. Moreover, for ν < η,

N(ν) = P̂ eν , N(η) = P̂ eη ∪ {Ġ}P;
for ν > η,

N(ν + 1) = TP(N(ν)) ∪ {ḋν} ∪ ḋν+1,

N(λ) =
⋃P{(1P, N(ν)) | ν < λ} for λ =

⋃
λ > η.

8.4. Lemma. For ν > η, N(ν) ∈ P e;=ν+ω.

Proof by cases. For ν = η, by inspection; for successor ordinals, by
knowledge of the birthday of TP; for limit λ by knowledge of the delay
of
⋃P. 8.4

8.5. Proposition. Each N(ν) for ν < θ is in P eθ .
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Proof. All those names are in P e;=θ , which was shown in Proposition 2.15
to equal P eθ . 8.5

8.6. Proposition. Let G be (P eθ ,P) generic and let ν < θ. Then

valG(N(ν)) = Qdν .

Proof. By induction on ν. 8.6

Pre-nominators for rud-rec functions

8.7. We may use the above idea to construct what one might call a
pre-nominator of a rud-rec function.

Suppose that in M [G], F is given by G and the parameter g = valG(γ).
Let H = HG be the rudimentary function ([MB, 5.9]) such that for transitive
P and P+ with P+ ⊆ P(P ), F �P+ = H(g, F �P, P+).

Define for ν < η, E(ν) = F̂ �P eν ; thereafter define

E(ν + 1) = HP(δ, E(ν), N(ν)),

and for limit λ, E(λ) =
⋃P{(1P, E(ν)) |ν ν < λ}. Then an easy induction

shows that for every ν, valG(E(ν)) = F �Qdν+1.

8.8. Remark. To show that the sequences (N(ν))ν and (E(ν))ν are
(P)-gentle, one could repeat their definition and those of (P e;=n u)ν and TP

by a single simultaneous rudimentary recursion, a method seen in Definition
2.14 above and the proof of [MB, Proposition 4.19]. With a little extra work
one would then get a (P)-gentle nominator for F .

9. Generic extensions of provident sets and of Jensen fragments.
We are now in a position to prove the following theorem:

9.0. Theorem. Let θ be an indecomposable ordinal strictly greater than
the rank of a transitive set e which contains the notion of forcing, P. Let G
be (P eθ ,P)-generic. Then (P eθ )P[G] = P

e∪{G}
θ and hence is provident.

Proof. (P eθ )P[G] contains P
e∪{G}
θ , as we have for each ν < θ built a name

in P eθ that evaluates under G to Q
e∪{G}
ν , and we know by Proposition 8.2

that Q
e∪{G}
θ equals P

e∪{G}
θ .

For the converse direction, we know that P
e∪{G}
θ is provident, and has G

as a member and hence can support the G-rudimentary recursion defining

valG(·). Further P
e∪{G}
θ includes (P eν )ν , which is defined by an e-rudimentary

recursion, and so includes (P eθ )P[G]. 9.0

Remark. Thus, in this special case, a generic extension of a model of
PROVI is a model of PROVI. We shall use this result to establish it more
generally.
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Remark. Theorem 9.0 remains true if the hypothesis on θ is weakened
to requiring that θ > %(P).

Proof that a generic extension of a provident set is provident

9.1. Theorem. Let A be provident, P ∈ A and G (A,P)-generic. Then
AP[G] is provident.

Proof. Let θ =df On ∩ A and let T = {c | c ∈ A & c is transitive &
P ∈ c}. Then

A =
⋃
{P cθ | c ∈ T},

since the union on the right contains each element of A and is contained
in A. It follows that

AP[G] =
⋃
c∈T

(P cθ )P[G].

By Theorem 9.0, as each P cθ is provident and contains P,

AP[G] =
⋃
c∈T

P
c∪{G}
θ

and each P
c∪{G}
θ is provident. Now [MB, Theorem 6.7 and Proposition 6.35]

yields

Lemma. If θ is indecomposable and D is a collection of transitive sets
each of rank less than θ and such that the pair of any two is a member of a
third, then

⋃
d∈D P

d
θ is provident.

Take D = {c ∪ {G} | c ∈ T} to complete the proof. 9.1

Remark. Theorem 9.0 and Corollary 4.16 give the elegant characteri-
zation noted by Bowler, that if A is provident, P ∈ A and G is (A,P)-generic
then AP[G] = Prov(A ∪ {G}).

Generic extensions of P-provident sets. Our methods will prove
the following more general result:

9.2. Theorem. Let λ be a limit ordinal > ω2. Write η for the largest
indecomposable not greater than λ. Let T be a set of transitive sets, and put
A =

⋃
c∈T P

c
λ and B =

⋃
c∈T P

c
η . Suppose that both A and B are closed under

pairing. Then for any P ∈ B, forcing with P is definable over A, and if G is
(A,P)-generic, then A[G] is P-provident; indeed A[G] will be q-provident for
every q in B[G].

Proof. In these circumstances, B will be provident, so forcing with P
over B is by now well-established; each of the relations and functions χ=,
χ‖−, RP and F P will progress through each P cλ for c ∈ T , and the closure
of A under pairing shows that these functions and relations will be total
on A. 9.2
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Genericity at every limit level

9.3. Proposition. Let e be a transitive set with P ∈ e. Let θ be inde-
composable, greater than %(e). Let λ be a limit ordinal not less than θ. Let
κ > λ + ω, and let G be (P eκ ,P)-generic. Put d = e ∪ {G}; then d is also
transitive of rank < θ. Suppose that P eλ [G] = P dλ . Then P eλ+ω[G] = P dλ+ω.

Proof. At this level, where we are above the rank of both e and d, P eν+1 =

T(P eν ) and P dν+1 = T(P dν ).

(i) P dλ = valG(P eλ) : for as λ is a limit ordinal, P eλ is rud-closed. Hence
(ii) T(P dλ ) = valG(TP(P eλ)) ∈ P eλ+ω[G] as, TP being (P eθ )-gentle, TP(P eλ)

∈ P eλ+ω. Iterating T, we see that P dλ+ω ⊆ P eλ+ω[G].

(iii) In the other direction, both e and G are in P dθ ; as θ 6 λ, P dλ+ω

will be both e- and G-provident; so P eλ+ω ⊆ P dλ+ω, and therefore as

valG(·) is G-rud-rec, P eλ+ω[G] ⊆ P dλ+ω. 9.3

Consider now the special case that e = Tη, a fragment of the constructible
hierarchy, and let ξ be the least indecomposable not less than η. The above
argument yields

9.4. Lemma. Let P ∈ Tη. Suppose that ν is a limit ordinal > ξ, that
G is (Tν+ω,P)-generic, and that T P

ν [G] = P dν , where d = Tη ∪ {G}. Then
T P
ν+ω[G] = P dν+ω.

Then, reverting to Jensen’s notation, that gives us the following

9.5. Theorem. Let P ∈ Jξ, where ξ is indecomposable. Let G be (L,P)-
generic. Then for each ordinal ζ ≥ ξ, Jζ(G) = JP

ζ [G]; in particular each set
in Jζ(G) is valG(a) for some a ∈ Jζ .

Here is an application, which fleshes out an argument outlined in a letter
from Sy Friedman.

9.6. Proposition. Let θ < η 6 ζ < ξ be ordinals, with η indecompos-
able. Suppose that P ∈ Jη and that G is (Jξ,P)-generic. Let x ⊆ θ, with
x ∈ Jξ and x ∈ Jζ(G). Then x ∈ Jζ .

Proof. We have x̂ ∈ Jξ. Since JP
ζ [G] = Jζ(G), x = valG(y) for some y ∈ Jζ .

Therefore some condition p in G forces y = x̂; so x = {ν < θ | p ‖− ν̂ ε y}.
The map ν 7→ ν̂, restricted to the ν less than θ, is in Jθ+1, and the relation
p ‖− ν̂ ε z is rudimentary in χ=; an appropriate segment of that characteristic
function is in Jζ , by propagation starting from η; and therefore x ∈ Jζ . 9.6

A similar argument leads to an extension of a result in [MB]:

9.7. Proposition. If a set c is such that there is a progress (Qcν)ν given
by a c-rudimentary recursion with Qcλ = Lλ for every limit λ > ω, then c is
not set-generic over L.
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Proof. Suppose to the contrary that G is (L,P)-generic where P ∈ L and
c ∈ LP[G]. Let η be indecomposable with P ∈ Lη, c ∈ LP

η [G], and η > ωω, so
that η = ωη, and therefore Lη = Jη = Tη. Let λ = η + ω.

9.8. Remark. (i) T P
λ [G] is c-provident and so includes Qcλ = Lλ;

(ii) so if A ∈ Lλ, A = valG(a) for some a ∈ Tλ, and there will be a
condition p in the generic filter G with p ‖−P Â = a;

(iii) for such p and any z ∈ L, p ‖−P ẑ ε a ⇔ z ∈ A.

From our analysis in §2 of the forcing relation, we know that the char-
acteristic function of the predicate p ‖−P ẑ ε a is P-gentle; and therefore from
the discussion in [MB, §6] of the rate of convergence of a gentle function in a
progress—see in particular the proof of [MB, Theorem 6.38]—we know the
following:

9.9. Proposition. There is a natural number s such that if (Pm)m<ω
is a strict progress, with P ∈ P0, P0 P-provident, p ∈ P, then for any n and
any a ∈ Pn,

Pn ∩ {z |z p ‖−P ẑ ε a} ∈ P(n+1)s.

9.10. Lemma. There is a primitive recursive function f : ω × ω → ω
such that for each k, n < ω, and A ∈ L, if A ⊆ Lη+k and A = valG(a) for
some a ∈ Tη+n then A ∈ Tη+f(k,n).

Proof. Case k = 0. We suppose that A ⊆ Lη = Tη and for some a ∈
Tη+n, A = valG(a).

Then there is a condition p ∈ G with p ‖−P Â = a. So, using Remark (iii)
and applying the proposition to the strict progress (Tη+m)m<ω, we shall
have

A = Tη+n ∩ {z |z p ‖−P ẑ ε a} ∈ Tη+(n+1)s.

Therefore we may set f(0, n) = (n+ 1)s.
Case k = `+1. We suppose thatA ⊆ Lη+`+1 and that for some a ∈ Tη+n,

A = valG(a).
Then there is a condition p ∈ G with p ‖−P Â = a.
Let B ∈ A. Then B ⊆ Lη+` and for some b ∈ Tη+n, B = valG(b).
[Actually b will be in

⋃⋃
a and therefore in Tη+n−3, if n > 3. So we are

giving a little ground: unimportant in the present case, but perhaps a fact
to be stored for the future.]

So by the case k = `, B ∈ Tη+f(`,n). Thus

A = Tη+f(`,n) ∩ {z |z p ‖−P ẑ ε a} ∈ Tη+(f(`,n)+1)s.

So we may set f(`+ 1, n) = (f(`, n) + 1)s. 9.10

The lemma is proved, and Remark 9.8(ii), implies, under the current
hypotheses on c, that Lλ ⊆ Tλ; but that is false, as Lη+1 ∈ Lλ but
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Lη+1 /∈ Tλ = Jη+1, by the proof of [MB, Proposition 6.68]. Thus c can-
not be set-generic over L. 9.7

10. Persistence of certain systems. We suppose throughout that we
are forcing over a provident set (or model, meaning possibly ill-founded) M
by some P ∈ M . Our first task is for each of the schemes of foundation,
collection and separation, to show that if they hold in M then in M [G]. We
call that the phenomenon of persistence. Establishing the persistence of a
given axiom divides into two steps: first, showing that the axiom is forced;
and second, showing that what is forced is true in the generic extension.
The first step generally uses the truth of the axiom concerned, possibly in
an apparently stronger form, in the ground model. The second step succeeds
if the generic meets all appropriately definable dense subclasses of P, which
it will do given the truth in the ground model of sufficiently strong instances
of the separation scheme.

Extension of the definition of forcing to all formulæ. We may
extend the definition of forcing, schematically, to all formulæ, thus:

10.0. Definition. p ‖−
∧
x Φ̇ ⇔ ∀x p ‖− Φ̇(x).

10.1. Proposition. p ‖−
∨
x Φ ⇔ ∀q≤p ∃r≤q ∃x r ‖− Φ(x).

p ‖−
∨
xεy Φ ⇔ ∀q≤p ∃r≤q ∃(t, β)∈y (r ≤ t & r ‖− Φ̇(β)).

10.2. Proposition. p ‖− Φ ⇔ ∀q≤p ∃r≤q r ‖− Φ.
‖− x = α ∧ Φ(α)→ Φ(x).

Proof. Already proved for atomic wffs, an easy induction thereafter. 10.2

10.3. Exercise. Show that if p ‖−
∧
x (Φ → Ψ(x)) and Φ is a sentence

of LP (so that, intuitively, x has no free occurrence in Φ), then p ‖− Φ →∧
x Ψ(x).

This exercise, coupled with our remarks about Modus Ponens above,
ensures that we may apply mathematical reasoning to statements in our
forcing language.

Complexity of some classes of formulæ. For a class Γ of wffs, such
as Σk or Πk, let Σ1Γ be the class of wffs of the form ∃x Ψ where Ψ ∈ Γ;
let ∆0Γ be the class of those wffs where a formula from Γ is preceded by a
finite string of restricted quantifiers; and let ‖− Γ be the class of wffs of the
form p ‖−P Φ̇ where Φ is in Γ.

10.4. Some computations for ϕ ∆̇0:

(10.4.0) p ‖−P ϕ is a P-gentle predicate of p and φ, and therefore ∆PROVI
1 ;

(10.4.1) p ‖−P
∧
x ϕ(x) is ∀x p ‖−P ϕ[x], and thus ΠPROVI

1 ;
(10.4.2) p ‖−P

∨
x ϕ(x) is ∀q≤p ∃r≤q ∃x r ‖−P ϕ[x], and thus ∆0ΣPROVI

1 ;
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(10.4.3) p ‖−P
∧
xεa
∨
y ϕ is ∀x∈⋃2 a ∀q≤p ∃r≤q ∃t

(
q ‖−

1
x ε a ⇒ r ‖−P

ϕ[t, x]
)
, and thus ∆0ΣPROVI

1 and ΣKPI
1 ;

(10.4.4) p ‖−P
∧
y
∨
x ϕ(x, y) is ∀y ∀q≤p ∃r≤q ∃x r ‖−P ϕ[x, y], and thus

ΠPROVI
2 .

More generally for positive k, all ‖− Πk predicates are ΠPROVI
k , as ∆0

quantifiers such as ∀q≤p ∃r≤q will usually be interpolated between successive
unrestricted quantifiers ∀∃ of the Πk formula, and thus absorbed, while ‖− Σk

predicates will be ∆0ΣPROVI
k .

When appropriate forms of Collection hold in M , those initial restricted
quantifiers can also be absorbed; for example ∆0-collection implies that
every ∆0Σ1 formula is equivalent to a Σ1 formula, so that ‖−P Σ1 predicates
are ΣKPI

1 . Thus (in KP) if P is a set, ‖−P restricted to Σ1 wffs will be Σ1; and
in ZF, forcing for Σn wffs is Σn.

Remark. Initial restricted quantifiers can also be absorbed in contexts
such as V = L when the lemma of Sy Friedman discussed in §5 of [M2]
holds.

Completeness and consistency. By the consistency of forcing we
shall mean the principle that no condition forces both a formula and its
negation; by the completeness of forcing we shall mean the principle that
every condition can be refined to one that decides a given formula.

The consistency and completenes of forcing are maintained by our system
of definitions as we progressively enlarge the definition of forcing to wider
classes of formulæ: they follow from the way forcing handles negation.

Problem. Let us take G-completeness to mean that each statement is
decided by some p ∈ G. The class of conditions that decide is certainly dense;
but is it a set?

P ∩ {p | p ‖− Φ v p ‖− qΦ} will be a set if we have enough separation. If
Φ is ∆̇0, it will be a set by gentle separation. For other Φ, it will be a set if
we have both (‖− Φ)-separation and (∆0¬ ‖− Φ)-separation.

10.5. Remark. There is a point to be made here, similar to the problem
of defining truth for all formulæ. We have defined the forcing relation χ‖− for

all ∆̇0 sentences ϕ of our formal language, essentially by a single recursion,
so that every set is a member of a transitive set u such that χ‖− � Eu is

total and a set. A definition of truth for a single ∆̇0 sentence is achieved by
recursion over the transitive closure of the sets named in that sentence; in
the case of forcing we must start our recursion from the transitive closure
of the union of {P} and some set containing each set a of which the name a
occurs in the sentence.
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But we are not able to make a single definition for all formulæ with
arbitrarily many unrestricted quantifiers, but must introduce a sequence of
definitions schematically. This would become very apparent in the Boolean-
valued presentation of forcing, where truth values are assigned in a complete
Boolean algebra, and we must invoke the axiom of replacement for each
quantifier to see that the supremum over a class is actually the supremum
over a set.

Persistence of Foundation

10.6. Proposition. (∆0 ‖−P Γ)-foundation implies that Γ-foundation is
forced.

Proof. Let Φ be in Γ. Let A =df {a | ∃p∈P p ‖−P Φ[a]}. Then A is
(∆0 ‖−P Φ).

Form C =df {c | c ∈ A v ∃d∈c d ∈ A v ∃d∈c∃e∈d e ∈ A}. Then C is
also (∆0 ‖−P Γ), so, assuming A 6= ∅, let c be C-minimal. Then for some p,
p ‖−P Φ[c], but p will also force that c is Φ-minimal. 10.6

Persistence of Collection. It is convenient to take Collection in the
form ∀x∈a∃y Φ ⇒ ∃b∀x∈a∃y∈b Φ.

Suppose that p ‖−
∧
xεa
∨
y˙Φ. Let B(p, s) =df P ∩ {q |q q ≤ p & q ≤ s).

Note that B is P-rudimentary. Then

∀(s, β)∈a∀q∈B(p,s)∃r≤q ∃y r ‖−P Φ̇(y, β).

After massaging the displayed formula and applying (‖− Φ)-collection
we shall reach a b such that

∀(s, β)∈a∀q∈B(p,s)∃r≤q ∃y∈b r ‖−P Φ̇(y, β).

Let w = {(1P, y)2 |y y ∈ b}. Then p ‖−
∧
xεa
∨
yεw Φ̇, as required. We

have proved:

10.7. Proposition. (‖− Γ)-collection implies that Γ-collection is forced.

Remark. Collection is more natural than replacement in the context of
forcing.

Persistence of Separation. Given a and Φ̇, let b = (P ×
⋃2 a) ∩{

(p, α)2

∣∣
p,α

p ‖− Φ̇[α]
}

. By (∆0 ‖− Φ̇)-separation, b is a set. I assert

that ‖− b = {x ε a |x Φ̇(x)}. Note first that (trivially) if q ‖−
0
α ε b then

q ‖− Φ̇[α]. Proposition 3.13 tells us that if q ‖− α ε b then q ‖− Φ̇[α], so that
‖− α ε b→ Φ̇[α].

In the other direction, suppose that p ‖− α ε a ∧ Φ̇[α]; then
∀q≤p ∃r≤q ∃γ (r ‖−

1
γ ε a & r ‖− γ = α); so γ ∈

⋃2 a & r ‖− Φ̇[γ]; so
(r, γ)2 ∈ b so r ‖−

0
γ ∈ b; so as r ‖− γ = α, r ‖− α ∈ b. By density, p ‖− α ε b.
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Hence ‖− (α ε a ∧ Φ̇[α]) ↔ α ε b and ‖− b = {x ε a |x Φ̇(x)}. We have
proved:

10.8. Proposition. (∆0 ‖− Γ)-separation implies that Γ-separation is
forced.

Towards the Forcing Theorem

10.9. Definition. For a formula Φ, let FT(Φ) be the principle that
“what is forced is true”: namely that if Φ is forced by some p ∈ G, then Φ
is true in M [G]; let TF(Φ) be the principle that “what is true is forced”,
namely that if Φ is true in M [G], then Φ is forced by some p ∈ G; and
let TFT(Φ), the Forcing Theorem for Φ, be the conjunction of FT(Φ) and
TF(Φ).

Let FT(Γ) mean that FT(Φ) holds for each Φ in Γ, and similarly for
TF(Γ) and TFT(Γ).

10.10. Remark. Proposition 4.5 proved TFT for atomic wffs, and The-
orem 4.17 proved TFT(∆̇0).

Propagating FT and TF: the rôle of Separation

10.11. Theorem. For any k:

(10.11.0) if TF(Πk) then TF(Σk+1);
(10.11.1) if FT(Πk) and G meets every (Σ1 ‖− Πk)

M -subclass of condi-
tions, then FT(Σk+1).

Proof. Let Ψ(·, ·) be Πk. If M [G] |=
∨
y Ψ(y; valG(x)] then ∃y∈MM [G] |=

Ψ[valG(y), valG(x)]; so by TF(Πk) some p in G forces Ψ[y, x]; and then this p
trivially forces

∨
yΨ(y;x]. Thus (10.11.0) is proved.

If p0 ∈ G forces
∨
y Ψ(y;x] then the class E =df {p | ∃y p ‖− Ψ(y;x]},

is dense below p0; E is definable in M by a (Σ1 ‖− Πk) formula, and there-
fore meets G. Let p ∈ E ∩ G. Then for some y ∈ M , p ‖− Ψ[y, x], so
by FT(Πk), M [G] |= Ψ[valG(y), valG(x)], whence M [G] |=

∨
y Ψ(y; valG(x)],

proving (10.11.1). 10.11

10.12. Proposition. For any Φ:

(10.12.0) if G decides Φ, FT(Φ) implies TF(qΦ);

(10.12.1) TF(Φ) implies FT(qΦ)

Proof. Suppose FT(Φ), and that qΦ is true in M [G]; then Φ is not true
there, so not G-forced, so something in G forces qΦ, by G-completeness.

Suppose TF(Φ), and that qΦ is forced; then (by G-consistency, which is
automatic) nothing in G forces Φ, so Φ is not true, so qΦ is true. 10.12
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10.13. Corollary. For any k:

(10.13.0) TF(Σk) implies FT(Πk);
(10.13.1) if G decides all Σk statements, FT(Σk) implies TF(Πk).

We get the following pattern of implications, where ⇒ indicates that
there is no extra assumption on G, and → indicates that there is, GmΣk+1

meaning that G is assumed to meet every dense (Σ1 ‖−P Πk)
M subclass of

conditions and GdΣk meaning that G is assumed to decide every Σk state-
ment.

TF(Π0) ⇒ TF(Σ1) ⇒ FT(Π1) →
GmΣ2

FT(Σ2) →
GdΣ2

TF(Π2) ⇒ TF(Σ3) . . .

FT(Π0) →
GmΣ1

FT(Σ1) →
GdΣ1

TF(Π1) ⇒ TF(Σ2) ⇒ FT(Π2) →
GmΣ3

FT(Σ3) . . .

TFT(∆̇0) →
GmΣ1

TFT(Σ1) →
GdΣ1

TFT(Π1) →
GmΣ2

TFT(Σ2) →
GdΣ2

TFT(Π2) →
GmΣ3

TFT(Σ3). . .

10.14. Remark. Suppose that G meets every dense member of M , a
model of PROVI. Then “G meets every dense (Σ1 ‖− Πk) subclass of P ” will
hold if Σk+1-separation holds in M ; and G will decide all Σk statements if
∆0Σk-separation holds in M , or (when k > 0), if Σk-separation and Πk−1-
collection hold in M .

10.15. Corollary. Any set-generic extension of a provident set which
models full separation will also be provident and model full separation; more-
over the forcing theorem will hold for all formulæ.

Proof. 10.8 tells us that all instances of the separation scheme are forced.
Then 10.14 with 10.11 will tell us that TFT(Πk) implies TFT(Σk+1), and
10.14 with 10.13 will tell us that TFT(Σk) implies TFT(Πk). TFT(Π0) is
TFT(∆̇0) which was Theorem 4.17, so we have TFT for all formulæ of the
forcing language; so that all instances of the separation scheme are true in
the extension. 10.15

Persistence of the power set axiom and of provident Zermelo set
theory. The persistence of the power set axiom, among others, is proved
in [M4, §4]. Combining that result with those above, we get

10.16. Theorem. Any set-generic extension of a provident set which
models Z will also be provident and model Z; and the forcing theorem will
hold for all wffs.

Summary. Collection for Φ in the extension follows from (‖− Φ)-col-
lection in M with TF(∆0Σ1Φ) and FT(∆0Φ).

Foundation for Φ in the extension follows from (∆0 ‖− Φ)-foundation
in M with TFT(Φ).

Separation for Φ in the extension follows from (∆0 ‖− Φ̇)-separation
in M with TFT(Φ).
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The persistence of KPI

10.17. Theorem. If M is admissible, P ∈ M and G is an (M,P)-
generic filter meeting each dense open subclass of M that is the union of
a Σ1(M) and a Π1(M) class, then MP[G] is admissible.

Proof. The system KPI, as presented in [M2], may be obtained by adding
to the axioms of PROVI the schemes of Π1-foundation and ∆0-collection. As
we have proved the persistence of PROVI, it only remains to discuss those
two schemes.

Let us first remark that the hypotheses imply that FT(Σ1) is available,
since every (Σ1 ‖−P ∆̇0)M class is ΣM

1 , since M is admissible.
Suppose you have ∆0-collection in the ground model. For Φ ∆̇0, ‖−P Φ is a

gentle predicate, hence ΣPROVI
1 , and Σ1-collection follows from ∆0-collection

in PROVI. So from Proposition 10.7, we know that ∆̇0-collection is forced. It
remains to show that it is true in the extension.

Suppose therefore that Ψ is ∆0, that a = valG(a) ∈M [G] (3) and that

M [G] |=
∧
xεã
∨
y Ψ(x, y).

Let

∆ =df {p | p ‖−P
∧
xεa
∨
y Ψ v ∃(q, α)∈a p ≤ q & p ‖−P

∧
y qΨ(α, y).

Then ∆ is dense open, and is the union of a ΣKP
1 class and a ΠKP

1 class. By
hypothesis, G ∩∆ 6= 0.

Hence there must be a p ∈ G such that p ‖−P
∧
xεa
∨
y Ψ, the other

half of the dense set being excluded by our assumption on M [G]. But
we know from Proposition 10.7 that then p ‖−P

∨
v
∧
xεa
∨
yεv Ψ(x, y); as

p ∈ G, and the statement being forced is Σ1, FT(Σ1) tells us that MP[G] |=∨
v
∧
xεã
∨
yεv Ψ(x, y), as required.

Let Φ be Π1. Suppose you have Π1-foundation in the ground model. By
(10.4.1) using ∆0-collection, that gives (∆0 ‖− Π1)-foundation there, using
which we have seen how to construct a name c for a member of the extension
that is forced to be Φ-minimal, so that Φ[c] and ∀xεc qΦ(x) are both forced
by some member of G. To complete the proof we use FT(Π1), which is free,
and FT(∆̇0Σ1), which is FT(Σ1) given ∆0-collection, and which will hold as
G meets every dense Σ1 subclass of P . 10.17

10.18. Remark. We know that ∆0-separation will hold in the extension
by the closure under basic separators. An alternative argument is to say that

(3) A comment on the notation: a is in M and is a name in the forcing for a; a is
used in the forcing language to remind us that a is not being spoken of as itself but as a
name for an as yet uncreated object; on the other hand, once the model M [G] exists we
may discuss what sentences are true in it, in terms of the usual truth predicate |= and the
associated language; ã is a name for a in that language.
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it would follow from ∆1-separation in the ground model, which fortunately
is a theorem of KP, together with TFT(∆0), which is free.

The persistence of KPI + Σ1-separation

10.19. Remark. To get Σ1-separation, we need (∆0 ‖− Σ1)-separation
in the ground model—fortunately (∆0 ‖− Σ1) formulæ are ΣKPI

1 —and
TFT(Σ1), which is available as TF(Σ1) is free, and FT(Σ1) will hold by
Σ1-separation.

A teasing question

10.20. Remark. We have seen that we can reduce the amount of sepa-
ration required to hold in M in proving the forcing theorem if, instead, we
require the generic G to meet certain dense definable classes. On the other
hand, that device apparently cannot be used to show that separation holds
in the extension where it did not hold in the ground model; which raises the
following question:

10.21. Problem. Can a set-generic extension satisfy more separation
than held in the ground model?

Here is one case, suggested by Kai Hauser in conversation, where a neg-
ative answer holds:

10.22. Proposition. Suppose that M is admissible and of the form P cθ
for some transitive set c. Let P ∈ M , and let G be (M,P)-generic. If Σ1

separation holds in M [G], then it holds in M .

Proof. Inside M [G], M is a Σ1(c) class, and so if a and b are in M , the
class a ∩ {x |x ∃y∈M Ψ(x, y, b)} is a set, d say, of M [G]. For some ν < θ,
d ∈ P cν [G]. ∀x∈d ∃ξ (∃y∈P cξ Ψ(x, y, b)), so by Σ1-collection in M [G], there is

a ζ < θ such that for z = P cζ ∈ M , d = a ∩ {x |x ∃y∈z Ψ(x, y, b)} ∈ M by
∆0-separation. 10.22

11. Definition of generic filter and extension in the ill-founded
case. In Section 6 of [M2], forcing over an ill-founded model is used to ob-
tain an independence result for H. Friedman’s theory of power admissibility;
and pages 192–193 of [M2] contain some general remarks on such forcing.
We go over some of this ground again as [M2] was written before the de-
velopment of the theory of rudimentary recursion and in any case is chiefly
concerned with set theories with the power set axiom.

11.0. Suppose we have a countable ill-founded model M = 〈M,R〉 of
PROVI, and P = (P ,≤) in M which M believes to be a separative poset.
Working in M we can, as above, define a forcing relation ‖−P.
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The definition of an (M,P)-generic F will be much as before, but let us
simplify our discussion by requiring F to meet every M-definable subclass
of P .

In the case when M is transitive, we are able to define valG(·) by a rudi-
mentary recursion; but in our present context, the model M is ill-founded,
and so prima facie we cannot carry out that recursive definition. Instead we
treat as a definition what in the transitive case was Proposition 4.5:

11.1. Definition. Define for all a and b in M the following equivalence
relation:

a ≡F b ⇔ ∃p∈F p ‖− a = b.

Let Q = QF be the set of equivalence classes. Write [a]F for the ≡F -
equivalence class of a ∈M .

Define a relation ∈F on Q by

[a]F ∈F [b]F ⇔ ∃p∈F p ‖− a ε b.

11.2. Remark. That that relation is independent of the chosen repre-
sentives a, b of their equivalence classes follows from Propositions 2.26 and
2.27 established within M.

11.3. Then Q =df (Q,∈F ) is a perfectly reasonable countable set with
a two-place relation on it, and we can ask which of the sentences of the
forcing language are true in that model when we interpret = by equality and
ε by ∈F .

The Forcing Theorem in the general case. We wish to prove, to
take the case of formulæ with two free variables, that

(Q,∈F ) |= Φ[(a)F , (b)F ] ⇔ ∃p∈F (M,R) |= p ‖− Φ[a, b].

11.4. Remark. That notation hints at a conflict of language level. We
have ∆̇0 wffs which are sets, and over the set of which we can quantify;
we are using these wffs, when their formal free variables are interpreted by
constants, in two contexts; in our current universe, for which we have a truth

definition |=0 and in the generic extension via the definition of forcing p ‖− ϕ.

To resolve that conflict for ∆̇0 wffs we should formulate the theorem
thus:

11.5. The Forcing Theorem. For M, F and Q as above, and for
every ∆̇0 formula ϕ(x, y) and a, b in M ,

(Q,∈F ) |= |=0 ϕ[(a)F , (b)F ] ⇔ ∃p∈F (M,R) |= p ‖− ϕ[a, b].

When unrestricted quantifiers are then “added by hand”, the Forcing
Theorem will extend schematically with no further problem.
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The proof will follow that for the transitive case, which relied entirely
on the fact that F meets all the necessary dense classes, and made no use
of the well-foundedness of the model under consideration.

Once that has been done, we may strengthen the ties between Q and N,
by showing that we may treat Q as an extension of N by considering the map
x 7→ [x̂]; we may also show that F is in Q, being [Ḟ ]. Here x̂ is the canonical
forcing name for the member x of the ground model, defined recursively
inside N, (using which we may define a predicate V̂ of the forcing language
for membership of the ground model) and Ḟ is the canonical forcing name
for the generic being added.

11.6. The proof given in §5 that the generic extension has no new ordi-
nals will go through in this case. So loosely we may say that the extension
Q is no more ill-founded than is the starting model M. Further, Q considers
itself to be a generic extension of M via P and F , the corresponding state-
ment about P̂ and Ḟ being forced. Hence inside Q the recursive definition
of valF : M → Q by

valF (b) = {valF (a) | ∃p∈F (p, a)2 ∈ b}

succeeds, using the predicate V̂ identifying the members of M .

11.7. Proposition. [a]F = valF (a).

Proof. Use recursion inside the ill-founded model Q of PROVI. 11.7

The author is much indebted to the anonymous referee for his meticulous
reading of the manuscript and his thoughtful comments, which will now be
addressed, on the past and possible future of work of this kind.

11.8. Historical note. Since Cohen’s creation of forcing as a con-
struction of extensions of models of full ZF, many people have examined
the possibility of forcing over models of weaker systems of set theory, to
say nothing of those who have transplanted Cohen’s ideas to other areas of
enquiry outside set theory. Forcing over admissible sets was studied briefly
by Barwise in his 1967 Stanford thesis, at greater length by Jensen in an
originally unpublished treatise [J3] on admissibility that contained a proof
of his celebrated “sequence-of-admissibles” theorem, in Steel’s 1978 paper
[St1], in Sacks’ study [Sa], and in numerous writings of Sy Friedman such
as his papers [F1] and [F2], which latter expounds inter alia that result of
Jensen. In this connection, the referee draws my attention to the paper of
Carlson [Ca] and the expositions of Ershov (the paper [E1], with a correc-
tion following a critical review by Blass; and the book [E2] which discusses
forcing over models of KPU) and of Zarach [Z2].
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Remark. Carlson [Ca] proves using constructibility and forcing argu-
ments that for many set theories T and any ∆0 formula Φ, if T + AC proves
for all x there is a unique y such that Φ(x, y) then so does T. The
results of the present paper, [MB] and [M2] show that Carlson’s theorem
will also hold for PROVI, for Z + KP, and for some other theories. Whether
it will hold for Zermelo set theory Z, for Z + PROVI or for KPP , the the-
ory of “power-admissibility” discussed in Section 6 of [M2], seem delicate
questions.

Remark. The paper of Hauser [Ha] and the as yet unpublished notes of
Steel [St2] contain explorations of forcing over transitive sets which, whilst
not required to be admissible, are nevertheless assumed to possess certain
fine-structural properties.

11.9. A paper of Feferman gave an application of forcing in the context
of second order arithmetic; this theme was developed in an expository article
of Scott, and in lectures by Jensen at the 1967 UCLA meeting. The referee
suggests that a bridge between the work of Feferman and the ideas of this
paper might result if it were to be shown, as is indeed the case, that all
axioms of PROVI are theorems of the set-theoretic variant ATRset

0 described in
[Si2, §VII.3], of the well-known system ATR0. With his permission we report
that François Dorais is investigating this question and wrote as follows on
January 11th, 2014:

If HC denotes the statement that every set is countable then PROVI + HC is bi-
interpretable with ACA+

0 and PROVI + HC + Mostowski Collapse is bi-interpretable
with ATR0. The bi-interpretations are actually very strong. Here are the precise
results, seen from the model-theoretic perspective:

(1) If V , W are two models of PROVI + HC with isomorphic (ω, P (ω), RWO),
where RWO is the class of wellorderings of ω that have ordinal-valued rank
functions, then V and W are globally isomorphic.

(2) If (N,P (N)) is a model of ACA0 and RWO is a subclass of the wellorderings
of N (as understood from within the model) which contains the usual order-
ing of N, is closed under isomorphism, initial segments, addition, and such
that arithmetic transfinite recursion is possible along any element of RWO,
then there is a model V of PROVI + HC whose (ω, P (ω), RWO) from (1) is
isomorphic to this (N,P (N), RWO).

(3) If V is a model of PROVI + HC and RWO is the class of wellorderings of ω that
have ordinal-valued rank functions, then RWO contains the usual ordering of
ω, is closed under isomorphism, initial segments, addition, and, seen as a model
of second-order arithmetic, (ω, P (ω)) satisfies arithmetic transfinite recursion
along any element of RWO. In other words, (ω, P (ω)) with RWO satisfies the
hypotheses of (2).

(4) A model (N,P (N)) of ACA0 admits a class RWO as described in (2) if and
only if (N,P (N)) satisfies ACA+

0 , in which case we can take RWO to be the
smallest class of wellorderings of N that contains the usual ordering of N and
is closed under isomorphism, initial segments and addition.
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The results for ATR0 follow in the same way by taking RWO to be the class
of all wellorderings of N or ω since the Mostowski Collapse ensures that every
wellordering has an ordinal-valued rank function. It follows that PROVI and ACA+

0

have the same proof-theoretic ordinal: the first fixed point of the epsilon function.
Similarly, PROVI + Mostowski Collapse and ATR0 have the Feferman–Schütte ordi-
nal Γ0. All of these results only assume set-foundation in PROVI ; I’m still unsure
what happens with Π1-foundation.

Something of the interplay between analysis and set theory is to be seen
in a paper of Zarach and an unpublished manuscript of Gandy.

11.10. The referee also draws attention to the use of class forcing over
admissible sets, which, it is hoped, might form the subject of a further paper.
An early paper on class forcing in the context of Morse–Kelley theory is [Ch].
Of the papers of Zarach, [Z1] cites a preprint form of [Ch]. It discusses forcing
with classes in the context of ZF-. [Z2] cites [Z1] and [Ch]: it discusses set
forcing over admissible sets and certain cases of class forcing. [Z4] cites [Z1],
[Z2] and [Z3]; it does both set and class forcing over models of ZF-. [Z3]
cites none of the above, but it might be re-read in the light of the theory of
rudimentary recursion.

A possible line of attack is this: suppose that M is a transitive model of
some class theory, so that M has members of all ranks 6 λ, where λ is a
limit ordinal. For example, in the case of Morse–Kelley, M might be Vκ+1

where κ is a strongly inaccessible cardinal. Pass to the provident closure,
N of M , as defined in [M4] and [MB]. N will be of height λω. Now the
class forcing one had in mind for M will be a member of N , and therefore
we can treat the problem as one of set forcing over the provident set N .
The attraction of this approach is that names for members of N can be
explicitly laid out, since the ordinals in N are all of the form λn+ ζ where
ζ < λ.
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