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Abstract. This paper is devoted to new algebraic structures, called qualgebras and
squandles. Topologically, they emerge as an algebraic counterpart of knotted 3-valent
graphs, just like quandles can be seen as an “algebraization” of knots. Algebraically,
they are modeled after groups with conjugation and multiplication/squaring operations.
We discuss basic properties of these structures, and introduce and study the notions of
qualgebra/squandle 2-cocycles and 2-coboundaries. Knotted 3-valent graph invariants are
constructed by counting qualgebra/squandle colorings of graph diagrams, and are further
enhanced using 2-cocycles. A classification of size 4 qualgebras/squandles and a description
of their second cohomology groups are given.

1. Introduction. A quandle is a set Q endowed with two binary oper-
ations ✁ and ✁̃ satisfying the following axioms:

self-distributivity : (a✁ b)✁ c = (a✁ c)✁ (b✁ c) RIII(1)

invertibility : (a✁ b) ✁̃ b = (a ✁̃ b)✁ b = a RII(2)

idempotence: a✁ a = a RI(3)

Since the operation ✁̃ can be deduced from ✁ using (2), we shall often omit
it from the definition. Originating from the work of topologists D. Joyce and
S. V. Matveev [18, 27], this structure can be seen as an algebraic counterpart
of knots. Indeed, consider colorings of the arcs of knot diagrams by elements
of Q, according to the rule in Figure 1 A . This coloring rule is compatible
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Fig. 1. Colorings by quandles, qualgebras and squandles
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with Reidemeister moves (Figure 3) if and only if Axioms (1)–(3) are sat-
isfied: each axiom corresponds to the Reidemeister move indicated in the
right column above. Thus the number of diagram colorings by a fixed quan-
dle defines an invariant of underlying knots and links. This invariant can
be strengthened by endowing each colored crossing with a weight, and con-
sidering the total weight of a colored diagram (Figure 4). The weights are
calculated using a quandle 2-cocycle of Q according to a procedure suggested
by Carter–Jelsovsky–Kamada–Langford–Saito [2]. From the algebraic view-
point, the quandle structure can be regarded as an axiomatization of the
conjugation operation in a group. Concretely, a group with the conjugation
operation a✁ b = b−1ab is always a quandle, and, as already noticed in [18],
all the properties of conjugation that hold in every group are consequences
of (1)–(3).

The aim of this paper is to find an algebraic counterpart of knotted
3-valent graphs (further simply called graphs for brevity) which would de-
velop quandle ideas. To this end, we introduce the qualgebra structure. It is
a quandle (Q,✁) endowed with an additional binary operation ⋄ satisfying

translation composability : a✁ (b ⋄ c) = (a✁ b)✁ c RIV(4)

distributivity : (a ⋄ b)✁ c = (a✁ c) ⋄ (b✁ c) RVI(5)

semi-commutativity : a ⋄ b = b ⋄ (a✁ b) RV(6)

Restricting oneself to poleless graphs (i.e., oriented graphs with only zip and
unzip vertices, cf. Figure 7) and extending the quandle coloring rules 1 A

to 3-valent vertices as shown in Figure 1 B , one gets rules compatible with
Reidemeister moves for graphs (Figure 5) if and only if Axioms (4)–(6) are
satisfied. Again, each axiom corresponds to one Reidemeister move (indi-
cated on the right). Imitating what was done for quandle colorings of knots,
one can thus define qualgebra coloring counting invariants for graphs. The
latter can be upgraded to weight invariants using the qualgebra 2-cocycles
introduced in this work. Qualgebra 2-cocycles consist of two maps—one for
putting weights on crossings, and one for putting weights on 3-valent ver-
tices (Figures 4 and 15); the weight of a colored diagram is obtained, as
usual, by summing everything together.

A group with the operations a✁ b = b−1ab and a ⋄ b = ab is a qualgebra.
More precisely, the additional qualgebra axioms encode the relations between
conjugation and multiplication operations in a group (Table 1). However, our
qualgebra axioms do not imply any of the standard axioms defining a group.
In particular, we shall give examples of 4-element qualgebras for which the
operation ⋄ is non-cancellative, non-associative, and has no neutral element.

Besides defining qualgebras and constructing counting and weight invari-
ants of graphs out of them, in this work we study some basic properties of
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qualgebras; give a complete classification of 4-element qualgebras (showing
that a single quandle can be the base of numerous qualgebra structures with
significantly different properties); and suggest the beginning of a qualgebra
cohomology theory, calculating in particular the second cohomology group
for 4-element qualgebras. Moreover, we compute certain qualgebra counting
and weight invariants for some pairs of graphs, showing that these graphs
can be distinguished using our methods.

In parallel with the qualgebra structure, we study the closely related
squandle structure. It is defined as a quandle (Q,✁) endowed with an addi-
tional unary operation a 7→ a2, obeying the following axioms (modeled after
the properties of conjugation and squaring operations in a group):

a✁ b2 = (a✁ b)✁ b RIV(7)

a2 ✁ b = (a✁ b)2 RVI(8)

A qualgebra with the squaring operation a2 = a⋄a is an example of squandle.
The coloring rule from Figure 1 C allows one to construct invariants of
graphs by counting squandle colorings of their diagrams; weight invariants
are obtained with the help of squandle 2-cocycles.

The terms “qualgebra” and “squandle” both come from the names of
the two operations participating in the definition of these structures, zipped
together as indicated in Figure 2.

qualgebra

quandle algebra

squandle

squaring quandle

Fig. 2. The terms “qualgebra” and “squandle”

The paper is organized as follows. The language of colorings is developed
in Section 2. It is illustrated with the famous example of quandle colorings
of knot diagrams, from which some of our further constructions are inspired.
We then turn to invariants of graphs which extend the quandle invariants
of knots. In Section 3, after a brief survey of such extensions found in the
literature, we propose a new one based on qualgebra colorings. Our invari-
ants are defined for poleless graphs only, but they are proved to induce
invariants of unoriented graphs. We further show that groups give an im-
portant source of qualgebra examples. Constructions from [15] and [5, 10, 9],
close to but different from ours, are also discussed. The notion of squandle
is introduced in Section 4, motivated by the concept of special colorings
(with isosceles qualgebra colorings as the major example here). Squandle
colorings are then used for distinguishing Kinoshita–Terasaka and standard
Θ-curves. Section 5 contains a short study of basic properties of qualgebras
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and squandles, applied to a complete classification of qualgebras/squandles
with four elements. One of the “exotic” structures obtained is next used for
distinguishing two cuff graphs. Section 6 is devoted to the notions of qual-
gebra/squandle 2-cocycles and 2-coboundaries, as well as to the induced
weight invariants of graphs. Qualgebra/squandle 2-cocycles and second co-
homology groups are calculated for 4-element structures. The last section
contains several suggestions for a further development of qualgebra ideas.

2. Coloring philosophy: the quandle example. One of the most
natural and rich sources of invariants of certain topological objects (knots,
braids, tangles, knotted graphs, knotted surfaces, etc.) is a study of their di-
agrams’ colorings. If the coloring rules are carefully chosen, one can extract
invariants of the underlying topological objects by studying such colorings—
for instance, computing their total number, or some more sophisticated char-
acteristics. In this section we develop a general framework for such coloring
invariants and illustrate it with the celebrated quandle colorings for knots.
A narrative style is preferred to a list of definitions here for better readabil-
ity. The rest of the paper is devoted to applications of these coloring ideas
to knotted 3-valent graphs.

Topological colorings, counting invariants, quandles. Let us now
fix a class of 1-dimensional diagrams on a surface (e.g., familiar knot di-
agrams in R

2). For this class of diagrams, choose several types of special
points, with the local picture of a diagram around a special point being de-
termined by the point type (crossing, points of local maximum, and graph
vertices are typical examples). These local pictures are called type patterns
(see Figure 1 for the examples of oriented crossing and 3-valent vertex pat-
terns). We want to study diagrams up to special-point-preserving isotopy,
and up to a set of local (i.e., realized inside a small ball) invertible moves,
called R-moves (the example inspiring the name is that of Reidemeister
moves for knots, see Figure 3). Diagrams related by isotopy and R-moves
are called R-equivalent. This defines an equivalence relation on the set of
diagrams, which corresponds in the cases of interest to isotopy equivalence
for the underlying topological objects.

←
RI
−→ ←

RII
−−→ ←

RIII
−−−→

Fig. 3. Reidemeister moves for knot diagrams

An arc is a part of a diagram delimited by special points. Fix a set S
(possibly with some algebraic structure), which we think of as the coloring
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set. An S-coloring of a diagram D is a map

C : A (D)→ S

from the set of its arcs to S, satisfying some prescribed coloring rules for arcs
around special points. The set of such colorings of D is denoted by CS(D).
The notion of S-coloring extends from our class of diagrams to that of
subdiagrams (for instance, those involved in an R-move) in the obvious way.
In the pictures, an arc α is often decorated with its color C(α).

Definition 2.1. S-coloring rules are topological if for any (sub)dia-
gram D, any C ∈ CS(D), and any D′ obtained from D by applying one
R-move, there exists a unique coloring C′ ∈ CS(D

′) coinciding with C out-
side the small ball where the R-move was effectuated.

Such coloring rules allow one to construct invariants under R-equiva-
lence. The most basic ones are counting invariants:

Lemma 2.2. Fix a class of diagrams, a set S, and topological S-coloring
rules. For any R-equivalent diagrams D and D′, there exists a (non-canoni-
cal) bijection between their S-coloring sets:

(9) CS(D)←
bij
−→ CS(D

′).

In particular, the function D 7→ #CS(D) (where #X ∈ N ∪∞ denotes the
size of a set X) is well-defined on R-equivalence classes of diagrams.

Thus, if R-equivalence of diagrams corresponds to the isotopy equiva-
lence for underlying topological objects, the lemma produces invariants of
these topological objects.

Proof. If D and D′ differ by a single R-move, take the bijection from the
definition of topological coloring rules. Composing these bijections, one gets
the result for the case when D and D′ differ by a sequence of R-moves.

Before giving an example of topological coloring rules, we need a con-
vention concerning orientations:

Convention 2.3. In a class of oriented diagrams, using unoriented
strands in R-moves or coloring rules means imposing these moves or rules
for all possible orientations.

Example 2.4. Consider the class of oriented knot diagrams in R
2, cross-

ings as the only type of special points, Reidemeister moves from Figure 3
as R-moves, a set Q endowed with a binary operation ✁ as the coloring set,
and Q-coloring rules from Figure 1 A . From the pioneering papers [18, 27],
these rules are known to be topological if and only if the structure (Q,✁)
is a quandle, i.e., satisfies Axioms (1)–(3) (each of which corresponds to one
Reidemeister move). A typical example consists of a group G with the con-
jugation operation a ✁ b = b−1ab, called a conjugation quandle. Counting
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invariants for such colorings even by simplest finite quandles Q appear to be
powerful and efficiently computable. Moreover, they are easily generalized
to the diagrams of links and tangles, as well as to their virtual versions.

Weight invariants and quandle 2-cocycles. Let us return to the
general setting of a class of diagrams endowed with topological S-coloring
rules. Counting invariants are far from exploiting the full potential of bijec-
tion (9). The following concept allows one to extract more information out
of (9). Here and below, A is an abelian group (e.g., A = Z or A = Zp).

Definition 2.5. A weight function ω is a collection of maps, one for
each type of special points on our class of diagrams, associating an element
of A to any S-colored pattern of the corresponding type. The ω-weight of
an S-colored (sub)diagram (D, C), denoted by Wω(D, C), is the sum of the
values of ω on all its special points (we suppose the number of the latter to
be finite). The weight function ω is called Boltzmann if for any R-move,
the ω-weights of the two subdiagrams involved, S-colored correspondingly
(in the sense of Definition 2.1), coincide.

Boltzmann weight functions allow one to upgrade counting invariants to
what we call here weight invariants:

Lemma 2.6. Fix a class of diagrams, a set S, topological S-coloring
rules, and a Boltzmann weight function ω. Then the multi-sets of ω-weights
of any R-equivalent diagrams D and D′ coincide:

(10) {Wω(D, C) | C ∈ CS(D)} = {Wω(D
′, C′) | C′ ∈ CS(D

′)}.

In particular, restricted to the diagrams D for which the set CS(D) is finite,
the function

D 7→
∑

C∈CS(D)

tWω(D,C) ∈ Z[t±1]

is well-defined on R-equivalence classes of diagrams.

Proof. If D and D′ differ by a single R-move, then Definition 2.1 de-
scribes a bijection between CS(D) and CS(D

′) such that the corresponding
colorings C and C′ differ only in small balls where the R-move is effectu-
ated; Definition 2.5 then givesWω(D, C) =Wω(D

′, C′), implying the desired
multi-set equality. Iterating this argument, one gets the result for the case
when D and D′ differ by several R-moves.

Example 2.7. Continuing Example 2.4, take a map χ : Q × Q → A
and consider a weight function, still denoted by χ, that depends only on
two of the colors around a crossing, as shown in Figure 4. In [2] this weight
function was shown to be Boltzmann if and only if it satisfies the following
axioms for all elements of Q (corresponding, respectively, to moves RIII and
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RI; RII is automatic here):

χ(a, b) + χ(a✁ b, c) = χ(a✁ c, b✁ c) + χ(a, c),(11)

χ(a, a) = 0.(12)

Moreover, these conditions were interpreted as the definition of 2-cocycles
from the celebrated quandle cohomology theory. In this theory, any map
ϕ : Q→ A defines a 2-coboundary via

χϕ(a, b) = ϕ(a✁ b)− ϕ(a),(13)

with Wχϕ vanishing on all Q-colored knot diagrams.

a b

b a✁ b

7→ χ(a, b)

b a✁ b

bab b

7→ −χ(a, b)

Fig. 4. Quandle 2-cocycle weight function for knot diagrams

Weight invariants of knots constructed out of quandle 2-cocycles are
known as quandle cocycle invariants. They are even more efficient than
quandle counting invariants, since the same small quandle can admit various
2-cocycles. Moreover, they are strictly stronger than quandle counting in-
variants since, unlike the latter, they can distinguish a knot from its mirror
image. See [2, 3, 4, 13, 19, 29] and the references therein for more details.

3. Qualgebra coloring invariants of knotted 3-valent graphs.

We now turn to our main object of study, the knotted 3-valent graphs
(i.e., embeddings of abstract 3-valent graphs into R

3) and their diagrams
in R

2; see Figures 13–14 for examples. We often use the word “graph” instead
of “knotted 3-valent graph” for brevity. Two types of special points are rele-
vant for graph diagrams: crossings and graph vertices. In 1989, L. H. Kauff-
man, S. Yamada, and D. N. Yetter independently [21, 31, 32] showed that
the Reidemeister moves for knots (Figure 3), together with the three moves
from Figure 5, describe graph isotopy in R

3. We choose these six moves as
R-moves; R-equivalence classes of graph diagrams thus correspond to isotopy
classes of represented graphs.

←
RIV
−−→ ←

RIV
−−→ ←

RIV
−−→

Fig. 5. Additional Reidemeister moves for knotted 3-valent graphs (note that the names
of moves visually resemble the diagrams involved)

Since quandles worked so well for knots, we would like to use a quandle
(Q,✁) as the coloring set in the generalized setting of graphs as well. This
section is thus devoted to the following question:
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Question 3.1. Can one extend the Q-coloring rule from Figure 1 A to
3-valent vertices so that the resulting coloring rules for graphs are topolog-
ical?

After a discussion of existing answers, we shall propose a new one. The
coloring rule around crossings will always be that from Figure 1 A ; hence
we shall often omit it, and restrict our attention to vertices.

Colorings for graphs: existing approaches. Required coloring rules
are easy to define geometrically for a conjugation quandle (G, a✁b = b−1ab).
Choose a basepoint p “in front of” a diagram D of an oriented graph Γ . Con-
sider the Wirtinger presentation of the graph group π1(R

3 \ Γ ; p) with one
generator θα for each arc α of D, as shown in Figure 6 A . An (evident)
relation is imposed on the generators around each special point. A represen-
tation of π1(R

3\Γ ; p) in G is a map P from {θα | α ∈ A (D)} to G respecting
these relations, which is equivalent to the map C : α 7→ P(θα) being a col-
oring with respect to the coloring rules from Figures 1 A and 6 B (where
a color or its inverse is chosen according to the arc being directed from or
to the graph vertex). The coloring rules are topological, as can be seen via
this graph group representation interpretation, or by direct verification. For
any diagram D of Γ , one gets a bijection

CG(D)←
bij
−→ Hom(π1(R

3 \ Γ ), G).

These conjugation quandle colorings for graphs can be generalized in
several ways. In 2010 M. Niebrzydowski [28] extended the rules from Fig-
ure 6 B to general quandles, as shown in Figure 6 C (we use the notation
✁

+ = ✁, ✁− = ✁̃; the choice in ± depends, as usual, on orientations).
Another approach was recently proposed by A. Ishii [15]. He considered a
quandle operation ✁ on a disjoint union of groups X =

⊔
iGi, which is the

conjugation when restricted to each Gi, and which satisfies some additional
conditions. This structure is called a multiple conjugation quandle (MCQ).
It includes as particular cases the usual conjugation quandles and G-families
of quandles, defined in 2012 by Ishii–Iwakiri–Jang–Oshiro [16]. The color-
ing rule from Figure 6 B , where one requires a, b, and c to lie in the same
group Gi, is topological for MCQ.

p
α

θα
A

a b

c
c±1b±1a±1 = 1

B

a b

c

∀x ∈ Q,

((x✁
± c)✁± b)✁± a = x

C

Fig. 6. Possible extensions of quandle colorings to graph diagrams
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Poleless 3-valent graphs. The coloring rule we introduce in this work
is another generalization of conjugation quandle colorings of graphs to a
broader class of quandles. It is defined for graphs oriented in a special way:

Definition 3.2. An abstract or knotted oriented 3-valent graph is called
poleless if it has only zip and unzip vertices (Figure 7).

In other words, one forbids source and sink vertices.

zip unzip

Fig. 7. Zip and unzip vertices for 3-valent graphs

For poleless graph diagrams, some of the R-moves can be discarded using
the so-called Turaev’s trick (see also [30] for a careful study of minimal
generating sets of Reidemeister moves in the knot case):

Lemma 3.3. Reidemeister moves IV–VI with orientations as in Fig-
ure 8, together with all oriented versions of moves RI–RIII, imply all re-
maining poleless versions of moves RIV–RVI.

←
RIV

z

−−→ ←
RIV

u

−−−→ ←
RV

z

−−→

←
RV

u

−−→ ←
RVI

z

−−→ ←
RVI

u

−−−→

Fig. 8. Reidemeister moves for poleless graph diagrams (superscripts z and u refer to the
zip or unzip vertex involved in the move)

Proof. Moves RIVu and RVu for certain alternative orientations are
treated in Figure 9; other moves and orientations are dealt with in a similar
way.

←
RII
−−→ ←

RIV
u

−−−→ ←
RII
−−→

←
RIV

u

−−−→ ←
RI
−→ ←

RV
u

−−−→ ←
RII
−−→

Fig. 9. Reidemeister moves RIVu and RVu for alternative orientations

Although our orientation restriction prevents one from working with ar-
bitrary oriented graphs, unoriented graphs can be treated as follows:
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Proposition 3.4. Any 3-valent graph admits a poleless orientation.

Proof. Take an abstract unoriented graph Γ with vertices of odd valency.
A path is a sequence of pairwise distinct edges e1, . . . , ek, the endpoints
(si, ti) of each ei being ordered, such that ti and si+1 coincide for each
1 ≤ i < k. Choose a maximal path γ in Γ—i.e., γ is not a subpath of
any longer path. Delete the edges of γ from Γ , and then delete all the
resulting isolated vertices. One gets a graph Γ \ γ, whose vertices are still
of odd valency. Indeed, the valency subtracted from internal vertices of γ is
even (since we enter and leave them the same number of times); as for the
first and last vertices, their full valencies are subtracted (otherwise γ would
be extendible, and thus not maximal), so they are deleted. Now let Γ be
3-valent. Iterating the argument above, one presents Γ as a disjoint union
of paths, with each vertex occurring at least once as a ti = si+1. Orient each
edge ei in each path from si to ti. One gets a poleless orientation of Γ .

Thus, in order to compare two unoriented graphs, it is sufficient to com-
pare the sets of their poleless oriented versions.

A new coloring approach via qualgebras. Now, for poleless graph
diagrams, consider the coloring rule from Figure 1 B , where ⋄ is a second
binary operation on the quandle (Q,✁). Trying to render these rules topo-
logical, one arrives at our central notion:

Definition 3.5. A set Q endowed with two binary operations ✁ and ⋄
is called a qualgebra if it satisfies Axioms (1)–(6).

The term “qualgebra” comes from terms “quandle” and “algebra” zipped
together, as shown in Figure 2. It underlines the presence of two interacting
operations in this structure.

Remark 3.6. Our definition can be recast in a more structural way.
Consider a set Q with binary operations ✁ and ⋄, and define an operator

σ✁ : Q×Q→ Q×Q, (a, b) 7→ (b, a✁ b).

Then (Q,✁, ⋄) is a qualgebra if and only if (Q, σ✁, ⋄) is a braided algebra
which is braided-commutative but not necessarily associative, and such that
the Yang–Baxter operator σ✁ preserves the diagonal of Q. For precise defi-
nitions, see for instance [26].

Observe that Axiom (1) is a consequence of (4) and (6):

(a✁ b)✁ c
(4)
= a✁ (b ⋄ c)

(6)
= a✁ (c ⋄ (b✁ c))

(4)
= (a✁ c)✁ (b✁ c).

In what follows, we will include or omit this axiom according to our needs.

For further reference, let us also note the compatibility relations between
the operations ⋄ and ✁̃.
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Lemma 3.7. A qualgebra (Q,✁, ⋄) enjoys the following properties:

a ✁̃ (b ⋄ c) = (a ✁̃ c) ✁̃ b,(14)

(a ⋄ b) ✁̃ c = (a ✁̃ c) ⋄ (b ✁̃ c),(15)

(a ✁̃ b) ⋄ b = b ⋄ a.(16)

Proof. Let us show (14), the proof for the remaining relations being
similar. Applying (4) to the elements a ✁̃ (b ⋄ c), b, and c, one gets

(a ✁̃ (b ⋄ c))✁ (b ⋄ c) = ((a ✁̃ (b ⋄ c))✁ b)✁ c.

The left-hand side equals a by (2). Now, apply the map x 7→ (x ✁̃ c) ✁̃ b to
both sides:

(a ✁̃ c) ✁̃ b = ((((a ✁̃ (b ⋄ c))✁ b)✁ c) ✁̃ c) ✁̃ b.

Using (2) for the right-hand side this time, one obtains (14).

Now, returning to colorings of graphs, one gets

Proposition 3.8. Take a set Q endowed with two binary operations ✁

and ⋄. The coloring rules from Figure 1 A & B are topological if and only if
(Q,✁, ⋄) is a qualgebra.

Proof. The equivalence between the compatibility of the coloring rule 1 A

with Reidemeister moves I–III on the one hand, and Axioms (1)–(3) on the
other hand, was discussed in Example 2.4. Let us turn to the remaining
three moves, with orientations from Lemma 3.3. Analyzing move RIVz (Fig-
ure 10), one notices that on each side the three colors on the top completely
determine all the remaining colors, in particular the colors on the bottom.
Then, the coloring bijection from Definition 2.1 occurs if and only if the
induced bottom colors coincide on the two sides, which is equivalent to Ax-
iom (4). An analogous argument shows that for move RIVu, the coloring
bijection is equivalent to Axiom (14), which, in the presence of (2), is the
same as (4) (cf. the proof of Lemma 3.7).

a b c

b ⋄ c

b ⋄ c

a✁ (b ⋄ c)

←
RIV

z

−−−→

a b c

b ⋄ c (a✁ b)✁ c

a✁ b

Fig. 10. Qualgebra axioms via coloring rules for graph diagrams

Similarly, one checks that for both the zip and unzip versions of RVI (or RV)
the coloring bijection is equivalent to Axiom (5) (respectively, (6)).
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Remark 3.9. We could have used distinct operations ⋄z and ⋄u for
coloring rules around zip and unzip vertices. However, our simplified choice
already produces powerful invariants; moreover, it is natural if one thinks
in terms of generalizations of (multiple) conjugation quandle colorings of
graphs.

Lemma 2.2 now yields qualgebra coloring invariants for graphs:

Corollary 3.10. Take a qualgebra (Q,✁, ⋄), and consider the Q-colo-
ring rules from Figure 1 A & B . The quantity #CQ(D) does not depend on
the choice of a diagram D representing a poleless 3-valent knotted graph Γ .

Proof. Proposition 3.8 guarantees that the coloring rules in question
are topological. Lemma 2.2 then tells us that the function D 7→ #CQ(D)
is well-defined on R-equivalence classes of diagrams, which, according to
[21, 31, 32], correspond to isotopy classes of graphs.

One thus gets a systematic way of producing invariants of poleless (or
unoriented, cf. Proposition 3.4) graphs.

Group qualgebras. We now show that groups form an important
source of qualgebras, playing also a significant motivational role.

Example 3.11. A conjugation quandle together with the group multi-
plication a ⋄ b = ab is a qualgebra, called a group qualgebra. The coloring
rule from Figure 1 B repeats in this case the rule from Figure 6 B . Thus
the graph invariants constructed using qualgebra colorings generalize those
obtained from graph group representations.

While from the topological perspective quandle axioms (1)–(3) can be
viewed as algebraic incarnations of Reidemeister moves for knots, from the
algebraic viewpoint they are often interpreted as an axiomatization of the
conjugation operation in a group. Concretely, if a relation involving only
conjugation holds in every group, then it can be deduced from the quandle
axioms; this follows from the inclusion of the free quandle on a set X into
the free group on X, described for example in [18, 7]. In a similar way, as
shown in the (proof of) Proposition 3.8, topologically additional qualgebra
axioms (4)–(6) can be regarded as algebraic incarnations of specific R-moves
for 3-valent graphs. Algebraically, they encode major relations between con-
jugation and multiplication operations in a group (cf. Table 1).

Table 1. Different viewpoints on quandles and qualgebras

abstract level quandle axioms specific qualgebra axioms

group level conjugation conjugation/multiplication
interaction

topological level moves RI–RIII moves RIV–RVI
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Remark 3.12. In contrast to what happens for quandles, not all the
conjugation/multiplication relations in a group are captured by the qualge-
bra structure. For instance, the relation

(b✁ a) ⋄ (a✁ b) = ((a ✁̃ b)✁ a) ⋄ b

holds in any group (both sides equal a−1bab−1ab). However, in [23] it is
shown not to follow from qualgebra axioms (4)–(6). This is done by inspect-
ing the free qualgebra on a set.

Example 3.13. New examples of qualgebras can be derived by consid-
ering subqualgebras of given qualgebras. In the case of group qualgebras,
these are simply subsets closed under conjugation and multiplication oper-
ations, but not necessarily under taking inverse. For instance, the positive
integers N form a subqualgebra of the group qualgebra of integers Z.

Note that subqualgebras of group qualgebras do not necessarily contain
the neutral element or inverses. However, they clearly remain associative:

Definition 3.14. A qualgebra (Q,✁, ⋄) is called associative if the op-
eration ⋄ is such, i.e., if for all elements of Q one has

(17) (a ⋄ b) ⋄ c = a ⋄ (b ⋄ c).

Examples of non-associative qualgebras will be given in Section 5, show-
ing that group qualgebras and their subqualgebras are far from covering all
qualgebra examples.

Related constructions and “qualgebraizability”. Our choice of
qualgebra axioms was dictated by the desired applications to graph invari-
ants. It gave an extremely rich structure. For instance, in Section 5 we will
meet some exotic qualgebras with very “non-group-like” properties. Here we
mention some related structures from the literature, appearing in different
frameworks and exhibiting dissimilar properties.

First, observe that the associativity, absent from our topological pic-
ture, becomes relevant for handlebody-knots [14]. In particular it appears,
together with some of our qualgebra axioms, in A. Ishii’s definition of mul-
tiple conjugation quandle, which is tailored for producing handlebody-knot
invariants. Algebraically, MCQs inherit many properties of groups, since
they are formed by gluing several groups together.

Besides the topological and algebraic settings described above, Axioms
(4)–(6) emerge in a completely different set-theoretic context. Namely, to-
gether with the associativity of ⋄ and the existence of a neutral element 1
for ⋄ satisfying 1 ✁ a = 1 and a ✁ 1 = a for all a ∈ Q, they define a
(right-)distributive monoid (or, in other sources, RD algebra). Elementary
embeddings, Laver tables, and extended braids admit rich RD monoid struc-
tures, motivating an extensive study of this concept (cf. [5, 10, 11, 6], or
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[7, Chapter XI] for a comprehensive exposition). A weaker augmented
(right-)distributive system structure of P. Dehornoy obeys only Axioms (1),
(4), and (5); the major example here is that of parenthesized braids [8, 9].
Qualgebras are particular cases of augmented RD systems.

We finish with some remarks concerning the relations between quandle
and qualgebra structures. Any quandle can be embedded (as a subquandle)
into a qualgebra [23]. Further, some quandles can be upgraded to qualgebras
using several different operations ⋄ (cf. Section 5 for examples). Here we give
an example of a family of quandles which cannot be turned into qualgebras,
and of a quandle admitting exactly one compatible operation ⋄.

Example 3.15. A dihedral quandle is the set Z/nZ endowed with the
operation a ✁ b = 2b − a (modn). Suppose that Z/nZ is endowed with a
second operation ⋄ satisfying (4). Then for all a, b, c ∈ Z/nZ, the element
(a✁ b)✁ c = 2c− 2b+ a would coincide with a✁ (b ⋄ c) = 2(b ⋄ c)− a, thus
2a = 2(b ⋄ c)− 2c+ 2b would not depend on a, which is impossible if n 6= 2.

Example 3.16. Consider the conjugation quandle of the symmetric
group S3. As usual, the operation a ⋄ b = ab turns it into a group quandle.
Let us show that this is the only qualgebraization of this quandle. Indeed,
Axiom (4) imposes the values of (12) ✁ (a ⋄ b) and (123) ✁ (a ⋄ b) for all
a, b ∈ S3; it remains to show that the values (12)✁x and (123)✁x uniquely
identify an x ∈ S3. This follows by direct computations:

(12)✁ x =





(12) if x ∈ {Id, (12)},

(23) if x ∈ {(132), (13)},

(13) if x ∈ {(123), (23)};

(123)✁ x =

{
(123) if x ∈ {Id, (123), (132)},

(213) if x ∈ {(12), (23), (13)}.

4. Isosceles colorings and squandles. In concrete situations, one
sometimes has to deal with pairs of graphs for which the Q-coloring count-
ing invariants from Corollary 3.10 coincide for certain qualgebras Q, but
which can be distinguished if only a particular kind of colorings is taken
into account. After a short survey of the development of such special col-
oring ideas in the literature, we introduce a particular kind of qualgebra
colorings, allowing one to distinguish, for instance, the two theta-curves
from Figure 13.

Special colorings. Start with group coloring rules for arbitrary ori-
ented graphs (Figures 1 A and 6 B ). The most natural particular kind of
corresponding colorings is the one where the colors of arcs adjacent to the
same vertex coincide, up to taking inverse. This means using the coloring rule
from Figure 11 A , where color a should be chosen for arcs oriented from the
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vertex, and color a−1 for the remaining ones. Such colorings can be traced
back to C. Livingston’s 1995 study of vertex constant graph groups [24].
These ideas were generalized in 2007 by T. Fleming and B. Mellor [12] to
the case of symmetric quandle. The latter is a quandle Q endowed with a
good involution, i.e., a map ρ : Q→ Q satisfying, for all elements of Q,

ρ(ρ(a)) = a,(18)

ρ(a)✁ b = ρ(a✁ b),(19)

a✁ ρ(b) = a ✁̃ b.(20)

Symmetric quandles were defined by S. Kamada [20]. The basic example is
our favourite conjugation quandle, with ρ(a) = a−1. Now, for a symmetric
quandle Q, Fleming–Mellor’s coloring rule for graphs is presented in Fig-
ure 11 B ; the notation a+1 = a, a−1 = ρ(a) is used here, and the choice
in ±1 is controlled by the same rule as for group colorings. This rule gener-
alizes that from Figure 11 A , and the corresponding colorings can be seen
as special among the quandle colorings in the sense of 6 C . To see that one
gets topological coloring rules, it suffices to verify that a special coloring
remains so after an R-move and the corresponding coloring change (cf. the
proof of Proposition 4.2). In 2010, M. Niebrzydowski [28] further generalized
these ideas to an arbitrary quandle case.

a±1 a±1

a±1

a3 = 1

A

a±1 a±1

a±1

∀x ∈ Q,

((x✁ a)✁ a)✁ a = x

B

a a

a ⋄ a a a

a ⋄ a

C

Fig. 11. Examples of special coloring

Isosceles colorings. We now return to qualgebra colorings for pole-
less graphs. The class of special colorings we propose to study here is the
following:

Definition 4.1. Take a qualgebra (Q,✁, ⋄) and a Q-colored poleless
graph diagram (D, C). A 3-valent vertex of D is called C-isosceles if C assigns
the same colors to its two adjacent co-oriented arcs. The coloring C itself is
called isosceles if all vertices of D are C-isosceles.

In other words, working with isosceles colorings means considering col-
oring rule 11 C .

Proposition 4.2. Given a qualgebra (Q,✁, ⋄), the coloring rules from
Figures 1 A and 11 C are topological.

Proof. Since isosceles colorings are particular instances of those from
Proposition 3.8, which are controlled by topological rules, it suffices to check
that an isosceles coloring remains so after an R-move and the corresponding
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coloring change. For moves RI–RIII and RV this is obvious, since they do not
change the colors around isosceles trivalent vertices. Move RVIu is treated in
Figure 12: the top three colors determine all the remaining ones (note that

a b c

c

a ⋄ b

(a ⋄ b) ✁̃ c

←
RVI

u

−−−→

a b c

c

b ✁̃ c

a ✁̃ c

(a ✁̃ c) ⋄ (b ✁̃ c)

Fig. 12. Reidemeister move VIu and induced colorings

the bottom colors coincide due to (15)), and for any of the two diagrams,
being isosceles means satisfying a = b (since the map x 7→ x✁̃c is a bijection
on Q). Moves RVIz and RIV are treated similarly.

Corollary 4.3. Take a qualgebra (Q,✁, ⋄). An invariant of poleless
3-valent knotted graphs can be constructed by assigning to such a graph the
number of isosceles Q-colorings #C iso

Q (D) of any of its diagrams D.

Example 4.4. The Kinoshita–Terasaka Θ-curve ΘKT and the standard
Θ-curve Θst (Figure 13) often serve as a litmus test for new graph invariants.
One of the reasons is the following: when any edge is removed from ΘKT,
the remaining two form the unknot, just as for Θst; however, the three
edges of ΘKT are knotted, in the sense that ΘKT is not isotopic to Θst.
These “partial unknottedness” phenomena are of the same nature as those
exhibited by the Borromean rings.

x x x ⋄ x

Θst

x

x

x ⋄ x

y ⋄ y y

y

a

b

c

ΘKT

Fig. 13. Isosceles colorings for diagrams of standard and Kinoshita–Terasaka Θ-curves

Now, for these two Θ-curves, consider the isosceles Q-colorings of their
diagrams DKT and Dst, depicted in Figure 13. The diagram Dst (as well as
all the other poleless versions of the underlying unoriented diagram) has #Q
isosceles Q-colorings: the co-oriented arcs can be colored with any color x,
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and the remaining arc gets the color x⋄x. As for DKT, the coloring rule 11 C

around 3-valent vertices is taken into consideration in Figure 13, and the
rule 1 A around crossings gives the relations

(∗)





a = x✁ (y ⋄ y) = y ✁ x,

b = x ✁̃ y = y ✁̃ (x ⋄ x),

c = (y ⋄ y)✁ x = (x ⋄ x) ✁̃ y.

Thus, #C iso
Q (DKT) is the number of solutions of (∗) in x and y. For any q ∈Q,

one has a solution x = y = q (cf. Lemma 5.10). In order to find other isosceles
colorings of DKT, let us try the simplest case of a group qualgebra Q and
of its order 3 elements x and y. System (∗) is now equivalent to a single
equation xyx = yxy. In the symmetric group S4, distinct order 3 elements
x = (123) and y = (432) give a solution. One obtains

#C
iso
S4

(DKT) > #S4 = #C
iso
S4

(Dst).

Since, as mentioned above, #C iso
S4

(Dst) is the same for all poleless versions
of Dst, one concludes that ΘKT and Θst are distinct as unoriented graphs.

A variation of qualgebra ideas. Restricting our attention to isosceles
colorings only, we do not exploit the whole structure of qualgebra. Indeed,
the only values of a ⋄ b we need are those for a = b. In other words, we use
only the “squaring” part ς : a 7→ a ⋄ a of the operation ⋄. Pursuing this
remark, we consider unary operations ς for which the coloring rule 1 C is
topological:

Definition 4.5. A set Q endowed with a binary operation ✁ and a
unary operation ς (which we often denote by a 7→ a2) is called a squandle if
it satisfies Axioms (1)–(3) and (7)–(8).

The term “squandle” (similarly to the term “qualgebra”) comes from
terms “square” and “quandle” zipped together, as in Figure 2.

Let us also note the compatibility relations between ς and ✁̃:

Lemma 4.6. A squandle (Q,✁, ς) enjoys the following properties:

a ✁̃ b2 = (a ✁̃ b) ✁̃ b,(21)

a2 ✁̃ b = (a ✁̃ b)2.(22)

Example 4.7. A qualgebra (Q,✁, ⋄) gives rise to a squandle (Q,✁, ς :
a 7→ a ⋄ a). Moreover, the subsquandles of the latter (which are not neces-
sarily subqualgebras) can be of interest. In particular, conjugation and the
squaring operation a 7→ a2 in a group turn it into a squandle, called a group
squandle. Axioms (7)–(8) can now be seen as an abstraction of the relations
between conjugation and squaring in a group.
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Now, considering squandle colorings, one gets the following results, with
the statements and proofs analogous to the qualgebra case:

Proposition 4.8. Take a set Q endowed with a binary operation ✁ and
a unary operation ς. The coloring rules from Figure 1 A & C are topological
if and only if (Q,✁, ς) is a squandle.

Corollary 4.9. Take a squandle (Q,✁, ς) and consider the Q-coloring
rules 1 A & C . The (possibly infinite) quantity #CQ(D) does not depend on
the choice of a diagram D representing a poleless 3-valent knotted graph Γ .

Example 4.10. Let us resume Example 4.4. In the symmetric group S4,
consider the subset S3

4 of cycles of length 3. It contains eight elements,
and it is closed under conjugation and squaring. Hence S3

4 is a size 8 sub-
squandle of the group squandle of S4 (but not a subqualgebra, since it
does not contain Id = (123)3). Calculations from Example 4.4 show that
#CS3

4

(Dst) = #S3
4 = 8, and that #CS3

4

(DKT) is the number of solutions of
xyx = yxy in S3

4 . Now, for any x, the pair (x, x) is a solution, while (x, x−1)
is not. Further, we have seen that the cycles (123) and (432) form a solu-
tion, and one checks that (123) and (423) do not. A conjugation argument
allows one to conclude that for a fixed x0, precisely half of the pairs (x0, y)
are solutions, which totals to #CS3

4

(DKT) = 8 · 4 = 32. Thus, although
this example gives nothing new about the graphs ΘKT and Θst (the group
qualgebra of S4 was sufficient to distinguish them), it does show that with
squandle colorings, actual computation of counting invariants can be much
easier.

5. Qualgebras and squandles with four elements. In this section
we completely describe qualgebras and squandles with four elements, dis-
covering abundant examples even in such a small size.

General properties. Some general facts about qualgebras and squan-
dles are first due.

Notation 5.1. Given a quandle (Q,✁) (in particular, a qualgebra or a
squandle) and an a ∈ Q, denote by Sa the right translation map x 7→ x✁ a.
These maps are written on the right of their arguments: (x)Sa = x✁ a.

Most axioms of quandle-like structures can be expressed in terms of these
right translations, allowing one to work with symmetric groups instead of
abstract structures. This approach was extensively used for quandles in [25].
Here we apply similar ideas to qualgebras and squandles.

Definition 5.2. Amap between two qualgebras/squandles f : Q→ R is
called a qualgebra/squandle morphism if it respects the qualgebra/squandle
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structure, in the sense of

f(a✁Q b) = f(a)✁R f(b), f(a ⋄Q b) = f(a) ⋄R f(b) (or f(a2) = f(a)2).

Lemma 5.3. Given a qualgebra (Q,✁, ⋄) or a squandle (Q,✁, ς), the map

S : Q→ Aut(Q), a 7→ Sa,(23)

is a well-defined qualgebra/squandle morphism from Q to Aut(Q), the lat-
ter being the group qualgebra/squandle of the group of qualgebra/squandle
automorphisms of Q.

Proof. We prove the assertion for qualgebras; the one for squandles is
analogous. One should first show that any Sa is a qualgebra automorphism.
Indeed, it is invertible due to Axiom (2), its inverse S−1

a being the map
x 7→ x ✁̃ a, and it respects ✁ and ⋄ due to (1) and (5) respectively.

It remains to prove that S is a qualgebra morphism. The relation Sa⋄b =
S(a)S(b) directly follows from (4). Next, for any x ∈ Q one calculates

(x)Sa✁b = x✁ (a✁ b) = ((x ✁̃ b)✁ b)✁ (a✁ b) = ((x ✁̃ b)✁ a)✁ b

= (((x)S−1
b )Sa)Sb = (x)(Sa ✁ Sb)

(we have used quandle axioms (1)–(3) and the definition of ✁ as conjugation
in the group qualgebra Aut(Q)). Hence Sa✁b = S(a)✁ S(b).

Lemma 5.4. For a finite qualgebra Q, the image S(Q) of the map (23)
is a subgroup of Aut(Q).

Proof. Since S is a qualgebra morphism (Lemma 5.3), its image S(Q)
is a subqualgebra of the group qualgebra Aut(Q), which is finite since Q is
finite. Let us now show that, in general, a non-empty finite subqualgebra R
of a group qualgebra G is in fact a subgroup. Indeed, R is closed under
product since it is a subqualgebra; it contains the unit 1 of the group G
since 1 = ap, where a is any element of R and p is its order in G; and it
contains all the inverses, since, with the previous notation, a−1 = ap−1.

Below we will see that this lemma can be false for squandles.

In a study of a qualgebra or squandle, the understanding of its local
structure can be useful.

Notation 5.5. Take a qualgebra or a squandle Q and an a ∈ Q.

• The subqualgebra/subsquandle of Q generated by a is denoted by Qa.
• The set of fixed points x of Sa (i.e., (x)Sa = x) is denoted by Fix(a).
• The set of elements x of Q fixing a (in the sense that (a)Sx = a) is
denoted by Stab(a).

Lemma 5.6. Take a qualgebra/squandle Q, and an a ∈ Q. Both sets
Fix(a) and Stab(a) are subqualgebras/subsquandles of Q containing Qa.
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Proof. Fix(a) is a subqualgebra/subsquandle of Q since Sa is a qual-

gebra/squandle automorphism ofQ. As for Stab(a), note that the set S̃tab(a)
of the maps in Aut(Q) fixing a is a subgroup of Aut(Q), hence also a sub-

qualgebra/subsquandle, so Stab(a), which is its preimage S−1(S̃tab(a)) un-
der the qualgebra/squandle morphism S, is a subqualgebra/subsquandle
of Q (cf. Lemma 5.3). Further, both Fix(a) and Stab(a) contain a by the
idempotence axiom (3). Since they are subqualgebras/subsquandles of Q,
they have to include the whole Qa.

Lemma 5.7. Endow a set Q with the trivial quandle operation a✁0b = a.
Then any unary operation ς completes it to a squandle. Further, a binary
operation ⋄ completes it to a qualgebra if and only if ⋄ is commutative.

Proof. With the trivial quandle operation, all qualgebra and squandle
axioms automatically hold true except for (6), which is equivalent to the
commutativity of ⋄.

Definition 5.8. The qualgebras/squandles from the lemma above are
called trivial.

Colorings by trivial qualgebras/squandles do not distinguish over- and
under-crossings, hence the corresponding counting invariants can capture
only the underlying abstract graph and not the way it is knotted in R

3.
However, weight invariants can be sensible to the knotting information even
for trivial structures.

Proposition 5.9. A non-trivial qualgebra or squandle has ≥ 4 ele-
ments.

Proof. Let a be an element of a qualgebra/squandle Q defining a non-
trivial right translation map Sa. Then Sa2 = S2a 6= Sa, so Fix(a) contains
elements a 6= a2 (cf. Lemma 5.6). Further, since Sa ∈ Aut(Q) is not the
identity, ≥ 2 elements of Q lie outside Fix(a). Altogether, one gets ≥ 4
elements.

We finish by showing that every qualgebra/squandle is “locally trivial”:

Lemma 5.10. Take a qualgebra (Q,✁, ⋄) or a squandle (Q,✁, ς), and an
a ∈ Q. The subqualgebra/subsquandle Qa of Q generated by a is trivial. In
the qualgebra case, the restriction of operation ⋄ to Qa is commutative.

Proof. Lemma 5.6 shows that every x ∈ Qa fixes a. Thus, the set
Fix(x) contains a; but, being a subqualgebra/subsquandle of Q (again by
Lemma 5.6), it contains the whole Qa. The triviality of ✁ restricted to Qa

follows. The commutativity of ⋄ on Qa now follows from Lemma 5.7.
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Classification of qualgebras of size 4. Since trivial qualgebras/squan-
dles were completely described in Lemma 5.7, only non-trivial structures are
studied in the remainder of this section.

We start with a full list of non-trivial qualgebra structures on a 4-element
set P = {p, q, r, s} (up to isomorphism). Our description uses the involution

(24) (p)τ = q, (q)τ = p, (r)τ = r, (s)τ = s.

Proposition 5.11. The operations

x✁ r = (x)τ, x✁ y = x if y 6= r;

r ⋄ r = s, r ⋄ x = x ⋄ r = r if x 6= r,

s ⋄ s = s, q ⋄ s = s ⋄ q ∈ {p, q, s}, p ⋄ s = s ⋄ p = (q ⋄ s)τ,

p ⋄ q = q ⋄ p = s, q ⋄ q ∈ {p, q, s}, p ⋄ p = (q ⋄ q)τ

define a qualgebra structure on the set P for any choices of q ⋄ s and q ⋄ q in
{p, q, s}. The nine structures thus obtained are pairwise non-isomorphic, and
describe, up to isomorphism, all non-trivial qualgebras with four elements.

To better feel the qualgebra structures from the proposition, think of the
element r as the rotation p↔ q, and of s as the square (of r).

Proof. Fix a qualgebra structure on P . Observe first that for any x ∈ P ,
one has #Fix(x) ≥ 2. Indeed, otherwise the subqualgebra Px generated
by x, which is contained in Fix(x) due to Lemma 5.6, would consist of x
itself only, and so, according to Lemma 5.3, S({Px}) = {Sx} would be a
1-element subqualgebra of Aut(P ) ⊆ S4, which is possible only if Sx = Id,
giving #Fix(x) = 4.

Now, the condition #Fix(x) ≥ 2 implies that Sx moves at most two
elements of P , so it is a transposition or the identity. But then S(P ) is a
subgroup of S4 (Lemma 5.4) containing nothing except transpositions and
the identity, hence either S(P ) = {Id} (and thus the qualgebra is trivial),
or, without loss of generality,

S(P ) = {Id, τ},

with, say, Sr = τ . We next show that S−1(τ) consists of r only. Indeed,
S(Pr) is a subqualgebra of Aut(P ) (Lemma 5.3) contained in S(Fix(r))
(Lemma 5.6), so S(Fix(r)) = {S(r),S(s)} = {τ,Ss} should include τ2 = Id,
hence Ss = Id, implying s /∈ S−1(τ). As for p and q, they are not fixed by τ ,
so they cannot lie in S−1(τ).

We can thus restrict our analysis to the case Sr = τ and Sy = Id for
y 6= r. This choice of ✁ guarantees (2) and (3). Axiom (1) can be checked
directly, but we prefer recalling that it is a consequence of (4)–(6).

Let us now analyze the specific qualgebra axioms (4)–(6). First, (4) trans-
lates as Sb⋄c = SbSc, which here means that r ⋄ x = x ⋄ r = r for all x 6= r,
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while all other products take value in {p, q, s}. Next, (5) is equivalent to
all maps from S(P ) respecting the operation ⋄, which here translates as
(a ⋄ b)τ = (a)τ ⋄ (b)τ . This means that r ⋄ r and s ⋄ s are both τ -stable, so,
lying in {p, q, s}, they can equal only s; this gives nothing new when one of
a, b is r and the other is not; and it divides the remaining ordered couples
into pairs, with the product for one couple from the pair determined by that
for the other (e.g., p ⋄ s = (q ⋄ s)τ). Finally, (6) is automatic when one of
the elements a and b is r and the other is p or q, and for the other couples
it means the commutativity of ⋄. In particular, this commutativity gives
p⋄ q = q ⋄p, which, combined with (p⋄ q)τ = (p)τ ⋄ (q)τ = q ⋄p, implies that
p ⋄ q is τ -stable, so, lying in {p, q, s}, it can equal only s. Putting all these
conditions together, one gets the description of ⋄ given in the statement.

It remains to check that the nine qualgebra structures obtained are pair-
wise non-isomorphic. Let f : P → P be a bijection intertwining the struc-
tures (✁, ⋄1) and (✁, ⋄2) from our list. Since r is the only element of P with
Sa 6= Id, one has (r)f = r, and also (s)f = (r⋄1r)f = r⋄2r = s. Two options
emerge: either (q)f = q and (p)f = p, in which case ⋄1 and ⋄2 automatically
coincide; or (q)f = p and (p)f = q, that is, f = τ , in which case one has

x ⋄2 y = ((x)f−1 ⋄1 (y)f
−1)f = ((x)τ−1 ⋄1 (y)τ

−1)τ = x ⋄1 y,

since the right translation τ = Sr respects ⋄1. One concludes that there are
no isomorphisms between different qualgebra structures from our list.

Properties and examples. In spite of very close definitions, the nine
structures above exhibit quite different algebraic properties. Some of them
are studied below.

Proposition 5.12. The operations ⋄ from Proposition 5.11 are

• all commutative;
• never cancellative;
• unital if and only if q ⋄ s = s ⋄ q = q and p ⋄ s = s ⋄ p = p;
• associative if and only if q ⋄ s = s ⋄ q = p ⋄ s = s ⋄ p = s and either

q ⋄ q = p ⋄ p = s, or q ⋄ q = q and p ⋄ p = p;
• never unital associative.

Proof. The commutativity can be read off from the explicit definition
of ⋄. The non-cancellativity follows from the “absorbing” property of r with
respect to ⋄.

Further, the relations q ⋄ p = s and r ⋄ s = r imply that s is the only
possible neutral element. Examining the definition of ⋄, one sees that it is
indeed so if and only if the value of q ⋄ s = s ⋄ q is chosen to be q (implying
p ⋄ s = s ⋄ p = (q ⋄ s)τ = (q)τ = p).
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Associativity is trickier to deal with. First, if ⋄ is associative, then

s ⋄ q = (r ⋄ r) ⋄ q = r ⋄ (r ⋄ q) = r ⋄ r = s.

Since (s)τ = s, this implies q ⋄ s = p ⋄ s = s ⋄ p = s. Next, q ⋄ q cannot be p,
since this would give

q = (p)τ = (q ⋄ q)τ = (q)τ ⋄ (q)τ = p ⋄ p = p ⋄ (q ⋄ q)

= (p ⋄ q) ⋄ q = s ⋄ q = s.

Thus, either q ⋄ q = p ⋄ p = s, or q ⋄ q = q and p ⋄ p = p. It remains
to show that these two operations ⋄ are indeed associative. Consider the
direct product Z×3

4 endowed with term-by-term multiplication ·, and define
an injection P →֒ Z

×3
4 by

p 7→ (a, 0, 1), q 7→ (0, a, 1), r 7→ (0, 0, 3), s 7→ (0, 0, 1),

for some a 6= 0. One easily checks that this injection intertwines ⋄ and ·,
where one takes a = 2 for the choice q ⋄q = p⋄p = s, and a = 1 for q ⋄q = q,
p ⋄ p = p. Thus the associativity of · implies that of ⋄.

To conclude, notice that if a unital associative ⋄ existed, then it would
satisfy the incompatible conditions q ⋄ s = q and q ⋄ s = s.

Thus, three non-trivial qualgebra structures with four elements are uni-
tal, and two are associative. Further, none of these qualgebras can be a
subqualgebra of a group qualgebra because of non-cancellativity.

Example 5.13. Let us now use a 4-element qualgebra to distinguish
the standard cuff graph Cst from the Hopf cuff graph CH. Consider their
diagrams Dst and DH depicted in Figure 14, and choose the qualgebra P
from Proposition 5.11 with q ⋄ q = s and q ⋄ s = q. The multiplication ⋄
of this qualgebra can be briefly described by saying that it is commutative
with a neutral element s, that the element r absorbs everything but itself
(in the sense that r ⋄ x = r), and that x ⋄ y = s for x = y and for x = (y)τ .

With the orientation in Figure 14, the coloring rules for Dst around
3-valent vertices read b ⋄ a = a and b ⋄ c = c. Every orientation of Dst is
poleless, and an orientation change results only in an argument inversion in
one or all of the conditions above; since ⋄ is commutative, this preserves the
conditions. Summarizing, for any orientation of Dst one gets a bijection

CP (Dst)←
bij
−→ {(a, b, c) ∈ P | b ⋄ a = a, b ⋄ c = c}.

Now, the equation b ⋄ a = a (and similarly b ⋄ c = c) has six solutions in P :
either b is the unit s, and a is arbitrary; or b is p or q, and a = r. Searching
for pairs of solutions with the same b, one gets

CQ(Dst)←
bij
−→ {(a, s, c) | a, c ∈ Q} ⊔ {(r, b, r) | b ∈ {p, q}},

and so #CP (Dst) = 4 · 4 + 2 = 18.
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Consider now the Hopf cuff graph diagram DH, oriented as in Figure 14.
The coloring rule around crossings allows one to express a′ and c′ as c′ =
c✁ a, a′ = a ✁̃ c′. In our qualgebra P , all translations Sx (cf. Notation 5.1)
are either the identity or τ , so they are pairwise commuting involutions,
implying a′ = a ✁̃ c′ = (a)S−1

c✁a = (a)Sc✁a = (a)(Sc ✁ Sa) = (a)Sc = a ✁ c.
Around 3-valent vertices, coloring rules read b⋄a = a′ and b⋄c = c′, yielding

CP (DH)←
bij
−→ {(a, b, c) ∈ P | b ⋄ a = a✁ c, b ⋄ c = c✁ a}.

The latter system admits no solutions with b = r. For b = s, the equations
become a = a ✁ c and c = c ✁ a, for which the solutions are all pairs (a, c)
except a = r, c ∈ {p, q} or vice versa. In the remaining case b ∈ {p, q}, the
only possibility is a = c = r. Summarizing, one gets

CP (DH)←
bij
−→ {(a, s, c) | a, c ∈ {p, q, s}} ⊔ {(r, s, r), (r, s, s), (s, s, r)}

⊔ {(r, b, r) | b ∈ {p, q}},

so #CP (DH) = 3 ·3+3+2 = 14 6= #CP (Dst). With the orientation remarks
made for Dst, Corollary 3.10 distinguishes the two unoriented cuff graphs.

ac

b

Cst

ac

b

a′c′ CH

Fig. 14. Qualgebra colorings for the diagrams of the standard and Hopf cuff graphs

Classification of squandles of size 4. We now turn to non-trivial
4-element squandles.

Proposition 5.14. Any non-trivial squandle with four elements is iso-
morphic either to

• the subsquandle S2
3 = {Id, (12), (23), (13)} of the group squandle of the

symmetric group S3; or to
• the set P = {p, q, r, s} with the following operations (using the involu-

tion τ from (24)):

x✁ r = (x)τ, x✁ y = x if y 6= r;

r2 = s2 = s, q2 ∈ {p, q, s}, p2 = (q2)τ.

The four structures thus obtained are pairwise non-isomorphic.

Proof. Fix a squandle structure on P . Repeating verbatim the beginning
of the proof of Proposition 5.11, one shows that, for any x ∈ P , Sx is a
transposition or the identity. Forgetting trivial squandles, which correspond
to S(P ) = {Id}, we consider three remaining cases:
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1. There are two intersecting transpositions—say, (p, q) and (q, r)—in
S(P ). Then S(P ) also contains (p, q) ✁ (q, r) = (p, r) and (p, q)2 =
Id. Since P itself has only four elements, S is an injection, so P is
isomorphic to the subsquandle {Id, (12), (23), (13)} of S4 (it is indeed a
subsquandle, being closed under conjugation and squaring). Omitting
the element 4, one interprets the latter as the subsquandle S2

3 of S3.
2. There are two non-intersecting transpositions—say, (p, q) and (r, s)—

in S(P ). A fixed point argument gives (p, q) ∈ {Sr,Ss} and (r, s) ∈
{Sp,Sq}—say, Sr = (p, q) and Sp = (r, s). Consider now the possible
values of r2. According to Lemma 5.6, one has r2 ∈ Fix(r) = {r, s}.
Since Sr2 = (Sr)

2 = Id 6= Sr, the only possibility left is r2 = s, with
Ss = Id. But then (1) leads to a contradiction: (q✁ r)✁ p = p✁ p = p
and (q ✁ p)✁ (r ✁ p) = q ✁ s = q.

3. The only remaining situation is S(P ) = {Id, τ} with, say, Sr = τ .
Repeating once again an argument from the proof of Proposition 5.11,
one concludes that the operation ✁ is defined by Sr = τ and Sx = Id
for x 6= r, and satisfies (1)–(3). Thus only specific squandle axioms
(7)–(8) remain to be checked. First, (7) translates as Sb2 = S2b , which
here means that x2 ∈ {p, q, s} for all x ∈ P . Next, (8) is equivalent
to all maps from S(P ) respecting the squaring operation, which here
translates as (a2)τ = ((a)τ)2. This means that p2 = (q2)τ , and that r2

and s2 are both τ -stable, hence equal to s (since they lie in {p, q, s}).
One thus gets the desired description of ς.

The four structures obtained are shown to be mutually non-isomorphic
in the same way as was done for qualgebras in Proposition 5.11.

Observe that the first structure from the proposition is a subsquandle
of a finite group squandle which is not a subgroup; thus Lemma 5.4 does
not hold for squandles. The three remaining structures are induced from the
qualgebras from Proposition 5.11 according to Example 4.7.

6. Qualgebra 2-cocycles and weight invariants of graphs. We
now return to the general setting of a qualgebra (Q,✁, ⋄) and Q-colorings of
poleless knotted 3-valent graph diagrams, according to coloring rules from
Figure 1 A & B . The aim of this section is to extract weight invariants out
of such colorings.

Qualgebra 2-cocycles as Boltzmann weight functions. Recall the
type of weight functions used for quandle colorings of knot diagrams (Exam-
ple 2.7): a fixed map χ : Q×Q→ A (where A is an abelian group) is applied
to the colors of two arcs adjacent to a crossing (Figure 4). Trying to treat
3-valent vertices of a graph diagram colored by a qualgebra Q in a similar
way, take a map λ : Q×Q→ A, and let (χ, λ) be a weight function defined
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in Figures 4 and 15. Note that the colors we evaluate χ or λ on determine all
the colors around a crossing or a vertex. Remark also that different maps λ
and

λ
could be chosen for unzip and zip vertices; our choice simplifies cal-

culations, while conserving abundant examples. To make notation easier to
follow, we denote the components of a weight function by Greek letters with
a shape referring to that of the corresponding special points.

a ⋄ b

bab b

7→ λ(a, b)

a b

a ⋄ b

7→ −λ(a, b)

Fig. 15. Weight function for qualgebra-colored graph diagrams

Proposition 6.1. Take a qualgebra (Q,✁, ⋄) and maps χ, λ :Q×Q→A.
The weight function (χ, λ) described above (and depicted in Figures 4
and 15) is Boltzmann if and only if it satisfies, for all elements of Q, Axioms
(11)–(12) together with three additional ones:

χ(a, b ⋄ c) = χ(a, b) + χ(a✁ b, c),(25)

χ(a ⋄ b, c) + λ(a✁ c, b✁ c) = χ(a, c) + χ(b, c) + λ(a, b),(26)

χ(a, b) + λ(a, b) = λ(b, a✁ b).(27)

Proof. One should check when each of the six R-moves, combined with
the induced coloring transformation (Definition 2.1), leaves the (χ, λ)-weights
unchanged. For moves RI–RIII, this is known to be equivalent to Axioms
(11)–(12) for χ (cf. Example 2.7). Figure 16 deals with the zip versions of
moves RIV, RVI, and RV, which are shown to preserve weights if and only
if (25) (respectively, (26) or (27)) is satisfied. The unzip versions are similar
due to our choice of weight function around zip and unzip vertices, and to
relations (14)–(16) allowing one to treat ✁̃ like ✁.

Axioms (25)–(26) also appear in the homology theory of G-families of
quandles, developed by J. S. Carter and A. Ishii in their 2012 preprint [1].

Definition 6.2. For a qualgebra Q, a pair of maps (χ, λ) satisfying
Axioms (11)–(12) and (25)–(27) is called an (A-valued) qualgebra 2-cocycle
of Q; the term will be commented on below. The set of all qualgebra
2-cocycles of Q is denoted by Z2(Q,A).

Lemma 2.6 now yields weight invariants for graphs:

Corollary 6.3. Take a qualgebra (Q,✁, ⋄) and an A-valued qualgebra
2-cocycle (χ, λ). Consider Q-coloring rules from Figure 1 A & B and the
weight function (χ, λ) from Figures 4 and 15. The multi-set {W(χ,λ)(D, C) |
C ∈ CQ(D) } does not depend on the choice of a diagram D representing a
poleless 3-valent knotted graph Γ .
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a
b

c

b ⋄ c

b ⋄ c

a✁ (b ⋄ c)

−λ(b, c)

χ(a, b ⋄ c)

←
RIV

z

−−−→

a
b

c

b ⋄ c (a✁ b)✁ c

a✁ b

−λ(b, c)

χ(a, b)

χ(a✁ b, c)

a

b ⋄ (a✁ b)

b

a✁ b

−λ(b, a✁ b)

χ(a, b)
←
RV

z

−−−→

a

a ⋄ b

b

−λ(a, b)

a
b

c

c

a ⋄ b

(a ⋄ b)✁ c

−λ(a, b)

χ(a ⋄ b, c)

←
RVI

z

−−−→

a
b

c

c (a✁ c) ⋄ (b✁ c)

b✁ c

a✁ c
−λ(a✁ c, b✁ c)

χ(b, c)

χ(a, c)

Fig. 16. Obtaining axioms for qualgebra 2-cocycles

Proof. Proposition 3.8 guarantees that our coloring rules are topolog-
ical, and Proposition 6.1 tells us that our weight function is Boltzmann.
Lemma 2.6 then asserts that the multi-set in question is well-defined on
R-equivalence classes of diagrams, which correspond to isotopy classes of
graphs.

One thus gets a systematic way of producing invariants of poleless (or un-
oriented, cf. Proposition 3.4) graphs, which sharpen the counting invariants
from Corollary 3.10.

More on qualgebra 2-cocycles: properties and examples. We
start with an easy observation on the structure of Z2(Q,A):

Lemma 6.4. The space Z2(Q,A) of qualgebra 2-cocycles of a qualgebra Q
is an abelian group under pointwise addition of the two components; in other
words, the sum (χ, λ) = (χ′, λ′) + (χ′′, λ′′) is defined by

χ(a, b) = χ′(a, b) + χ′′(a, b), λ(a, b) = λ′(a, b) + λ′′(a, b).

Moreover, for a Q-colored graph diagram (D, C), the following map is linear:

Z2(Q,A)→ A, (χ, λ) 7→ W(χ,λ)(D, C).

Proof. An easy standard verification using, for the first assertion, the
linearity of all qualgebra 2-cocycle axioms, and for the second, the linearity
of our qualgebra coloring rules.
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Recall that in the definition of a qualgebra, the self-distributivity axiom
is redundant. For qualgebra 2-cocycles, some axioms can be omitted as well:

Lemma 6.5. Take a qualgebra Q and two maps χ, λ : Q × Q → A.
Relation (11) for these maps follows from (26) and (27), and relation (12)
is a consequence of (27).

Proof. Putting b = a in (27) and using the idempotence of a, one
gets (12).

To deduce (11) from (26) and (27), one can either use a direct computa-
tion, or argue diagrammatically. We opt for the latter. Consider a sequence
of moves RVI and RV from Figure 17. Endow the first and the last dia-
grams from the figure with the unique colorings extending the partial ones
indicated in the figure, and the intermediate diagrams with the induced col-
orings (cf. Proposition 3.8). Relations (26) and (27) imply, according to the
proof of Proposition 6.1, that the (χ, λ)-weights of all five diagrams coin-
cide. But the (χ, λ)-weights of the first and the last diagrams, decreased by
λ(a, b), are precisely the (χ, λ)-weights of the two sides of an RIII move with
colors a, b, c on the top. Recalling that move RIII preserves the χ-weights if
and only if (11) holds (cf. Example 2.7), we finish the proof.

a b c

←
RV

u

−−−→ ←
RVI

u

−−−→ ←
RV

u

−−−→ ←
RVI

u

−−−→

a b c

Fig. 17. Move RIII as a sequence of moves RVI and RV

It is thus sufficient to keep only Axioms (25)–(27) in the definition of
qualgebra 2-cocycles, simplifying their investigation.

Example 6.6. Let us explore qualgebra 2-cocycles with zero χ-part. In
this situation, Axioms (25)–(27) become

λ(a✁ c, b✁ c) = λ(a, b),(28)

λ(a, b) = λ(b, a✁ b).(29)

Relation (28) implies that λ(b, a✁b) = λ(b✁b, a✁b) = λ(b, a), thus the maps
(0, λ) form a 2-cocycle if and only if λ is a symmetric invariant (in the sense
of (28)) form on Q. The simplest example of such a form is the constant
map λα(a, b) = α, α ∈ A; in this case, W(0,λα)(D, C) does not depend on
the coloring C and counts the difference between the numbers of unzip and
zip vertices. Another example is the Kronecker delta δα(a, b) = α if a = b,
and 0 otherwise; W(0,δα)(D, C) counts the difference between the numbers
of C-isosceles unzip and zip vertices (cf. Definition 4.1).
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Qualgebra 2-cocycles for trivial qualgebras. We next explicitly
describe the structure of the abelian group Z2(Q,A) of qualgebra 2-cocycles
for a trivial qualgebra Q (Definition 5.8):

Proposition 6.7. Take a trivial qualgebra (Q,✁0, ⋄). Endow Q with
any linear order. Let ABF(Q,A) be the abelian group of A-valued anti-sym-
metric bilinear forms χ on Q (i.e., χ(a, b) + χ(b, a) = 0 and χ(a, b ⋄ c) =
χ(a, b)+χ(a, c)), and let SF(Q,A) be the abelian group of A-valued symmet-
ric forms λ on Q (λ(a, b) = λ(b, a)). Then Z2(Q,A) is a direct sum of L =
{Λλ = (0, λ) | λ ∈ SF(Q,A)} and of X = {Xχ = (χ, λχ) | χ ∈ ABF(Q,A)},
where

λχ(a, b) =

{
0 if a ≤ b,

χ(b, a) otherwise.

Proof. According to Lemma 6.5, we are looking for maps χ, λ : Q × Q
→ A satisfying Axioms (25)–(27). Using the triviality of the quandle oper-
ation ✁0, and renaming the variables in (26), we can rewrite the axioms as

χ(a, b ⋄ c) = χ(a, b) + χ(a, c),(30)

χ(b ⋄ c, a) = χ(b, a) + χ(c, a),(31)

χ(a, b) = λ(b, a)− λ(a, b).(32)

The last one implies that χ is anti-symmetric, which makes (31) a conse-
quence of (30), and also shows that χ ∈ ABF(Q,A). It thus suffices to con-
sider Axioms (30) and (32) only. The maps Xχ and Λλ clearly satisfy them.
Moreover, L is a subgroup of Z2(Q,A) by construction, and so is X , since
Xχ+Xχ′ = Xχ+χ′ . The intersection of X and L is trivial: Xχ = Λλ implies
χ = 0, hence Xχ = 0. To see that the two generate the whole Z2(Q,A), note
that, as shown above, one has χ ∈ ABF(Q,A) for any (χ, λ) ∈ Z2(Q,A);
then (χ, λ) − Xχ is of the form (0, λ′) and still lies in Z2(Q,A), so, due
to (32), it satisfies λ′(a, b) = λ′(b, a), hence (0, λ′) ∈ L .

One thus gets an abelian group isomorphism Z2(Q,A) ∼= SF(Q,A) ⊕
ABF(Q,A) for any trivial qualgebra Q.

Example 6.8. Returning to Example 6.6, one sees that the part L of
Z2(Q,A) always contains the cocycles Λλα

and Λδα .

Note that for finite Q, the part L of Z2(Q,Z) has a basis {Λx,y =
(0, λx,y) | x ≤ y}, where λx,y takes value 1 on (possibly coinciding) pairs
(x, y) and (y, x), and 0 elsewhere. Moreover, the part X of Z2(Q,Z) becomes
trivial, since ABF(Q) reduces to the zero map: indeed, for χ ∈ ABF(Q,Z)
the bilinearity implies that χ(a, b ⋄ b) = 2χ(a, b), thus if χ takes a non-zero
value χ(a, b), then it also takes arbitrarily large (or small) values 2kχ(a, b),
k ∈ N, which contradicts the finiteness of Q. However, the part X of
Z2(Q,A) can be non-trivial even for finite Q if, for instance, A = Zp.
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Qualgebra 2-cocycles for size 4 qualgebras. We now study Z2(P,A)
for non-trivial 4-element qualgebras P .

Proposition 6.9. Let (P,✁, ⋄) be any of the nine 4-element qualgebras
from Proposition 5.11. Then Z2(P,A) ∼= A8 as abelian groups.

Proof. Lemma 6.5 tells us to look for maps χ, λ : P × P → A satisfying
Axioms (25)–(27).

Start with Axiom (25). For c = r and b 6= r, one has b ⋄ c = r, a✁ b = a,
so (25) ⇔ χ(a, b) = 0. One gets the first relation describing 2-cocycles:

∀x, ∀y 6= r, χ(x, y) = 0.(33)

The case b = r, c 6= r leads to the same relation. For b, c 6= r, one
has b ⋄ c 6= r, so (33) implies (25). In the remaining case b = c = r,
one gets χ(a, r ⋄ r) = χ(a, r) + χ(a ✁ r, r). The right side simplifies to
χ(a, r) + χ((a)τ, r), the left one reduces to χ(a, r ⋄ r) = χ(a, s) = 0 due
to (33). One obtains

χ(p, r) + χ(q, r) = 0, 2χ(r, r) = 2χ(s, r) = 0.(34)

We now turn to Axiom (27). If b 6= r, then a ✁ b = a, and, using (33),
our axiom becomes λ(a, b) = λ(b, a). This also holds true for b = r, a 6= r by
a symmetry argument, and trivially for a = b = r. Summarizing, one gets

∀x, y, λ(x, y) = λ(y, x).(35)

For b = r, (27) becomes χ(a, r) = λ(r, (a)τ)−λ(a, r), or, separating different
values of a and using the symmetry (35) of λ,

χ(r, r) = χ(s, r) = 0,(36)

λ(p, r)− λ(q, r) = χ(q, r),(37)

and λ(q, r)−λ(p, r) = χ(p, r), which is a consequence of (37) and (34) and is
thus discarded. The relation 2χ(r, r) = 2χ(s, r) = 0 above follows from (36)
and is discarded as well.

It remains to analyze Axiom (26). For c 6= r or for c = r with a, b ∈ {r, s},
one has a✁ c = a, b✁ c = b, so everything vanishes due to (33). Take c = r.
If {a, b} = {p, q}, then a ⋄ b = s (hence χ(a ⋄ b, c) = χ(s, r) = 0 due to (36)),
χ(a, r) + χ(b, r) = 0 because of (34), and λ(a ✁ c, b ✁ c) = λ((a)τ, (b)τ) =
λ(b, a) = λ(a, b); all of these imply our axiom. If a = b = q, then one gets

λ(p, p)− λ(q, q) = 2χ(q, r)− χ(q ⋄ q, r).(38)

The case a = b = p leads to the same relation by (34). For a = r, b ∈ {p, q},
one has a ⋄ b = r, and our axiom becomes λ(r, (b)τ) = χ(b, r) + λ(r, b),
which is equivalent to (37) (due to (34)–(35)). The case b = r, a ∈ {p, q} is
analogous. If a = s and b = q, then our axiom becomes χ(s⋄q, r)+λ(s, p) =
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χ(q, r) + λ(s, q), or else

λ(p, s)− λ(q, s) = χ(q, r)− χ(q ⋄ s, r).(39)

The cases a = s, b = p or b = s, a ∈ {p, q} lead to the same relation.
Putting everything together, one concludes that (χ, λ) is a 2-cocycle

for P if and only if the maps χ, λ : P × P → A satisfy (33)–(39). Note that
χ(q ⋄ q, r) equals χ(q, r), −χ(q, r) or 0, according to q ⋄ q being chosen as
q, p or s, and similarly for χ(q ⋄ s, r). Thus, one sees that the eight values
χ(q, r), λ(q, r), λ(q, s), λ(q, q), λ(q, p), λ(r, r), λ(s, r), and λ(s, s) can be
chosen arbitrarily, and the other values of χ and λ are deduced from these
in a unique way. This gives Z2(P,A) ∼= A8.

Qualgebra 2-coboundaries. Recall the definition χϕ(a, b) = ϕ(a✁ b)
− ϕ(a) of a 2-coboundary for quandles, with an arbitrary map ϕ : Q → A
(Example 2.7). It can be interpreted as the difference between the total
weight ϕ(b)+ϕ(a✁ b) at the bottom of the diagram describing the quandle
coloring rule around a crossing, and the total weight ϕ(a) +ϕ(b) at the top
of this diagram (Figure 1 A ). Trying to treat the coloring rule around a
3-valent vertex (Figure 1 B ) in a similar way, one gets a good candidate for
the notion of qualgebra 2-coboundary:

Definition 6.10. For a qualgebra Q and a map ϕ : Q→ A, the pair of
maps (χϕ, λϕ) defined by

χϕ(a, b) = ϕ(a✁ b)− ϕ(a), λϕ(a, b) = ϕ(a) + ϕ(b)− ϕ(a ⋄ b)

is called an (A-valued) qualgebra 2-coboundary of Q. The set of all qualgebra
2-coboundaries of Q is denoted by B2(Q,A).

Proposition 6.11. Given a qualgebra (Q,✁, ⋄), the set of its qualgebra
2-coboundaries B2(Q,A) is an abelian subgroup of Z2(Q,A). Moreover, for
any Q-colored graph diagram (D, C) and any 2-coboundary (χ, λ), the weight
W(χ,λ)(D, C) is zero.

Before giving a proof, we write explicitly the weights of crossings and
vertices constructed out of the maps χϕ and λϕ according to the rules from
Figures 4 and 15; see Figure 18.

a b

b a✁ b

7→ ϕ(a✁ b)

−ϕ(a)

b a✁ b

bab b

7→ ϕ(a)

−ϕ(a✁ b)

a ⋄ b

bab b

7→ ϕ(a) + ϕ(b)

−ϕ(a ⋄ b)

a b

a ⋄ b

7→ ϕ(a ⋄ b)

−ϕ(a)− ϕ(b)

Fig. 18. Weight function for the maps χϕ and λϕ

Proof. We first show that a qualgebra 2-coboundary (χϕ, λϕ) of Q is also
a qualgebra 2-cocycle. One can either check Axioms (25)–(27) directly, or
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develop the “total weight increment” argument which leads to the definition
of qualgebra 2-coboundaries. Indeed, the (χϕ, λϕ)-weight (Figure 18) of the
Q-colored diagrams that appear in R-moves is the difference between the
total ϕ-weight at the bottom and at the top of these diagrams (or vice versa).
Since the bottom/top colors are the same for both diagrams involved in an
R-move, these diagrams have the same (χϕ, λϕ)-weights. Hence, according
to (the proof of) Proposition 6.1, (χϕ, λϕ) is a qualgebra 2-cocycle.

We have thus showed that B2(Q,A) ⊆ Z2(Q,A). To see that it is an
abelian subgroup, observe that (χϕ, λϕ) + (χϕ′ , λϕ′) = (χϕ+ϕ′ , λϕ+ϕ′).

Take now aQ-colored graph diagram (D, C) and a 2-coboundary (χϕ, λϕ).
As shown above, the latter is also a 2-cocycle, and hence defines a Boltzmann
weight function. We shall now prove that the total χϕ-weight of the crossings
of (D, C) kills the total λϕ-weight of its 3-valent vertices, implying that
W(χϕ,λϕ)(D, C) = 0.

Consider an edge e of D, and analyse how the color behaves when one
moves along e. The color changes from a to a ✁ b or a ✁̃ b when e goes
under a b-colored arc (depending on the orientation of the latter) and stays
constant otherwise. Observe that ϕ(a✁±1b)−ϕ(a) is precisely the χϕ-weight
of the crossing where the color changes. Hence the total weight of all the
crossings of D is the sum

∑
e[ϕ(C(t(e))) − ϕ(C(s(e)))] taken over all the

edges e of D, where s(e) and t(e) are, respectively, the first and the last arcs
of e. Since each edge starts and finishes at a 3-valent vertex, this sum can
be reorganized as the sum

∑
v

∑
α∈A (v)±ϕ(α) taken over all the vertices v

of D, where A (v) is the set of arcs adjacent to v, and ϕ(α) is taken with
the sign − if α is directed from v, and + otherwise. On the other hand, the
total weight of all the 3-valent vertices is the sum of the same form, but
with opposite sign conventions (Figure 18).

Example 6.12. Let us describe a qualgebra 2-coboundary (χϕ, λϕ) for a
trivial qualgebra (Q,✁0, ⋄) (Definition 5.8). Its χ-component is zero:
χϕ(a, b) = ϕ(a ✁0 b) − ϕ(a) = ϕ(a) − ϕ(a) = 0. Its λ-component is the
symmetric form λϕ(a, b) = ϕ(a) + ϕ(b) − ϕ(a ⋄ b) (recall that ⋄ is commu-
tative for trivial qualgebras). Thus our 2-coboundaries have the form Λλϕ

,
where ϕ runs through all maps from Q to A, and they all lie in the L -part
of Z2(Q,A) (Proposition 6.7).

Towards a qualgebra homology theory. Proposition 6.11 legiti-
mates the following

Definition 6.13. For a qualgebra Q, the quotient abelian group

H2(Q,A) = Z2(Q,A)/B2(Q,A)

is called the second (A-valued) qualgebra cohomology group of Q.
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Proposition 6.11 and Lemma 6.4 imply that the Q-colored graph dia-
gram weight W[(χ,λ)](D, C) is well-defined for equivalence classes [(χ, λ)] ∈

H2(Q,A). (Note that this need not be true for subdiagrams.)
We now calculate the second qualgebra cohomology groups for non-

trivial 4-element qualgebras. We remark that the result is the same for all
the nine structures. Note also the possibility of torsion.

Proposition 6.14. Let (P,✁, ⋄) be any of the 4-element qualgebras from
Proposition 5.11. Then B2(P,A) ∼= A4 and H2(P,A) ∼= A/2A⊕A4.

Proof. We give a proof only for the case when A is a ring. The proof in
the general case follows the same lines, but is less readable.

According to the proof of Proposition 6.9, a basis of Z2(P,A) ∼= A8 can
be constructed as follows. For the ith generator, let the ith of the values
χ(q, r), λ(q, r), λ(q, s), λ(q, q), λ(q, p), λ(r, r), λ(s, r), and λ(s, s) be 1, and
the other vanish; calculate the remaining values of χ and λ via relations
(33)–(39). Denote this basis by B = (εχq,r, εq,r, εq,s, εq,q, εq,p, εr,r, εs,r, εs,s).

Consider the sub-A-module Z ′ of Z2(P,A) with a basis

B
′ = (εχq,r, εq,r, εq,s, εq,q, εq,p, 2εr,r, εs,r − εr,r, εs,s).

The “Dirac maps” ϕa : P → A, a ∈ P , defined by ϕa(a) = 1 and ϕa(x) = 0
for x 6= a, form a basis of the A-module of maps ϕ : P → A. Hence the pairs
of maps εa = (χϕa , λϕa), a ∈ P , generate B2(P,A). We will now show

B
′′ = (εp, εq, εr, εs, εq,s, εq,q, εq,p, εs,s)

to be an alternative basis of Z ′. This will give a 4-element basis (εp, εq, εr, εs)
of B2(P,A) and a 4-element basis ([εq,s], [εq,q], [εq,p], [εs,s]) of Z ′/B2(P,A)
(here and afterwards the square brackets stand for equivalence classes of
pairs of maps). Moreover, by construction Z2(P,A)/Z ′ ∼= A/2A, and [εr,r]
is its generator. Putting together all the pieces, one gets

H2(P,A) = Z2(P,A)/B2(P,A) ∼= Z2(P,A)/Z ′⊕Z ′/B2(P,A) ∼= A/2A⊕A4.

In order to show that B′′ is indeed a basis, in Table 2 we calculate for the
2-coboundaries εa the eight values which completely determine a 2-cocycle.
In the table, exactly one αi and one βj equal 1, while the other are zero;
this depends on the values of q ⋄ s and q ⋄ q in our P .

Table 2. Essential components of the 2-coboundaries εa

χ(q, r) λ(q, r) λ(r, r) λ(s, r) λ(q, s) λ(q, q) λ(q, p) λ(s, s)

εp 1 0 0 0 −α1 −β1 1 0

εq −1 1 0 0 1− α2 2− β2 1 0

εr 0 0 2 0 0 0 0 0

εs 0 0 −1 1 1− α3 −β3 −1 1
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Adding some linear combinations of the 2-cocycles εq,s, εq,q, εq,p, and
εs,s, one can transform the εa’s into 2-cocycles ε̃a for which the value table
can be obtained from Table 2 by replacing everything to the right of the
middle vertical bar by zeroes. Since the eight values in the table completely
determine a 2-cocycle, the elements of B′ can be expressed in terms of those
of B′′ as follows:

εχq,r = ε̃p, εs,r − εr,r = ε̃s,

εq,r = ε̃q + ε̃p, 2εr,r = ε̃r.

Now, B′′ is a basis of Z ′ since B′ is such.

Remark 6.15. The weight invariants corresponding to the 2-cocycles
εq,s, εq,q, εq,p, εs,s, and εr,r, whose classes moduloB2(P,A) generateH2(P,A),
have an easy combinatorial description. Namely, Wεq,s(D, C) counts the dif-
ference between the numbers of unzip and zip vertices whose adjacent co-
oriented arcs are colored with either s and p, or s and q; Wεq,p(D, C) counts
a similar difference for arcs colored with p and q; finally,Wεq,q(D, C) (respec-
tively, Wεs,s(D, C) or Wεr,r(D, C)) counts a similar difference for both arcs
having the same color p or q (respectively, s or r). Observe that Wεr,r(D, C)
always vanishes: the r-colored edges of D and adjacent vertices form a
2-valent subgraph, and such a subgraph has the same number of sources
and sinks (corresponding, respectively, to unzip and zip vertices in D).
Now, Proposition 6.11 and Lemma 6.4 imply that the four non-vanishing
invariants above contain all the information one can deduce from non-
trivial 4-element qualgebra colorings of graphs using the Boltzmann weight
method.

One would expect second qualgebra cohomology groups described above
to fit into a complete qualgebra cohomology theory, extending the celebrated
quandle cohomology theory. However, the author knows how to construct
such a theory for non-commutative qualgebras only (that is, one keeps Ax-
ioms (1)–(5), but not the semi-commutativity (6)). Topologically, this struc-
ture corresponds to rigid-vertex poleless 3-valent graphs, for which move
RV should be removed from the list of Reidemeister moves (cf. also [21]).
2-cocycles for this structure are defined by Axioms (11)–(12) and (25)–(26)
(omitting (27)), and they give all Boltzmann weight functions for rigid-
vertex graph diagrams. Our cohomology construction is based on the braided
system concept from [22]; details will appear in a separate publication.

Squandle 2-cocycles. Weight invariants can also be constructed out
of squandle colorings, by a procedure that very closely repeats what we
have done for qualgebra colorings. We shall now briefly present relevant
definitions and results; all the details and proofs can be easily adapted from
the qualgebra case.
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Definition 6.16. For a squandle Q, an (A-valued) squandle 2-cocycle
of Q is a pair of maps χ : Q×Q→ A, λ : Q→ A satisfying Axioms (11)–(12)
together with two additional ones:

χ(a, b2) = χ(a, b) + χ(a✁ b, b), χ(a2, b) + λ(a✁ b) = 2χ(a, b) + λ(a).

The abelian group of all squandle 2-cocycles of Q is denoted by Z2(Q,A).

Note that Axioms (11)–(12) can no longer be omitted from the definition.

Proposition 6.17. Take a squandle Q and maps χ : Q × Q → A,
λ : Q→ A. The weight function constructed out of (χ, λ) according to Fig-

ures 4 and 19 is Boltzmann if and only if (χ, λ) ∈ Z2(Q,A).

a2

a a

7→ λ(a)

a a

a2

7→ −λ(a)

Fig. 19. Weight function for squandle-colored graph diagrams

Corollary 6.18. Take a squandle Q and a squandle 2-cocycle (χ, λ).
Consider the Q-coloring rules from Figure 1 A & C and the weight func-
tion from Figures 4 and 19, still denoted by (χ, λ). Then the multi-set
{W(χ,λ)(D, C) | C ∈ CQ(D) } does not depend on the choice of a diagram D
representing a poleless 3-valent knotted graph Γ .

Definition 6.19. For a squandle Q and a map ϕ : Q → A, the pair of
maps (χϕ, λϕ) defined by

χϕ(a, b) = ϕ(a✁ b)− ϕ(a), λϕ(a) = 2ϕ(a)− ϕ(a2)

is called an (A-valued) squandle 2-coboundary of Q. The abelian group of
all squandle 2-coboundaries of Q is denoted by B2(Q,A).

Proposition 6.20. For a squandle Q, the set of its squandle 2-cobound-
aries B2(Q,A) is a subgroup of Z2(Q,A). Moreover, for any Q-colored
graph diagram (D, C) and any 2-coboundary (χ, λ), the weight W(χ,λ)(D, C)
is zero.

Definition 6.21. The second (A-valued) squandle cohomology group of
a squandle Q is the quotient abelian group H2(Q,A) = Z2(Q,A)/B2(Q,A).

Example 6.22. For trivial squandles, 2-coboundaries have the form
(0, λϕ) with λϕ(a) = 2ϕ(a) − ϕ(a2), and 2-cocycles have the form (χ, λ),
where λ is arbitrary and χ satisfies

χ(a, b2) = χ(a2, b) = 2χ(a, b), χ(a, a) = 0.

All Z-valued 2-cocycles of finite trivial squandles have a zero χ-part.

Example 6.23. Recall the 4-element squandles from Proposition 5.14.
Arguments analogous to those used to prove Propositions 6.9 and 6.14 show
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that for all these squandles, Z2(Q,A) ∼= B2(Q,A) ∼= A4. For cohomology,
one has H2(Q,A) ∼= A/2A, except for the squandle of the second type with
q2 = s, in which case H2(Q,A) ∼= A/2A⊕A/2A.

7. Going further. This is the first in a series of publications devoted to
qualgebras and squandles. A lot of work remains to be done on the algebraic
as well as on the topological sides.

First, we are currently working on an algebraic study of qualgebras and
squandles [23]: their general properties, free structures, the “qualgebraiza-
tion” of familiar quandles (cf. Example 3.15), conceptual examples, a classi-
fication of all structures in small size. Sizes 5 and 6 are still doable by hand,
and contain a large variety of examples. It would be interesting to calculate
the induced invariants for reasonably “small” graphs. General qualgebra and
squandle cohomology theories would be of interest (cf. Section 6).

There is also a variation of qualgebra/squandle structure called symmet-
ric qualgebra/squandle. It includes an involution ρ compatible with both
the quandle operation ✁ (in the sense of Axioms (18)–(20)) and the qual-
gebra/squandle operation. Symmetric quandles were invented by S. Ka-
mada [20] in order to extend quandle coloring invariants of oriented knots
to unoriented ones; they were later used by Y. Jang and K. Oshiro [17]
to extend quandle coloring invariants of oriented graphs (with coloring
rules from Figure 6 C ) to unoriented ones. Similarly, our symmetric qualge-
bras/squandles are tailored for coloring unoriented knotted 3-valent graph
diagrams, and lead to invariants of such graphs. Together with the usual
group examples, one finds numerous examples even in small size.

Lastly, a variation of coloring ideas includes assigning colors to diagram
regions, and not only arcs, with a relevant notion of topological coloring
rules. Such colorings are called shadow colorings in the quandle case, and
corresponding counting and weight invariants prove to be extremely power-
ful for knots. The same can be done for graphs by introducing the notions of
qualgebra/squandle modules (used for coloring regions), qualgebra/squandle
2-cocycles with coefficients (used for fabricating Boltzmann weight func-
tions), and constructing counting and weight invariants out of these. Re-
garding a qualgebra/squandle as a module over itself, one naturally gets a
definition of qualgebra/squandle 3-cocycles (without coefficients), suggesting
one more step towards a qualgebra/squandle cohomology theory.

A detailed study of these constructions and their topological applications
will appear in a separate publication.
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