Categorifications of the polynomial ring

by
Mikhail Khovanov (New York, NY) and Radmila Sazdanovic (Raleigh, NC)

Abstract

We develop a diagrammatic categorification of the polynomial ring $\mathbb{Z}[x]$. Our categorification satisfies a version of Bernstein-Gelfand-Gelfand reciprocity property with the indecomposable projective modules corresponding to x^{n} and standard modules to $(x-1)^{n}$ in the Grothendieck ring.

1. Introduction. Inspired by the general idea of categorification, introduced by L. Crane and I. Frenkel, we construct a categorification of the polynomial ring $\mathbb{Z}[x]$, including its elements $(x-1)^{n}$. This construction can be generalized to orthogonal one-variable polynomials, including Chebyshev polynomials of the second kind and Hermite polynomials [4].

In this paper, we interpret the ring $\mathbb{Z}[x]$ as the Grothendieck ring of a suitable additive monoidal category A-pmod of (finitely-generated) projective modules over an idempotented diagrammatically defined ring A (see Section 2). The monomials x^{n} become indecomposable projective modules P_{n}, while the polynomials $(x-1)^{m}$ turn into the so-called standard modules M_{m}. The ring A has one more distinguished family of modules, simple modules L_{n}. A remarkable feature of these three collections of modules is the Bernstein-Gelfand-Gelfand (or BGG) reciprocity property [2]. The projective modules P_{n} have a filtration by the standard modules M_{m}, for $m \leq n$, and the respective multiplicities satisfy the relation

$$
\left[P_{n}: M_{m}\right]=\left[M_{m}: L_{n}\right] .
$$

The first examples of algebras and modules with this property are due to J. Bernstein, I. Gelfand, and S. Gelfand, and come up in the infinitedimensional representation theory of simple Lie algebras. Our algebra A, which we call the SLarc algebra, on the other hand, has a purely topological
definition, yet satisfies the BGG property. Moreover, the standard modules M_{n} have a clear diagrammatic interpretation. An additional sophistication appears due to the nonunitality of A. Instead of the unit element 1 , the SLarc algebra A contains an infinite collection of idempotents $1_{n}, n \geq 0$. The projective modules $P_{n}=A 1_{n}$ and the standard modules M_{n} are infinitedimensional, and the multiplicity $\left[M_{m}: L_{n}\right]$ should be understood in the generalized sense, as $\operatorname{dim}\left(1_{n} M_{m}\right)$, due to one-dimensionality of the simple modules L_{n}. We hope that our approach will lead to a topological interpretation of the BGG reciprocity in many other cases, including the ones considered by J. Bernstein, I. Gelfand, and S. Gelfand. In the sequel [4] we will generalize these constructions to categorify the Hermite and Chebyshev polynomials.
2. The algebra of SLarcs and what it categorifies. In this section we define the SLarc algebra A and introduce certain types of A-modules, such as projective and standard modules. Then we compute the Grothendieck group (ring) of an appropriate category and show how it can be identified with the ring $\mathbb{Z}[x]$, via sending indecomposable projective modules to monomials. Finally, we describe various properties of this construction and show that it satisfies the Bernstein-Gelfand-Gelfand reciprocity.

Fig. 1. A diagram in ${ }_{m} B_{n}$

Definition 2.1. Denote by ${ }_{m} B_{n}$ the set of isotopy classes of planar diagrams (see Figure 1) which connect k out of m points on the line $x=0$ to k out of n points on the line $x=1$ by k disjoint arcs called larcs (long arcs $), k \leq \min (n, m)$. The remaining $m-k$ left and $n-k$ right points extend to short arcs or sarcs, with one endpoint on either line $x=0$ or $x=1$ and the other in the interior of the strip $0<x<1$. We require that the projection of the resulting 1-manifold onto the x-axis has no critical points. The number of larcs k is called the width of the diagram. Let ${ }_{m} B_{n}(k)$ and ${ }_{m} B_{n}(\leq k)$ denote the subsets of diagrams in ${ }_{m} B_{n}$ of width k and less than or equal
to k, respectively.
The set ${ }_{m} B_{n}$ has cardinality

$$
\sum_{k=0}^{\min (n, m)}\binom{n}{k}\binom{m}{k}=\binom{n+m}{n}
$$

Furthermore, denote by B the set of all diagrams,

$$
B:=\bigsqcup_{n, m \geq 0}{ }_{m} B_{n} \quad \text { and } \quad B_{n}:=\bigsqcup_{m \geq 0}{ }_{m} B_{n}
$$

Definition 2.2. The SLarc algebra A over a field \mathbf{k} is a vector space with basis B and multiplication generated by concatenation of elements of B. The product is zero if the resulting diagram has an arc which is not attached to the lines $x=0$ or $x=1$, called a floating arc (see Figure 2). Also, if $y \in{ }_{m} B_{n}, z \in{ }_{k} B_{l}$ and $n \neq k$, so that the concatenation is not defined, then we set $y z=0$. Thus, for any two elements y, z of B the product $y z$ is either 0 or an element of B.

Fig. 2. Concatenation of these two diagrams equals zero since the resulting diagram contains a floating arc.

REMARK 2.3. Alternatively, we can avoid drawing sarcs, and instead draw just their endpoints on the vertical lines $x=0,1$. Then the product of two diagrams, and their corresponding elements in A, is zero if the composition has an isolated point in the middle of the diagram.

The composition defined above induces an associative \mathbf{k}-algebra structure on A. For each n there exists a unique diagram in ${ }_{n} B_{n}$ without sarcs. We denote this diagram and its image in A by 1_{n}. These elements are minimal idempotents in A. Therefore, A is a nonunital associative algebra with a system $\left\{1_{n}\right\}_{n \geq 0}$ of mutually orthogonal idempotents.

We consider left modules M over A with the property

$$
M=\bigoplus_{n \geq 0} 1_{n} M
$$

This property is analogous to the unitality condition $1 M=M$ for modules over a unital algebra. For a module M, we write M^{m} for the direct sum of m copies of M.

Definition 2.4. Let $P_{n}=A 1_{n}$ be the projective A-module with a basis consisting of all diagrams in B_{n}. Define M_{n}, called the standard module, as the quotient of P_{n} by the submodule spanned by all diagrams which have right sarcs.

Therefore, a basis of M_{n} is the set of diagrams in B_{n} with no right sarcs. In particular, if $1_{m} M_{n} \neq 0$ then $m \geq n$. Notice that $b \cdot a=0$ for any $a \in M_{n}$ and every diagram $b \in B$ with at least one right sarc (Figure 22).

Fig. 3. For any diagram a representing an element of a standard module and every diagram $b \in B$ with right sarcs the product $b \cdot a$ is 0 in M_{n}.

Definition 2.5. A left A-module M is called finitely-generated if for some finite subset $\left\{m_{1}, \ldots, m_{k}\right\}$ of M we have $M=A m_{1}+\cdots+A m_{k}$.

Lemma 2.6. A left A-module M is finitely-generated if and only if it is a quotient of a direct sum $\bigoplus_{n=0}^{N} P_{n}^{a_{n}}$ for some $a_{n} \geq 0, N \in \mathbb{N}$.

Let A-mod be the category of finitely-generated left A-modules and A-pmod the category of finitely-generated projective left A-modules.

Proposition 2.7. The hom space $\operatorname{Hom}_{A}\left(M^{\prime}, M^{\prime \prime}\right)$ is a finite-dimensional \mathbf{k}-vector space for any $M^{\prime}, M^{\prime \prime} \in A$-mod.

Proof. It is sufficient to consider the case $M^{\prime}=P_{n}$. We have $\operatorname{Hom}\left(P_{n}, M^{\prime \prime}\right)$ $=1_{n} M^{\prime \prime}$. But $1_{n} M^{\prime \prime}$ is finite-dimensional, since $M^{\prime \prime}$ is a quotient of a finite direct sum of P_{m} 's, and $1_{n} P_{m}$ is finite-dimensional.

Corollary 2.8. The category A-mod is Krull-Schmidt.
Definition 2.9. Let $L_{n}=\mathbf{k} 1_{n}$ be the one-dimensional module over A on which any element of B other than 1_{n} acts by zero.

Lemma 2.10. Any simple A-module is isomorphic to L_{n} for some $n \geq 0$.
Proof. Let L be a simple A-module and I the 2 -sided ideal in A spanned by all diagrams with at least one left sarc. Notice that $1_{n} I^{n+1}=0$ for all $n \geq 0$. Since $I L$ is a submodule of L, we have either $I L=L$ or $I L=0$. If $I L=L$ then $I^{m} L=L$ for every m and $0=1_{n} I^{n+1} L=1_{n} L$ for all n,
a contradiction. Hence $I L=0$ and every simple module L is actually an A / I-module. The algebra A / I is directed, in the sense that

$$
\begin{aligned}
& 1_{n}(A / I) 1_{m}=0 \quad \text { if } n>m \\
& 1_{n}(A / I) 1_{n} \cong \mathbf{k}
\end{aligned}
$$

Hence, $\bigoplus_{k<n} 1_{k} L$ is a submodule of L for every n. With L being simple, $1_{n} L=L$ for some n, and L is one-dimensional, isomorphic to L_{n}.

Theorem 2.11. Any finitely-generated projective left A-module P is isomorphic to a finite direct sum of indecomposable projective modules P_{n},

$$
P \cong \bigoplus_{n=0}^{N} P_{n}^{a_{n}}
$$

The multiplicities $a_{n} \in \mathbb{Z}_{+}$are invariants of P.
Proof. The module P_{n} is indecomposable, since its endomorphism ring $R=\operatorname{Hom}_{A}\left(P_{n}, P_{n}\right)$ is local. Indeed, the diagrams in ${ }_{n} B_{n}$ other than 1_{n} span a two-sided ideal J in R, and $J^{N}=0$ for N sufficiently large. Therefore J is the radical of $R, R / J \cong \mathbf{k}$, and R is local.

Take a finitely-generated projective A-module P and any maximal proper submodule Q. The simple module P / Q is isomorphic to L_{n} for some n. The surjections

$$
P \xrightarrow{p_{1}} L_{n} \stackrel{p_{2}}{\leftarrow} P_{n}
$$

lift to homomorphisms $P \xrightarrow{\alpha} P_{n} \xrightarrow{\beta} P$.

Notice that $p_{1} \beta \alpha=p_{1}$ and $p_{2} \alpha \beta=p_{2}$, which gives $p_{2}(\alpha \beta-1)=0$. Hence $1-\alpha \beta \in J\left(\operatorname{End}\left(P_{n}\right)\right)$, the Jacobson radical of the endomorphism ring, and there exists an integer N such that $(1-\alpha \beta)^{N}=0$. Thus, there exists an endomorphism δ of P_{n} such that $1-\alpha \beta \delta=0$. Hence for $\beta^{\prime}=\beta \delta$ we get $\alpha \beta^{\prime}=1$, which means

$$
P \cong \operatorname{Im} \beta \oplus \operatorname{Ker} \alpha \cong P_{n} \oplus \operatorname{Ker} \alpha
$$

i.e. P_{n} is a direct summand of P. Proceeding by induction, we get $P \cong$ $\bigoplus_{n=0}^{N} P_{n}^{a_{n}}$. The Krull-Schmidt property [1] implies that the multiplicities a_{n} are invariants of P.

Next, we prove that the nonunital algebra A is Noetherian, hence the category A-mod is abelian.

Proposition 2.12. A submodule of a finitely-generated left A-module is finitely-generated.

Proof. Any finitely-generated A-module is a quotient of $\bigoplus_{i=0}^{N} P_{i}^{n_{i}}$ for some N and some $n_{0}, n_{1}, \ldots, n_{N}$, hence it suffices to show $\bigoplus_{i=0}^{N} P_{i}^{n_{i}}$ is Noetherian. Furthermore it is enough to show that any submodule of P_{n} is finitely-generated. Since P_{n} has a finite filtration by standard modules, it suffices to check that any submodule of M_{n} is finitely-generated. The induction base case $n=0$ is trivial, since $M_{0}=\bigoplus_{m \geq 0} 1_{m} M_{0}$, each term $1_{m} M_{0}$ is one-dimensional and generates a submodule of finite codimension in M_{0}.

Basis elements b of M_{n} can be labeled by length $n+1$ sequences of nonnegative integers $\left(a_{1}, \ldots, a_{n+1}\right)$. Here a_{1} is the number of sarcs below the bottom larc and a_{n+1} is the number of sarcs above the top larc. Each $a_{i}, 2 \leq i \leq n$, is the number of sarcs between the $(i-1)$ st and the i th larc, counting larcs from bottom to top (Figure (4).

Fig. 4. Basis element for M_{n}
We call a_{n+1} the degree $\operatorname{deg}(b)$ of the basis element $b=\left(a_{1}, \ldots, a_{n+1}\right)$ $\in M_{n}$. The degree of an arbitrary element $d=\sum_{i} x_{i} b_{i} \in M_{n}, x_{i} \in \mathbf{k}^{*}$, is equal to $\operatorname{deg}(d)=\max _{i} \operatorname{deg}\left(b_{i}\right)$. For $d=\sum_{i} x_{i} b_{i} \in M_{n}$ define $d^{\prime}=$ $\sum_{\operatorname{deg}\left(b_{i}\right)=\operatorname{deg}(d)} x_{i} b_{i} \in M_{n}$, which is the sum of the terms of d with the highest degree.

Fig. 5. This figure shows an element $d \in M_{3}$, the corresponding \bar{d} and the element obtained by degree shift 2 denoted by $d^{[2]}$. The top larc and sarcs above it are denoted by dashed lines. Two added sarcs in $d^{[2]}$ are shown as dotted lines.

Given $d \in M_{n}$ let $\bar{d} \in M_{n-1}$ be the element obtained by removing the top larc and all of the sarcs above it in each of the diagrams in d. Moreover, we define the element $d^{[p]} \in M_{n}$ obtained from d by adding p sarcs on top

Fig. 6. Highest degree summands of the element $d \in M_{4}$ are contained in the top left and right rectangles. The bottom picture shows \bar{d}.
of each diagram in d. In particular, $\operatorname{deg}\left(d^{[p]}\right)=\operatorname{deg}(d)+p$ (Figure 2). To continue with the proof, let M be any submodule of M_{n} and d_{0} be an element of the least degree in M. Assuming that d_{0}, \ldots, d_{k} have already been chosen, take $d_{k+1} \in M \backslash\left(d_{0}, \ldots, d_{k}\right)$ where $\left(d_{0}, \ldots, d_{k}\right)$ is the submodule generated by the elements $\left\{d_{0}, \ldots, d_{k}\right\}$. Continuing by induction we obtain a sequence of elements $d_{i} \in M$.

Let $c_{i}:=\overline{d_{i}^{\prime}} \in M_{n-1}$ and let \bar{M} denote the submodule of M_{n-1} generated by the c_{i} 's. According to the induction hypothesis M_{n-1} is Noetherian, hence $\bar{M}=\left(c_{0}, c_{1}, \ldots\right)$ must be finitely generated. In other words, there exists $N \in \mathbb{N}$ such that $\bar{M}=\left(c_{0}, c_{1}, \ldots, c_{N}\right)$.

Assume that $M \neq\left(d_{0}, \ldots, d_{N}\right)$. Then there exist $d_{N+1} \in M \backslash\left(d_{0}, \ldots, d_{N}\right)$ and $c_{N+1}=\sum_{k=0}^{N} \alpha_{k} c_{k}$ for some $\alpha_{k} \in A$. Let $d^{*}=\sum_{k=1}^{N} \alpha_{k} d_{k}^{\left[\operatorname{deg}\left(d_{N+1}\right)-\operatorname{deg}\left(d_{k}\right)\right]}$. Now $d_{N+1}-d^{*} \notin\left(d_{0}, \ldots, d_{N}\right)$ and $\operatorname{deg}\left(d_{N+1}-d^{*}\right)<\operatorname{deg}\left(d_{N+1}\right)$, which contradicts the minimality of $\operatorname{deg}\left(d_{N+1}\right)$. Therefore $M=\left(d_{0}, \ldots, d_{N}\right)$ and M_{n} is Noetherian (${ }^{1}$).

The involution of the set B which reflects a diagram about a vertical axis takes ${ }_{n} B_{m}$ to ${ }_{m} B_{n}$ and induces an anti-involution of A. Hence the ring A is right Noetherian as well.

Definition 2.13. The Grothendieck group $K_{0}(A)$ of finitely-generated projective A-modules is the abelian group generated by symbols $[P]$ for all finitely-generated projective left A-modules P, with defining relations $[P]=\left[P^{\prime}\right]+\left[P^{\prime \prime}\right]$ if $P \cong P^{\prime} \oplus P^{\prime \prime}$.

[^0]Proposition 2.14. $K_{0}(A)$ is a free abelian group with basis $\left\{\left[P_{n}\right]\right\}_{n \geq 0}$.
Proposition 2.14 follows from Theorem 2.11.
Observe that the existence of the filtration (2.1) of the projective module P_{n} by the standard modules M_{m} implies that M_{m} has a finite projective resolution $P\left(M_{m}\right)$ by P_{n} 's, for $n \leq m$. Consequently, we can view M_{m} as an object of the category $\mathcal{C}(A$-pmod) of bounded complexes of finitely-generated projective A-modules. Morphisms in this category are homomorphisms of complexes modulo zero-homotopic homomorphisms [3, 5]. The Grothendieck groups of the categories A-pmod and $\mathcal{C}(A$-pmod) are canonically isomorphic:

$$
K_{0}(\mathcal{C}(A-\text { pmod })) \cong K_{0}(A-\text { pmod })
$$

via the isomorphism taking the symbol of

$$
Q=\left(\cdots \rightarrow P^{i} \rightarrow P^{i+1} \rightarrow \cdots\right) \in \mathcal{C}(A \text {-pmod })
$$

to

$$
[Q]=\sum_{i \in \mathbb{Z}}(-1)^{i}\left[P^{i}\right] \in K_{0}(A)
$$

Hence, equality 2.2 below can be interpreted within $K_{0}(A)$.
The projective module P_{n} has a filtration by the standard modules M_{m}, over $m \leq n$. Specifically, consider the filtration

$$
\begin{equation*}
P_{n}=P_{n}(\leq n) \supset P_{n}(\leq n-1) \supset \cdots \supset P_{n}(\leq 0)=0 \tag{2.1}
\end{equation*}
$$

where $P_{n}(\leq m)$ is spanned by the diagrams in B_{n} of width at most m (equivalently, with at least $n-m$ right sarcs). Left multiplication by a basis vector cannot increase the width, hence $P_{n}(\leq m)$ is a submodule of P_{n} (see Figure8). The quotient $P_{n}(\leq m) / P_{n}(\leq m-1)$ has a basis of diagrams of width exactly m. These diagrams can be partitioned into $\binom{n}{m}$ classes enumerated by positions of the $n-m$ right sarcs. The quotient $P_{n}(\leq m) / P_{n}(\leq m-1)$ is isomorphic to the direct sum of $\binom{n}{m}$ copies of the standard module M_{m}. Consequently, we have an equality in the Grothendieck group of the additive category A-mod:

$$
\begin{equation*}
\left[P_{n}\right]=\sum_{m=0}^{n}\binom{n}{m}\left[M_{m}\right] \tag{2.2}
\end{equation*}
$$

The transformation matrix from the basis of the symbols $\left[P_{n}\right]$ of indecomposable projective modules to the basis of the symbols $\left[M_{m}\right]$ of standard modules is upper-triangular, with ones on the diagonal and nonzero coefficients being the binomials $\binom{n}{m}$. The entries of the inverse matrix are $(-1)^{n+m}\binom{n}{m}$. Thus we have the following equality in $K_{0}(A)$:

$$
\begin{equation*}
\left[M_{n}\right]=\sum_{m=0}^{n}(-1)^{n+m}\binom{n}{m}\left[P_{m}\right] \tag{2.3}
\end{equation*}
$$

We identify the projective Grothendieck group $K_{0}(A)$ with $\mathbb{Z}[x]$ by sending the symbols of the projective modules $\left[P_{n}\right]$ to the monomials x^{n} and
define an inner product on the basis $\left\{x^{n}\right\}_{n \geq 0}$ by

$$
\begin{equation*}
\left(x^{n}, x^{m}\right)=\operatorname{dim} \operatorname{Hom}\left(P_{n}, P_{m}\right)=\left|{ }_{n} B_{m}\right|=\binom{n+m}{m} \tag{2.4}
\end{equation*}
$$

This identification will be justified in Section 3.1 by introducing a monoidal structure on A-pmod under which $P_{n} \otimes P_{m} \cong P_{n+m}$.

Under this identification, (2.3) gives

$$
\begin{equation*}
\left[M_{n}\right]=\sum_{m \leq n}(-1)^{n+m}\binom{n}{m} x^{m}=(x-1)^{n} \tag{2.5}
\end{equation*}
$$

so the symbols of standard modules $\left[M_{n}\right]$ correspond to $(x-1)^{n}$.
Equation (2.3) hints at the existence of a projective resolution of M_{n} which starts with P_{n} and has $\binom{n}{m}$ copies of P_{m} in the $(n-m)$ th position:

$$
\begin{equation*}
0 \rightarrow P_{0} \rightarrow \cdots \rightarrow P_{n-m}^{\binom{n}{m}} \rightarrow \cdots \rightarrow P_{n-2}^{\binom{n}{2}} \rightarrow P_{n-1}^{\binom{n}{1}} \rightarrow P_{n} \rightarrow M_{n} \rightarrow 0 \tag{2.6}
\end{equation*}
$$

Let us construct this resolution. Denote the diagram with $n-1$ larcs and one left sarc at the i th position by ${ }^{i} b_{n-1} \in{ }_{n} B_{n-1}$. The diagram obtained from ${ }^{i} b_{n-1}$ by reflection along the vertical axis is denoted by $b_{n}^{i} \in{ }_{n-1} B_{n}$ (Figure 7). The product of ${ }^{i} b_{n-1}$ or b_{n}^{i} with an arbitrary diagram $a \in B$, when defined and nonzero, differs from the diagram a in the following way (see Figure 8):

Fig. 7. The diagrams ${ }^{i} b_{n-1}$ and b_{n}^{i} used in defining differentials in projective resolution of standard modules and resolution of simple by standard modules.

Fig. 8. The diagrams ${ }^{i} b_{n}$ and b_{n}^{i} and their products with a diagram $a \in B$. The dashed line represents the difference between them and the diagram 1_{n}, and the dotted line in the resulting diagram shows the difference between the diagram a we started with and the product diagram.
(1) $a \cdot{ }^{i}{ }^{j} b_{n-1}$ turns the i_{j} th larc in the diagram a into a left sarc,
(2) ${ }^{i} b_{n-1} \cdot a$ adds a left sarc between the i th and $(i+1)$ st larcs in a,
(3) $a \cdot b_{n}^{i_{j}}$ adds a right sarc between the i th and $(i+1)$ st larcs in a,
(4) $b_{n}^{i_{j}} \cdot a$ turns the i_{j} th larc in a into a right sarc.

Let $I_{m}=\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}, i_{1}<\cdots<i_{m}$, be a subset of cardinality $m \leq n$. Label the summands of the m th term $P_{n-m}^{\binom{n}{m}}$ by these subsets I_{m}, denoting the summand by $P_{n-m}^{I_{m}}$. Let $I_{m, l}:=I_{m} \backslash\left\{i_{l}\right\}$. Removing an element i_{l} of I_{m} can be interpreted as composing a diagram in B_{n-m} on the right with a diagram b_{n-m+1}^{p}, obtained in the following way. Take a diagram $b_{n}^{i_{l}}$ and delete all larcs at positions labeled by elements in $I_{m, l}$, resulting in a diagram b_{n-m+1}^{p}, where p denotes the position of i_{l} in the ordered set $\{1, \ldots, n\} \backslash I_{m} \cup\left\{i_{l}\right\}$ (see Figures 7 and 9).

Fig. 9. The differentials $d_{\{3,4,5,7\}}^{+1}$ and $d_{\{3,4,5,7\}}^{+4}$ in the projective resolution of M_{7} sending $P_{3}^{\{3,4,5,7\}}$ to $P_{4}^{\{4,5,7\}}$ and $P_{4}^{\{3,4,5\}}$, respectively. They are determined by composing on the right with the diagrams b_{4}^{3} and b_{4}^{4} obtained from b_{7}^{3} and b_{7}^{7} by deleting the dashed larcs corresponding to the label sets of $P_{4}^{\{4,5,7\}}$ and $P_{4}^{\{3,4,5\}}$.

Next, define the differential

$$
d: P_{n-m}^{\binom{n}{m}} \rightarrow P_{n-(m-1)}^{\binom{n}{m-1}}
$$

as the sum

$$
d=\sum_{I_{m}} \sum_{l=1}^{m} d_{I_{m}}^{+l}
$$

of the maps $d_{I_{m}}^{+l}: P_{n-m}^{I_{m}} \rightarrow P_{n-(m-1)}^{I_{m, l}}$ sending $a \in P_{n-m}^{I_{m}}$ to $d_{I_{m}}^{+l}(a)=$ $(-1)^{l-1} a \cdot b_{n-m+1}^{p}$, For example, Figure 9 shows how to define $d_{\{3,4,5,7\}}^{+1}$ and $d_{\{3,4,5,7\}}^{+4}$ in the resolution of M_{7} sending $P_{3}^{\{3,4,5,7\}}$ to $P_{4}^{\{4,5,7\}}$ and $P_{4}^{\{3,4,5\}}$, respectively.

Proposition 2.15. The complex (2.6) with the differential defined above is exact.

Proof. The proof that $d^{2}=0$ follows from the sign convention and the commutative diagram in Figure 10 which shows $d_{I_{m, r}}^{+s-1} \cdot d_{I_{m}}^{+r}=d_{I_{m, s}}^{+r} \cdot d_{I_{m}}^{+s}$ for $r<s$. The proof that (2.6) is exact uses a slight generalization of this square. Viewed as a complex of vector spaces, (2.6) splits into the sum of
complexes:

$$
\begin{aligned}
0 \rightarrow 1_{k} P_{0} \rightarrow \cdots \rightarrow 1_{k} P_{n-m}^{\binom{n}{m}} \rightarrow \cdots \rightarrow 1_{k} P_{n-2}^{\binom{n}{2}} & \rightarrow 1_{k} P_{n-1}^{\binom{n}{1}} \\
& \rightarrow 1_{k} P_{n} \rightarrow 1_{k} M_{n} \rightarrow 0
\end{aligned}
$$

one for each element of ${ }_{k} B_{n}, k \leq n$, with no left sarcs. Each of the complexes in the sum is isomorphic to the total complex of a k-dimensional cube with a copy of the ground field \mathbf{k} at each vertex and each edge an isomorphism. Hence, all complexes are contractible.

Fig. 10. A commutative diagram for the projective resolution of standard modules
A finite-dimensional A-module M has a finite filtration with simple modules L_{n} as subquotients. Due to the one-dimensionality of L_{n} the multiplicity of L_{n} in M, denoted by [$M: L_{n}$], equals $\operatorname{dim}\left(1_{n} M\right)$. A finitely-generated A-module M is not necessarily finite-dimensional but it satisfies

$$
\operatorname{dim}\left(1_{n} M\right)<\infty \quad \text { for } n \geq 0
$$

and therefore we call it locally finite-dimensional.
For a locally finite-dimensional module M we define the multiplicity of L_{n} in M as:

$$
\left[M: L_{n}\right]:=\operatorname{dim}\left(1_{n} M\right)
$$

This definition is compatible with the usual notion of multiplicity of L_{n} in M as the number of times L_{n} appears in the composition series of M when M is finite-dimensional.

Theorem 2.16 (SLarc BGG). The SLarc algebra satisfies the Bernstein-Gelfand-Gelfand ($B G G$) reciprocity property:

$$
\begin{equation*}
\left[P_{n}: M_{m}\right]=\left[M_{m}: L_{n}\right] \tag{2.7}
\end{equation*}
$$

The multiplicity on the right side of (2.7) is understood in the generalized sense, as explained above.

Proof. Recall that the indecomposable projective module P_{n} has a filtration by the standard modules M_{m} for $m \leq n$ with $\left[P_{n}: M_{m}\right]=\binom{n}{m}$. What remains is to compute the multiplicity of a simple module L_{n} in a standard module M_{n} :

$$
\left[M_{m}: L_{n}\right]=\operatorname{dim}\left(1_{n} M_{m}\right)= \begin{cases}\binom{n}{m} & \text { if } n \geq m \tag{2.8}\\ 0 & \text { if } n<m\end{cases}
$$

Define the Cartan matrix $C(A)$ by

$$
\begin{equation*}
C(A)_{i, j}:=\operatorname{dim} \operatorname{Hom}\left(P_{i}, P_{j}\right) \tag{2.9}
\end{equation*}
$$

and by $m(A)$ the multiplicity matrix $m(A)_{i, j}:=\left[P_{i}: M_{j}\right]=\left[M_{j}: L_{i}\right]$. Then

$$
\begin{equation*}
C(A)=m(A) m(A)^{t} . \tag{2.10}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
C(A)_{i, j} & =\operatorname{dim} \operatorname{Hom}\left(P_{i}, P_{j}\right)=\left[P_{i}: L_{j}\right] \\
& =\sum_{k}\left[P_{i}: M_{k}\right]\left[M_{k}: L_{j}\right]=\sum_{k} m(A)_{i, k} m(A)_{j, k} \\
& =\sum_{k} m(A)_{i, k} m(A)_{k, j}^{t}=\left(m(A) m(A)^{t}\right)_{i, j} .
\end{aligned}
$$

Proposition 2.17. $\operatorname{Ext}^{i}\left(M_{n}, M_{m}\right)=\left(1_{n-i} M_{m}\right)\left(\begin{array}{c}\binom{n}{i} .\end{array}\right.$
Proof. Since the map between $\operatorname{Hom}\left(P_{k}, M_{m}\right)$ and $\operatorname{Hom}\left(P_{k-1}, M_{m}\right)$ induced by the differential in the projective resolution of M_{n} is trivial, the proof follows from the fact that $\operatorname{Hom}\left(P_{k}, M_{m}\right)=\operatorname{Hom}\left(A 1_{k}, M_{m}\right)=1_{k} M_{m}$.

Proposition 2.18.

$$
\operatorname{Ext}^{i}\left(M_{n}, L_{m}\right) \cong \begin{cases}\mathbf{k}^{\left(n_{n-m}^{n}\right)} & \text { if } m \leq n, i=n-m \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Obviously, $\operatorname{Ext}^{i}\left(M_{n}, L_{m}\right)=0$ for $m>n$. To compute $\operatorname{Ext}^{i}\left(M_{n}, L_{m}\right)$ we use the projective resolution (2.6) and get the complex

$$
\begin{equation*}
0 \leftarrow \operatorname{Hom}\left(P_{0}, L_{m}\right) \leftarrow \cdots \leftarrow \operatorname{Hom}\left(P_{n-1}, L_{m}\right)^{\oplus n} \leftarrow \operatorname{Hom}\left(P_{n}, L_{m}\right) \leftarrow 0 \tag{2.11}
\end{equation*}
$$

Notice that

$$
\operatorname{Hom}\left(P_{n-k}, L_{m}\right)= \begin{cases}\mathbf{k} & \text { if } m=n-k \\ 0 & \text { otherwise }\end{cases}
$$

In the case $m=n-k, k \in \mathbb{Z}_{+}$, the complex (2.11) will be nontrivial only in degree $n-m$, and the $(n-m)$ th homology is isomorphic to $\mathbf{k}^{\left({ }_{n-m}^{n}\right)}=$ $\operatorname{Ext}^{n-m}\left(M_{n}, L_{m}\right)$. All other Ext's are zero.

Proposition 2.19. The homological dimension of the standard module M_{n} is n.

Proof. The projective dimension of M_{n} is at most n, as we have constructed a projective resolution (2.6) of that length. For $m=0$, Proposition 2.18 says that $\operatorname{Ext}^{n}\left(M_{n}, L_{0}\right)=\mathbf{k}$, hence the projective dimension is equal to n.

Next we construct a resolution of each simple module L_{k} by the standard modules M_{m} for $m \geq k$:

$$
\begin{equation*}
\xrightarrow{d} M_{k+m}^{\binom{k+m}{m}} \xrightarrow{d} \cdots \xrightarrow{d} M_{k+2}^{\binom{k+2}{2}} \xrightarrow{d} M_{k+1}^{\binom{k+1}{1}} \xrightarrow{d} M_{k} \xrightarrow{d} L_{k} \rightarrow 0 . \tag{2.12}
\end{equation*}
$$

Let $I_{m}=\left\{i_{1}, \ldots, i_{m}\right\}$ be a subset of $\{1, \ldots, n\}, m \leq n, i_{1}<\cdots<i_{m}$. Let $I_{m,-p}$ denote the set obtained from I_{m} by removing the p th element and subtracting 1 from all subsequent elements:

$$
\begin{equation*}
I_{m,-p}=\left\{i_{1}, \ldots, i_{p-1}, i_{p+1}-1, \ldots, i_{m}-1\right\}=I_{m} \backslash\left\{i_{p}\right\} \tag{2.13}
\end{equation*}
$$

The m th term of the resolution is the direct sum $M_{k+m}^{\binom{k+m}{m}}$ of the standard modules M_{k+m}. On the level of diagrams, the multiplicity $\binom{k+m}{m}$ represents the number of ways to add m larcs to the identity diagram 1_{k} in M_{k} to obtain a diagram in M_{k+m}. Let $I_{m}=\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, k+m\}$ be the set describing the positions of the added larcs. Each summand $M_{k+m}^{I_{m}}$ is labeled by one of these subsets, and the differential will take the summand labeled by I_{m} into summands labeled by $I_{m,-l}$, for $0<l \leq m$, by composing on the right with diagrams containing a single short right arc and no left sarcs (see Figure 7).

More precisely, let

$$
d_{I_{m}}^{-l}: M_{k+m}^{I_{m}} \xrightarrow{l_{b_{k+m-1}}} M_{k+m-1}^{I_{m,-l}}
$$

send $a \in M_{k+m}^{I_{m}}$ to

$$
d_{I_{m}}^{-l}(a)=(-1)^{l} a \cdot{ }^{l} b_{k+m-1}
$$

where the diagram ${ }^{l} b_{k}$ is shown in Figure 7 . The differential

$$
d: M_{k+m}^{\binom{k+m}{m}} \rightarrow M_{k+m-1}^{\binom{k+m-1}{m-1}}
$$

is an alternating sum of these maps,

$$
d=\sum_{I_{m}} \sum_{l=1}^{m}(-1)^{l} d_{I_{m}}^{-l}
$$

For example, the diagrams in Figure 11 show how to define $d_{\{3,6,8\}}^{-1}$, $d_{\{3,6,8\}}^{-2}$ and $d_{\{3,6,8\}}^{-3}$ in the resolution of L_{5} sending $M_{8}^{\{3,6,8\}}$ into $M_{7}^{\{5,7\}}$, $M_{7}^{\{3,7\}}$, and $M_{7}^{\{3,6\}}$. In general, for a map $d_{I_{m}}^{-l}, 0<l \leq m$, sending $M_{n+1}^{I_{m}} \rightarrow$ M_{n} in the resolution of L_{n+1-m}, start with a diagram 1_{n+1}, turn the arc i_{l}

Fig. 11. Examples of diagrams used in defining the differentials $d_{\{3,6,8\}}^{-1}, d_{\{3,6,8\}}^{-2}$ and $d_{\{3,6,8\}}^{-3}$ in the resolution of a simple module L_{5} by standard modules: dashed lines are the ones to be removed to obtain the appropriate diagram.
in a short left arc, then remove all long arcs labeled by numbers which are not in $I_{m}=\left\{i_{1}, \ldots, i_{m}\right\}$, shown as dotted lines in Figure 11 .

Proposition 2.20. The complex (2.12) with the differential defined above is exact.

Proof. The proof that $d^{2}=0$ is the same as in Proposition 2.15, except that the differential is defined using diagrams that lower the number of larcs (see Figures 7 and 10).

To prove exactness, notice that the complex $(\sqrt{2.12)}$ splits into the sum of complexes of vector spaces

$$
1_{n} M_{n}^{\binom{n}{n-k}} \rightarrow 1_{n} M_{n-1}^{\left(\begin{array}{c}
n-1)-k
\end{array}\right)} \rightarrow \cdots \rightarrow 1_{n} M_{k+1}^{\left(\begin{array}{l}
k+1
\end{array}\right)} \rightarrow 1_{n} M_{k}
$$

for each $n>0$. In turn, each of these complexes splits into the sum of $(n-k)$ dimensional cubes, corresponding to diagrams in ${ }_{n} B_{n-k}$ with k larcs, $n-k$ left sarcs and no right sarcs, containing a copy of the field \mathbf{k} at each vertex. For example, the resolution of L_{2} contains a summand corresponding to $M_{5}^{\{2,3,4\}}$ represented by the total complex of a 3-dimensional cube shown in Figure 12. Sets labeling the vertices denote positions of short arcs in the corresponding diagrams shown to the left of the module symbol. Arrows are labeled with positions of elements which are being removed.

Informally, at the level of Grothendieck groups we have the relation

$$
\begin{aligned}
{\left[L_{n}\right] } & =\sum_{k=0}^{\infty}(-1)^{k}\binom{n+k}{k}\left[M_{n+k}\right] \\
& =\sum_{k=0}^{\infty}(-1)^{k}\binom{n+k}{k}(x-1)^{n+k}=\frac{(x-1)^{n}}{x^{n+1}}
\end{aligned}
$$

We will not try to make sense of this infinite sum.
In order to obtain a projective resolution of a simple module L_{n} we construct a bicomplex (see Figure 13), with a projective resolution (2.6) of $M_{n+k}, k \geq 0$, lying above each copy of a standard module in the resolution (2.12) of L_{n} by the standard modules $M_{m}, m \geq n$.

Fig. 12. A 3-dimensional cube in the resolution of the simple module L_{2}, corresponding to $M_{5}^{\{2,3,4\}}$, where label $\{2,3,4\}$ describes a diagram in B_{2} with three left sarcs and the remaining two larcs shown to the left of the symbol M_{5}. Negative labels on the arrows specify the order of the element of the set in the superscript that is removed. For example, $M_{5}^{\{2,3,4\}}$ is mapped to $M_{4}^{\{3,4\}}$ by an arrow labeled by -1 , which means that 2 is removed from $\{2,3,4\}$.

To complete the construction of the bicomplex, we define the horizontal differential denoted by d_{H}. Each copy of the projective module P_{n+m-k} in the bicomplex shown in Figure 13 comes with a pair of labels $P_{n+m-k}^{I_{m+n}, J_{k}}$. The first label I_{n+m} is equal to the label of the standard module M_{n+m} in the resolution of L_{n}, and J_{k} is the label of P_{n+m-k} in the projective resolution of M_{n+m}.

The horizontal differential $d_{H}: P_{n+m-k}^{\binom{n+m}{m}\binom{n+m}{k}} \rightarrow P_{n+(m-1)+k}^{\binom{n+m-1}{m-1}\binom{n+m-1}{k}}$ is a signed sum of maps $d_{I_{m+n}}^{J_{k}}$ sending $a \in P_{n+m-k}^{I_{m+n}, J_{k}}$ to

$$
\begin{equation*}
d_{I_{m+n}}^{J_{k}}(a)=\sum_{\substack{p=0 \\ i_{p} \notin J_{k}}}^{n+m}(-1)^{i_{p}-1} a^{i_{p}} b \in \bigoplus_{\substack{p=0 \\ i_{p} \notin J_{k}}}^{n+m} P_{n+m-1-k}^{I_{m+n,-p}, J_{k,-p}} \tag{2.14}
\end{equation*}
$$

where $I_{m+n,-p}$ and $J_{k,-p}$ are defined in (2.13).
Proposition 2.21. The diagram in Figure 13 is a bicomplex-all squares are anticommutative.

Proof. Direct computation, see Figure 14.

Fig. 13. A bicomplex whose total complex is a projective resolution of L_{n}

$$
\begin{aligned}
& P_{n+m-(k+1)}^{\oplus\binom{n+m}{m}\binom{n+m}{k+1}} \xrightarrow{d_{H}} P_{n+(m-1)-(k+1)}^{\oplus\binom{n+m-1}{k+1}\binom{n+m-1}{k+1}} \\
& \downarrow d_{M} \quad d_{M} \\
& P_{n+m-k}^{\oplus\binom{n+m}{m}\binom{n+m}{k}} \xrightarrow{d_{H}} P_{n+(m-1)-k}^{\oplus\binom{n+m-1}{m-1}\binom{n+m-1}{k}}
\end{aligned}
$$

Fig. 14. An anticommutative square in the bicomplex of Figure 13
The projective resolution

$$
\begin{equation*}
P\left(L_{n}\right): \cdots \rightarrow C_{n, t} \rightarrow C_{n, t-1} \rightarrow \cdots \rightarrow C_{n, 0} \rightarrow L_{n} \rightarrow 0 \tag{2.15}
\end{equation*}
$$

of the simple module L_{n} is defined in the following way:

$$
\begin{equation*}
C_{n, t}=\bigoplus_{\substack{m+k=t \\ n+m \geq k}} P_{n+m-k}^{\binom{n+m}{m}\binom{n+m}{k}} \tag{2.16}
\end{equation*}
$$

The total differential d_{t} is the sum of the horizontal differential d_{H}, and the vertical differential d_{M} in the projective resolution of standard modules:

$$
d_{t}=d_{H}+d_{M}
$$

In other words, the resolution 2.16 is the total complex of the bicomplex
in Figure 13. Since each column in the bicomplex is exact, the following proposition holds:

Proposition 2.22. The chain complex (2.16) is exact.
Proposition 2.23. The simple modules L_{n} have infinite homological dimension.

Proof. By the resolution (2.16), it is sufficient to show that $\operatorname{Ext}^{i}\left(L_{n}, M\right)$ is nontrivial for arbitrarily large $i \in \mathbb{N}$ and some A-module M. Recall that

$$
\operatorname{Hom}\left(P_{i}, L_{m}\right)= \begin{cases}\mathbf{k} & \text { if } m=i, \\ 0 & \text { otherwise }\end{cases}
$$

$C_{n, t}$ contains all P_{i} for $\max (0, n-t) \leq i<n+t$ such that $n+t-i \equiv 0$ $(\bmod 2)$. Let $M=L_{0}$ and notice that $P_{0} \in C_{n, t}$ for every $t \geq n$ such that $n+t$ is even. Hence, the chain complex built out of the hom spaces $\operatorname{Hom}\left(C_{n, t}, L_{0}\right)$ (with the differential induced from the resolution) reduces to the infinite chain complex having trivial groups in odd degrees and nontrivial groups in even degrees for $t \geq n$:

$$
\operatorname{Ext}^{n+t}\left(L_{n}, L_{0}\right) \cong \operatorname{Hom}\left(C_{n, t}, L_{0}\right) \cong \begin{cases}\mathbf{k} & \text { if } t=n, \\ \binom{(t+n) / 2}{(t-n) / 2} & \text { if } t+n \text { even, } t>n .\end{cases}
$$

Therefore, $\operatorname{Ext}^{n+t}\left(L_{n}, L_{0}\right)$ is nontrivial for arbitrarily large $t>n$ such that $n+t$ is even.

The SLarc algebra A can be viewed as a graded algebra with the grading defined by the total number of sarcs in a diagram. In particular, if we regard (2.16) as a graded resolution, the differential increases the degree by 1.

Corollary 2.24. The algebra A is Koszul.
3. Functors. In this section we describe a monoidal structure on A-pmod, justifying the identification

$$
K_{0}(A-\text { pmod }) \cong \mathbb{Z}[x] .
$$

Next, we explain how the identity functor on A-mod can be approximated. On the pre-categorified level, given a basis $\left\{v_{i}\right\}_{i=1}^{N}$ of a separable Hilbert space \mathcal{H}, the identity operator acting on \mathcal{H} can be viewed as the limit of finite sums $\sum_{i=1}^{N} v_{i} \otimes v_{i}^{*}$. In Section 3.2 we explain a categorified analogue of this construction for the case of A-modules. Notice that we are not categorifying a Hilbert space but its small subspace $\bigoplus_{i=1}^{\infty} \mathbb{Z} v_{i} \otimes v_{i}^{*}$, and the operator $v_{i} \otimes v_{i}^{*}$ should be thought of as acting on this space.

The most obvious inclusion $A \hookrightarrow A$ is given by adding a through (long) line either at the top or at the bottom of each diagram in A. In Section 3.3 we investigate restriction and induction functors for this inclusion and induced maps on Grothendieck groups. Converting each line to k parallel
lines leads to a cabling functor, considered in Section 3.4. In Section 3.5 we compute the derived tensor product of standard modules.
3.1. Monoidal structure. We define the tensor product bifunctor

$$
A-\text { pmod } \times A-\text { pmod } \rightarrow A-\text { pmod }
$$

on indecomposable projective modules by $P_{n} \otimes P_{m}=P_{n+m}$ and extend it to all objects using Theorem 2.11. Next, define the tensor functor on basic morphisms of projective modules $\alpha: P_{n} \rightarrow P_{n^{\prime}}$ and $\beta: P_{m} \rightarrow P_{m^{\prime}}$, where $\alpha \in{ }_{n} B_{n^{\prime}}, \beta \in{ }_{m} B_{m^{\prime}}$ by placing α on top of β, and extend to all morphisms and objects using bilinearity (see Figure 15).

Fig. 15. Tensor product defined on basic morphisms of projective modules

The tensor product extends to a bifunctor $\mathcal{C}(A$-pmod $) \times \mathcal{C}(A$-pmod $) \rightarrow$ $\mathcal{C}(A$-pmod $)$. Hence, A-pmod and $\mathcal{C}(A$-pmod $)$ are monoidal categories. Since standard modules have finite projective resolutions, they can be viewed as objects of $\mathcal{C}\left(A\right.$-pmod). Let $P\left(M_{n}\right)$ be the projective resolution 2.6 of the standard module M_{n}.

Note that in the Grothendieck group, $\left[M_{n}\right]=(x-1)^{n}$ and

$$
\left[M_{n}\right] \cdot\left[M_{m}\right]=(x-1)^{n+m}=\left[M_{n+m}\right]
$$

This equality lifts to the category A-mod or $\mathcal{C}(A-$ pmod $)$.
Lemma 3.1. In $\mathcal{C}(A$-pmod $), P\left(M_{n}\right) \otimes P\left(M_{m}\right) \cong P\left(M_{m+n}\right)$ for $m, n \geq 0$.
Proof. The p th term in the product of the projective resolutions $P\left(M_{m}\right)$ and $P\left(M_{n}\right)$ is

$$
\bigoplus_{k+l=p} P_{k}^{\binom{n}{k}} \otimes P_{l}^{\binom{m}{l}} \cong P_{p}^{\binom{n+m}{p}}
$$

This module isomorphism respects differentials and gives an isomorphism of complexes. Notice that the isomorphism also holds in the category of complexes before modding out by null-homotopic morphisms.

Corollary 3.2. The following relation holds between standard modules viewed as objects of $\mathcal{C}(A$-pmod $): M_{n} \otimes M_{m} \cong M_{m+n}$.

In the Grothendieck group the tensor product descends to multiplication in the ring $\mathbb{Z}[x]$, under the isomorphism of abelian groups $K_{0}(A) \cong \mathbb{Z}[x]$.

To define the tensor product for arbitrary modules we need to construct and tensor their projective resolutions. If modules M, N have finite filtrations with successive quotients isomorphic to standard modules M_{n} for various n, then the derived tensor product $M \widehat{\otimes} N$ has cohomology only in degree zero, and $H^{0}(M \widehat{\otimes} N) \cong{ }_{D^{b}} M \widehat{\otimes} N$ has a filtration by standard modules. The derived tensor product restricts to a bifunctor on the category of modules admitting a finite filtration by standard modules.
3.2. Approximations of the identity. Recall that $B(\leq k)=\bigsqcup_{i=0}^{k} B(i)$ denotes the set of diagrams in B of width less than or equal to k. Let $A(\leq k), k \geq 0$, denote the subspace of A spanned by diagrams in $B(\leq k)$. This subspace is an A-subbimodule of A. Let $A(k)$ be the quotient subbimodule $A(\leq k) / A(\leq k-1)$. Let ${ }_{n} P$ denote the right projective module $1_{n} A$ and, analogously to the standard modules M_{n}, let ${ }_{n} M$ be the quotient of ${ }_{n} P$ by the submodule spanned by all diagrams with a left sarc. One can think of diagrams of ${ }_{n} M$ as reflections along the vertical axis of diagrams in M_{n}.

Fig. 16. A diagram in $B(4)$ viewed as a product of elements in M_{4} and ${ }_{4} M$

Proposition 3.3. $A(\leq k) / A(\leq k-1) \cong M_{k} \otimes_{\mathbf{k} k} M$ as A-bimodules (Figure 16.

For a given $k \geq 0$, define a right exact functor $F_{k}: A-\bmod \rightarrow A-\bmod$ by

$$
F_{k}(M)=A(\leq k) \otimes_{A} M
$$

for an A-module M. The image of the standard module M_{m} under F_{k} is

$$
A(\leq k) \otimes_{A} M_{m}= \begin{cases}M_{m} & \text { if } k \geq m \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

By definition $P_{m}=A 1_{m}$, hence $A(\leq k) \otimes_{A} P_{m}=A(\leq k) \otimes_{A} A 1_{m}=A(\leq k) 1_{m}$, and this is a submodule of P_{m} spanned by diagrams of width less than or
equal to k :

$$
F_{k}\left(P_{m}\right)=A(\leq k) \otimes_{A} P_{m}= \begin{cases}P_{m} & \text { if } k \geq m \tag{3.2}\\ P_{m}(\leq k) & \text { if } k<m\end{cases}
$$

Recall that in the Grothendieck group, the projective modules P_{n} correspond to x^{n} and the standard modules M_{n} to $(x-1)^{n}$. The modules $P_{n}(\leq k)$ have finite homological dimension, since they admit finite filtrations with successive quotients isomorphic to standard modules. Therefore, the functor F_{k} descends to an operator on the Grothendieck group $K_{0}(A)$, denoted by $\left[F_{k}\right]$. The action of $\left[F_{k}\right]$ on $\left[P_{n}\right]=\sum_{m=0}^{n}\binom{n}{m}\left[M_{m}\right]$ is equal to

$$
\left[F_{k}\right]\left[P_{n}\right]= \begin{cases}{\left[P_{n}\right]=x^{n}} & \text { if } k \geq n \tag{3.3}\\ \sum_{m=0}^{k}\binom{n}{m}\left[M_{m}\right]=\sum_{m=0}^{k}\binom{n}{m}(x-1)^{m} & \text { if } k<n\end{cases}
$$

In other words, for $k \geq n$ the operator $\left[F_{k}\right]$ acts via the identity on $\left[P_{n}\right]$, and for $k<n$ it approximates the identity and can be viewed as taking the first $k+1$ terms $\sum_{m=0}^{k}\binom{n}{m}\left[M_{m}\right]$ in the expansion of $\left[P_{n}\right]$ in the basis $\left\{(x-1)^{m}\right\}_{m \geq 0}$.

Proposition 3.4. Higher derived functors of the functor F_{k} applied to a standard module are zero:

$$
L^{i} F_{k}\left(M_{n}\right)= \begin{cases}M_{n} & \text { if } i=0, k \geq n \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The projective resolution $P\left(M_{n}\right)$ has the form (2.6):

$$
\begin{equation*}
0 \rightarrow P_{0} \rightarrow \cdots \rightarrow P_{n-m}^{\binom{n}{m}} \rightarrow \cdots \rightarrow P_{n-2}^{\binom{n}{2}} \rightarrow P_{n-1}^{\binom{n}{1}} \rightarrow P_{n} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Terms in this resolution are multiples of the projective modules P_{m} for $m \leq n$. By (3.2), if $k \geq n, F_{k}$ acts as the identity on the resolution, implying the proposition in this case. Assume now that $k<n$. The differential in (2.6) applied to a diagram in any P_{n-m} preserves the width of the diagram, and (2.6) splits, as a complex of vector spaces, into a direct sum of complexes over all widths from 0 to n. These complexes are exact unless the width is exactly n, in which case the summand is isomorphic to $0 \rightarrow M_{n} \rightarrow 0$.

Applying F_{k} to the resolution (3.4) produces the complex

$$
\begin{equation*}
0 \rightarrow P_{0} \rightarrow \cdots \rightarrow P_{n-m}^{\binom{n}{m}}(\leq k) \rightarrow \cdots \rightarrow P_{n-1}^{\binom{n}{1}}(\leq k) \rightarrow P_{n}(\leq k) \rightarrow 0 \tag{3.5}
\end{equation*}
$$

which is exact for $k \leq n$, being a direct sum of exact complexes over all widths from 0 to k.
3.3. Restriction and induction functors and what they categorify. In this section we consider the restriction and induction functors
coming from the specific inclusion map on the SLarc algebra and their decategorification.

For a unital inclusion $\iota: B \hookrightarrow A$ of arbitrary rings the induction functor

$$
\text { Ind : } B-\bmod \rightarrow A-\bmod
$$

given by $\operatorname{Ind}(M)=A \otimes_{B} M$ is left adjoint to the restriction functor,

$$
\operatorname{Hom}_{A}(\operatorname{Ind}(M), N) \cong \operatorname{Hom}_{B}(M, \operatorname{Res}(N)) .
$$

If the inclusion is nonunital, i.e., ι takes the unit element of B to an idempotent $e \neq 1$ of A, the restriction functor has to be redefined: to an A-module N assign the $e A e$-module $e N$ and then restrict the action to B. The induction functor is defined as before, but now

$$
\operatorname{Ind}(M)=A \otimes_{B} M \cong\left(A e \otimes_{B} M\right) \oplus\left(A(1-e) \otimes_{B} M\right)=A e \otimes_{B} M,
$$ and induction is still left adjoint to restriction. A similar construction works for nonunital B and A equipped with systems of idempotents.

We now specialize to the SLarc algebra A and the inclusion $\iota: A \hookrightarrow A$ induced by adding a straight through line on top of every diagram, so that a diagram $d \in{ }_{m} B_{n}$ goes to $\iota(d) \in_{m+1} B_{n+1}$. In particular, the system $\left\{1_{n}\right\}_{n \geq 0}$ of idempotents goes to $\left\{1_{n+1}\right\}_{n \geq 0}$ missing 1_{0}. This inclusion ι gives rise to both induction and restriction functors, with

$$
\begin{aligned}
& \operatorname{Ind}(N) \cong A \otimes_{\iota(A)} N, \\
& \operatorname{Res}(N) \cong N / 1_{0} N \cong \bigoplus_{k>0} 1_{k} N \text { with the algebra } A \text { acting on the left via } \iota .
\end{aligned}
$$

In particular, $1_{n-1} \operatorname{Res}(M) \cong 1_{n} M$.
Notice that for simple modules

$$
\operatorname{Res}\left(L_{n}\right)= \begin{cases}L_{n-1} & \text { if } n>0 \\ 0 & \text { if } n=0\end{cases}
$$

while $\operatorname{Ind}\left(L_{n}\right)$ is an infinite-dimensional module such that

$$
1_{m}\left(\operatorname{Ind}\left(L_{n}\right)\right)= \begin{cases}\mathbf{k} & \text { if } m>n \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 3.5. $\operatorname{Res}\left(M_{n}\right) \cong M_{n} \oplus M_{n-1}$ for $n>0$, and $\operatorname{Res}\left(M_{0}\right) \cong$ M_{0}.

Proof. Let M_{n}^{L} and M_{n}^{\emptyset} denote the spans of diagrams in M_{n} with the top left point being a part of a left sarc or a larc, respectively (the diagrams in Figure 17 can be treated as elements of standard modules if we delete right returns). Then $\operatorname{Res}\left(M_{n}\right) \cong M_{n}^{L} \oplus M_{n}^{\emptyset}$ as left A-modules. Furthermore, $M_{n}^{\emptyset} \cong M_{n}$ and $M_{n}^{L} \cong M_{n-1}$.

Proposition 3.6. $\operatorname{Res}\left(P_{n}\right) \cong \bigoplus_{k=0}^{n} P_{k}$ for all $n \geq 0$.

Fig. 17. Decomposition of P_{n} as a sum of vector spaces spanned by diagrams of type (a) where a left sarc is attached to the top left point and type (b) where the top left point is connected by a larc to the i th point on the right. In particular, the diagram in (a) is an element of P_{12}^{6}, and (b) belongs to $P_{12}^{(i)}$.

Proof. For each $i \geq 1$, let $P_{n}^{(i)}$ denote the spans of diagrams in P_{n} with top left point connected by a larc to the i th point on the right, and P_{n}^{\emptyset} the span of diagrams such that at the top we have a left sarc (Figure 17). Each of these spans is a direct summand of $\operatorname{Res}\left(P_{n}\right)$.

Fig. 18. P_{n}^{\emptyset} is isomorphic to the projective module P_{n}.
Then $\operatorname{Res}\left(P_{n}\right) \cong P_{n}^{\emptyset} \oplus \bigoplus_{i=1}^{n} P_{n}^{(i)}$ as left A-modules. It is easy to see that $P_{n}^{\emptyset} \cong P_{n}$ (Figure 18) since the top left sarc is fixed. Similarly, $P_{n}^{(i)} \cong P_{n-i}$ since the $i-1$ top right sarcs are fixed (Figure 19).

Fig. 19. $P_{n}^{(i)}$ is isomorphic to the projective module P_{n-i}.

Proposition 3.7. $\operatorname{Ind}\left(P_{n}\right) \cong P_{n+1}$ for $n \geq 0$.
Proof. This follows from the definition of the induction functor (see Figure 20 .

Fig. 20. Induction on projective modules: an element of $A \otimes_{\iota(A)} P_{n}$ is presented diagrammatically by composing basis elements of A and P_{n}. Elements of $\iota(A)$ can be exchanged through the vertical line.

Proposition 3.8. For $n \geq 0$ there exists a short exact sequence

$$
\begin{equation*}
0 \rightarrow M_{n} \rightarrow \operatorname{Ind}\left(M_{n}\right) \rightarrow M_{n+1} \rightarrow 0 \tag{3.6}
\end{equation*}
$$

Fig. 21. Induction on standard modules

Proof. Notice that the right action of $\iota(A)$ fixes the top right point of a diagram in A. Depending on whether this point has a right sarc or larc attached to it (see Figure 21), we get a copy of M_{n} or M_{n+1} as a submodule or a quotient of $\operatorname{Ind}\left(M_{n}\right)$, respectively.

Proposition 3.9. Higher derived functors of the induction functor applied to a standard module are zero:

$$
L^{i} \operatorname{Ind}\left(M_{n}\right)=0 \quad \text { for every } i>0
$$

Proof. The induction functor applied to the projective resolution (2.6) gives

$$
0 \rightarrow P_{1} \rightarrow P_{2}^{\binom{n}{1}} \rightarrow \cdots \rightarrow P_{m}^{\left({ }_{m-1}^{n}\right)} \rightarrow \cdots \rightarrow P_{n}^{\left(\begin{array}{c}
n-1
\end{array}\right)} \rightarrow P_{n+1} \rightarrow 0
$$

where the differential corresponds to the one from (2.6) with a long arc added on top of each diagram. This complex splits, as a complex of vector spaces, into the sum of two copies of the original complex depending on whether the top arc is a larc or right sarc.

Propositions 3.3 to 3.7 imply that at the level of the Grothendieck group, induction sends $\left[P_{n}\right]=x^{n}$ to $\left[P_{n+1}\right]=x^{n+1},\left[M_{n}\right]=(x-1)^{n}$ to $\left[M_{n}\right]+$ $\left[M_{n+1}\right]=(x-1)^{n}+(x-1)^{n+1}$, and restriction (always exact) acts in the following way:

$$
\begin{aligned}
& {\left[P_{n}\right]=x^{n} \mapsto \sum_{i=0}^{n}\left[P_{i}\right]=\sum_{i=0}^{n} x^{i}, } \\
& {\left[M_{n}\right]=(x-1)^{n} \mapsto \sum_{i=0}^{n}\left[M_{i}\right]+\left[M_{i-1}\right]=\sum_{i=0}^{n}(x-1)^{i}+(x-1)^{i-1} . }
\end{aligned}
$$

Corollary 3.10. In the Grothendieck group, induction corresponds to multiplication by x, and restriction [Res] acts by sending

$$
f(x) \mapsto \frac{x f(x)-f(1)}{x-1} .
$$

3.4. Cabling functors. For every A-module M and a positive integer k we construct the corresponding cabled module ${ }^{[k]} M$ in the following way:

$$
\begin{equation*}
1_{n}{ }^{[k]} M=1_{n k} M, \quad \text { hence } \quad \quad{ }^{[k]} M=\bigoplus_{n \geq 0} 1_{n k} M \tag{3.7}
\end{equation*}
$$

Given a diagram $y \in{ }_{s} B_{l}$, construct a diagram ${ }^{[k]} y \in{ }_{s k} B_{l k}$, called the k-cabling of y, by taking k parallel copies of each arc (Figure 22). For example, ${ }^{[k]} 1_{n}=1_{n k}$. By definition, the action of an element $\alpha \in A$ on ${ }^{[k]} M_{n}$ is the regular action of its k-cabling α^{k}.

Fig. 22. A diagram $y \in{ }_{11} B_{6}$ and 2 -cable ${ }^{[2]} y \in{ }_{22} B_{12}$

What is the result of k-cabling simple, standard and projective modules? It is easy to see that if k divides n, the k-cabling of L_{n} is $L_{n / k}$:

$$
1_{m}^{[k]} L_{n}=1_{k m} L_{n}= \begin{cases}\mathbf{k} & \text { if } k m=n, \tag{3.8}\\ 0 & \text { otherwise }\end{cases}
$$

If k does not divide n, then ${ }^{[k]} L_{n}=0$.
Recall that basis elements of the standard A-modules M_{n} correspond to diagrams in B_{n} with n through arcs and an arbitrary number of left sarcs. Let $S(n, k, i)$ denote the number of ways to select n numbers between 1 and $k i$ such that each of the sets $\{k j+1, \ldots, k(j+1)\}_{0 \leq j<i}$ contains at least one of the selected numbers.

Proposition 3.11. ${ }^{[k]} M_{n} \cong \bigoplus_{i=[n / k\rceil}^{n} M_{i}^{S(n, k, i)}$.
Proof. The proof is left to the reader following the examples shown in Figure 23. $S(n, k, i)$ is the sum of products $\prod_{j=1}^{i}\binom{k}{\lambda_{j}}$ over all possible partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{i}\right)$ of n into i blocks of length at most k.

(a)

(b)

Fig. 23. (a) 2-cabling of M_{3}; (b) 4-cabling of M_{3} corresponding to the partition (2,1): two arcs in the same part contribute 6 , hence the total contribution is 24 .

We compute cabling modules of M_{n} for small values of $n:{ }^{[k]} M_{0}=M_{0}$, ${ }^{[k]} M_{1}=M_{1}^{k},{ }^{[k]} M_{2}=M_{2}^{k^{2}} \oplus M_{1}^{\binom{k}{2}},{ }^{[k]} M_{3}=M_{3}^{k^{3}} \oplus M_{2}^{2\binom{k}{1}\binom{k}{2}} \oplus M_{1}^{\binom{k}{3}}$.

Studying cablings of projective modules reduces to the case of standard modules: ${ }^{[k]} P_{n}$ has a filtration with the i th term consisting of $\binom{n}{i}{ }^{[k]} M_{i}$, based on the filtration (2.1) of P_{n} by $P_{n}(i), i \leq n$.

The cabling functor ${ }^{[k]}$, sending an A-module M to its k-cabled module ${ }^{[k]} M$, is exact, and categorifies the following operator on the Grothendieck group:

$$
\left[M_{n}\right]=(x-1)^{n} \mapsto\left[{ }^{[k]} M_{n}\right]=\sum_{i=\lceil n / k\rceil}^{n} S(n, k, i)(x-1)^{i} .
$$

Notice that ${ }^{[s][k]} M \cong{ }^{[k s]} M$ functorially in M.
Proposition 3.12. The cabling functor ${ }^{[k]}$ preserves finitely-generated A-modules.

Proof. The module ${ }^{[k]} M_{n}$ is finitely-generated. Since P_{m} has a finite filtration by standard modules (2.1), ${ }^{[k]} P_{m}$ is finitely-generated. A finitelygenerated module M is a quotient of a finite sum of indecomposable projective modules P_{m}, thus ${ }^{[k]} M$ is finitely-generated, and the functor ${ }^{[k]}$ preserves the category A-mod.

Another cabling functor, denoted by \mathfrak{L}_{k}, on the category A-pmod can be defined on objects by $\mathfrak{L}_{k}\left(P_{n}\right)=P_{n k}$ and on morphisms in the same way as above (Figure 22), i.e. $\mathfrak{L}_{k}(\alpha)={ }^{[k]} \alpha$ for $\alpha \in{ }_{m} B_{n}$.

Given a full subcategory $\mathcal{A} \subset \mathcal{B}$, we say that endofunctors $F: \mathcal{A} \rightarrow \mathcal{A}$ and $G: \mathcal{B} \rightarrow \mathcal{B}$ are weakly adjoint if

$$
\operatorname{Hom}_{\mathcal{B}}\left(F M_{1}, M_{2}\right) \cong \operatorname{Hom}_{\mathcal{B}}\left(M_{1}, G M_{2}\right),
$$

functorially in $M_{1} \in \mathcal{A}$ and $M_{2} \in \mathcal{B}$.
Proposition 3.13. The cabling functors \mathfrak{L}_{k} and ${ }^{[k]}$ on the categories A-pmod and A-mod, respectively, are weakly adjoint.

Proof. It is sufficient to prove the statement for $P_{n} \in A$-pmod and any $M \in A$-mod. Indeed,

$$
\operatorname{Hom}\left(\mathfrak{L}_{k}\left(P_{n}\right), M\right) \cong \operatorname{Hom}\left(P_{n k}, M\right) \cong 1_{n k} M \cong 1_{n}{ }^{[k]} M \cong \operatorname{Hom}\left(P_{n},{ }^{[k]} M\right)
$$

3.5. Monoidal structure and standard modules. The full subcategory \mathcal{C}^{\prime} of A-pmod which consists of the objects $P_{n}, n \geq 0$, is monoidal and preadditive, with the unit object $\mathbf{1}=P_{0}$ and a single generating object P_{1}, since $P_{n}=P_{1}^{\otimes n}$. One can think of \mathcal{C}^{\prime} as a monoidal category with generating object P_{1}, generating morphisms $a \in \operatorname{Hom}\left(P_{1}, P_{0}\right)$ and $b \in \operatorname{Hom}\left(P_{0}, P_{1}\right)$, and defining relation setting the value of the floating arc, viewed as an endomorphism of 1, to zero (see Figure 24).

Fig. 24. Generating morphisms in the category \mathcal{C}^{\prime}

Fig. 25. Quiver description of the algebra $\operatorname{End}\left(P_{0} \oplus P_{1}\right)$
The algebra $\operatorname{End}\left(P_{0} \oplus P_{1}\right)$ admits a quiver presentation (see Figure 25) as a quiver with two vertices, two edges, and one defining relation $a b=0$.

This is a five-dimensional algebra, which also describes regular blocks of the category \mathcal{O} for $s l(2)$.

Let \mathcal{C}^{\prime} be a monoidal \mathbf{k}-linear category such that

$$
\begin{array}{ll}
\operatorname{Hom}\left(P_{0}, P_{0}\right)=\mathbf{k}, & \operatorname{Hom}\left(P_{1}, P_{0}\right)=\mathbf{k} b \\
\operatorname{Hom}\left(P_{0}, P_{1}\right)=\mathbf{k} a, & \operatorname{Hom}\left(P_{1}, P_{1}\right)=\mathbf{k} 1 \oplus \mathbf{k} b a .
\end{array}
$$

From this point of view, the SLarc algebra A can be viewed as the Hom algebra of \mathcal{C}^{\prime} :

$$
A=\bigoplus_{n, m \geq 0} \operatorname{Hom}\left(P_{1}^{\otimes n}, P_{1}^{\otimes m}\right)
$$

Proposition 3.14. The standard module M_{n} is isomorphic to the nth derived tensor product of $M_{1}: M_{n} \simeq M_{1}^{\widehat{\otimes} n}$.

Proof. The minimal projective resolution of M_{1} is

$$
\begin{equation*}
0 \rightarrow P_{0} \rightarrow P_{1} \rightarrow 0 \tag{3.9}
\end{equation*}
$$

The nth derived tensor power $M_{1}^{\widehat{\otimes} n}$ can be computed by substituting this resolution for each term in the tensor product $M_{1}^{\otimes n} \mapsto\left(0 \rightarrow P_{0} \rightarrow P_{1}\right.$ $\rightarrow 0)^{\otimes n}$. This tensor power will contain 2^{n} terms of the form

$$
P_{\epsilon_{1}} \otimes \cdots \otimes P_{\epsilon_{n}}=P_{\epsilon_{1}+\cdots+\epsilon_{n}}
$$

for $\epsilon_{i} \in\{0,1\}$.
The projective module P_{m} will appear $\binom{n}{m}$ times in the complex, and it is easy to match the resulting complex to the projective resolution (2.6) of the standard module M_{n}.

Proposition 3.14 (see also Corollary 3.2) generalizes the observation that

$$
\left[M_{n}\right]=(x-1)^{n}=\left[M_{1}\right]^{n} .
$$

4. A modification of the SLarc algebra A. Assuming that we work over a field \mathbf{k}, we have two canonical choices for the value of the floating arc: either 0 or 1 . Choosing value zero yields the above-described categorification of the polynomial ring and, interestingly enough, value one leads to yet another categorification of the polynomial ring. Let us denote by A^{+}this modification of the SLarc algebra A. The elements 1_{n} and the projective modules P_{n} are defined as in the A algebra case.

Fig. 26. The idempotents e_{+}and e_{-}in A^{+}

However, changing the value of the floating arc from 0 to 1 produces additional idempotents, such as the element $e_{+} \in{ }_{1} B_{1}^{+}$which is an idempotent
according to the calculation shown in Figure 27, and the complementary idempotent $e_{-}=1_{1}-e_{+}$(see Figure 26).

Fig. 27. The element e_{+}is an idempotent in the algebra A^{+}.
Idempotents in $\operatorname{End}\left(P_{n}\right)$ for any $n>1$ can be obtained from e_{+}and e_{-}by using the monoidal structure of A^{+}-pmod analogous to the one in A-pmod, for which $P_{n} \otimes P_{m}=P_{n+m}$.

Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), \varepsilon_{i} \in\{+,-\}$, denote a sequence of pluses and minuses of length n, and $\left(-^{n}\right)$ the sequence containing exactly n minuses. The corresponding idempotents are denoted by e_{ε} and $e_{(-n)}$, respectively. The natural tensor product structure on A^{+}-pmod satisfies $P_{\varepsilon} \otimes P_{\varepsilon^{\prime}}=P_{\varepsilon \varepsilon^{\prime}}$, where $P_{\varepsilon}=A^{+} \varepsilon$. The idempotent $e_{\varepsilon}=\otimes_{i=1}^{n} e_{\varepsilon_{i}}$ is just a tensor product of idempotents e_{+}and e_{-}'s, according to the sequence ε (see Figure 28).

Fig. 28. Additional idempotents in the algebra A^{+}
Notice that $1_{n}=\sum_{|\varepsilon|=n} e_{\varepsilon}$. Moreover, these idempotents are mutually orthogonal, $e_{\varepsilon} e_{\varepsilon^{\prime}}=\delta_{\varepsilon, \varepsilon^{\prime}} e_{\varepsilon}$. In particular, $e_{+} e_{-}=e_{-} e_{+}=0$.

In general, given a ring R and two idempotents $e, f \in R$, the projective modules $R e$ and $R f$ are isomorphic iff there exist elements $a=d_{e \rightarrow f}, b=$ $d_{f \rightarrow e} \in R$ such that eafbe $=e$ and fbeaf $=f$. Moreover, in this case, we say that the elements e, f are equivalent, and write $e \simeq f$.

Lemma 4.1. If a sequence ε contains exactly m minuses then $e_{\varepsilon} \simeq e_{(-m)}$.
Proof. The equivalence is realized by maps corresponding to the following diagrams: $d_{\varepsilon \rightarrow m}$ with n left and m right endpoints and m through arcs connecting right endpoints to those left endpoints corresponding to the minus signs in ε, and the remaining points extended to short left arcs. $b=d_{m \rightarrow \varepsilon}$ is a reflection of $a=d_{\varepsilon \rightarrow m}$ along the vertical axis. We have

$$
e_{(-m)} d_{m \rightarrow \varepsilon} e_{\varepsilon} d_{\varepsilon \rightarrow m} e_{(-m)}=e_{(-m)}, \quad e_{\varepsilon} d_{\varepsilon \rightarrow m} e_{(-m)} d_{m \rightarrow \varepsilon} e_{\varepsilon}=e_{\varepsilon} .
$$

An example is shown in Figure 29.

(a)

(b)

Fig. 29. The maps $d_{(-,+,-,-,+) \rightarrow\left(-^{3}\right)}$ and $d_{(-3) \rightarrow(-,+,-,-,+)}$

Lemma 4.2. If sequences ε and ε^{\prime} contain n and m minuses, respectively, then $e_{\varepsilon} \simeq e_{\varepsilon^{\prime}}$ iff $m=n$.

Proof. By Lemma $4.1 e_{\varepsilon} \simeq e_{(-n)}$ and $e_{\varepsilon^{\prime}} \simeq e_{(-m)}$ and $e_{(-n)}, e_{(-m)}$ are not equivalent unless $m=n$.

Corollary 4.3. The projective modules $A^{+} e_{\varepsilon}$ and $A^{+} e_{\varepsilon^{\prime}}$ are isomorphic iff the sequences ε and ε^{\prime} contain the same number of minuses.

To a sequence $\left(-{ }^{n}\right)$ we assign the indecomposable projective A^{+}-module $P_{(-n)}=A^{+} e_{(-n)}$.

Proposition 4.4. The projective modules $P_{(-n)}$ are simple objects satisfying the following properties:
(i) $\operatorname{Hom}\left(P_{(-m)}, P_{(-n)}\right)= \begin{cases}\mathbf{k} & \text { if } n=m, \\ 0 & \text { otherwise } .\end{cases}$
(ii) $P_{n} \cong \bigoplus_{|\varepsilon|=n} P_{\varepsilon} \cong \bigoplus_{m=0}^{n}\binom{n}{m} P_{(-m)}$.

Proof. (i) follows from Proposition 4.3 since

$$
\operatorname{Hom}\left(P_{(-m)}, P_{(-n)}\right)=\operatorname{Hom}\left(A^{+} e_{(-m)}, A^{+} e_{(-n)}\right)=e_{(-m)} A^{+} e_{(-n)}
$$

(ii) $P_{n}=A^{+} 1_{n}=\bigoplus_{|\varepsilon|=n} A^{+} e_{\varepsilon}=\bigoplus_{|\varepsilon|=n} P_{\varepsilon}$. Each P_{ε} is equivalent to $P_{(-m)}$ and there are $\binom{n}{m}$ sequences ε of length n with exactly m minuses.

We see that the category A^{+}-pmod of projective A^{+}-modules is semisimple. The idempotented ring A is therefore semisimple and Morita equivalent to an idempotented ring $\mathbf{k} \oplus \mathbf{k} \oplus \cdots$, a countable sum of copies of the field \mathbf{k}. Let $K_{0}\left(A^{+}\right)$denote the Grothendieck ring of the monoidal category of finitely-generated projective A^{+}-modules. As before, $\left[P_{n}\right]=x^{n}$. Based on the decomposition of the projective modules in Proposition 4.4(2) we conclude that $\left[P_{(-n)}\right]=(x-1)^{n}$.

Acknowledgements. The authors would like to thank the referee whose suggestions greatly improved the article. The first author would like to thank the NSF for partial support via grant DMS-1005750. The second author was fully supported by the Postdoctoral Fellowship at MSRI, Berkeley during the early stages of this project, and by NSF 0935165 and AFOSR FA9550-09-1-0643 grants towards the end.

References

[1] D. J. Benson, Representations and Cohomology I, Cambridge Stud. Adv. Math. 30, Cambridge Univ. Press, Cambridge, 1991.
[2] J. Bernstein, I. Gelfand, and S. Gelfand, A category of \mathfrak{g}-modules, Functional Anal. Appl. 10 (1976), 87-92.
[3] S. Gelfand and Yu. Manin, Methods of Homological Algebra, Springer, 1996.
[4] M. Khovanov and R. Sazdanovic, Categorification of orthogonal polynomials, in preparation.
[5] D. Miličić, Lectures on Derived Categories, http://www.math.utah.edu/~milicic/ Eprints/dercat.pdf.
[6] R. Sazdanović, Categorification of knot and graph polynomials and the polynomial ring, GWU electronic dissertation published by ProQuest (2010); http://surveyor. gelman.gwu.edu/.

Mikhail Khovanov
Department of Mathematics
Columbia University
2990 Broadway
509 Mathematics Building
Mail Code: 4406
New York, NY 10027, U.S.A.
E-mail: khovanov@math.columbia.edu

Received 3 August 2014;
in revised form 1 February 2015

[^0]: $\left({ }^{1}\right)$ This proof is analogous to the proof that $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian.

