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Abstract. We will consider unital rings A with free additive group, and want to
construct (in ZFC) for each natural number k a family of ℵk-free A-modules G which
are separable as abelian groups with special decompositions. Recall that an A-module G
is ℵk-free if every subset of size < ℵk is contained in a free submodule (we will refine
this in Definition 3.2); and it is separable as an abelian group if any finite subset of G
is contained in a free direct summand of G. Despite the fact that such a module G is
almost free and admits many decompositions, we are able to control the endomorphism
ring EndG of its additive structure in a strong way: we are able to find arbitrarily large
G with EndG = A ⊕ FinG (so EndG/FinG = A, where FinG is the ideal of EndG of
all endomorphisms of finite rank) and a special choice of A permits interesting separable
ℵk-free abelian groups G. This result includes as a special case the existence of non-free
separable ℵk-free abelian groups G (e.g. with EndG = Z ⊕ FinG), known until recently
only for k = 1.

1. Introduction. Methods for constructing in ZFC ℵ1-free modules (so
every countably generated submodule is contained in a free submodule) with
prescribed endomorphism algebra using the Black Box combinatorial prin-
ciple (due to S. Shelah) were developed thirty years ago. This follows from
classical work in A. L. S. Corner and R. Göbel [1] and standard references
given there.

The importance of these constructions lies in the fact that they can be
used to solve various kinds of problems like the realization of E-rings, which
are crucial in algebraic topology, or the existence of negative answers to
Kaplansky’s Test Problems.

Another interesting application leads to constructions of ℵ1-free mod-
ules G which are separable torsion-free abelian groups with prescribed en-
domorphism ring EndG/FinG, where FinG is the ideal of EndG of all
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endomorphisms of finite rank (see [4]). Separable groups G are defined by
the property that every finite subset of G is contained in a free direct sum-
mand of G. In the case of torsion-free abelian groups they are characterized
as pure subgroups of a cartesian product of copies of the integers. Separable
ℵ1-free groups have been treated at many places; for a survey on this topic,
see [10].

It is natural to ask if we can strengthen the ‘torsion-free Main Theorem
(5.2)’ from [1] to obtain ℵk-free modules. Can we, in particular, find in
ZFC ℵk-free modules for k > 1 which are separable torsion-free abelian
groups with prescribed endomorphism ring EndG/FinG? We will provide a
definitive positive answer to this question in Main Theorem 5.3.

Classical preparatory work in this direction was done by P. Griffith [12],
P. Hill [15], P. Eklof and S. Shelah [6]. Assuming V = L (or a weak version of
the axiom of constructibility, see Eklof and Mekler [5]), the construction of
such modules G can be carried out fairly easy; see Dugas and Göbel [3]. In
recent years, methods have been developed for constructing in ZFC ℵk-free
structures with prescribed endomorphism ring using the Easy Black Box
combinatorial principle from [8, 19] (cf. [9, 14]). The original constructions
in [7, 18] use so-called triple modules, which required a highly elaborate set-
ting. Furthermore, an application of Shelah’s Strong Black Box was needed.
Following the lines in [13] and [7], we will add certain new closure conditions
to avoid additional complications. Thus we can work exclusively with the
Easy Black Box and its algebraic version. Fortunately, this Black Box (see
Section 5) needs almost no further adjustments.

We will consider a separably realizable ring A which is p-reduced for
a previously fixed prime number p (as explained in the next section) and
a free A-module B defined on a special set Λ∗ satisfying certain cardinal
conditions. Let F be a family of elements of the p-completion B̂ of B. This
family is obtained from branch-like elements, which are specific elements
of B̂ modified by correcting terms. Here is where the Easy Black Box is
required, since it allows us to properly choose these correcting terms in order
to eliminate unwanted endomorphisms. The desired ℵk-free A-module will be
the p-pure closure of the A-module generated by B and F. We are now ready
to describe the tools for Main Theorem 5.3, which is stated in Section 5.

2. Preliminaries. Let A be a ring with 1 having free additive structure
A+ =

⊕
α<κ Zeα such that

A = Â ∩
∏
α<κ

Zeα

is an A-module, where Â denotes the p-completion of A for some prime p.
Such rings are called separably realizable. It was shown at different times
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and independently that A is a ring for κ = ℵ0 by Goodearl, Menal and
Moncasi [11], Corner and Göbel [2] and Nielsen [17]. For more details, see
Göbel and Trlifaj [10].

We would like to construct a free A-module B, which serves as a starting
point of our construction. For that purpose, let k > 1 be a fixed integer
throughout this work. We recursively construct a sequence of infinite car-
dinals λ = 〈λ1, . . . , λk〉 as follows. Consider the cardinal λ0 = |A| as an
initial step. Now suppose we have constructed λm for some 0 ≤ m < k.
Choose some cardinal µm+1 such that µλmm+1 = µm+1 and let λm+1 = µ+m+1.
For example, we could use a slight modification of the beth numbers: put
µ = µ1 = 2λ0 , i+

0 (µ) = µ+ and i+
n+1(µ) = (2i

+
n (µ))+, which is the successor

cardinal of the cardinality of the powerset of i+
n (µ). Hence, we can take

λm = i+
m(µ) for all 1 ≤ m ≤ k.

For an infinite cardinal λ, we denote the set of all order preserving maps
η : ω → λ by ω↑λ, while ω↑>λ denotes the set of all order preserving maps
η : n→ λ with n < ω.

We associate with λ two sets Λ and Λ∗. The set Λ is defined as

Λ = ω↑λ1 × · · · × ω↑λk.

For Λ∗, we first define the set Λm∗, which is obtained by replacing the mth
coordinate ω↑λm of Λ by ω↑>λm, namely,

Λm∗ =
ω↑λ1 × · · · × ω↑>λm × · · · × ω↑λk.

Then, let

Λ∗ =
⋃̇

1≤m≤k
Λm∗.

Definition 2.1. Let 1 ≤ m ≤ k and n < ω.

(a) If η ∈ ω↑λm, then the support of η is the set

[η] = {η�n | n < ω}.
(b) If η = (η1, . . . , ηk) ∈ Λ, then η�〈m,n〉 denotes the element of Λm∗

obtained from η by replacing its component ηm by ηm�n, i.e.

η�〈m,n〉 = (η1, . . . , ηm−1, ηm�n, ηm+1, . . . , ηk).

(c) For every η ∈ Λ, consider the sets

[η�m]n = {η�〈m,n′〉 | n ≤ n′ < ω)}, [η]n =
⋃̇

1≤m≤k
[η�m]n.

If n = 0, then we simply write [η�m] and [η] instead. The set [η] is
called the support of η.

(d) For ν = (η1, . . . , ηk) ∈ Λm∗, we define the length `(ν) of ν as the
domain of ηm.
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(e) It will be useful to introduce the following notation:

Λ≥nm∗ = {ν ∈ Λm∗ | `(ν) ≥ n}.

Given a subset X∗ ⊆ Λ∗, we consider the free A-module

BX∗ =
⊕
ν∈X∗

Aeν .

The basic A-module on which we base the final construction is the free
A-module

B =
⊕
ν∈Λ∗

Aeν .

Moreover, let
B = B̂ ∩

∏
ν∈Λ∗

Aeν

where B̂ denotes the p-completion of B.

Definition 2.2.

(a) For every b =
∑

ν∈Λ∗ aνeν ∈ B̂ with aν ∈ Â, the Λ∗-support of b is
the set

[b] = {ν | aν 6= 0}.

Note that [b] is at most countable.
(b) We write [b]ν = aν for all ν ∈ Λ∗, and [b]X∗ =

∑
ν∈X∗ aνeν for all

X∗ ⊆ Λ∗.
(c) If S ⊆ B̂, then the Λ∗-support of S is the set [S] =

⋃
b∈S [b].

3. ℵk-free A-modules

Definition 3.1. If S is a set and κ is a cardinal, then [S]≤κ denotes
the set of all X ⊆ S such that |X| ≤ κ. Analogously we define [S]<κ and
[S]κ = {X ⊆ S | |X| = κ}.

For non-hereditary rings, it is necessary to modify the notion of κ-free
modules. The following definition of κ-freeness is due to Göbel, Herden and
Shelah [7], and is a slightly stronger version of the one in Eklof and Mekler [5].

Definition 3.2. If κ is a regular uncountable cardinal, we say that an
A-module M is κ-free if there is a family C of p-pure A-submodules of M
satisfying:

(a) Every element of C is <κ-generated and free.
(b) Every element of [M ]<κ is contained in an element of C.
(c) C is closed under unions of well-ordered chains of length < κ.
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Definition 3.3.

(a) For η ∈ ω↑>λk ∪ ω↑λk, we define the norm ‖η‖ of η as

‖η‖ = sup
n<`(η)

(nη + 1) ∈ λk;

in particular, ‖α‖ = α+ 1 for α ∈ λk and ‖∅‖ = 0.

Recall that a map f (like η above) acts on X via xf for any x ∈ X.

(b) For η ∈ Λ ∪ Λ∗, define ‖η‖ = ‖ηk‖.
(c) For X ⊆ Λ, put ‖X‖ = supη∈X ‖η‖. Similarly, ‖X‖ = supν∈X ‖ν‖ if

X ⊆ Λ∗.
(d) If b ∈ B̂, then ‖b‖ = ‖[b]‖, and for S ⊆ B̂, let ‖S‖ = supb∈S ‖b‖.
Definition 3.4. A sequence of elements (bηn)n<ω ⊆ B is called regres-

sive with respect to η ∈ Λ if:

(i) ‖bη0‖ < 0ηk.
(ii) bηn − pbη n+1 ∈ B for all n < ω, i.e. (bηn)n<ω is a divisibility chain.
(iii) [bηn] ⊆ [bη0] for all n < ω.

Evidently, every element bη ∈ B allows for a suitable sequence (bηn)n<ω
of elements bηn ∈ B such that conditions (ii) and (iii) hold with bη0 = bη.
Furthermore, we may fix in advance such a sequence for each bη ∈ B.

Definition 3.5. For η ∈ Λ and n < ω, we define the branch element
associated with η and n as

yηn =
∞∑
i=n

pi−n
( k∑
m=1

eη�〈m,i〉

)
.

We write yη for yη0. Choose an element bη ∈ B with a regressive sequence
(bηn)n<ω ⊆ B. We define the branch-like element associated with η and n as

y′ηn = bηn + yηn.

We also write y′η for y′η0.

Definition 3.6.

(a) A triple (X∗, X,F) is called Λ-closed if:
(i) X ⊆ Λ and X∗ ⊆ Λ∗.
(ii) For all η ∈ X there exists some (minimal) Nη < ω such that

[η]Nη ⊆ X∗.
(iii) F = {y′η = bη + yη | η ∈ X, bη ∈ BX∗} is a regressive family of

branch-like elements, i.e. ‖bη‖ < 0ηk for all η ∈ X.

(b) If (X∗, X,F) is Λ-closed, we define the A-module

GX∗X = 〈BX∗ , Ay′ηn | η ∈ X, n ≥ Nη〉 = 〈BX∗ , Ay′ηNη | η ∈ X〉∗.
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Recognition Lemma 3.7. For g ∈ B̂, 1 ≤ m ≤ k and n < ω, if g ∈
〈B,Ay′η | η ∈ Λ〉 for a suitable choice of F = {y′η = bη + yη | bη ∈ B, η ∈ Λ}
with regressive sequences (bηi)i<ω, then:

(i) There exist some unique b ∈ B and aη ∈ A (η ∈ Λ) with g =
b+

∑
η∈Λ aηy

′
η.

(ii) If aη 6= 0, then ‖η‖ ≤ ‖g‖.
(iii) The elements aη (η ∈ Λ) are entirely determined by [g]

Λ≥nm∗
(see Def-

inition 2.1(e)) and for ‖η‖ = ‖g‖ the coefficient aη is independent
of the choice of F.

Proof. Observe that [b], [bη] ∩ [η], [bη] ∩ [η′] and [η] ∩ [η′] are finite for
η 6= η′ ∈ Λ with ‖η‖ ≤ ‖η′‖, while [η] ∩ Λ≥nm∗ and [η′] ∩ Λ≥nm∗ are infinite.
Therefore:

(a) If aη = 0 for all η ∈ Λ, then [g] = [b] is finite.
(b) Otherwise, [g] and [g] ∩ Λ≥nm∗ are both infinite. Furthermore, if η ∈ Λ

with ‖η‖ = ‖g‖, then aη 6= 0 if and only if [yηi] ⊆ [g] for some i < ω.
Now, (ii) is an immediate consequence of (b), while (i) and (iii) are proven

by transfinite induction over ‖g‖: If [g] ∩ Λ≥nm∗ is finite, then aη = 0 for all
η ∈ Λ by combining (a) and (b), and we are done. If [g] ∩ Λ≥nm∗ is infinite,
then using (b) we can read off in a first step all those η with ‖η‖ = ‖g‖ and
[yηi] ∩ Λ≥nm∗ ⊆

[
[g]

Λ≥nm∗

]
, and then determine aη accordingly from the coeffi-

cients appearing in
[
[g]

Λ≥nm∗

]
[yηi]

(see Definition 2.2(b)). After that, proceed
with

g′ = g −
∑
η ∈Λ
‖η‖=‖g‖

aηy
′
η .

Furthermore, as this first step does not use the correction elements bη, it is
independent of the particular choice of F.

A well-defined Λ-support is a consequence of Recognition Lemma 3.7.

Definition 3.8. Let (X∗, X,F) be Λ-closed. For g ∈ GX∗X , define the
Λ-support [g]Λ of g to be the set of elements of Λ that contribute to the
representation of g. More precisely, if pmg = b+

∑
η∈Λ aηy

′
η for some m ≥ 0,

where b ∈ B and aη ∈ A for all η ∈ Λ, then
[g]Λ = {η ∈ Λ | aη 6= 0}.

Obviously, [g]Λ is finite. For H ⊆ GX∗X , we define [H]Λ =
⋃
g∈H [g]Λ.

The A-modules GX∗X just introduced can be shown to be ℵk-free. For
this purpose, we need the so-called Freeness Proposition, which allows us
to enumerate subsets of Λ in a convenient way so that we can prove linear
independence in the constructed A-modules.
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Definition 3.9. A function F : Λ → [Λ∗]
≤ℵ0 is called regressive if

‖ηF‖ < 0ηk for all η ∈ Λ.
Freeness Proposition 3.10. Let F : Λ→ [Λ∗]

≤ℵ0 be a regressive map,
1 ≤ f ≤ k, Ω ∈ [Λ]ℵf−1 and 〈uη | η ∈ Ω〉 be a family of subsets of {1, . . . , k}
such that |uη| ≥ f . Then there exists a bijective enumeration {ηα | α < ζ}
of Ω for some ωf−1 ≤ ζ < ωf such that, for all α < ζ, there exist `α ∈ uηα
and 1 ≤ nα < ω with the property that, for all n ≥ nα,

ηα�〈`α, n〉 /∈ {ηβ�〈`α, n〉 | β < α} ∪
⋃
ΩαF

where Ωα = {ηβ | β ≤ α}.
Proof. We proceed by induction on f . If f = 1, then |Ω| = ℵ0 and

uη 6= ∅ for all η ∈ Ω. For all α < λk, define Uα = {η ∈ Ω | 0ηk = α}. Let
N = {α < λk | Uα 6= ∅} and enumerate it N = {αβ | β < δ} for some δ < ω1

in such a way that αβ < αγ if and only if β < γ < δ. Put γβ = |Uαβ | and
σβ =

∑
α<β γα. We enumerate Uαβ = {ηα | σβ ≤ α < σβ + γβ}. This results

in a bijective enumeration {ηα | α < ζ} of Ω such that ω ≤ ζ < ω1 and, for
all α < ζ,

0ηαk ≤ 0ηα+1
k < 0ηα+ωk .

Choose `α ∈ uηα arbitrarily. If ηα ∈ Uγ and β0 is the minimal ordinal such
that ηβ0 ∈ Uγ , then we can find some 1 ≤ nα,β < ω such that ηα�〈`α, n〉 6=
ηβ�〈`α, n〉 for all β0 ≤ β < α and n ≥ nα,β . Put

nα = max
β0≤β<α

nα,β.

Then, for all n ≥ nα, ηα�〈`α, n〉 /∈ {ηβ�〈`α, n〉 | β0 ≤ β < α}. Moreover,

ηα�〈`α, n〉 /∈ {ηβ�〈`α, n〉 | β < β0} ∪
⋃
ΩαF

since F is regressive and 0ηβk < 0ηαk for all β < β0.
Now suppose the assertion is true for some 1 ≤ f < k. Let Ω ∈ [Λ]ℵf and

〈uη | η ∈ Ω〉 with |uη| ≥ f + 1. Choose an ℵf -filtration {Ωα | α < ωf} of Ω
such that Ω0 = ∅ and |Ωα+1 \ Ωα| = ℵf−1 for all α < ωf . The next crucial
idea comes from [19] and is based on the construction of elementary sub-
models: We can assume that this filtration is coordinatewise-closed, meaning
that for all η ∈ Ωα+1, if there exist η′, η′′ ∈ Ωα such that

{ηm | 1 ≤ m ≤ k} ⊆ {η′m, η′′m | 1 ≤ m ≤ k}
∪ {νm | ν ∈ η′F ∪ η′′F, 1 ≤ m ≤ k},

then η ∈ Ωα. For every η ∈ Ωα+1 \Ωα, consider

u∗η =
{
1 ≤ m ≤ k |
∃η′ ∈ Ωα, n < ω (η�〈m,n〉 = η′�〈m,n〉 or η�〈m,n〉 ∈ η′F )

}
.
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It follows that |u∗η| ≤ 1, since |u∗η| > 1 would imply that η ∈ Ωα. Put
u′η = uη \ u∗η and observe that |u′η| ≥ f . We apply the induction hypothesis
on each of the sets Ωα+1 \Ωα together with the family 〈u′η | η ∈ Ωα+1 \Ωα〉
to obtain an enumeration Ωα+1 \Ωα = 〈ηβ | β < ζ〉 for some ωf−1 ≤ ζ < ωf
with the required property. We induce an enumeration on Ω with the desired
property by ordering these enumerations lexicographically.

We now present the main result of this section. It is an immediate ap-
plication of the Freeness Proposition 3.10 to the regressive function F :
Λ → [Λ∗]

≤ℵ0 given by ηF = [bη]. We refer the reader either to [7, Freeness
Lemma 3.7] or [13, Freeness Lemma 3.6] for a proof.

Theorem 3.11. If (X∗, X,F) is Λ-closed, then GX∗X is an ℵk-free
A-module.

4. The Step Lemma. We now introduce the Step Lemma, which is the
central piece of the final construction. It allows us to choose the corrections
for the branch elements in order to get rid of unwanted endomorphisms.

Definition 4.1. Let (X1
∗ , X

1,F1) and (X2
∗ , X

2,F2) be Λ-closed triples.

(a) We write (X1
∗ , X

1,F1) ⊆ (X2
∗ , X

2,F2) if X1
∗ ⊆ X2

∗ , X1 ⊆ X2 and
F1 ⊆ F2.

(b) If b1η = b2η for all η ∈ X1 ∩X2, then
• (X1

∗ , X
1,F1) ∩ (X2

∗ , X
2,F2) = (X1

∗ ∩X2
∗ , X

1 ∩X2,F1 ∩ F2),
• (X1

∗ , X
1,F1) ∪ (X2

∗ , X
2,F2) = (X1

∗ ∪X2
∗ , X

1 ∪X2,F1 ∪ F2)
denote the canonically induced Λ-closed triples.

Similarly, further notation for Λ-closed triples (X∗, X,F) can be defined com-
ponentwise.

Definition 4.2. Let (X∗, X,F) ⊆ (Y∗, Y,G) be Λ-closed triples.

(a) For η ∈ Λ, let
uη(X∗) = {1 ≤ m ≤ k | ∃n < ω ([η�m]n ⊆ X∗)}.

(b) For 1 ≤ f ≤ k and α ∈ λok = {γ ∈ λk | cf(γ) = ω}, let
YX∗Xfα = {η ∈ Y \X | |uη(X∗)| ≥ f and ‖η‖ = α}.

We write YX∗X instead of YX∗Xfα if the pair (f, α) is clear from the
context.

(c) Let 1 ≤ f ≤ k and α ∈ λk. Then the triple (X∗, X,F) is called
(f, α)-closed with respect to (Y∗, Y,G) if the following is satisfied:

if η ∈ Y with |uη(X∗)| ≥ f and ‖η‖ 6= α, then η ∈ X.

(d) If (Y∗, Y ) = (Λ∗, Λ), then we omit (Y∗, Y,G) and just say that
(X∗, X,F) is (f, α)-closed.
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As a remarkable result involving these definitions we have the following
simple but crucial lemma.

Lemma 4.3. If (X∗, X,F) is (k, α)-closed with respect to (Y∗, Y,G), and

[η]Nη ⊆ X∗ and [bη] ⊆ X∗ for all η ∈ YX∗X ,

then GY∗Y ∩BX∗ = GX∗X∪YX∗X .

Proof. The inclusion GX∗X∪YX∗X ⊆ GY∗Y ∩ BX∗ is immediate. Let g be
in GY∗Y ∩BX∗ . If |[g]Λ| = 0, then g ∈ BX∗ ⊆ GX∗X∪YX∗X . If |[g]Λ| > 0, then
η ∈ X∪YX∗X follows from the Recognition Lemma 3.7(ii) for all η ∈ [g]Λ with
‖η‖ = ‖g‖. Thus, g can be reduced by these elements y′η modulo GX∗X∪YX∗X
and the induction step applies.

Before introducing the Step Lemma, which is the main result of this
section, we need some more definitions.

Definition 4.4.

(a) For g ∈ B̂ and ε ∈ {0, 1}, we define

[g]ε = {ν ∈ [g] | `(ν) ≡ ε mod 2}.

(b) For 0 ≤ f < k and ξ = 〈ξf+1, . . . , ξk〉 ∈ ω↑λf+1 × · · · × ω↑λk, let

Λξ = {η ∈ Λ | ηm = ξm for all f + 1 ≤ m ≤ k},

Λξ∗ = [Λξ] ∩
⋃

1≤m≤f
Λm∗,

Λξ∗ = [Λξ] ∩
⋃

f+1≤m≤k
Λm∗.

In case f = k − 1 and ξ = 〈η〉, we simply write ξ = η, Λξ∗ = Λη∗ and
Λξ∗ = Λη∗.

Definition 4.5.

(a) For ν ∈ Λ∗ ∪ Λ, we define the ordinal content

orco ν =
⋃

1≤m≤k
Im νm.

(b) If S ⊆ Λ∗ ∪ Λ, then orcoS =
⋃
ν∈S orco ν.

(c) If S, T ⊆ λk and τ : S → T is a bijection, then τ extends canonically
to a bijection τ : ω≥S → ω≥T , and for ν ∈ Λ∗ ∪ Λ with orco ν ⊆ S
we define ντ = (ν1τ, . . . , νkτ).

(d) If X∗ ⊆ Λ∗, then we say that a bijection τ : S → T is X∗-admissible
if orcoX∗ ⊆ S and X∗τ ⊆ Λ∗.
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(e) If τ : S → T is anX∗-admissible bijection, then τ extends canonically
to an A-module monomorphism τ : B̂X∗ → B̂Λ∗ = B̂, which we call
a shift-isomorphism (onto its image).

X∗-admissible maps are compatible with many of the notions already
introduced, like Λ- and (f, α)-closeness. We refer the reader to D. Herden
[13] for more details.

Step Lemma 4.6. Let the following be given:

(i) 0 ≤ f < k, ξ ∈ ω↑λf+1 × · · · × ω↑λk with α = ‖ξk‖.
(ii) A countable C∗ ⊆ Λ∗ such that ‖C∗‖ < 0ξk and [C∗] = [C∗]

δ for
some δ ∈ {0, 1}.

(iii) (Y∗, Y,G) with G = {y′′′η = b′′η+ yη | η ∈ Y } is a Λ-closed triple with
C∗ ⊆ Y∗.

(iv) A homomorphism ϕ : BX′∗ → GY∗Y for which there exists some
z ∈ BC∗ such that zϕ /∈ 〈GY ′∗Y ′ , Az〉∗ for all Y ′∗ ⊆ Λ∗, Y ′ ⊆ Λ,
where X ′∗ = C∗ ∪ Λξ∗.

If we take X = Λξ and X∗ = C∗ ∪ [Λξ], then, for all η ∈ X, we can
choose an element εη ∈ {0, 1} such that the triple (X∗, X,F) with F = {y′η =
εηz + yη | η ∈ X} is Λ-closed and GX∗X satisfies the following condition:

If (Z∗, Z,H) is a Λ-closed triple with H = {y′′η = b′η + yη | η ∈ Z} and τ
is a Y∗-admissible bijection such that

(v) τ� orco(z ∪ zϕ) = Id;
(vi) (Y∗, Y,G)τ ⊆ (Z∗, Z,H) so GY∗τ Y τ ⊆ GZ∗Z ;
(vii) (Y∗, Y,G)τ is (k − f, α)-closed with respect to (Z∗, Z,H);
(viii) b′η ∈ {0, z} for all η ∈ ZY∗τ Y τ ;

then ϕτ : BX′∗ → GY∗τ Y τ does not extend to a homomorphism from GX∗X
to GZ∗Z .

Proof. We proceed by induction on f , although we only discuss the initial
step f = 0 here. See R. Göbel, D. Herden and S. Shelah [7] or D. Herden [13]
for a proof of the induction step.

If f = 0, then ξ ∈ Λ, X = {ξ} and X ′∗ = X∗ = C∗ ∪ [ξ]. For ε ∈ {0, 1},
let yε

ξ
= εz+yξ and G

ε = 〈BX∗ , yεξ〉∗. Towards a contradiction, suppose that
there exist Y∗-admissible bijections τ ε, Λ-closed triples (Zε∗ , Zε,Hε) contain-
ing (Y∗, Y,G)τ ε, GZε∗Zε = 〈BZε∗ , Ay

′
ηNε

η
| η ∈ Zε〉∗ for some integers N ε

η ≥ 0

and homomorphisms
ψε : Gε → GZε∗Zε

extending ϕτ ε. We take some s < ω such that for both ε ∈ {0, 1},
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psyε
ξ
ψε = bε +

∑
η∈Zε
y′′η∈H

ε

aεηy
′′
ηNη ∈ 〈BZε∗ , Ay

′′
ηNη | y

′′
η ∈ Hε〉

for suitable elements bε ∈ BZε∗ , and for all η ∈ Zε we have aεη ∈ A and
Nη = max(N0

η , N
1
η ).

Consider the unique extensions (simply written as) ϕ : Ĝε → ĜY∗Y and
τ ε : ĜY∗Y → ĜY∗τεY τε . Then ϕτ ε�Gε = ψε and yε

ξ
ψε ∈ GZε∗Zε ∩ ĜY∗τεY τε .

Since (Y∗, Y,G)τ ε is (k, α)-closed with respect to (Zε∗ , Z
ε,Hε), by putting

∆ε = ZεY∗τεY τε , it follows similarly to Lemma 4.3 that

GZε∗Zε ∩ ĜY∗τεY τε ⊆ GY∗τε Y τε∪∆ε .

There are elements bε ∈ BY∗τε∪[Y τε∪∆ε] and suitable coefficients from A such
that

psyε
ξ
ψε = psyε

ξ
ϕτ ε = bε +

∑
η∈Y τε
y′′η∈H

ε

aεηy
′′
η +

∑
η∈∆ε
y′′η∈H

ε

aεηy
′′
η .

By applying (τ ε)−1 to the corresponding equation and subtracting them
we obtain

pszϕ = b+
∑
η∈Y

(a1ητ1 − a
0
ητ0)y

′′′
η +

∑
η∈∆1

a1ηyη(τ1)−1 −
∑
η∈∆0

a0ηyη(τ0)−1 + az

where b=b1(τ1)−1−b0(τ0)−1 and az=
∑

η∈∆1 a1ηb
′
η(τ1)−1−

∑
η∈∆0 a0ηb

′
η(τ0)−1 .

If we take Y ′=Y ∪∆0(τ0)−1∪∆1(τ1)−1 and Y ′∗=Λ∗, then zϕ∈〈GY ′∗Y ′ , Az〉∗,
which is a contradiction to condition (iv). Hence, we can choose an ε ∈ {0, 1}
that proves our claim.

In the end, we want to construct a group G in such a way that EndG =
A⊕ FinG, where FinG is the ideal of endomorphisms of G with finite rank
image. For this purpose, we need to eliminate all other possible homomor-
phisms. This will result from combining the following crucial lemma and
condition (iv) of Step Lemma 4.6. Recall that A is a ring with free additive
structure A+ =

⊕
α<κ Zeα.

Lemma 4.7. Let V ⊆ Λ and G = GΛ∗V for a suitable regressive family
F of branch-like elements. If ϕ ∈ EndG \ (A ⊕ FinG), then there exists an
element z ∈ B with [z] = [z]δ for some δ ∈ {0, 1} such that zϕ /∈ 〈G′, Az〉∗,
whenever G′ = GΛ∗V ′ for some V ′ ⊆ Λ with accompanying regressive family
F′ of branch-like elements.

Proof. We will examine the images eνϕ of the generators of B in order
to construct the element z. It will be necessary to consider several cases. In
each of them, we assume that the previous cases do not apply. In each case,
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we will assume the existence of an infinite subset I ⊆ Λ∗ satisfying, without
loss of generality, I = [I]δ for some δ ∈ {0, 1}.

(i) There is an infinite subset I ⊆ Λ∗ such that
⋂
ν∈I [eνϕ] 6= ∅. Con-

sider an element γ ∈
⋂
ν∈I [eνϕ]. To construct z, we choose elements of I

inductively. Choose elements νn ∈ I \ {ν0, . . . , νn−1} with [eνnϕ]γ = an ∈
psnA \ psn+1A (see Definition 2.2(b)), where 0 ≤ s0 ≤ · · · ≤ sn. If there
is an α < κ such that α ∈

⋂
n<ω[an] when comparing supports with re-

spect to A+ =
⊕

α<κ Zeα, then we consider the sums
∑

n<ω εnp
neνn with

εn ∈ {0, 1} for all n < ω, and choose z to be one of these sums such that[
[zϕ]γ

]
α
∈ Jp \Q. This is possible, since there are 2ℵ0 such sums. Otherwise,

we can choose the elements νn in such a way that the coefficients an have
disjoint supports in A+. Put z =

∑
n<ω p

neνn . Then [zϕ]γ is an element
of A \A.

(ii) There is an infinite subset I ⊆ Λ∗ and an element η ∈ Λ such that
for all ν ∈ I, η ∈ [eνϕ]Λ is of maximal norm. Choose a strictly increasing
sequence {ni}i<ω and elements νi ∈ I such that [eνiϕ]η�〈m,n〉 = pn−niai for
all i < ω, n ≥ ni and [eνiϕ]η�〈m,n〉 = 0 for all 0 < i < ω, n ≤ ni−1. Take
z =

∑
n<ω p

neνn . The Recognition Lemma 3.7 will not be able to recognize
a coefficient of yη from [zϕ]1−δ, despite [yη]n0 ⊆ [zϕ] and ‖zϕ‖ = ‖η‖.

(iii) There are some countably infinite subsets {νn | n < ω} ⊆ I and
{ηn | n < ω} ⊆ Λ such that for all n 6= m < ω, ηn 6= ηm, ‖ηn‖ = ‖ηm‖
and ηn ∈ [eνnϕ]Λ is of maximal norm. Without loss of generality, we may
assume ηm /∈ [eνnϕ] for allm 6= n. Take z =

∑
n<ω p

neνn . By the Recognition
Lemma 3.7, it is not possible to read off finitely many branch summands of
maximal norm from [zϕ]1−δ.

(iv) There are some countably infinite subsets {νn | n < ω} ⊆ I and
{ηn | n < ω} ⊆ Λ such that for all n < ω, ‖ηn‖ < ‖ηn+1‖ and ηn ∈ [eνnϕ]Λ
is of maximal norm. Take z as in the previous case and the Recognition
Lemma 3.7 once again fails to read off a branch summand of maximal norm
from [zϕ]1−δ.

If ϕ does not comply with these cases, then it means that eνϕ ∈ B for
almost all ν ∈ Λ∗.

(v) For all ν ∈ I, eνϕ ∈ B and [eνϕ] \ {ν} 6= ∅. For all n < ω, we
choose inductively elements νn ∈ I and ν ′n ∈ [eνnϕ] such that νn 6= ν ′n
for all n < ω, and [eνnϕ] ∩ [eνmϕ] = ∅ for all n 6= m. For all n < ω, take
zn = psneνn , where sn is chosen inductively such that pn+sn+`(ν′m)[eνnϕ]ν′n 6=
pm+sm+`(ν′n)[eνmϕ]ν′m for all n 6= m. Put z =

∑
n<ω p

nzn. We obtain the
same conclusion as in the second case.

(vi) There are countably infinite subsets {νi | i < ω} ⊆ I and {ai |
i < ω} ⊆ A such that for all i 6= j < ω, ai 6= aj and eνiϕ = aieνi . Take
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z =
∑

i<ω p
ieνi and suppose that zϕ ∈ 〈GY ′∗Y ′ , Az〉∗ for some Λ-closed triple

(Y ′∗ , Y
′,F′). Then there exist n > 0, b ∈ BY ′∗ and a ∈ A such that

pnzϕ = b+
∑
η∈Y ′

aηy
′
ηNη + az.

Since [z]1−δ = ∅, we have aη = 0 for all η ∈ Y ′. It follows that pn+iai =
[pnzϕ]νi = pia for all νi /∈ [b], so a = pnai, which in turn implies that ai = aj
for almost all i, j < ω, a contradiction.

(vii) There are a countably infinite subset {νi | i < ω} ⊆ I and two
elements a0, a1 ∈ A such that a0 6= a1 and for all i < ω, eν2iϕ = a0eν2i and
eν2i+1ϕ = a1eν2i+1 . Proceed in a similar way to the previous case.

If ϕ does not comply with these last cases either, then there exist a finite
subset S ⊆ Λ∗ and an a ∈ A such that eνϕ = aeν for all ν ∈ Λ∗ \ S, so that
ϕ = ϕ′ + a, where ϕ′ ∈ FinG with eνϕ′ = eνϕ− aeν for all ν ∈ Λ∗.

5. The main result. In this section we realize the main construction
of an ℵk-free A-module G with prescribed endomorphism ring EndG =
A⊕FinG by means of the Easy Black Box principle and the Step Lemma 4.6.
We will actually introduce an algebraic version of the Easy Black Box, prop-
erly arranged for this construction. Such prediction principles need the notion
of traps for capturing the objects to be predicted.

Definition 5.1. A quintuple p = (η, V∗, V,F, ϕ) is a trap for the Easy
Black Box if:

(i) η ∈ ω↑λk.
(ii) (V∗, V,F) is Λ-closed.
(iii) |V∗|, |V | ≤ λk−1.
(iv) Λη∗ = {ν ∈ Λk∗ | νk ∈ [η]} ⊆ V∗.
(v) ‖ν‖ < ‖η‖ for all ν ∈ V∗, and ‖η‖ < ‖η‖ for all η ∈ V .
(vi) ϕ : GV∗V → GV∗V is an endomorphism.

We denote by ‖p‖ = ‖η‖ = ‖V∗‖ the norm of the trap p.

Recall that for an infinite cardinal λ, λo = {α ∈ λ | cf(α) = ω}.
The Easy Black Box 5.2. Let |A| ≤ θ < λ = λθ with λ a regular

cardinal. If E is a stationary subset of λo, then there are an ordinal λ ≤
λ∗ < λ+ and a list of traps

〈pα = (ηα, Vα∗, Vα,Fα, ϕα) | α < λ∗〉
with the following properties:

(i) ‖pα‖ ∈ E for all α < λ∗.
(ii) ‖pα‖ ≤ ‖pβ‖ for all α < β < λ∗.
(iii) ηα 6= ηβ for all α < β < λ∗.
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(iv) The prediction: For any Λ-closed triple (Λ∗, V,F) with G =
GΛ∗V , any homomorphism ϕ ∈ EndG and any set S ⊆ Λ∗ with
|S| ≤ θ, the set of ordinals α ∈ E for which there is a β < λ∗ with

‖pβ‖ = α, ‖S‖ < 0ηβ, (Vβ∗, Vβ, Fβ) ⊆ (Λ∗, V,F), ϕβ ⊆ ϕ, S ⊆ Vβ∗

is stationary.

Main Theorem 5.3. If A is a ring with free additive group A+ =⊕
α<κ Zeα such that A = Â∩

∏
α<κ Zeα is an A-module, |A| ≤ µ, 1 ≤ k < ω

and λ = i+
k (µ), then it is possible to construct an ℵk-free A-module G of

cardinality λ such that G is separable as an abelian group and EndG =
A⊕ FinG.

Proof. Since the case k = 1 is a classical result due to M. Dugas and
R. Göbel (see [4]), we assume k > 1.

Consider the stationary subset λok = {α < λk | cf(α) = ω} of λk = µ+k . By
Solovay’s Theorem (Jech [16, p. 95]), we can decompose λok into λk disjoint
stationary subsets, say λok =

⋃̇
α<λk

Eα. Since |B \ B| = λk, we are allowed
to write

λok =
⋃̇

z∈B\B

Ez.

For each Ez, the Easy Black Box provides us with a family of traps

pzα = (ηzα, V
z
α∗, V

z
α ,F

z
α, ϕ

z
α)

for α < λ∗z < λ+k . We gather all these traps and order them according to the
norm of their first component, namely ‖ηα‖ ≤ ‖ηβ‖ for all α < β < λ∗ < λ+k .

Let V =
⋃
α<λ∗ Λ

ηα . We will construct a regressive family F = {y′η =
bη + yη | η ∈ V } of branch-like elements by choosing for all α < λ∗ and
all η ∈ Ληα an element bη ∈ B, and define G = GΛ∗V . Suppose that when
considering the trap pα = (ηα, Vα∗, Vα,Fα, ϕα) with Fα = {y′′′η = b′′η + yη |
η ∈ Vα} and the unique z ∈ B \B such that ‖ηα‖ ∈ Ez, we get

(i) Vα ⊆
⋃
β<α, ‖ηβ‖<‖ηα‖ Λ

ηβ ,
(ii) y′′′η = y′η for all η ∈ Vα,
(iii) [z] ⊆ Vα∗,
(iv) [z] = [z]ε for some ε ∈ {0, 1},
(v) ‖z‖ < 0ηα,
(vi) zϕ /∈ 〈G′, Az〉∗ whenever G′ = GΛ∗V ′ for some V ′ ⊆ Λ and a

suitable regressive family F′.
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Then we let

Yα∗ = {ν ∈ Λ∗ | ‖ν‖ < ‖ηα‖},

Yα =
⋃
β<α

‖ηβ‖<‖ηα‖

Ληβ and Gα = {y′η | η ∈ Yα}.

It is easy to verify that the assumptions of Step Lemma 4.6 hold for

f = k − 1, ξ = ηα, C∗ = [z], z, (Y∗, Y,G) = (Yα∗, Yα,Gα), ϕ = ϕα�BX′∗ ,

where X ′∗ = [z] ∪ Ληα∗. Applying Step Lemma 4.6 we will obtain correction
elements bη = εηz for η ∈ Ληα . If any of the conditions (i) to (vi) fail, we
set εη = 0 instead. In this way, all elements εη (η ∈ V ) are chosen and the
construction of G = GΛ∗V is finished.

To obtain a contradiction, suppose there is some ψ ∈ EndG\(A⊕FinG).
We apply Lemma 4.7 to G to obtain an element z ∈ B such that [z] = [z]ε

for some ε ∈ {0, 1} and zψ /∈ 〈G′, Az〉∗, whenever G′ = GΛ∗V ′ for some
V ′ ⊆ Λ and a suitable regressive family F′. Applying the Easy Black Box 5.2
to the stationary set Ez ⊆ λo we deduce for G = GΛ∗V , ψ and S = [z] that
the set of ordinals γ ∈ Ez for which there is an α < λ∗z with

‖pzα‖ = γ, ‖z‖ < 0ηzα, (V z
α∗, V z

α , Fzα) ⊆ (Λ∗, V,F), ϕzα ⊆ ψ, [z] ⊆ V z
α∗

is stationary.
In particular, there is some α < λ∗ such that

‖pα‖ ∈ Ez, ‖z‖ < 0ηα, (Vα∗, Vα,Fα) ⊆ (Λ∗, V,F), ϕα ⊆ ψ, [z] ⊆ Vα∗.

Notice that

Vα ⊆ V ∩ {η ∈ Λ | ‖η‖ < ‖ηα‖} =
⋃
β<α

‖ηβ‖<‖ηα‖

Ληβ .

Thus, the non-trivial case of the construction applies, so the bη ∈ {0, z}
(η ∈ Ληα) were chosen according to Step Lemma 4.6. In order to derive the
desired contradiction, we set

f = k − 1, ξ = ηα, C∗ = [z], z, (Y∗, Y,G) = (Yα∗, Yα,Gα), ϕ = ϕα�BX′∗ ,

X = Λξ, X∗ = C∗ ∪ [Λξ], (Z∗, Z,H) = (Λ∗, V,F), τ = IdorcoYα∗

and verify for this choice the missing conditions (v) to (viii) of Step Lem-
ma 4.6:

(v) Immediate.
(vi) (Y∗, Y,G)τ = (Yα∗, Yα,Gα) ⊆ (Λ∗, V,F) = (Z∗, Z,H) by definition.
(vii) By definition, (Y∗, Y,G)τ = (Yα∗, Yα,Gα) is (1, ‖ηα‖)-closed with

respect to (Λ∗, V,F) since from η ∈ V with |uη(Yα∗)| ≥ 1 and ‖η‖ 6= ‖ηα‖ it
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follows that

η ∈ V ∩ {η ∈ Λ | ‖η‖ < ‖ηα‖} =
⋃
β<α

‖ηβ‖<‖ηα‖

Ληβ = Yα.

(viii) We have

ZY∗τ Y τ = VYα∗Yα = {η ∈ V \ Yα | |uη(Yα∗)| ≥ 1 and ‖η‖ = ‖ηα‖}

= V ∩ {η ∈ Λ | ‖η‖ = ‖ηα‖} =
⋃
β<λ∗

‖ηβ‖=‖ηα‖

Ληβ .

In particular, ‖η‖ = ‖ηα‖ = ‖pα‖ ∈ Ez, and therefore bη ∈ {z, 0} for all
η ∈ ZY∗τ Y τ .

The existence of (Z∗, Z,H), τ and ψ with ϕτ = ϕ ⊆ ψ contradicts the
choice of εη (η ∈ Ληα) made during the construction of G by means of Step
Lemma 4.6 for f = k − 1, ξ = ηα, C∗ = [z], z, (Y∗, Y,G) = (Yα∗, Yα,Gα),
ϕ = ϕα�BX′∗ .
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