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Abstract. We show that a natural quotient of the projective Fräıssé limit of a family
that consists of finite rooted trees is the Lelek fan. Using this construction, we study
properties of the Lelek fan and of its homeomorphism group. We show that the Lelek fan
is projectively universal and projectively ultrahomogeneous in the class of smooth fans.
We further show that the homeomorphism group of the Lelek fan is totally disconnected,
generated by every neighbourhood of the identity, has a dense conjugacy class, and is
simple.

1. Introduction

1.1. Lelek fan. A continuum is a compact and connected metric space.
Let C denote the Cantor set. The Cantor fan F is the cone over the Cantor
set, that is, C × [0, 1]/∼, where (a, b) ∼ (c, d) if and only if either a = c and
b = d, or b = d = 0. Recall that an arc is a homeomorphic image of the closed
unit interval [0, 1]. If X is a space and h : [0, 1] → X is a homeomorphism
onto its image, we call h(0) = a and h(1) = b the endpoints of the arc given
by h and denote this arc by ab. An endpoint of a continuum X is a point
e such that for every arc ab in X, if e ∈ ab, then e = a or e = b. Finally,
a Lelek fan L is a non-degenerate subcontinuum of the Cantor fan with a
dense set of endpoints.

In the literature, a Lelek fan is often defined as a smooth fan with a
dense set of endpoints. However, smooth fans are exactly fans that can
be embedded into the Cantor fan (see [CC, Proposition 4]). We give the
definition of a smooth fan in Subsection 2.2.

A Lelek fan was constructed by Lelek [L]. Several characterizations of
a Lelek fan were collected in [CCM, Theorem 12.14]. A remarkable prop-
erty of a Lelek fan is its uniqueness, which was proved independently by
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58 D. Bartošová and A. Kwiatkowska

Bula–Oversteegen [BO] and by W. Charatonik [C]: any two non-degenerate
subcontinua of the Cantor fan with a dense set of endpoints are homeomor-
phic. We can therefore speak about “the” Lelek fan.

A very interesting and well-studied by many people is the space E of
endpoints of the Lelek fan L. This space is a dense Gδ set in L, therefore it
is separable and completely metrizable. It is homeomorphic to the complete
Erdős space, to the set of endpoints of the Julia set of the exponential map,
to the set of endpoints of the separable universal R-tree; see Kawamura–
Oversteegen–Tymchatyn [KOT] for more details. Since the complete Erdős
space is 1-dimensional, so is E.

Dijkstra–Zhang [DZ] showed that the space of Lelek fans, endowed with
the Vietoris topology, in the Cantor fan is homeomorphic to the separable
Hilbert space.

Here we introduce some notation that we will need later on. By v we
denote the top v = (0, 0)/∼ of the Cantor fan. For a point x ∈ F , let [v, x]
denote the closed line with endpoints v and x. If x is in the line segment
[v, y], we denote by [x, y] the line segment ([v, y] \ [v, x]) ∪ {x}. Points in F
will be denoted by (c, y), where c ∈ C and y ∈ [0, 1]. Let π1 : F \ {v} → C,
π1(c, x) = c, and π2 : F → [0, 1], π2(c, x) = x, be projections. Let E be
the set of endpoints of the Lelek fan L, and let H(L) be the group of all
homeomorphisms of the Lelek fan.

1.2. Projective Fräıssé limits. Given a language L that consists of
relation symbols ri with arity mi, i ∈ I, and function symbols fj with arity
nj , j ∈ J , a topological L-structure is a compact Hausdorff zero-dimensional
second-countable space A equipped with closed relations rAi ⊆ Ami and
continuous functions fAj : Anj → A, i ∈ I, j ∈ J . A continuous surjection
φ : B → A is an epimorphism if it preserves the structure, that is, for a
function symbol f in L of arity n and x1, . . . , xn ∈ B we require

fA(φ(x1), . . . , φ(xn)) = φ(fB(x1, . . . , xn)),

and for a relation symbol r in L of arity m and x1, . . . , xm ∈ A we require

rA(x1, . . . , xm)

⇔ ∃y1, . . . , ym ∈ B
(
φ(y1) = x1, . . . , φ(ym) = xm, and rB(y1, . . . , ym)

)
.

By an isomorphism we mean a bijective epimorphism.

For the rest of this section fix a language L. Let G be a family of finite
topological L-structures. We say that G is a projective Fräıssé family if it is
countable and the following two conditions hold:

(JPP) (the joint projection property) for any A,B ∈ G there are C ∈ G
and epimorphisms from C onto A and from C onto B;
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(AP) (the amalgamation property) for A,B1, B2 ∈ G and any epi-
morphisms φ1 : B1 → A and φ2 : B2 → A, there exist C ∈ G,
φ3 : C → B1, and φ4 : C → B2 such that φ1 ◦ φ3 = φ2 ◦ φ4.

A topological L-structure G is a projective Fräıssé limit of G if the fol-
lowing three conditions hold:

(L1) (the projective universality) for any A ∈ G there is an epimorphism
from G onto A;

(L2) for any finite discrete topological space X and any continuous func-
tion f : G→ X there are A ∈ G, an epimorphism φ : G→ A, and a
function f0 : A→ X such that f = f0 ◦ φ;

(L3) (the projective ultrahomogeneity) for any A ∈ G and any epimor-
phisms φ1 : G → A and φ2 : G → A there exists an isomorphism
ψ : G→ G such that φ2 = φ1 ◦ ψ.

We will often use the following immediate consequence of (L2).

Remark 1.1. Let G be the projective Fräıssé limit of G. Then every
finite open cover can be refined by an epimorphism, i.e. for every open cover
U of G there is an epimorphism φ : G → A, for some A ∈ G, such that for
every a ∈ A, φ−1(a) is contained in some open set in U .

Remark 1.2. In the projective Fräıssé theory, a projective Fräıssé family
has properties dual to the joint embedding property and to the amalgama-
tion property from the (injective) Fräıssé theory. We do not have a condition
that corresponds to the hereditary property. Nevertheless, we can think of
(L2) as a dualization of a “cofinal hereditary property”: if K is the Fräıssé
limit of a Fräıssé family K, then for any finite X ⊆ K , there is A ∈ K with
X ⊆ A ⊆ K.

Theorem 1.3 (Irwin–Solecki [IS]). Let G be a projective Fräıssé family
of finite topological L-structures. Then:

(1) there exists a projective Fräıssé limit of G;
(2) any two projective Fräıssé limits of G are isomorphic.

We will frequently use the following property of the projective Fräıssé
limit, called the extension property.

Proposition 1.4. If G is the projective Fräıssé limit of G, the follow-
ing condition holds: Given A,B ∈ G and epimorphisms φ1 : B → A and
φ2 : G→ A, there is an epimorphism ψ : G→ B such that φ2 = φ1 ◦ ψ.

1.3. Summary of results. In Section 2, we construct the Lelek fan L as
a natural quotient of the projective Fräıssé limit of a family of finite ordered
trees. In fact, we show that we can restrict our attention to a subclass F of
simple trees called fans. We then use this construction to show projective
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universality and projective ultrahomogeneity of the Lelek fan in the family of
all smooth fans (Theorem 2.12). In particular, we deduce that every smooth
fan is a continuous image of the Lelek fan.

In Section 3, we prove that the homeomorphism group of the Lelek fan,
H(L), has the following properties:

(1) H(L) is totally disconnected (Proposition 3.1).
(2) H(L) is generated by every neighbourhood of the identity (Corollary

3.3).
(3) H(L) has a dense conjugacy class (Theorem 3.8).
(4) H(L) is simple (Theorem 3.18).

To prove properties (2) and (3), we use our projective Fräıssé limit construc-
tion. For a detailed discussion of motivation, connections with other known
results, etc., of each of these four properties, we refer to Section 3.

Lewis–Zhou [LZ, Question 5] asked whether every homeomorphism group
of a continuum which is generated by every neighbourhood of the identity
has to be connected. As H(L) satisfies properties (1) and (2) above, the
answer to this question is negative.

We were recently informed by Megrelishvili that results in this paper
together with results due to Ben Yaacov and Tsankov [BYT, Corollary 4.10]
give a positive answer to a question posed by Glasner and Megrelishvili [Me,
Question 6.14] and [GM, Question 10.5(1)]: Is it true that there exists a
non-trivial Polish group G which is reflexively trivial but does not contain
H+[0, 1], the group of increasing homeomorphisms of [0, 1]? Indeed, H(L)
provides an example of such a group. As properties (1) and (2) above hold for
H(L) and since Aut(L), where L is the projective Fräıssé limit of the family
of finite rooted reflexive fans discussed below, is an oligomorphic group (see
[BKn]), Corollary 4.10 from [BYT] implies that H(L) is reflexively trivial.
Since H(L) is totally disconnected, it does not contain H+[0, 1].

2. Lelek fan as a quotient of a projective Fräıssé limit

2.1. Construction of the Lelek fan. Let T be a finite tree, that is,
an undirected simple graph which is connected and has no cycles. We will
only consider rooted trees, i.e. trees with a distinguished element rT ∈ T .
On a rooted tree T there is a natural partial order ≤T : for t, s ∈ T we let
s ≤T t if and only if s belongs to the path connecting t and the root. We
say that t is a successor of s if s ≤T t, t 6= s. It is an immediate successor
if additionally there is no p ∈ T , p 6= s, t, with s ≤T p ≤T t. A chain is a
rooted tree T on which the order ≤T is linear. A branch of a rooted tree
T is a maximal chain in (T,≤T ). If b is a branch in T , we will sometimes
write b = (b(0), b(1), . . . , b(n)), where b(0) is the root of T and b(i) is an



Lelek fan from a projective Fräıssé limit 61

immediate successor of b(i − 1) for every i = 1, . . . , n. We denote by B(T )
the set of all branches of T .

Let R be a binary relation symbol. Consider the language L = {R}. For
s, t ∈ T we write RT (s, t) if s = t or t is an immediate successor of s. Let T
be the family of all finite rooted trees, viewed as topological L-structures,
equipped with the discrete topology.

A function φ : (S,RS) → (T,RT ) is a homomorphism if for every
s1, s2 ∈ S, whenever RS(s1, s2) then RT (φ(s1), φ(s2)).

Remark 2.1. Notice that φ : (S,RS) → (T,RT ) is an epimorphism if
and only if it is a surjective homomorphism.

Let F be the family of finite rooted reflexive fans, that is, the family
that consists of rooted trees T ∈ T such that for every s, t ∈ T which are
incomparable in ≤T , if p 6= s, t is such that RT (p, s) and RT (p, t), then p is
the root of T , and moreover all branches of T have the same length.

Remark 2.2. The family F is coinitial in T , that is, for every T ∈ T
there are S ∈ F and an epimorphism φ : S → T .

Proposition 2.3. The family T is a projective Fräıssé family.

Proof. JPP: Take S1, S2 ∈ T . Then the tree T equal to the disjoint
union of S1 and S2 with their roots identified, together with the natural
projections from T onto S1 and from T onto S2, witness the JPP.

AP: Take P,Q, S ∈ T together with epimorphisms φ1 : Q → P and
φ2 : S → P . Without loss of generality, as F is coinitial in T , Q and S are
in F .

Let b be a branch in Q, and let a = φ1(b). Note that a is an initial
segment of a branch of P . Consider any branch c in S such that a ⊆ φ2(c).
Take a chain db and R-preserving maps ψ1 and ψ2 defined on db (we do not
require them to be surjective) such that ψ1(db) = b, ψ2(db) ⊆ c, and for
every t ∈ db, φ1 ◦ ψ1(t) = φ2 ◦ ψ2(t).

We get db for every branch b in Q, and we get db for every branch b in S.
Without loss of generality, all chains db are of the same length. Let T ∈ F
be the disjoint union of chains db with their roots identified for b a branch
in Q or in S. The functions ψ1 and ψ2 are well defined on T , ψ1 is onto Q,
ψ2 is onto S, and φ1 ◦ ψ1 = φ2 ◦ ψ2.

By Theorem 1.3, there exists a unique Fräıssé limit of T , which we denote
by L = (L, RL).

The following remark justifies that we can work only with the family F .

Remark 2.4. From Remark 2.2 and Proposition 2.3, it follows that F is
a projective Fräıssé family, and by Theorem 1.3, the projective Fräıssé limit
of F is isomorphic to the one of T .
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For a topological L-structure X, we define RX
S to be the symmetrization

of RX, that is, RX
S(s, t) if and only if RX(s, t) or RX(t, s), for every s, t ∈ X.

Theorem 2.5. The relation RL
S is an equivalence relation which has only

one-element and two-element equivalence classes.

Proof. To show that RL
S is reflexive, take x ∈ L. From (L2) in the defi-

nition of the projective Fräıssé limit it follows that for every clopen U ⊆ L
such that x ∈ U , there is T ∈ F and an epimorphism φ : L → T refining
the partition {U,L \ U}. By the definition of an epimorphism, there are
xU , yU ∈ U such that RL(xU , yU ). Since RL is closed in L×L, it follows that
RL(x, x), and therefore RL

S(x, x).
Clearly, RL

S is symmetric.
To finish the proof of the theorem, it suffices to show that for any

p, q, r, pairwise different, we cannot have both RL
S(p, q) and RL

S(p, r). Sup-
pose the opposite. Since each member of F is a tree, it cannot happen that
RL(q, p) and RL(r, p). Therefore either RL(p, q) and RL(p, r), or RL(q, p)
and RL(p, r). Consider a clopen partition P of L such that p, q, r are in dif-
ferent clopens of P . Using (L2), take T ∈ F and an epimorphism ψ1 : L→ T
refining P . Then p′ = ψ1(p), q

′ = ψ1(q), and r′ = ψ1(r) are pairwise differ-
ent, and we have RT (p′, q′) (or RT (q′, p′), respectively) and RT (p′, r′). Take
S which is equal to T with p′ “doubled”, i.e. let S = T ∪ {p̄′}, RS(p̄′, p̄′),
RS(p′, p̄′), RS(p̄′, r′), and for x, y ∈ T , (x, y) 6= (p′, r′), we let RS(x, y) if
and only if RT (x, y). Then φ : S → T that sends p̄′ to p′, and other points
to themselves, is an epimorphism. Using the extension property, we get an
epimorphism ψ2 : L → S such that ψ1 = φ ◦ ψ2. Then either ψ2(p) = p′ or
ψ2(p) = p̄′. Either option leads to a contradiction.

Take the quotient L/RL
S and denote it by L. Let π : L → L be the

quotient map.

Theorem 2.6. The space L is the Lelek fan.

In order to prove Theorem 2.6, we will show that L is a continuum, it
embeds into the Cantor fan F , and has a dense set of endpoints.

Lemma 2.7. The space L is Hausdorff, compact, second-countable, and
connected.

Proof. Since L and RL
S are compact and π is continuous, it follows that

L is Hausdorff, compact, and second-countable, since L is such.
Suppose towards a contradiction that L is not connected. Let U be

a clopen non-empty subset of L such that L \ U is also non-empty. Let
V = π−1(U). Let T ∈ F and let φ : L → T be an epimorphism refining the
partition {V,L \V }. It follows that there are x ∈ V and y ∈ L \V such that
RL(x, y). Since π(x) = π(y), we get a contradiction.
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We call a sequence (Tn, fn) an inverse sequence if Tn ∈ F and fn :
Tn+1 → Tn are epimorphisms for every n. We will denote by fnm the compo-
sition fm◦· · ·◦fn−1 whenever m < n, and fmm = IdTm . If T is the inverse limit
of (Tn, fn), then there is a sequence of epimorphisms f∞n : T→ Tn such that
fnm◦f∞n = f∞m . If (Tn, fn) and (Sn, gn) are two inverse sequences with inverse
limits T and S respectively, and for every n there is an injective homomor-
phism ιn : Tn → Sn such that ιn ◦ fn = gn ◦ ιn+1, then there is a continuous
homomorphic embedding ι∞ : T→ S satisfying ιn ◦ f∞n = g∞n ◦ ι∞.

Following the proof of [IS, Theorem 2.4], we can write L as the inverse
limit of an inverse sequence (Tn, fn) satisfying the following properties:

(1) For any T ∈ F there is an n and an epimorphism from Tn onto T .
(2) For any m, any S, T ∈ F , and epimorphisms φ1 : Tm → T and

φ2 : S → T , there exists m < n and an epimorphism φ3 : Tn → S
such that φ1 ◦ fnm = φ2 ◦ φ3.

For T ∈ F let as before B(T ) denote the set of branches of T .

By passing to a subsequence, we can assume that (Tn, fn) moreover sat-
isfies:

(3) For every b ∈ B(Tn+1) and x ∈ b, there is x′ ∈ b, x′ 6= x, such that
fn(x) = fn(x′).

(4) For every b ∈ B(Tn) there are b1 6= b2 ∈ B(Tn+1) such that fn(b1) =
fn(b2) = b.

Any sequence (Tn, fn) that satisfies properties (1)–(4) above will be
called a Fräıssé sequence.

Our goal now is to show the following proposition.

Proposition 2.8. The continuum L can be embedded into the Cantor
fan F .

Let I be the inverse limit of any inverse sequence (In, hn), where In is
a finite chain and hn : In+1 → In is an epimorphism such that for every
x ∈ In+1, there is x′ ∈ In+1, x

′ 6= x, with hn(x) = hn(x′). Then it is easily
seen that RI

S has only one-element and two-element equivalence classes, and
I/RI

S is homeomorphic to the unit interval [0, 1].

The inverse limit of an inverse sequence (Cn, en), where Cn is a finite
set and en : Cn+1 → Cn is a surjection such that for every x ∈ Cn+1 there
is x′ ∈ Cn+1, x

′ 6= x, with en(x) = en(x′), is clearly homeomorphic to the
Cantor set.

It follows that if F is the inverse limit of an inverse sequence (Sn, gn)
satisfying conditions (3) and (4) in the definition of a Fräıssé sequence and
condition (5) below, then RF

S has only one-element and two-element equiv-
alence classes and F/RF

S is homeomorphic to the Cantor fan F.
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(5) For every b ∈ B(Sn) and b′ ∈ B(Sn+1) such that gn(b′) ⊆ b, we have
gn(b′) = b.

We will find an injective, continuous homomorphism h : L → F, which
will induce a topological embedding from L into F .

Lemma 2.9. Suppose that (Tn, fn) is a Fräıssé sequence. Then there is
an inverse sequence (Sn, gn) satisfying (3)–(5) above such that Tn ⊂ Sn and
gn�Tn+1 = fn for every n. In particular, the inclusions induce a continuous
injective homomorphism h from the inverse limit L of (Tn, fn) to the inverse
limit F of (Sn, gn).

Proof. Let S0 = T0. Suppose that Sk and gk−1 have been constructed for
k ≤ n. We will construct Sn+1 from Tn+1 by adding nodes and branches, and
we will define gn : Sn+1 → Sn to be equal to fn when restricted to Tn+1. For
every b ∈ B(Tn+1), let b′ ∈ B(Sn) be the branch such that fn(b) ⊂ b′. Let
e, e′ denote the endpoints of b, b′ respectively, and let mb′ = fn(e). For every
x ∈ b′ such that mb′ <Sn x, we will put two points x1 6= x2 into Sn+1 and
set RSn+1(x1, x2), R

Sn+1(xi, xi), and gn(xi) = x for i = 1, 2. If RSn(mb′ , x),

then RSn+1(e, x1). If mb′ <Sn x <Sn y and RSn(x, y), then RS
′
n+1(x2, y1).

Finally, for every branch c in Sn \Tn∪{rTn}, we will add two branches c1, c2
to Sn+1 that map onto c under gn and such that for every x ∈ c there are
x′ 6= x′′ ∈ ci such that gn(x′) = gn(x′′) = x for i = 1, 2.

Proof of Proposition 2.8. The continuous injective homomorphism h
from Lemma 2.9 induces a continuous embedding between the respective
quotients L and F .

Finally, we show the density of endpoints of L. Let A be a topological
L-structure. We say that K ⊆ A is R-connected if for any two non-empty,
disjoint clopen subsets K1,K2 in K such that K1 ∪ K2 = K, there are
x ∈ K1 and y ∈ K2 such that RA(x, y) or RA(y, x). We again consider L as
the inverse limit of a Fräıssé sequence (Tn, fn). Let rn = rTn denote the root
of Tn, and r = (rn) the top of L. Recall that π : L→ L is the quotient map.

Proposition 2.10. The set E of all endpoints in L is dense in L.

Proof. Let U ⊆ L be open and non-empty. We will find an endpoint in U .
Let V = π−1(U). Take n1 such that there is en1 ∈ Tn1 with (f∞n1

)−1(en1)
⊆ V . Let T ∈ F , ψ1 : T → Tn1 , and x ∈ T be such that ψ1(x) = en1 and x
is an endpoint of T (i.e. for no y ∈ T , y 6= x, do we have RT (x, y)). Using
the fact that (Tn, fn) is a Fräıssé sequence, find n2 and ψ2 : Tn2 → T with
fn2
n1

= ψ1 ◦ ψ2. Pick any endpoint en2 ∈ Tn2 in the preimage of x by ψ2. For
n > n2 inductively pick an endpoint en in Tn such that fnn−1(en) = en−1
and for n < n2 let en = fn2

n (en2) = en. Then e = (en) ∈ V, and therefore
π(e) ∈ U . Moreover, e is not the root of L as en2 is not the root of Tn2 .
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By property (2) in the definition of a Fräıssé sequence, π−1(π(r)) = {r} for
r the root of L. Consequently, π(e) 6= π(r).

We show that π(e) ∈ E. Let i : [0, 1]→ L be a homeomorphic embedding
such that π(e) ∈ i(I). Suppose towards a contradiction that π(e) 6= i(0)
and π(e) 6= i(1). Without loss of generality, π(r) /∈ i(I). Denote X =
π−1(i([i−1(π(e)), 1])), Y = π−1(i([0, i−1(π(e))])), and Z = π−1(i([0, 1])).
All three sets X,Y, Z are compact, R-connected in L, and e ∈ X ∩ Y . Let
Xn = f∞n (X), Yn = f∞n (Y ), and Zn = f∞n (Z). All sets Xn, Yn, Zn are
R-connected in Tn. Since π(r) /∈ i(I), there is N > n2 such that whenever
n > N , Zn (and so Yn and Xn) is contained in a single branch of Tn.

Let x = (xn) ∈ X \ Y and let y = (yn) ∈ Y \ X. We notice that
e = (en) ∈ X ∩ Y . Then either for every n > N , rn <Tn xn <Tn yn <Tn en,
or for every n > N , rn <Tn yn <Tn xn <Tn en. Without loss of general-
ity, we may assume that the former holds. Since xn, en ∈ Xn for every n,
R-connectivity of each Xn implies yn ∈ Xn for n > N. Therefore y ∈ X,
which is a contradiction.

2.2. Properties of the Lelek fan: projective universality and
projective ultrahomogeneity. The main goal of this subsection is to
prove Theorem 2.12. This is an analog of [IS, Theorem 4.4].

Let Aut(L) be the group of all automorphisms of L, that is, of all home-
omorphisms of L that preserve the relation RL. This is a topological group
when equipped with the compact-open topology inherited from H(L), the
group of all homeomorphisms of the Cantor set underlying the structure L.
Since RL is closed in L× L, the group Aut(L) is closed in H(L).

We will denote by H(L) the group of homeomorphisms of the Lelek fan
with the compact-open topology.

Remark 2.11.

(1) Every h ∈ Aut(L) induces a homeomorphism h∗ ∈ H(L) satisfying
h∗ ◦ π(x) = π ◦ h(x) for x ∈ L. The map h → h∗ is injective and
we will frequently identify Aut(L) with the corresponding subgroup
{h∗ : h ∈ Aut(L)} of H(L).

(2) The group Aut(L) is non-trivial by projective ultrahomogeneity,
which immediately implies that H(L) is non-trivial.

(3) The compact-open topology on Aut(L) is finer than the topology on
Aut(L) that is inherited from the compact-open topology on H(L).

A continuum is hereditarily unicoherent if the intersection of any two
subcontinua is connected. A dendroid is a hereditarily unicoherent and ar-
cwise connected continuum. A point x of a dendroid X is a ramification
point if there are a, b, c ∈ X and arcs ax, bx, cx such that ax ∩ bx = {x},
bx ∩ cx = {x}, and ax ∩ cx = {x}. A fan is a dendroid that has exactly
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one ramification point, called the top. A smooth fan X is a fan such that
whenever tn → t, tn, t ∈ X, then the sequence of arcs tnw converges to the
arc tw (in the Hausdorff metric), where w is the top point of X. Smooth fans
are exactly fans that can be embedded into the Cantor fan (see [CC, Propo-
sition 4]). These are exactly non-degenarate subcontinua of the Cantor fan
F that are not homeomorphic to the interval [0, 1].

We say that a continuous surjection f : L → X, where X is a smooth
fan, is monotone on segments if f(v) = w, where v is the top of L and
w is the top of X, and for every x, y ∈ L such that x ∈ [v, y], we have
f(x) ∈ [w, f(y)].

Theorem 2.12.

(1) Each smooth fan is a continuous image of the Lelek fan L via a map
that is monotone on segments.

(2) Let X be a smooth fan with a metric d. If f1, f2 : L → X are two
continuous surjections that are monotone on segments, then for any
ε > 0 there exists h ∈ Aut(L) such that for all x ∈ L, we have
d(f1(x), f2 ◦ h∗(x)) < ε.

In order to prove Theorem 2.12, we will represent every smooth fan as
a quotient of an inverse limit of elements in F , and apply the following
proposition by Irwin and Solecki.

Proposition 2.13 ([IS, Proposition 2.6]). Let G be a projective Fräıssé
family of finite topological L-structures, and let G be its projective Fräıssé
limit. Let X be a topological L-structure such that any open cover of X is
refined by an epimorphism onto a structure in G. Then there is an epimor-
phism from G onto X.

Moreover, we will show that the epimorphism between the limits as in
Proposition 2.13 induces a continuous surjection monotone on segments be-
tween the respective continua.

Lemma 2.14. Let ε > 0. Let X be a smooth fan with the top w. Then
there is A ∈ F and an open cover {Ua}a∈A of X such that

(C1) for each a ∈ A, diam(Ua) < ε,
(C2) for each a, a′ ∈ A, if Ua ∩ Ua′ 6= ∅ then RAS (a, a′),
(C3) for each x, y ∈ X with y ∈ [w, x], if y ∈ Ua and x ∈ Ub, but

{x, y} 6⊂ Ua ∩ Ub unless a = b, then a ≤A b,
(C4) for every a ∈ A, there is x ∈ X such that x ∈ Ua \

⋃
{Ua′ : a′ ∈ A,

a′ 6= a}.

Remark 2.15. Note that (C3) implies w ∈ UrA , where rA is the root
of A, and that if a, a′ ∈ A satisfy RAS (a, a′) then Ua ∩ Ua′ 6= ∅.
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Proof of Lemma 2.14. We first show that the lemma holds for the Can-
tor fan F . Let {O1, . . . , On} be an open (ε/2)-cover of the unit interval
I = [0, 1] such that for every i, j, Oi ∩ Oj 6= ∅ if and only if |i − j| ≤ 1,
and for x ∈ Oi \ Oj and y ∈ Oj with i < j we have x < y. Moreover
we require Oi \ Oj 6= ∅ whenever i 6= j. Let {V1, . . . , Vm} be a clopen
(ε/2)-cover of the Cantor set C. Then {Oi × Vj : i = 1, . . . , n, j = 1, . . . ,m}
is an open ε-cover of C × I. Let O ⊆ F be an open neighbourhood of the
top w of F of the form O =

⋃m
j=1O1 × Vj/∼, where (a, b) ∼ (c, d) if and

only if either a = c and b = d, or b = d = 0. The desired cover is then
V = {O} ∪ {Oi × Vj : i = 2, . . . , n, j = 1, . . . ,m} with A = {r} ∪ {(i, j) : i =
2, . . . , n, j = 1, . . . ,m}, where RA(r, (i, j)) if and only if j = 2, and for
(i, j), (i′, j′) ∈ {2, . . . , n} × {1, . . . ,m}, RA((i, j), (i′, j′)) if and only if i = i′

and 0 ≤ j′ − j ≤ 1.

If X is a smooth fan, we think of X as embedded in F and obtain
the desired cover as {V ∩ X : V ∈ V}, and the structure A from the one
defined for F. We can further arrange that all branches of A have the same
length.

Proposition 2.16. For every smooth fan X, there exists a topological
L-structure (X, RX) such that RX

S has one-element and two-element equiva-
lence classes and X is homeomorphic to X/RX

S . Moreover, every finite open
cover of X can be refined by an epimorphism onto a fan in F .

Proof. Let X be a smooth fan viewed as a subfan of the Cantor fan F .
While proving Proposition 2.8, we already described how to obtain the Can-
tor fan as a quotient of a topological L-structure.

Let C be the Cantor set viewed as the middle third Cantor set. Each
point of C can be expanded in a ternary sequence 0.a1a2a3 . . . , where
ai ∈ {0, 2} for each i. Similarly, each point of [0, 1] can be expanded in a
binary sequence 0.a′1a

′
2a
′
3 . . . , where a′i ∈ {0, 1} for each i. Let f : C → [0, 1]

be given by f(0.a1a2a3 . . .) = 0.a′1a
′
2a
′
3 . . . , where a′n = 0 when an = 0, and

a′n = 1 when an = 2. Consider Id×f/∼ : C×C/∼ → F , where (a, b) ∼ (c, d)
if and only if either a = c and b = d, or b = d = 0.

Let X = (Id × f/∼)−1(X). Set RX((a, b), (c, d)) if and only if a = c
and b = d, or a = c and (b, d) is an interval removed from [0, 1] in the
construction of C. Then X = (X, RX) is a topological L-structure. Observe
that X/RX

S = X.

To prove the “moreover” part, observe that the following claim is true
and can be proved analogously to Lemma 2.14.

Claim 2.17. For every ε > 0 there exist A ∈ F and an epimorphism
φ : X→ A such that for each a ∈ A, diam(φ−1(a)) < ε, where the diameter
is taken with respect to some fixed compatible metric on X.
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Now, if we have an open cover of X, then since X is compact, by the
Lebesgue covering lemma we can find an ε > 0 such that the epimorphism
guaranteed by Claim 2.17 is as required.

Proof of Theorem 2.12. (1) Let X be a smooth fan and let X be as in
Proposition 2.16. By Proposition 2.13, there is an epimorphism f : L → X.
This epimorphism induces a continuous surjection f̄ from L = L/RL

S onto
X = X/RX

S . It remains to show that f̄ is monotone on segments. Let π :
L→ L be the quotient map. Clearly, f̄(v) = w, where v and w are the tops
of L and X respectively. Let x, y ∈ L be such that π(x) ∈ [v, π(y)]. We show
that f̄(π(x)) ∈ [w, f̄(π(y))]. Let T ∈ F and let φ : X→ T be an epimorphism
that separates f(x) and f(y) and such that if [w, f̄(π(x))] ∩ [w, f̄(π(y))] =
{w}, then φ ◦ f(x) and φ ◦ f(y) are in different branches of T . Since π(x) ∈
[v, π(y)] and φ ◦ f is an epimorphism, we have φ ◦ f(x) ≤T φ ◦ f(y). Now,
since φ is an epimorphism, we conclude that f̄(π(x)) ∈ [w, f̄(π(y))].

(2) Take A ∈ F and an open ε-cover {Ua}a∈A of X as in Lemma 2.14.
Using the Lebesgue covering lemma, find δ such that for every M ⊆ X with
diam(M) < δ there exists a ∈ A such that M ⊆ Ua. Since f1◦π and f2◦π are
uniformly continuous on L, there is B ∈ F and epimorphisms φi : L → B,
i = 1, 2, such that for b ∈ B, diam(fiπφ

−1
i (b)) < δ. Let A and ψi : B → A

be defined as follows: ψi(b) = a if and only if fiπφ
−1
i (b) ⊆ Ua and whenever

fiπφ
−1
i (b) ⊆ Ua′ , then RA(a′, a).

We show that ψi is an epimorphism for i = 1, 2. Firstly, ψi is onto. That
follows from the fact that {Ua : a ∈ A} and {fiπφ−1i (b) : b ∈ Bi} are covers
of X, and from (C4).

Secondly, let b, b′ ∈ B be such that RB(b, b′). Since φi is an epimorphism,
πφ−1i (b)∩πφ−1i (b′) 6= ∅, and consequently fiπφ

−1
i (b)∩fiπφ−1i (b′) 6= ∅; there-

fore Uψi(b) ∩ Uψi(b′) 6= ∅. By (C2), RA(ψi(b), ψi(b
′)) or RA(ψi(b

′), ψi(b)). We
will show that only the former is possible whenever ψi(b) 6= ψi(b

′).

Suppose on the contrary that RA(ψi(b
′), ψi(b)). By the definition of ψi,

there exists xi ∈ fiπφ
−1
i (b′) \ Uψi(b) ⊆ Uψi(b′) \ Uψi(b). Let si, s

′
i ∈ L be

such that si ∈ [r, s′i], where r is the top of L, φi(si) = b, φi(s
′
i) = b′, and

fiπ(s′i) = xi. It follows that π(si) ∈ [v, π(s′i)], and since fi is monotone on
segments, also fiπ(si) ∈ [w, fiπ(s′i) = xi]. This however contradicts (C3) as
fiπ(si) ∈ Uψi(b) and fiπ(s′i) ∈ Uψi(b′).

We proved that ψi’s are surjective homomorphisms. By Remark 2.1, they
are automatically epimorphisms.

Finally, by (L3), there exists h ∈ Aut(L) such that ψ1 ◦φ1 = ψ2 ◦φ2 ◦ h.
This shows that for each y ∈ L, there is a ∈ A with f1◦π(y), f2◦π◦h(y) ∈ Ua.
Hence for all x ∈ L, d(f1(x), f2 ◦ h∗(x)) < ε.

Corollary 2.18. The group Aut(L) is dense in H(L).
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Proof. In (2) of Theorem 2.12 take X = L, an arbitrary f1 ∈ H(L), and
f2 = Id.

A metric space X is uniformly pathwise connected if there exists a family
P of paths in X such that

(1) for x, y ∈ X there is a path in P joining x and y, and
(2) for every ε > 0 there is a positive integer n such that each path in P

can be partitioned into n pieces of diameter at most ε.

Kuperberg [K] showed that the continuous images of the Cantor fan are
precisely the uniformly pathwise connected continua.

Since the Lelek fan is clearly uniformly pathwise connected, it is a con-
tinuous image of the Cantor fan, and since the Cantor fan is a continuous
image of the Lelek fan (by the first part of Theorem 2.12), we obtain the
following corollary.

Corollary 2.19. The continuous images of the Lelek fan are precisely
the uniformly pathwise connected continua.

3. The homeomorphism group of the Lelek fan

3.1. Connectivity properties of H(L). We show that H(L), the
homeomorphism group of the Lelek fan L, is totally disconnected (Proposi-
tion 3.1) and is generated by every neighbourhood of the identity (Corollary
3.3). A topological space X is totally disconnected if for any x, y ∈ X there
is a clopen set U ⊆ X such that x ∈ U and y ∈ X \ U . Note that this
implies that every subspace of X containing more than one element is not
connected (in the literature, the latter property is often used as a definition
of being totally disconnected).

We say that a metric group (G, d) is generated by every neighbourhood
of the identity if for every ε > 0 and h ∈ G there are homeomorphisms
f1, . . . , fn ∈ G such that d(fi, Id) < ε for every i, and h = f1 ◦ · · · ◦ fn.
The definition of being generated by every neighbourhood of the identity
naturally extends to topological groups, but we will only need it in the
context of metric groups.

Lewis [Le1] showed that the homeomorphism group of the pseudo-arc is
generated by every neighbourhood of the identity. However, it is not known
whether that group is totally disconnected (see [Le2, Question 6.14]). There
are examples of totally disconnected Polish groups (separable and completely
metrizable topological groups) that are generated by every neighbourhood
of the identity. The first such example, solving Problem 160 in the Scottish
Book (see [M]), posed by Mazur, asking whether a complete metric group
that is generated by every neighbourhood of the identity must be connected,
was given by Stevens [S]; another example was presented by Hjorth [H].
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The groups constructed by Stevens and Hjorth are algebraically subgroups
of the additive group of real numbers. Our example is different. The group
H(L) is non-abelian, because it is non-trivial (Remark 2.11(2)) and has
non-trivial conjugacy classes (Theorem 3.8). Moreover, it is explicitly given
as the homeomorphism group of a continuum. Lewis–Zhou [LZ, Question 5]
asked whether the homeomorphism group of a continuum that is generated
by every neighbourhood of the identity has to be connected. Our example
shows that the answer is negative.

As in Subsection 1.1, let C be the Cantor set, let F be the Cantor fan
with the top point v, and let π1 : F \ {v} → C be the projection.

Proposition 3.1. The group H(L) is totally disconnected.

Proof. Let h1 6= h2 ∈ H(L). We show that there is a clopen set A in
H(L) such that h1 ∈ A and h2 /∈ A. Since the set of endpoints E is dense in
L and h1 6= h2, there is e ∈ E such that h1(e) 6= h2(e). Let U0 be a clopen set
in C such that π1(h1(e)) ∈ U0 and π1(h2(e)) /∈ U0, and let U = π−1(U0)∩E.
Then U is a clopen set in E. Since H(L) → E, h 7→ h(e), is continuous,
A = {h ∈ H(L) : h(e) ∈ U} is a clopen set in H(L) such that h1 ∈ A and
h2 /∈ A.

Fix a compatible metric d on L. Denote the corresponding supremum
metric on H(L) by dsup. A homeomorphism h ∈ H(L) is called an
ε-homeomorphism if dsup(h, Id) < ε.

Theorem 3.2. For every ε > 0 and h ∈ Aut(L) there exist f1, . . . , fn in
Aut(L) such that h = f1 ◦ · · · ◦ fn and f∗0 , . . . , f

∗
n are ε-homeomorphisms.

Proof. Let B0 be an open cover of L that consists of sets of diameter
< ε/2. Let B = {π−1(B) : B ∈ B0} be an open cover of L, where π : L→ L
is the quotient map. Let S ∈ F and α : L → S be an epimorphism that
refines B. Note that for s, s′ ∈ S,

(4) RS(s, s′)→ diam(π ◦ α−1(s) ∪ π ◦ α−1(s′)) < ε

since π ◦ α−1(s) ∩ π ◦ α−1(s′) 6= ∅.
Using the uniform continuity of h and the Lebesgue covering lemma,

find a finite open cover U of L refining C such that h(U) = {h(U) : U ∈ U}
also refines C. Let T ∈ F and let γ : L → T be an epimorphim refining U .
Then also D = {γ−1(t) : t ∈ T} and h(D) = {h ◦ γ−1(t) : t ∈ T} both refine
C = {α−1(s) : s ∈ S}. Denote by β the surjection from T onto S such that
α = β ◦ γ. We see that β is an epimorphism, since α and γ are.

Let β0 = α◦h◦γ−1 and let γ0 = γ ◦h−1. Note that β0 is an epimorphism
and α = β0 ◦ γ0.

Without loss of generality, we can assume the following property:
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(∗) For every branch in S there are at least k+ 1 branches in T that map
onto the given branch under β0.

If the original fan T does not have this property, we take T ′ and φ : T ′ → T
such that for every branch b in T there are k + 1 branches in T ′ that are
mapped by φ onto b. We apply the extension property to φ and γ0, and get
ψ : L→ T ′ such that γ0 = φ ◦ψ. We replace T by T ′, γ0 by ψ, β0 by β0 ◦ φ,
γ by ψ ◦ h, and β by α ◦ h−1 ◦ ψ−1.

It is enough to construct epimorphisms β1, . . . , βn = β : T → S, for
some n, such that for every 0 ≤ i < n and for every t ∈ T , RS(βi(t), βi+1(t))
orRS(βi+1(t), βi(t)). Then using the extension property, we find γ1, . . . , γn =
γ such that α = βi ◦γi, i = 1, . . . , n, while projective ultrahomogeneity then
provides us with h = h0, h1, . . . , hn−1, hn = Id ∈ Aut(L) such that γ = γi◦hi.
For each automorphism hi, let h∗i denote the corresponding homeomorphism
of L, let fi = h∗i−1 ◦ (h∗i )

−1, i = 1, . . . , n. Clearly, the composition f1 ◦ · · · ◦fn
is equal to h, and each fi is an ε-homeomorphism. Indeed, for every x ∈ L
and i = 0, 1, . . . , n− 1, we have

RS(α ◦ hi(x), α ◦ hi+1(x)) or RS(α ◦ hi+1(x), α ◦ hi(x)),

since
α ◦ hi(x) = βi ◦ γi ◦ hi(x) = βi ◦ γ(x)

and
RS(βi(t), βi+1(t)) or RS(βi+1(t), βi(t))

for every t ∈ T. By (4), for every x ∈ L we get

diam
(
π ◦ α−1(α ◦ hi(x)) ∪ π ◦ α−1(α ◦ hi+1(x))

)
< ε,

and therefore

dsup(h∗i , h
∗
i+1) = dsup(h∗i ◦ (h∗i+1)

−1, Id) < ε.

Enumerate all branches in S as c1, . . . , ck and all branches in T as
d1, . . . , dl in such a way that

(∗∗) For every 1 ≤ i ≤ k, β�di is onto ci.

Let β0(d1)=(c(0), c(1), . . . , c(m1))⊆ c and β(d1)=(c1(0), c1(1), . . . , c1(m2))
⊆ c1. We construct β1, . . . , βn1 for n1 = m1 +m2. For i = 1, . . . ,m1, let

βi(t) =

{
c(m1 − i) if t ∈ d1 and βi−1(t) = c(m1 − i+ 1),

βi−1(t) otherwise.

For i = 1, . . . ,m2, let

βm1+i(t) =

{
c1(i) if t ∈ d1 and β(t) ∈ {c1(i), . . . , c1(m2)},
βm1+i−1(t) otherwise.

We continue in the same manner for 2, . . . , l and construct βn1+1, . . . , βn2 ,
. . . , βnl−1+1, . . . , βnl

. By (∗) and (∗∗), each βi is onto. All βi’s are epimor-
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phisms and they satisfy the required condition: for every 0 ≤ i < n and for
every t ∈ T , we have RS(βi(t), βi+1(t)) or RS(βi+1(t), βi(t)).

Theorem 3.2 immediately yields the following corollaries. To obtain the
first one, we also use Corollary 2.18, which says that Aut(L) is dense inH(L).

Corollary 3.3. The group H(L) is generated by every neighbourhood
of the identity.

Corollary 3.4. The group H(L) has no proper open subgroup.

A Polish group is non-archimedean if it contains a basis at the identity
that consists of open subgroups. This class of groups is equal to the class of
automorphism groups of countable model-theoretic structures.

Corollary 3.5. The group H(L) is not a non-archimedean group.

The following is a classical theorem about locally compact groups.

Theorem 3.6 (van Dantzig; see [HR, (7.7)]). A totally disconnected lo-
cally compact group admits a basis at the identity that consists of compact
open subgroups.

Since H(L) is totally disconnected (by Proposition 3.1), the theorem
above implies the following corollary.

Corollary 3.7. The group H(L) is not locally compact.

3.2. Conjugacy classes of H(L). The main result of this subsection
is the following theorem.

Theorem 3.8. The group of all homeomorphisms of the Lelek fan, H(L),
has a dense conjugacy class.

This will follow from Theorem 3.9.

Theorem 3.9. The group of all automorphisms of L, Aut(L), has a
dense conjugacy class.

Let us first see how Theorem 3.9 implies Theorem 3.8.

Proof of Theorem 3.8. As noticed in Remark 2.11, Aut(L) can be identi-
fied with a subgroup of H(L) and its topology is finer than the one inherited
from H(L). From Corollary 2.18, Aut(L) is a dense subset of H(L). From
these observations, a set which is dense in Aut(L) is also dense in H(L).

To show Theorem 3.9, we use the criterion stated in Proposition 3.10
below. The proof of this criterion is given in [Kw, Theorem A1], and it is
an analog of a theorem due to Kechris–Rosendal [KR] in the context of
(injective) Fräıssé theory.

Let G be a projective Fräıssé family of finite L0-structures, for some
language L0, with the limit G. Let s be a binary relation symbol and let L1
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be the language L0∪{s}. Define a class G+ of finite L1-structures as follows:

G+ = {(A, sA) : A ∈ G and there are φ : G→ A and f ∈ Aut(G)

such that φ : (G, graph(f))→ (A, sA) is an epimorphism},

where graph(f) is viewed as a closed relation on G: graph(f)(x, y) if and
only if f(x) = y.

As in Subsection 1.2, say that G+ has the joint projection property (JPP)
if and only if for every (A, sA), (B, sB) ∈ G+ there is (C, sC) ∈ G+ and
epimorphisms from (C, sC) onto (A, sA) and from (C, sC) onto (B, sB).

Proposition 3.10 ([Kw]). The group Aut(G) has a dense conjugacy
class if and only if G+ has the JPP.

The lemma below is a general fact of the projective Fräıssé theory.

Lemma 3.11. Let G be a projective Fräıssé family with the limit G. Then
(T, sT ) ∈ G+ if and only if there are S ∈ G and epimorphisms p1 : S → T
and p2 : S → T such that sT = {(p1(x), p2(x)) : x ∈ S}.

Proof. (⇐) Let S, p1, p2 be as in the hypothesis. Let φ : G → S be any
epimorphism (it exists by the universality property (L1)). Let φ1 = p1◦φ and
let φ2 = p2 ◦φ. Using the projective ultrahomogeneity (L3), get f ∈ Aut(G)
such that φ1 ◦f = φ2. Then φ1 : (G, graph(f))→ (T, sT ) is an epimorphism.
So (T, sT ) ∈ G+.

(⇒) Let (T, sT ) ∈ G+. Let ψ : (G, f) → (T, sT ) be an epimorphism.
Denote φ1 = ψ and φ2 = φ1 ◦ f . Let X be the common refinement of
the partitions φ−11 (T ) and φ−12 (T ). Let α : G → S, S ∈ G, be an epimor-
phism refining the partition X. Then p1 : S → T satisfying φ1 = p1 ◦ α and
p2 : S → T satisfying φ2 = p2 ◦ α are as required.

Every fan in F is specified by its height and its width. Recall that we
assumed that all branches in a given fan have the same length. The height
of a fan is the number of elements in a branch minus one (we do not count
the root). The width of a fan is the number of its branches. Let T be a
fan of height k and width n. If b is a branch in a fan T of height k, we
denote by b(j) the jth element of b for j = 0, 1, . . . , k (where b(0) is the
root). We say that a binary relation sT on T is surjective if for every t ∈ T
there are r, s ∈ T such that sT (t, r) and sT (s, t). Let sT be a surjective
relation on T . Let b1, . . . , bn be the list of all branches of T , and let rT be
the root of T . We say that (x1, y1) ∈ T 2 is sT -adjacent to (x0, y0) ∈ T 2

if RT (x0, x1), R
T (y0, y1), s

T (x0, y0), and sT (x1, y1). We say that (c, d) is
sT -connected to (a, b) if there are l and (x0, y0), (x1, y1), . . . , (xl, yl) ∈ T 2

such that (x0, y0) = (a, b), (xl, yl) = (c, d), and for each i, (xi+1, yi+1) is
sT -adjacent to (xi, yi).
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Lemma 3.12. We have (T, sT ) ∈ F+ if and only if sT is surjective,
sT (rT , rT ), and for every (x, y), whenever sT (x, y), then (x, y) is sT -con-
nected to (rT , rT ).

Proof. (⇐) We define S, p1, p2 as in Lemma 3.11. Let k be the height
of T . For every (x, y) such that sT (x, y) we pick a chain of length 2k+2 and
denote it by b(x,y). Let S be the disjoint union of all chains b(x,y) with their

roots identified. Now we define p1 and p2. Fix (x, y) such that sT (x, y). Fix
a sequence (rT , rT ) = (x0, y0), (x1, y1), . . . , (xl, yl) = (x, y) witnessing that
(x, y) is sT -connected to (rT , rT ). We let p1(b(x,y)(i)) = xi and p2(b(x,y)(i))
= yi whenever i ≤ l. We let p1(b(x,y)(i)) = x and p2(b(x,y)(i)) = y whenever
i > l.

(⇒) Let (T, sT ) ∈ F+ and let S, p1, p2 be as in Lemma 3.11. Clearly
sT (rT , rT ). Take (x, y) such that sT (x, y), and let s ∈ S be such that (x, y) =
(p1(s), p2(s)). Let b be a branch in S connecting rS to s, i.e. rS = s0 =
b(0), s1 = b(1), . . . , sl = b(l). Then the sequence (rT , rT ) = (p1(s0), p2(s0)),
(p1(s1), p2(s1)), . . . , (p1(sl), p2(sl)) = (x, y) witnesses that (x, y) is sT -con-
nected to (rT , rT ).

Proposition 3.13. The family F+ has the JPP.

Proof. Let (T1, s
T1), (T2, s

T2) ∈ F+. For the JPP, take T to be the dis-
joint union of T1 and T2 with their respective roots identified. For x, y ∈ T
we let sT (x, y) if and only if either x, y ∈ T1 and sT1(x, y), or x, y ∈ T2 and
sT2(x, y). Then, using Lemma 3.12, we conclude that (T, sT ) ∈ F+. More-
over, φ1 : (T, sT ) → (T1, s

T1) such that φ1�T1 = IdT1 and φ1�T2 map onto
the root, and φ2 : (T, sT )→ (T2, s

T2) such that φ2�T2 = IdT2 and φ2�T1 map
onto the root, are epimorphisms.

3.3. Simplicity of H(L). A group is simple if it has no non-trivial
proper normal subgroups. In this subsection, we show that the group H(L)
is simple. Anderson [A] gave a criterion for groups of homeomorphisms that
implies their simplicity. Anderson’s criterion is satisfied for instance by the
homeomorphism group of the Cantor set, the homeomorphism group of the
universal curve, and by the group of all orientation-preserving homeomor-
phisms of S2. As we will see, a modification of that criterion applies to H(L).

There are various recent results concerning simplicity of topological
groups. Tent–Ziegler [TZ1] showed that the isometry group of the bounded
Urysohn metric space is simple, and Macpherson–Tent [MT] gave a general
result on simplicity of automorphism groups of countable ultrahomogeneous
structures whose classes of finite substructures have the free amalgamation
property. This last result was later generalized by Tent–Ziegler [TZ2], who
also showed that the isometry group of the Urysohn space modulo the nor-
mal subgroup of bounded isometries is a simple group.
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Recall from Subsection 1.1 that E denotes the set of endpoints of L, C is
the Cantor set, F is the Cantor fan, and π1 : F \ {v} → C, π2 : F → [0, 1]
are projections. Let v denote the top of L. Define

K = {K ⊆ L : both K and (L \K) ∪ {v} are closed and different from L}.

The properties listed below follow immediately from the definition of K.

Remark 3.14.

(1) Let K ∈ K. Then for any e ∈ E, we have either [v, e] ⊆ K or
[v, e] ⊆ (L \K) ∪ {v}.

(2) Whenever K ∈ K and g ∈ H(L), then g(K) ∈ K.
(3) If K ∈ K, then K \ {v} is an open non-empty set in L. Moreover
{K \ {v}, L \K} is a clopen decomposition of L \ {v}.

(4) If K ∈ K, then (L \ K) ∪ {v} ∈ K. If K,K ′ ∈ K are such that
K ∪K ′ 6= L, then K ∪K ′ ∈ K. If K,K ′ ∈ K are such that K ∩K ′
6= {v}, then K ∩K ′ ∈ K.

(5) If X ⊆ C is a clopen set such that π−11 (X) ∩ L and π−11 (C \X) ∩ L
are non-empty, then (π−11 (X) ∩ L) ∪ {v} ∈ K.

Let G0 denote the subgroup of H(L) consisting of those g ∈ H(L) that
are the identity when restricted to some K ∈ K. We say that g ∈ G0 is
supported on K ∈ K if g�(L \K) is the identity. For K ∈ K let E(K) denote
the set of endpoints of K. Observe that E ∩K = E(K) by Remark 3.14(1).

Lemma 3.15. The family K satisfies the following properties:

(1) each K ∈ K is homeomorphic to L,
(2) for every h 6= Id ∈ H(L) there is K ∈ K such that

K ∩ (h(K) ∪ h−1(K)) = {v}.

Proof. (1) Let K ∈ K. To show that K is homeomorphic to L, it is
enough to show that E(K) is dense inK. Let x ∈ K\{v}. There is a sequence
(ei) of endpoints of L that converges to x. By passing to a subsequence, we
can assume that either every ei is in K, or every ei is in L \ K. Since
(L \ K) ∪ {v} is closed and x 6= v, the latter possibility cannot be true.
Therefore, since E ∩K = E(K), (ei) is a sequence of endpoints of K and
it converges to x. This shows that E(K) is dense in K \ {v}. However,
K \ {v} = K, so E(K) is also dense in K.

(2) Since E is dense in L, there is e ∈ E such that h(e) 6= e. Consequently,
h([v, e]) ∩ [v, e] = {v} and h−1([v, e]) ∩ [v, e] = {v}. Let M1,M2,M3 ∈ K be
such that M1 ∩ M2 = {v}, M1 ∩ M3 = {v}, e ∈ M1, h(e) ∈ M2, and
h−1(e) ∈ M3. Let K = h−1(M2) ∩M1 ∩ h(M3). Then K ∈ K, K ⊆ M1,
h(K) ⊆M2, and h−1(K) ⊆M3. Therefore K ∩ (h(K) ∪ h−1(K)) = {v}.
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For K ∈ K, define the height of K to be max(π2(K)). We say that a
sequence (Ki)i∈Z of elements of K is a β-sequence if (1)

⋃
i∈ZKi ∈ K and

Ki ∩Kj = {v} for i 6= j, and (2) limi→∞ ht(Ki) = 0 = limi→−∞ ht(Ki).

Lemma 3.16. For every K ∈ K there exist a β-sequence (Ki) with⋃
Ki = K and ρ1, ρ2 ∈ G0 supported on K such that

(1) ρ1(Ki) = Ki+1 for each i;
(2) ρ2�K0 = ρ1�K0, ρ2�K2i = ρ−21 �K2i for i > 0, and ρ2�K2i−1 =

ρ21�K2i−1 for i > 0;
(3) if φi ∈ G0 is supported on Ki, for each i, then there exists φ ∈ G0

supported on K such that φ�Ki = φi�Ki for every i.

Proof. Given K ∈ K, we first inductively construct a sequence (K ′i)i∈N
of elements of K such that

⋃
i∈NK

′
i = K, K ′i ∩ K ′j = {v} for i 6= j, and

limi→∞ ht(K ′i) = 0. Fix a compatible metric on the Cantor set C such that
diam(C) ≤ 1.

To construct K ′0, pick e ∈ E(K) such that π2(e) < 2−1. Let X ⊆ C be
a clopen such that π1(e) ∈ X and ht(M) < 2−1, where M = (π−11 (X) ∩ L)
∪ {v}. Let K ′0 = (K \ M) ∪ {v}. Then K ′0 ∈ K and K \ K ′0 6= ∅ since
e ∈ K \K ′0. Note that ht((K \K ′0) ∪ {v}) = ht(M) < 2−1.

Suppose that we have constructed K ′0,K
′
1, . . . ,K

′
n such that (a) for every

i 6= j, i, j ≤ n, K ′i ∩ K ′j = {v} and K \
⋃
j≤iK

′
j 6= ∅, (b) for every i ≤ n,

ht(K ′i) < 2−i and ht((K \
⋃
j≤iK

′
j)∪{v}) < 2−(i+1), and (c) for every i ≤ n,

diam(π1(K \
⋃
j≤iK

′
j)) < 2−(i−1).

Now we construct K ′n+1 such that conditions (a)–(c), with n replaced by
n + 1, are fulfilled: Using that (K \

⋃
j≤nK

′
j) ∪ {v} ∈ K and consequently

K \
⋃
j≤nK

′
j is open in L, pick e ∈ E(K \

⋃
j≤nK

′
j) so that π2(e) < 2−(n+2).

Further let X ⊆ C be a clopen such that π1(e) ∈ X and ht(M) < 2−(n+2),
where M = (π−11 (X)∩L)∪{v}. By shrinking M if necessary, we can assume
(M ∩ K) ∪

⋃
j≤nK

′
j 6= K and diam(π1(M \ {v})) < 2−n. Let K ′n+1 =

(K \ (
⋃
j≤nK

′
j ∪M)) ∪ {v}. Then K ′n+1 ∈ K is as required. In particular,

K \
⋃
j≤n+1K

′
j 6= ∅, ht((K \

⋃
j≤n+1K

′
j) ∪ {v}) = ht(M) < 2−(n+2), and

diam(π1(K \
⋃
j≤n+1K

′
j)) ≤ diam(π1(M \ {v})) < 2−n.

The sequence (Ki)i∈Z such that K0 = K ′0, K−i = K ′2i for i = 1, 2, . . . ,
and Ki = K ′2i−1 for i = 1, 2, . . ., is a β-sequence satisfying

⋃
i∈ZKi = K.

We first show that (3) holds. Let φi be as in the assumptions. Let φ be
such that φ�Ki = φi�Ki and φ is the identity outside K. We want to show
that φ is a homeomorphism. Clearly φ is a bijection. Since L is compact,
it is enough to show that φ is continuous. Let x ∈ L. If x 6= v, then either
x ∈ Ki \ {v} for some i, or x ∈ L \K. Since each of Ki \ {v} and L \K is
open, whenever (xn) converges to x, then eventually xn ∈ Ki \ {v} for some
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i or xn ∈ L \ K, respectively. Therefore, eventually φ(xn) ∈ Ki \ {v} for
some i, or φ(xn) ∈ L \ K, respectively. Since each φi is continuous, φ(xn)
converges to φ(x). Now let x = v and let (xn) converge to v. We show that
φ(xn) converges to v = φ(v). Fix an open neighbourhood U of v. Since
ht(Ki) → 0 both for i → ∞ and for i → −∞, we can find i0 > 0 such that
when i > i0 or i < −i0, then Ki ⊆ U . By continuity of φi, find n0 such
that whenever n > n0 and xn is in one of Ki, −i0 ≤ i ≤ i0, or in L \ K,
then φ(xn) = φi(xn) ∈ U , or φ(xn) = xn ∈ U , respectively. Then since
φi(Ki) ⊆ Ki for each i, whenever n > n0 we have φ(xn) ∈ U . This shows
the continuity of φ at v.

To show (1) we let ρi1 : Ki → Ki+1 be any homeomorphism, which
exists as all Ki’s are homeomorphic to the Lelek fan. Let ρ1 be such that
ρ1�Ki = ρi1, i ∈ Z, and let ρ1 be the identity outside K. Then similarly to
the proof of (3), we can show that ρ1 is a homeomorphism of L.

Having defined ρ1, we set ρ2 on each Ki, i ≥ 0, as in (2), and we let ρ2
be the identity otherwise. Then again as in the proof of (3), we show that
ρ2 is a homeomorphism of L.

Remark 3.17. Anderson [A] showed that whenever G is a group of
homeomorphisms of a space X, and there exists a family K of closed sets
that satisfies conditions similar to those given in Remark 3.14 and in Lemmas
3.15 and 3.16, then G is a simple group. He assumes that the sets Ki in the
definition of a β-sequence are disjoint, and that for every open non-empty
set U ⊆ X there exists K ∈ K such that K ⊆ U , which is false in our
situation. Nevertheless, it is enough to substitute this condition by (2) of
Lemma 3.15.

Theorem 3.18. The group of all homeomorphisms of the Lelek fan,
H(L), is simple.

The proof of Theorem 3.18 will go along the lines of the proof of simplicity
of homeomorphism groups studied by Anderson. We sketch it here for the
reader’s convenience, and for the details we refer to [A].

We need the following lemma (analogous to [A, Theorem I]).

Lemma 3.19. Let h 6= Id ∈ H(L). Then every g ∈ G0 is the product of
four conjugates of h and h−1 (appearing alternately).

Proof. Since any two elements of K are homeomorphic via a homeomor-
phism of L, it is enough to show that there exists K0 ∈ K such that for any
g0 ∈ G0 supported on K0, g0 is the product of four conjugates of h and h−1.

By Lemma 3.15(2), there is K ∈ K such that K∩(h(K)∪h−1(K)) = {v}.
Let (Ki) be a β-sequence such that

⋃
iKi = K, and let ρ1 and ρ2 be as in

(1) and (2) of Lemma 3.16. We show that K0 is as required. Let g0 ∈ G0

be supported on K0. For i ≥ 0, let φi = ρi1g0ρ
−i
1 , and let φi be the identity
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on Ki when i < 0. Take φ as in (3) of Lemma 3.16. Take f = h−1φ−1hφ.
Note that f is supported on K ∪ h−1(K), f�K = φ�K, and f�(h−1(K)) =
(h−1φ−1h)�(h−1(K)). Take ρ = h−1ρ2hρ

−1
1 . Note that ρ is supported on

K ∪ h−1(K), ρ�K = ρ−11 �K, and ρ�(h−1(K)) = (h−1ρ2h)�(h−1(K)). Let
w = ρ−1f−1ρf . Then w = (ρ−1φ−1h−1φρ)(ρ−1hρ)(h−1)(φ−1hφ), therefore
it is a product of four conjugates of h and h−1. Unraveling the definitions
of φ, f , ρ, and w, as is done in [A], we get w = g0.

Proof of Theorem 3.18. Let g ∈ H(L) and let h ∈ H(L), h 6= Id. We
will show that g is the product of eight conjugates of h and h−1. This will
immediately imply that H(L) is simple.

Let K ∈ K be such that g(K) ∩ K = {v} and g(K) ∪ K 6= L. Take
α ∈ H(L) such that α�K = g�K, α�g(K) = g−1�g(K), and α is equal to the
identity outside g(K) ∪ K. Notice that α, (α−1g) ∈ G0 and g = α(α−1g).
By Lemma 3.19, g is the product of eight conjugates of h and h−1.

Remark 3.20. As in [A], one can modify the proof of Theorem 3.18 to
show that whenever g ∈ H(L) and h ∈ H(L), h 6= Id, then g is the product
of six conjugates of h and h−1.
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