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Abstract. We apply the work of Bourgain, Fremlin and Talagrand on compact sub-
sets of the first Baire class to show new results about φ-types for φ NIP. In particular, we
show that if M is a countable model, then an M -invariant φ-type is Borel-definable. Also,
the space of M -invariant φ-types is a Rosenthal compactum, which implies a number of
topological tameness properties.

Introduction. Shelah introduced the independence property (IP) for
first order formulas in 1971 (see [13]). Some ten years later, Poizat [10]
proved that a countable theory T does not have the independence prop-
erty (is NIP) if and only if for any model M of T and type p ∈ S(M),

p has at most 2|M | coheirs (the bound a priori being 22|M|). Another
way to state this result is to say that for any model M , the closure in
S(M) of a subset of size at most κ has cardinality at most 2κ. Thus
NIP is equivalent to a topological tameness condition on the space of
types.

At about the same time, Rosenthal [11] studied Banach spaces not in-
cluding l1. He showed that a separable Banach space B does not contain a
closed subspace isomorphic to l1 if and only if the unit ball of B is relatively
sequentially compact in the bidual B∗∗, if and only if B∗∗ has the same car-
dinality as B. Note that an element of B∗∗ is by definition a function on B∗,
the topology on B∗∗ is that of pointwise convergence, and B, identified with
a subset of B∗∗, is dense. Shortly after this work, Rosenthal [12] and then
Bourgain, Fremlin and Talagrand [2] extended the ideas of this theorem
and studied systematically the pointwise closure of subsets A of continuous
functions on a Polish space. It turns out that there is a sharp dichotomy:
either the closure Ā contains non-measurable functions, or all functions in
the closure can be written as the pointwise limit of a sequence of elements
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of A. In the latter case, the closure has size at most 2|A|. It turns out that
this dichotomy corresponds to the NIP/IP dichotomy in an explicit way: see
Fact 1.3(v).

The theory of compact subsets of Baire 1 functions, also known as Rosen-
thal compacta, has since received a lot of attention both in general topology
and set theory. See for example [6] and [17].

The goal of this paper is to see what the Bourgain–Fremlin–Talagrand
theory can tell us about NIP formulas. On the one hand, it leads us to
consider new tameness properties of the space of types, whose proofs turn
out to be easy with standard model-theoretic tools (Section 2.2). On the
other hand, it can be applied to prove results about invariant types for
which we know no model-theoretic proof.

In particular we show the following (which is a concatenation of Propo-
sitions 2.15 and 2.16 along with Theorem 2.3).

Theorem 0.1 (T is countable). Let φ(x; y) be an NIP formula and M
a countable model. Let p ∈ Sφ(U) be a global M -invariant φ-type. Then p is
Borel-definable: more precisely, {q ∈ Sy(M) : p ` φ(x; b) for b ∈ q(U)} is
both an Fσ and a Gδ subset of Sy(M).

The set Invφ(M) of global M -invariant φ-types is a Rosenthal com-
pactum. In particular: If Z ⊆ Sφ(U) is a family of M -invariant φ-types
and p is in Z̄, the topological closure of Z, then p is the limit of a sequence
of elements of Z.

The first point (Borel definability) was proved by Hrushovski and Pillay
[7] assuming that the full theory is NIP. In fact their proof works if just
φ(x; y) is assumed to be NIP, as long as the partial type p extends to a
complete M -invariant type. In a general theory, this need not be the case
(see [3, Section 5, Example 1] for an example). The second point in the
theorem is new even for NIP theories.

We will actually prove more general results which do not assume that M
or T is countable. The proofs use two ingredients: First, a theorem from [14]
which gives a new description of invariant φ-types for an NIP formula φ.
Using it, we can show that the set Invφ(M) is a Rosenthal compactum
(when M is countable). We could then simply apply the theory of Bourgain–
Fremlin–Talagrand to obtain results such as Theorem 0.1. However, to keep
this paper self-contained and to remove the assumption that M is countable,
we will reprove everything from scratch. We want to make it clear that all
the proofs in this paper (with the exception of Lemma 2.4 which is possibly
new) are very closely adapted from previous works, mostly [2] and [16]. The
only new feature is that we do not work over a second countable space, but
this poses no difficulty once the right dictionary is found (we have to replace
sequences with more complicated families).
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Let us say a few words about applications. The fact that invariant types
in NIP theories are Borel-definable is fundamental for the theory of Keisler
measures as developed in [7]. Using the results presented here, we can extend
this theory to the case of an NIP formula φ(x; y) in an arbitrary theory.
Furthermore, the fact that the closure of invariant types is witnessed by
convergent sequences is used in [4] to prove that, for a definably amenable
group G, the map p 7→ µp which sends an f -generic type to the associated
G-invariant measure is continuous. We expect more applications to be found
in the future.

Finally, we point out that Rosenthal’s dichotomy was imported into dy-
namics through the work of Köhler [9] and Glasner [5]. From there, the
relationship with NIP was noticed independently by Chernikov and myself
in the work [4] mentioned above, and by Ibarlućıa [8] in the context of
ℵ0-categorical structures and automorphism groups.

This paper is organized as follows: In the first section, we present the
relevant part of the work of Bourgain, Fremlin and Talagrand. In the second
section, we state our main results and give self-contained definitions and
proofs (apart from Fact 2.8 which comes from our previous work [14]). We
consider first a model of arbitrary cardinality and then specialize the results
to the countable case, where statements are slightly simplified by the use of
sequences.

1. Rosenthal compacta. This section surveys part of the work of
Bourgain, Fremlin and Talagrand [2] on relatively compact subsets of the
first Baire class. Nothing here is needed in the rest of the paper, since we
will repeat all the definitions and will not refer to this section in the proofs.

1.1. Baire 1 functions. Let X be a Polish space.

Definition 1.1. A function f : X → R is of Baire class 1 if it can be
written as the pointwise limit of a sequence of continuous functions.

The set of Baire class 1 functions on X is denoted by B1(X). We will
always equip it with the topology of pointwise convergence, that is, the
topology induced from RX .

The following is the well-known characterization of Baire class 1 func-
tions due to Baire. See later Theorem 2.3 for a proof in a slightly different
framework.

Fact 1.2. Let f : X → R. The following are equivalent:

(i) f is of Baire class 1;
(ii) f−1(F ) is a Gδ for every closed F ⊆ R;

(iii) for any closed F ⊆ X, f |F has a point of continuity in the induced
topology on F .
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1.2. Relatively compact subsets of Baire 1 functions. One moti-
vation of [2] was to answer some questions left open by Rosenthal [12] about
the space of Baire class 1 functions on a Polish space. The authors of [2]
end up proving much more general results. We will only give the particular
statements relevant to us.

Fact 1.3 ([2]). Let A ⊆ C(X) be a countable pointwise bounded family
of continuous functions from X to R. Then the following are equivalent:

(i) A is relatively sequentially compact in RX (every sequence of ele-
ments of A has a subsequence which converges in RX);

(ii) A is relatively compact in B1(X);
(iii) all the functions in the closure of A in RX are Borel-measurable;

(iv) the closure of A in RX has cardinality < 22ℵ0 ;
(v) if α < β and (xn : n < ω) is a sequence in A, then there is an I ⊆ ω

such that

{t : t ∈ X, xn(t) ≤ α ∀n ∈ I, xn(t) ≥ β ∀n ∈ ω \ I} = ∅.
The last condition is essentially the NIP property for continuous logic.

Definition 1.4. A regular Hausdorff space is angelic if

(i) every relatively countably compact set is relatively compact;
(ii) the closure of a relatively compact set is precisely the set of limits

of its sequences.

Fact 1.5 ([2, Theorem 3F]). The space B1(X) equipped with the topology
of pointwise convergence is angelic.

Condition (i) in the definition of angelic was shown to hold for B1(X)
by Rosenthal [12]. He also made progress towards (ii).

Definition 1.6. A compact Hausdorff space K is a Rosenthal com-
pactum if it can be embedded in the space B1(X) of functions of Baire
class 1 over some Polish space X.

A second countable (equiv. metrizable) Hausdorff compact space is a
Rosenthal compactum, but the converse need not hold. Rosenthal compacta
are Hausdorff compact spaces which share some nice properties with metriz-
able spaces even though they might not be metrizable themselves. In partic-
ular, a Rosenthal compactum is angelic. For more on Rosenthal compacta,
see for example [17] and references therein.

2. Model-theoretic results

2.1. Generalized Baire 1 functions. We are interested in properties
of functions from some topological space X to {0, 1}. To keep notation
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short, we will write f−1(0) and f−1(1) for the preimages of the singletons
{0} and {1}.

Definition 2.1. LetX be any topological space. We define the following
subspaces of the set of functions from X to {0, 1}:

• B§(X): the set of functions f : X → {0, 1} such that f−1(0) ∩ f−1(1)
has empty interior;
• B§r(X): the set of functions f : X → {0, 1} such that f |F ∈ B§(F ) for

any closed non-empty F ⊆ X.

In all that follows, we fix an infinite cardinal κ. We will consider spaces
X with the following property:

�κ X is a compact Hausdorff totally disconnected space admitting a
base of the topology of size at most κ.

Let P<ω(κ) be the set of finite subsets of κ. Let Fκ be the filter on
P<ω(κ) generated by the sets Tj = {i ∈ P<ω(κ) : i ⊇ j} where j ranges
over P<ω(κ).

We will say that a family (xi : i ∈ P<ω(κ)) of points in a topological
space Y is Fκ-convergent to x∗ ∈ Y if for any neighborhood U of x∗, the set
{i ∈ P<ω(κ) : xi ∈ U} belongs to Fκ. We then write x∗ = limFκ xi.

Definition 2.2. For X satisfying �κ, let B1(X) be the set of functions
f : X → {0, 1} which can be written as limFκ fi, where (fi : i ∈ P<ω(κ)) is
a family of continuous functions from X to {0, 1}.

Theorem 2.3. Let X satisfy �κ and let f : X → {0, 1}. Then (i) and
(ii) below are equivalent, and (iii) implies them. If κ = ℵ0, then the three
statements are equivalent:

(i) f ∈ B1(X);
(ii) f−1(1) can be written both as

⋃
i<κ Fi and as

⋂
i<κGi, where the

Fi’s are closed and the Gi’s open.
(iii) f ∈ B§r(X).

Proof. (i)⇒(ii): Write f = limFκ fi. Then for x ∈ X, f(x) = 1 if and
only if x ∈

⋃
i∈P<ω(κ)

⋂
j⊇i f

−1
j (1). Since each

⋂
j⊇i f

−1
j (1) is closed and since

the complement f−1(0) can be written in the same way, (ii) is satisfied.
(ii)⇒(i): Set f−1(1) =

⋃
i<κ Fi =

⋂
i<κGi. For i ∈ P<ω(κ), let Oi ⊆ X

be a clopen set such that
⋃
k∈i Fk ⊆ Oi and Oi ⊆

⋂
k∈iGk. Set fi = 1Oi .

Then f = limFκ fi.

(iii)⇒(ii): Assume that f ∈ B§r(X) and let A = f−1(1). It is enough to
show that A is a union of ≤ κ closed sets. Suppose this is not the case. Define
U = {U ⊆ X clopen : U ∩A can be written as

⋃
i<κ Fi with Fi closed}. Let

G =
⋃
U . Then, using �κ, G∩A is a union of κ closed sets. Let F = X \G,
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a closed non-empty subset of X. Then f |F ∈ B§(F ), which implies that
there is some clopen V such that V ∩ F 6= ∅ and either (V ∩ F ) ∩A = ∅ or
V ∩ F ⊆ A. Then both (V ∩ F ) ∩ A and (V ∩ G) ∩ A can be written as a
union of κ closed sets, hence V ∈ U , a contradiction.

(ii)⇒(iii): Assume that κ = ℵ0 and take a closed F ⊆ X. Write f−1(1) =⋃
i<ω Fi =

⋂
i<ω Gi as in (ii). Then F =

⋃
i<ω(Fi∩F )∪ (Gci ∩F ). Let U ⊆ F

be a relatively open subset. As F is compact, it is Baire and for some i,
either Fi ∩ U or Gci ∩ U has non-empty interior relative to F . This implies

that U cannot lie in f−1(0) ∩ f−1(1), and we conclude that f |F ∈ B§(F ).

Lemma 2.4. Let π : L → K be a continuous surjection between two
compact spaces. Let f : K → {0, 1} be a function. Assume that π∗f ∈ B§r(L).

Then f ∈ B§r(K).

Proof. Restricting the situation to a closed subset, it is enough to show
that f ∈ B§(K). Assume not; then f−1(0) ∩ f−1(1) contains some non-
empty open set V . Let K ′ = V . Then every element of V is in the closure
of both f−1(0) ∩ V and f−1(1) ∩ V . Hence also f /∈ B§(K ′) and K ′ =

f−1(0) ∩K ′ ∩ f−1(1) ∩K ′. Replacing K by K ′, we may (and will) assume

that K = f−1(0) = f−1(1).

Claim. There is a minimal closed L′ ⊆ L such that π[L′] = K.

Proof. By Zorn’s lemma, it is enough to show that, if we are given a
decreasing sequence (Li : i < α) of closed subsets of L such that π[Li] = K,
then π[

⋂
Li] = K. Let b ∈ K; then (Li∩π−1({b}) : i < α) is a non-increasing

sequence of non-empty closed subsets of the compact set L. Therefore its
intersection is non-empty. This proves the Claim.

Now we may replace L by L′ as given by the Claim. Hence from now
on, for any proper closed F ⊆ L, π[F ] 6= K. As π∗f ∈ B§(L), we see that

L 6= π∗f−1(0) ∩ π∗f−1(1). Hence at least one of π∗f−1(0) or π∗f−1(1) has
non-empty interior. Assume for example that there is a non-empty open
set W ⊆ π∗f−1(0). Let F = L \ W . By the minimality property of L,
U = K \ π[F ] is a non-empty open set. But π−1(U) ⊆ W ⊆ π∗f−1(0).

Hence U ⊆ f−1(0), contradicting the fact that K = f−1(1).

2.2. NIP formulas and the space of types. We let Sx(M) denote
the space of complete types over M in the variable x. Also if ∆(x; y) is
a formula or a set of formulas, then S∆(M) denotes the space of ∆-types
over M .

Recall that a formula φ(x; y) is NIP if and only if there does not exist
(in the monster model U) an infinite set A of |x|-tuples, and for each I ⊆ A,
a |y|-tuple bI such that

U |= φ(a; bI) ⇔ a ∈ I for all a ∈ A.
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One obtains an equivalent definition if one exchanges the roles of x and y.
Also the definition is equivalent to saying that for any indiscernible sequence
(ai : i < ω) of |x|-tuples and every |y|-tuple b, there are only finitely many
i < ω for which we have ¬(φ(ai; b)↔ φ(ai+1; b)). (Again, one may exchange
the roles of x and y.) See [15] for details on this.

Everything in this section already appeared in [14], but we recall it here
for convenience. The following fact is well-known (at least when the full
theory is NIP, but the proof is the same in the local case).

Fact 2.5. Assume that the formula φ(x; y) is NIP. Let p, q ∈ Sx(U) be
A-invariant types and let pφ, qφ denote the restrictions of p, q respectively

to instances of φ(x; y) and ¬φ(x; y). If p(ω)|A = q(ω)|A, then pφ = qφ.

Proof. Assume that for example p ` φ(x; b) and q ` ¬φ(x; b) for some
b ∈ U . Build inductively a sequence (ai : i < ω) such that:

• when i is even, ai |= p�Aba<i;
• when i is odd, ai |= q�Aba<i.

Then by hypothesis, the sequence (ai : i < ω) is indiscernible (its type
over A is p(ω)|A = q(ω)|A) and the formula φ(x; b) alternates infinitely often
on it, contradicting NIP.

The following proposition and proof come from [14, Lemma 2.8]. It is
inspired by point (ii) in the definition of angelic (Definition 1.4).

Proposition 2.6. Let A be a set of parameters of size κ, and let ∆ =
{φi(x; yi)} be a set of NIP formulas of size ≤ κ. Let q be a global ∆-type
finitely satisfiable in A. Then there is a family (bi : i ∈ P<ω(κ)) of points
in A such that limFκ tp∆(bi/U) = q.

Proof. Taking a reduct if necessary, we may assume that the language
has size at most κ. Extend q to some complete type q̃ finitely satisfiable
in A, and let I = (b′i : i < ω) be a Morley sequence of q̃ over A. List the
formulas in q̃|AI as (φk(x; ck) : k < κ). For i ∈ P<ω(κ), take bi ∈ A realizing∧
k∈i φk(x; ck). Assume that the family (tp∆(bi/U) : i ∈ P<ω(κ)) does not

converge to q along Fκ and let φ(x; c) ∈ q witness it. Let D be an ultrafilter
on P<ω(κ) extending Fκ and containing {i ∈ P<ω(κ) : |= ¬φ(bi; c)}. Let
q̃′ = limD tp(bi/U). Then as D contains Fκ, we have q̃′|AI = q̃|AI . By an
easy induction, this implies q̃′(ω)|A = q̃(ω)|A. By Fact 2.5, q̃ and q̃′ agree on
∆-formulas, but this is a contradiction since q̃′ ` ¬φ(x; c).

Corollary 2.7. Let ∆ be as in the previous proposition, and A ⊆ S∆(U)
be a set of ∆-types of size at most κ. Let q ∈ S∆(U) be in the topological
closure of A. Then there is a family (pi : i ∈ P<ω(κ)) of elements of A such
that limFκ pi = q.
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Proof. Realize each type p ∈ A by an element ap in some larger monster
model U1. Then q extends to a type q̃ over U1 which is finitely satisfiable
in {ap : p ∈ A}. By the previous proposition, there is a family (api : i ∈
P<ω(κ)) such that limFκ tp∆(api/U ′) = q̃. Restricting to U , we see that the
family (pi : i ∈ P<ω(κ)) converges to q.

2.3. Invariant φ-types. Let T be any theory, M |= T and φ(x; y) an
NIP formula. Assume that both M and T have size at most κ. In what
follows, φ1 means φ and φ0 means ¬φ.

Let Invφ(M) ⊂ Sφ(U) denote the space of global M -invariant φ-types.
Given p ∈ Invφ(M), define the function dp : Sy(M)→ {0, 1} by dp(q) = 1 if
p ` φ(x; b) for some/any b ∈ q(U), and dp(q) = 0 otherwise.

Note that Sy(M) satisfies property �κ above. Our goal now is to show

that dp ∈ B§r(Sy(M)).
Let Sfs(M) ⊂ Sy(U) be the space of global types in the variable y

finitely satisfiable in M , and let Sφ
opp

fs (M) be the space of global M -finitely

satisfiable φopp-types (where φopp(y;x) = φ(x; y)). We have two natural
projection maps:

• π : Sfs(M)→ Sy(M), which assigns to a type its restriction to M ;

• π0 : Sfs(M) → Sφ
opp

fs (M), which sends a type to its reduct to in-
stances of φopp.

Given p ∈ Invφ(M), define fp : Sfs(M) → {0, 1} as π∗(dp). Also, given
s ∈ Sx(M), let a |= s, and define the map ŝ : Sfs(M) → {0, 1} by ŝ(q) = 1
if q ` φ(a; y) and ŝ(q) = 0 otherwise. Note that this map factors through

Sφ
opp

fs (M) and is a continuous function on Sfs(M).

The following is shown in [14, Proposition 2.11]. The “moreover” part is
Proposition 2.13 there.

Fact 2.8. The map fp factors through Sφ
opp

fs (M), and moreover

fp ∈ {ŝ : s ∈ Sx(M)}.

Proposition 2.9. The function fp is in B§r(Sfs(M)).

Proof. Let X ⊆ Sfs(M) be a non-empty closed set. From now on all
topological notions are meant relative to X. If fp /∈ B§(X), then restricting

X further as in the proof of Lemma 2.4, we may assume that f−1
p (0) =

f−1
p (1) = X. To any finite sequence V̄ = (V1, . . . , Vn) of non-empty open

subsets of X, we associate a type sV̄ ∈ Sx(M) as follows. For each i, fp is
not constant on Vi by hypothesis, hence there is a pair (ai, bi) of points in Vi
such that fp(ai) = 1 and fp(bi) = 0. Having chosen such a pair for each i,
we can apply Fact 2.8 to find some sV̄ ∈ Sx(M) such that ŝV̄ (ai) = 1 and
ŝV̄ (bi) = 0.
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Now we construct a sequence (sl)l<ω of types in Sx(M) inductively. Start
with V̄0 = (X) and define s0 = sV̄0 as above. Then set V̄1 = (U0, U1),

where U0 = ŝ−1
0 (0) and U1 = ŝ−1

0 (1). Define s1 = sV̄1 . Having defined sk,

k < l, build a family of open sets V̄l = (Uη : η ∈ {0, 1}l) where Uη =⋂
k<l ŝ

−1
k (η(k)). The construction ensures that each Uη is non-empty. Let

sl = sV̄l .
Having done this for all l < ω, take realizations al of the types sl, l < ω.

Then by construction, for any function η : ω → {0, 1}, the type {φ(al; y)η(l) :
l < ω} is consistent, contradicting NIP.

We are now ready to prove our main theorem.

Theorem 2.10. Let p ∈ Invφ(M), then the function dp is in B§r(Sy(M)).

Proof. By Proposition 2.9, the function fp is in B§r(Sfs(M)). Using
Lemma 2.4 with L = Sfs(M) and K = Sy(M), we conclude that dp is

in B§r(Sy(M)).

We draw some consequences of this result. The following proof comes
from [16, Chapter 10, Corollary 4].

Lemma 2.11. Let Z ⊆ Invφ(M) be any subset and assume that p ∈ Z.
Then there is a subset Z0 ⊆ Z of size at most κ such that p ∈ Z0.

Proof. For any A ⊆ Z, and n < ω, define A(n) to be the set of tuples
s̄ ∈ Sy(M)n for which there is no q ∈ A such that dq agrees with dp on s̄.

We are looking for a subset Z0 ⊆ Z of size ≤ κ such that Z
(n)
0 = ∅ for all n.

Set A0 = ∅ and build by induction on α a sequence A0 ⊆ · · · ⊆ Aα ⊆ · · ·
of subsets of Z of size at most κ such that for each α, and some n = n(α),

A
(n)
α ) A

(n)
α+1. This process must stop at some ordinal α < κ+ because each

Sy(M)n has a base of open sets of size κ. We then conclude that for any

B ⊇ Aα of size at most κ, and for all n < ω, B(n) = A
(n)
α .

Now set A = Aα. If for all n, A(n) = ∅, then we are done. Otherwise, fix

some n for which A(n) is not empty and let K = A(n). Fix a dense subset
S ⊆ A(n) of size ≤ κ and enumerate it as S = (xk : k < κ). For q ∈ Z,
let δq : K → {0, 1} be defined by δq(s̄) = 0 if dq agrees with dp on s̄, and
δq(s̄) = 1 otherwise.

We claim that δq is in B§(K): For i, j ∈ {0, 1} define Wi,j ⊆ Sy(M) as
the intersection of the interiors of d−1

p (i) and of d−1
q (j). As dp and dq are

in S§(Sy(M)) by Theorem 2.10, W =
⋃
i,jWi,j is a dense open set. Hence

Wn is a dense open set in Sy(M)n. But δq is locally constant on Wn: Wn is

disjoint from δ−1
q (0) ∩ δ−1

q (1). We conclude that δq is in B§(K) as claimed.
For i ∈ P<ω(κ), find some qi ∈ Z such that δqi is equal to 0 on {xk :

k ∈ i} (it exists as p ∈ Z). Then for all x ∈ S, limFκ δqi(x) = 0. Let
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B = {qi}i∈P<ω(κ)∪A. Take an ultrafilter D extending Fκ and set q = limD qi.

Then δq is equal to 0 on S, and to 1 on B(n). Both S and B(n) are dense
subsets of K. This contradicts the fact that δq ∈ B§(K).

Proposition 2.12. Let Z ⊆ Invφ(M) be any subset, and assume that
p ∈ Z. Then there is a family (qi : i ∈ P<ω(κ)) of elements of Z with
p = limFκ qi.

Proof. By the previous lemma, we may assume that Z = {qi : i < κ} has
size at most κ (allowing repetitions in the qi’s if |Z| < κ). Fix some model
N containing M and |M |+-saturated. For each i < κ, let ai |= qi|N . Let
D be an ultrafilter on κ such that limD qi = p. Define p̃ = limD tpφ(ai/U).
This type is finitely satisfiable in {ai : i < κ}. By Proposition 2.6, there is a
subfamily (aη(i) : i ∈ P<ω(κ)) such that limFκ tpφ(aη(i)/U) = p̃. Then p|N =
limFκ qη(i)|N . All types involved are M -invariant, hence they are determined
by their restriction to N , and we conclude that p = limFκ qη(i).

2.4. The case κ = ℵ0. Assume in this section that κ = ℵ0 and hence
T is countable. The results above are slightly simpler to state in this case,
because we can replace Fℵ0-convergent families by convergent sequences.
In fact the two notions are essentially equivalent: given an Fℵ0-convergent
family (fi : i ∈ P<ω(ℵ0)), the sequence (fn : n < ω) is convergent, where
n is identified here with {0, . . . , n − 1}. Conversely, if (fn : n < ω) is any
sequence, then it converges if and only if the family (fi : i ∈ P<ω(ℵ0)) is
Fκ-convergent, where fi = fn for n maximal such that n ⊆ i.

So Proposition 2.6 becomes the following (which already appeared in [14]).

Lemma 2.13. Let A be countable and ∆ = {φi(x; yi)} a countable set of
NIP formulas. Let q be a global ∆-type finitely satisfiable in A. Then there is
a convergent sequence (bi : i < ω) of points in A such that lim tp∆(bi/U)=q.

Corollary 2.14. Let ∆ be as above. Then the space S∆(U) of ∆-types
over U is sequentially compact.

Proof. Let (pi : i < ω) be a sequence of ∆-types over U , which we may
assume to be pairwise distinct. In a bigger monster model U1, realize each
pi by a point ai and let A = {ai : i < ω}. Let Z = {tp∆(ai/U1) : i < ω},
and let q be an accumulation point of Z. Then by the previous lemma,
q is the limit of a subsequence (tp∆(aη(i)/U1) : i < ω). In particular, the
subsequence (pη(i) : i < ω) converges in S∆(U).

When κ = ℵ0, Theorem 2.3 boils down to the usual characterization of
Baire class 1 functions as recalled in Fact 1.2. Note that Sy(M) is now a
Polish space. Using the notation of the previous section, we deduce from
Theorem 2.10 that if M is countable, φ(x; y) is NIP and p ∈ Invφ(M), then
the function dp : Sy(M)→ {0, 1} is of Baire class 1 in the usual sense.
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Finally Proposition 2.12 becomes the following statement.

Proposition 2.15. Let T and M be countable, φ(x; y) be NIP and Z ⊆
Invφ(M) be any subset. Let p ∈ Z. Then there is a sequence (qn : n < ω) of
elements of Z converging to p.

In fact, since S(M) is a Polish space, we have a more precise result.

Proposition 2.16. Let T and M be countable, and φ(x; y) be NIP. Then
the set Invφ(M) is a Rosenthal compactum.

Proof. The set Invφ(M) can be identified with a closed subspace of func-
tions from Sy(M) to {0, 1}, and by Theorem 2.10 those functions are all of
Baire class 1.

We conclude with a theorem of Bourgain, which he stated for Rosenthal
compacta in [1]. The proof we give is his, adapted to our context.

By aGδ point x of a spaceF , we mean a point x such that the singleton {x}
can be written as an intersection of at most countably many open subsets ofF .

Proposition 2.17. Assume that T and M are countable, and φ(x; y)
is NIP. Then any closed subset F ⊆ Invφ(M) contains a dense set of Gδ
points.

Proof. For X ⊆ Sy(M) and ε ∈ {0, 1}, let Cε(X) be the set of types
p ∈ Invφ(M) such that dp restricted to X is constant equal to ε. It is a
closed subset of Invφ(M).

Fix a closed subset F ⊆ Invφ(M), set F0 = F and U0 = ∅. We try to
build by induction on α < ℵ1:

• a sequence of non-empty closed sets Fα ⊆ Invφ(M) such that Fα =
Wα ∩

⋂
β<α Fβ, where Wα ⊆ Invφ(M) is clopen (in particular Fα ⊆

Fβ for α ≥ β);
• an increasing sequence of open sets Uα ⊆ Sy(M) such that all the

functions dp for p ∈ Fα agree on Uα.

Since there is no increasing sequence of open subsets of Sy(M) of length ℵ1,
this construction must stop at some α∗ < ℵ1. Let then F∗ =

⋂
α<α∗

Fα =
F ∩

⋂
α<α∗

Wα and U∗ =
⋃
α<α∗

Uα. Note that F∗ is a closed non-empty Gδ
subset of F , and all the functions dp, p ∈ F∗, agree on U∗. We show that
U∗ = Sy(M), and thus F∗ must be a singleton, which gives what we want.

Assume not and let K = Sy(M) \ U∗. Then for p ∈ F∗, as dp ∈ B§(K),
there is some non-empty clopen set V ⊆ K such that dp is constant on V .
Thus p ∈ Cε(V ) for some ε. As there are countably many clopen sets in K, by
the Baire property, there is a non-empty clopen V ⊆ K such that Cε(V )∩F∗
has non-empty interior inF∗. Fix such a V . Then we can setUα∗ = U∗∪V , and
find some clopen Wα∗ ⊆ Invφ(M) such that Fα∗ := F∗ ∩Wα∗ is non-empty
and included in Cε(V ). This contradicts maximality of the construction.
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