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Topologically invariant σ-ideals on Euclidean spaces
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Abstract. We study and classify topologically invariant σ-ideals with an analytic
base on Euclidean spaces, and evaluate the cardinal characteristics of such ideals.

1. Introduction. The σ-ideals of Lebesgue measure zero sets and mea-
ger sets have been the subject of extensive research devoted to revealing the
fine structure of the real line and, more generally, the Euclidean spaces. This
research resulted in finding the relations between the most important car-
dinal characteristics of these two σ-ideals. These relations are described by
the Cichoń diagram (see e.g. [9], [3]). Both ideals have Borel base and differ
by the property that the ideal M of meager sets is topologically invariant
while the ideal N of Lebesgue null sets is not.

In this paper we examine the properties of non-trivial topologically in-
variant σ-ideals with Borel base on Euclidean spaces Rn. In particular, we
show that the σ-ideal of meager sets, M, is the biggest topologically in-
variant σ-ideal with Borel base on Rn, while the σ-ideal generated by the
so-called tame Cantor sets, σC0, is the smallest one. Our main results con-
cern the four cardinal characteristics of these two σ-ideals: the additivity
(add), the uniformity (non), the covering (cov), and the cofinality (cof). In
fact, we show that the uniformity and the covering numbers are the same
for all non-trivial topologically invariant σ-ideals with Borel base on Eu-
clidean spaces, and the remaining two cardinals may be different from the
corresponding characteristics of the ideal M. Yet, the respective cardinal
characteristics of the extremal ideals σC0 and M coincide. The same con-
cerns the σ-ideals σDk generated by the closed subsets of dimension k < n
in Rn.
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Properties of topologically invariant σ-ideals may be different in different
topological spaces. There are other natural spaces where it would be interest-
ing and useful to know these properties. The Hilbert cube case is examined
in [2].

2. Definitions, notation and statement of principal results. The
symbols R, Q, and ω will have the usual meaning: the real line, the set of
rational numbers, and the set of finite ordinals (i.e. the set of non-negative
integers), respectively. A Euclidean space is a topological space homeomor-
phic to Rn for some positive integer n. All topological spaces considered in
this paper are assumed to be separable and metrizable.

Let us recall that a subset A of a topological space X is analytic if A is
the image of a Polish space under a continuous map. A subset A ⊆ X has
the Baire property (briefly, A is a BP-set) if there is an open subset U ⊆ X
such that the symmetric difference A 4 U = (A \ U) ∪ (U \ A) is meager
in X.

A non-empty family I of subsets of a set X is called an ideal on X if I
is hereditary (with respect to taking subsets) and additive in the sense that
the union A ∪B of any two sets A,B ∈ I belongs to I. An ideal I is called
a σ-ideal if the union of any countable subfamily A ⊆ I belongs to I. An
ideal I on X is non-trivial if I contains an uncountable set and I is not
equal to the ideal P(X) of all subsets of X.

A subfamily B ⊆ I is a base of an ideal I if each element A ∈ I is a
subset of some B ∈ B. We say that an ideal I of subsets of a topological
space X has Borel (resp. analytic, BP-) base, or that I is an ideal with Borel
(resp. analytic, BP-) base, if there exists a base for I consisting of Borel
(analytic, BP-) subsets of X.

It is well-known that each Borel subset of a Polish space is analytic and
each analytic subset of a metrizable separable spaceX has the Baire property
in X. This implies that for an ideal I on a Polish space we have the following
implications:

I has Borel base ⇒ I has analytic base ⇒ I has BP-base.

A σ-ideal I on a topological space X is topologically invariant if I is
transformed onto I by any homeomorphism h of X, i.e. I = {h(A) : A ∈ I}.

It is clear that for each topological space X the ideal M of meager
subsets of X is topologically invariant. It turns out that this ideal is the
largest one among non-trivial topologically invariant σ-ideals with BP-base
on X = Rn.

Theorem 2.1. Each non-trivial σ-ideal I with BP-base on Rn is con-
tained in the ideal M of meager subsets.
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Proof. Let us assume that I 6⊆ M. Fix any set A ∈ I \M. Since I has
BP-base, we can assume that the non-meager set A has the Baire property
and hence contains a Gδ-subset GU ⊆ A, dense in some open subset U of X.
Since Rn is topologically homogeneous, we can choose a countable family H
of homeomorphisms of Rn such that

⋃
h∈H h(U) is dense in Rn. Then the

Gδσ-set D =
⋃
h∈H h(GU ) is comeager in X and hence contains a subset

G ⊆ D which is dense Gδ in Rn. By the topological invariance of I, the set
D and its Gδ-subset G belong to the σ-ideal I.

By [7], for a dense Gδ-subset G of Rn, there are homeomorphisms
h0, . . . , hn : Rn → Rn such that Rn =

⋃n
k=0 hk(G). Then Rn ∈ I by the

topological invariance of I, which means that I is trivial.

By Theorem 2.1, M is the largest non-trivial σ-ideal with Borel base
on Rn. Now we describe the smallest non-trivial σ-ideal with Borel base
on Rn. It is denoted by σC0 and is generated by the tame Cantor sets in Rn.

A subset C of a Polish space X is called a Cantor set if C is homeo-
morphic to the Cantor cube {0, 1}ω. By Brouwer’s characterization [11, 7.4],
a subset C ⊆ X is a Cantor set if and only if it is compact, zero-dimensional
and has no isolated points.

Two subsets A,B of a topological space X are called ambiently homeo-
morphic if h(A) = B for some homeomorphism h : X → X of X.

A subset C of Rn is called a tame Cantor set if it is ambiently homeo-
morphic to a Cantor set contained in the line R × {0}n−1 ⊆ Rn. Since any
two Cantor sets on the real line are ambiently homeomorphic, any two tame
Cantor sets in Rn are ambiently homeomorphic.

By [15], a closed subset C ⊆ Rn is a tame Cantor set if and only if for
each ε > 0 the set C is contained in the interior of the union

⋃
F of a

finite family F of pairwise disjoint n-cells of diameter < ε. Replacing these
n-cells by smaller cells we can additionally assume that the boundary of each
n-cell B ∈ F is a bicollared (n− 1)-spere in Rn. Using this characterization,
in Lemma 3.1 we shall prove that each Cantor set in Rn contains a tame
Cantor set.

It is known [4] that for n ≤ 2 each Cantor set in Rn is tame, while for
n ≥ 3 a Cantor subset C ⊆ Rn is tame if and only if C is a Z2-set in Rn. The
latter means that each map f : [0, 1]2 → Rn can be uniformly approximated
by a map f ′ : [0, 1]2 → Rn \ C. Cantor sets which are not tame are called
wild (see [1], [5], [16]).

We denote by σC0 the σ-ideal generated by the tame Cantor sets in Rn.
It consists of all subsets of countable unions of tame Cantor sets in Rn.

Theorem 2.2. The σ-ideal σC0 is contained in each non-trivial σ-ideal I
with analytic base on Rn.
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Proof. The ideal I, being non-trivial, contains an uncountable set A.
Since I has analytic base, we can assume that A is analytic and hence
contains a Cantor set C according to Suslin’s Theorem [11, 29.1]. Since each
Cantor set in Rn contains a tame Cantor set, we can assume that C is a
tame Cantor set in Rn. So, I contains a tame Cantor set. Since any two tame
Cantor sets in Rn are ambiently homeomorphic, by topological invariance,
the ideal I contains all tame Cantor sets, and being a σ-ideal, it contains
the σ-ideal σC0 generated by the tame Cantor sets in Rn.

Corollary 2.3. If I is a non-trivial topologically invariant σ-ideal with
analytic base on Rn, then σC0 ⊆ I ⊆M.

This corollary will be used to evaluate the cardinal characteristics of non-
trivial topologically invariant σ-ideals with Borel base on Euclidean spaces.

Given an ideal I on a set X =
⋃
I, we shall consider the following four

cardinal characteristics of I:
add(I) = min{|A| : A ⊆ I,

⋃
A /∈ I},

non(I) = min{|A| : A ⊆ X, A /∈ I},
cov(I) = min{|A| : A ⊆ I,

⋃
A = X},

cof(I) = min{|A| : A ⊆ I, ∀B ∈ I ∃A ∈ A (B ⊆ A)}.
In fact, they can be expressed using the following two cardinal characteristics
defined for any pair I ⊆ J of ideals:

add(I,J ) = min{|A| : A ⊆ I,
⋃
A /∈ J },

cof(I,J ) = min{|A| : A ⊆ J , ∀B ∈ I ∃A ∈ A (B ⊆ A)}.
Namely,

add(I) = add(I, I), non(I) = add(F , I),

cov(I) = cof(F , I), cof(I) = cof(I, I),

where F stands for the ideal of finite subsets of X.
The cardinal characteristics of the largest σ-ideal M have been thor-

oughly studied (see [3]). The (relative) cardinal characteristics of the small-
est σ-ideal σC0 (inM) are evaluated in the following theorem which will be
proved in Section 5. Theorem 2.4 and the subsequent Corollary 2.5 are the
principal results of this article.

Theorem 2.4. For the σ-ideal σC0 on Rn the following equalities hold:

(1) cov(σC0) = cov(M);
(2) non(σC0) = non(M);
(3) add(σC0) = add(σC0,M) = add(M);
(4) cof(σC0) = cof(σC0,M) = cof(M).

Corollary 2.3 and Theorem 2.4 imply:
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Corollary 2.5. For any non-trivial topologically invariant σ-ideal I
with analytic base on Rn we get:

(1) cov(I) = cov(M);
(2) non(I) = non(M);
(3) add(I) ≤ add(M);
(4) cof(I) ≥ cof(M).

Thus, on Rn, the following variant of Cichoń’s diagram describes rela-
tions between cardinal characteristics of the ideal M and any non-trivial
topologically invariant σ-ideal I (here a→ b stands for a ≤ b):

non(I) non(M) // cof(M) // cof(I) // c

ω1
// add(I)

OO

// add(M)

OO

// cov(M)

OO

cov(I)

OO

The following example shows that the inequalities add(I) ≤ add(M) and
cof(M) ≤ cof(I) can be strict.

Below, for a subset A of a Polish space X we denote by IA the smallest
topologically invariant σ-ideal containing the set A. It consists of all subsets
of countable unions

⋃
n∈ω hn(A), where hn : X → X, n ∈ ω, are homeomor-

phisms.

Example 2.6. The σ-ideal II ⊆ P(R2) generated by the interval I =
[0, 1]× {0} in the plane R2 has cardinal characteristics

add(II) = ω1, non(II) = non(M), cov(II) = cov(M), cof(II) = c.

Proof. The equalities cov(II) = cov(M) and non(II) = non(M) follow
from Corollary 2.5.

The equality add(II) = ω1 will follow if we check that
⋃
t∈T [0, 1]×{t} /∈ II

for any uncountable subset T ⊆ [0, 1]. Assuming the opposite, we can find a
homeomorphism h : R2 → R2 such that the set

{t ∈ T : h(I) ∩ ([0, 1]× {t}) contains a line segment}
is uncountable. This yields an uncountable family of pairwise disjoint proper
intervals in [0, 1], which is not possible.

To show cof(II) = c, choose any subfamily B ⊆ II with |B| = cof(II) such
that each A ∈ II is contained in some B ∈ B. Let X = {[0, 1]× {x} : x ∈ R}.
Notice that every member of B contains at most countably many members
of X . This implies that |B| = c.

Corollary 2.5 will be applied to calculate the cardinal characteristics of
the σ-ideal σDk generated by all closed subsets of dimension ≤ k in Rn. By
[8, 1.8.11], σDn−1 coincides with the idealM of meager subsets of Rn. The
following theorem will be proved in Section 6.
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Theorem 2.7. For all 0 ≤ k < n the σ-ideal σDk generated by all closed
at most k-dimensional subsets of Rn has cardinal characteristics

add(σDk) = add(M), cov(σDk) = cov(M),

non(σDk) = non(M), cof(σDk) = cof(M).

We finish this section with two open problems. A topologically invariant
σ-ideal I will be called 1-generated if I = IA for some subset A ∈ I.
Observe that the σ-ideals σC0 and M on Rn are 1-generated: the σ-ideal
σC0 is generated by any tame Cantor set in Rn, whileM is generated by the
generalized Menger cube Mn

n−1 (see [14], [6, p. 128]).

Problem 2.8. What are the cardinal characteristics of a 1-generated
topologically invariant σ-ideal IA with Borel base on Rn? Is it true that
add(I) ∈ {ω1, add(M)} and cof(I) ∈ {cof(M), c} for any such ideal I?

Corollary 2.3 implies that M = σC0 is the unique topologically invari-
ant σ-ideal with analytic base on the real line R1. For higher-dimensional
Euclidean spaces the ideals σC0 andM are distinct.

Problem 2.9 (M. Sabok). What is the cardinality of the family of all
topologically invariant σ-ideals with Borel base on Rn for n ≥ 2? Is this
cardinality equal to 2c?

3. Some properties of tame Cantor sets in Euclidean spaces. In
this section we shall establish some auxiliary facts related to tame Cantor
sets and homeomorphism groups of Euclidean spaces. These facts will be
used in the proof of Theorem 2.4.

Lemma 3.1. Each Cantor set C in Rn contains a tame Cantor set T ⊂C.

Proof. Let 2<ω =
⋃
k∈ω 2k be the set of finite binary sequences. For a

binary sequence s = (s0, . . . , sn−1) ∈ 2<ω and a number i ∈ 2 := {0, 1} we
denote by ŝ i the sequence (s0, . . . , sn−1, i).

For a point x∈Rn and ε > 0 we denote by B(x, ε) = {y ∈Rn : ‖x−y‖<ε}
and B̄(x, ε) = {y ∈ Rn : ‖x− y‖ ≤ ε} the open and closed ε-balls in Rn.

By induction we shall construct a sequence (xt)t∈2<ω of points of C and
a sequence (εt)t∈2<ω of positive real numbers such that for every binary
sequence t ∈ 2<ω the following conditions are satisfied:

(1t) xt̂ 0, xt̂ 1 are distinct points of C ∩B(xt, εt);
(2t) B̄(xt̂ 0, εt̂ 0) ∩ B̄(xt̂ 1, εt̂ 1) = ∅ and B̄(xt̂ 0, εt̂ 0) ∪ B̄(xt̂ 1, εt̂ 1) ⊂

B(xt, εt);
(3t) max{εt̂ 0, εt̂ 1} ≤ 1

2εt.

We start the inductive construction selecting any point x∅ ∈ C and setting
ε∅ = 1. Assume that, for some binary sequence t ∈ 2<ω, a point xt ∈ C and
a positive real number εt have been constructed. Since the non-empty open
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subset C ∩B(xt, εt) of C has no isolated points, we can choose two distinct
points xt̂ 0, xt̂ 1 ∈ C ∩ B(xt, εt). Next, choose two positive real numbers
εt̂ 0, εt̂ 1 so that conditions (2t) and (3t) are satisfied. This completes the
inductive step.

Now consider the closed subset T =
⋂
k∈ω

⋃
t∈2k(C ∩ B̄(xt, εt)) of C. We

claim that T is a tame Cantor set in Rn. To see that T is a Cantor set,
observe that the map f : 2ω → T assigning to each t ∈ 2ω the limit of the
Cauchy sequence (xt|k)k∈ω is a homeomorphism. To see that the Cantor set
T is tame, for every ε > 0 we find k ∈ ω such that max{εt : t ∈ 2k} < ε
and observe that T ⊂

⋃
t∈2k B(xt, εt), which means that T is covered by

the interiors of finitely many pairwise disjoint n-cells of diameter < ε. By
Osborne’s characterization [15], the Cantor set T is tame.

Corollary 2 of [13] or the characterization [15] of tame Cantor sets imply:

Lemma 3.2. For any Cantor sets C1, . . . , Cn on the real line, the product∏n
i=1Ci is a tame Cantor set in Rn.

We denote by H(Rn) the homeomorphism group of Rn, endowed with the
compact-open topology. It can be identified with the closed subgroup of the
homeomorphism group of the one-point compactification αRn = Rn ∪ {∞}.
This implies that H(Rn) is a Polish group.

Lemma 3.3. For each tame Cantor set C ⊆ Rn and each open dense set
U ⊆ Rn the set

HUC = {h ∈ H(Rn) : h(C) ⊆ U}
is open and dense in H(Rn).

Proof. The openness of HUC follows from the openness of U and the defi-
nition of the compact-open topology on H(Rn). It remains to prove that HUC
is dense in H(Rn). Given h0 ∈ H(Rn), a compact set K ⊆ Rn, and ε > 0,
we need to find h ∈ HUC such that supx∈K ‖h(x)− h0(x)‖ < ε.

Let C0 = h0(C) ⊆ Rn. Being tame, the Cantor set C0 admits a cover
by the interiors of pairwise disjoint n-cells B1, . . . , Bm of diameter < ε. For
every n-cell Bi choose a homeomorphism gi : Bi → Bi which is the identity
on ∂Bi and maps the compact set C0∩Bi into Bi∩U . Then g1, . . . , gm yield
a homeomorphism g : Rn → Rn such that g|Bi = gi and g is the identity on
the complement of B1 ∪ · · · ∪Bm. Hence the homeomorphism h = g ◦h0 has
the required property: h(C) ⊂ U and h is ε-near to h0.

Lemma 3.4. For each A ∈ σC0 and each dense Gδ-set G ⊆ Rn the set

HGA = {h ∈ H(Rn) : h(A) ⊆ G}
contains a dense Gδ-subset of H(Rn). If A is σ-compact, then HGA is a
Gδ-set in H(Rn).
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Proof. Let A ∈ σC0. Then A ⊆
⋃
k∈ω Ck for some tame Cantor sets

Ck ⊆ Rn, k ∈ ω. We have G =
⋂
k∈ω Uk for a decreasing sequence of dense

open sets Uk ⊂ Rn, k ∈ ω. It follows from Lemma 3.3 that for any i, j ∈ ω
the set HUi

Cj
is a dense open set in H(Rn). Then

⋂
i,j∈ωH

Ui
Cj
⊆ HGA is a dense

Gδ-subset of H(Rn) contained in HGA.

4. Some known facts about cardinal characteristics of ideals.
In the proof of Theorem 2.4 we shall simultaneously work with σ-ideals on
various topological spaces. To distinguish between such σ-ideals we shall use
the following notation.

For a perfect Polish spaceX we denote byM(X) the σ-ideal of all meager
subsets of X, i.e. subsets of countable unions of closed sets with empty inte-
rior. It is well-known that the cardinal characteristics of the σ-idealM(X)
do not depend on the space X.

Proposition 4.1. If X is a perfect Polish space, then

add(M(X)) = add(M(ωω)), cov(M(X)) = cov(M(ωω)),

non(M(X)) = non(M(ωω)), cof(M(X)) = cof(M(ωω)).

Proof. There is an embedding θ : ωω → X whose image θ(ωω) is a dense
Gδ-subset of X (as can be proved elementarily by a direct construction or
follows from [12, Theorem 2, Sec. 36, IV, and Theorem 3, Sec. 36, II]). This
gives the desired equalities.

The above proposition justifies why we often use the symbolM without
mentioning a specific space X.

For a topological space X we denote by σK(X) the σ-ideal generated by
the compact subsets of X, and set σK = σK(ωω). It is known that

add(σK) = non(σK) = b, cov(σK) = cof(σK) = d,

where b (resp. d) is defined as the smallest cardinality of a subset B ⊂ ωω

which is unbounded (resp. dominating) in ωω in the sense that for each f ∈ ωω
there is g ∈ B such that g 6≤∗ f (resp. f ≤∗ g). Here for f, g ∈ ωω we write
f ≤∗ g if {n ∈ ω : f(n) > g(n)} is finite.

We will use the following well-known equalities (see e.g. [3]).

Lemma 4.2. For the ideals σK and M on the Baire space ωω the follow-
ing equalities hold:

(1) add(M) = min{b, cov(M)} (Truss, Miller);
(2) cof(M) = max{d, non(M)} (Fremlin);
(3) cof(σK,M) = cof(σK) = d (Bartoszyński).

We shall denote by σC0(Rn) the σ-ideal generated by the tame Cantor
sets in Rn. Since each Cantor set in R is tame, we get σC0(R) =M(R).
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Lemma 3.2 and the fact that each meager set in R is contained in a union
of countably many Cantor sets imply:

Lemma 4.3. For any meager subsets A1, . . . , An⊆R the product
∏n
k=1Ak

belongs to the ideal σC0(Rn).

This yields another lemma.

Lemma 4.4. For any zero-dimensional subspace Z ⊆ R,

σK(Zn) ⊆ σC0(Rn).

5. Proof of Theorem 2.4. LetM be the ideal of meager subsets of Rn,
and σC0 be the σ-ideal generated by the tame Cantor sets in Rn. The proof
of Theorem 2.4 is divided into four parts corresponding to the equalities
(1)–(4).

(1) cov(σC0) = cov(M). The inequality cov(M) ≤ cov(σC0) follows from
the (trivial) inclusion σC0 ⊆M.

We now prove cov(M) ≥ cov(σC0). By the definition of cov(M(R)) =
cov(M) there exists a cover U ⊆ M(R) of R such that |U| = cov(M). The
cover

Un =
{ n∏
k=1

Ck : C1, . . . , Cn ∈ U
}

of Rn has cardinality |U|n = cov(M) and by Lemma 4.3 is contained in σC0,
whence cov(σC0) ≤ |Un| = cov(M).

(2) non(σC0) = non(M). The inequality non(σC0) ≤ non(M) trivially
follows from σC0 ⊆M.

To prove non(σC0) ≥ non(M), let A ⊆ Rn and |A| < non(M). It follows
that A ⊆ Bn for some B ⊆ R with |B| ≤ n · |A| < non(M) = non(M(R)).
Hence B is meager. By Lemma 4.3, Bn ∈ σC0.

(3) add(σC0) = add(σC0,M) = add(M). Since add(σC0)≤ add(σC0,M),
it suffices to prove the inequalities add(σC0,M) ≤ add(M) and add(M) ≤
add(σC0).

For the first, letA⊆M(R) be a subfamily of cardinality |A|= add(M(R))
= add(M) whose union

⋃
A is not meager in R. It follows that the family

An = {
∏n
k=1Ak : A1, . . . , An ∈ A} has cardinality |A|n = add(M) and, by

Lemma 4.3, is contained in σC0(Rn) = σC0. The Kuratowski–Ulam Theo-
rem [11, 8.41] implies that the union

⋃
An = (

⋃
A)n is not meager in Rn.

Hence add(σC0,M) ≤ |An| = add(M).
The inequality add(M) ≤ add(σC0) will follow if we show that for each

familyA containing less than add(M) tame Cantor sets in Rn, the union
⋃
A

belongs to σC0. Consider the denseGδ-setG = (R\Q)n in Rn. By Lemma 3.4,
for each tame Cantor set A ∈ A the set HGA = {h ∈ H(Rn) : h(A) ⊆ G} is a
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dense Gδ-set in H(Rn). Since |A| < add(M) ≤ cov(M) = cov(M(H(Rn))),
the intersection

⋂
A∈AHGA is not empty. Let h ∈

⋂
A∈AHGA. It follows that

h(A) = {h(A) : A ∈ A} is a family of less than add(M) compact subsets of
G = (R\Q)n, which is homeomorphic to ωω. Since |h(A)| < add(M) ≤ b =
add(σK(G)), there is a σ-compact subset K ⊆ G containing

⋃
A∈A h(A).

Lemma 4.4 guarantees that K ∈ σC0(Rn). Thus h−1(K) belongs to σC0 and⋃
A ⊆ h−1(K).

(4) cof(σC0) = cof(σC0,M) = cof(M). Since cof(σC0,M) ≤ cof(σC0)
and cof(M) = max{non(M), d}, it suffices to prove max{non(M), d} ≤
cof(σC0,M) and cof(σC0) ≤ max{non(M), d}.

First we prove separately that (a) non(M) ≤ cof(σC0,M) and (b) d ≤
cof(σC0,M).

To prove (a), let A ⊆ M with |A| = cof(σC0,M) be such that each
C ∈ σC0 is contained in some A ∈ A. For each A ∈ A we choose xA ∈ X \A.
It follows that B = {xA : A ∈ A} 6∈ σC0. Hence non(M) = non(σC0) ≤
|B| ≤ |A| = cof(σC0,M).

Now let us prove prove (b). Let G = (R \ Q)n, which is homeomorphic
to ωω. By Lemma 4.2(3), cof(σK(G),M(G)) = d. By Lemma 4.4, we have
σK(G) ⊆ σC0(Rn). Moreover, M(G) = {G ∩M : M ∈ M(Rn)}. Now we
see that d = cof(σK(G),M(G)) ≤ cof(σC0,M), and the proof of (b) is
complete.

Finally, we will prove cof(σC0) ≤ cof(M) = max{non(M), d}. Since
cof(σK(G)) = d, the ideal σK(G) has a base D ⊆ σK(G) with |D| = d. By
Lemma 4.4 we have D ⊆ σC0(Rn).

Fix any non-meager subset H in H(Rn) with |H| = non(M(H(Rn))) =
non(M). It is clear that the family C = {h−1(D) : h ∈ H, D ∈ D} has car-
dinality |C| ≤ |H ×D| ≤ max{non(M), d} = cof(M), and C ⊆ σC0. We will
complete the proof if we show that C is a base for σC0. Let A ∈ σC0. With-
out loss of generality we can assume that A is σ-compact. By Lemma 3.4,
HGA = {h ∈ H(Rn) : h(A) ⊆ G} is a dense Gδ-set in H(Rn), and hence it
meets H. Consequently, there is an h ∈ H such that h(A) ⊆ G. Because D
is a base for σK(G), the σ-compact set h(A) is contained in some σ-compact
set D ∈ D. Then A ⊆ h−1(D) ∈ σC0, and the proof of Theorem 2.4 is
complete.

6. Proof of Theorem 2.7. Fix n ∈ N and k < n, and consider the
σ-ideal σDk generated by the closed k-dimensional sets in the Euclidean
space Rn. By Corollary 2.5,

add(σDk) ≤ add(M), cov(σDk) = cov(M),

non(σDk) = non(M), cof(σDk) ≥ cof(M).



Topologically invariant σ-ideals 111

So, it remains to check that add(σDk) ≥ add(M) and cof(σDk) ≤ cof(M).
Identify Rn with a linear subspace of Rm for some m ≥ 2n + 3 ≥ 5. Then
Rn is a Z2-set in Rm.

By [10], Rm contains a k-dimensional σ-compact subset Σ such that
for any k-dimensional Z2-set K ⊂ Rm the set {h ∈ H(Rm) : h(K) ⊂ Σ}
is dense in H(Rm). The set Σ, being k-dimensional, can be enlarged to a
dense k-dimensional Gδ-subset G ⊂ Rm (see [8, Theorem 1.5.11]). Since
dim(G) = k < m, the Baire Theorem implies that G is not σ-compact, and
hence it is the image of ωω under a perfect map. This yields add(σK(G)) =
add(σK) = b and cof(σK(G)) = cof(σK) = d.

To prove that add(σDk) ≥ add(M), fix any A ⊂ σDk with |A| <
add(M). Since each set A ∈ A is contained in a countable union of compact
k-dimensional subsets, we lose no generality assuming that each A ∈ A is
compact. Since A ⊂ Rn is a Z2-set in Rm, the choice of Σ guarantees that
HΣA = {h ∈ H(Rm) : h(A) ⊂ Σ} is dense in H(Rm), and hence the Gδ-subset

HGA = {h ∈ H(Rm) : h(A) ⊂ G} ⊃ HΣA
is also dense in H(Rm). Since |A| < add(M) ≤ cov(M), the intersec-
tion

⋂
A∈AHGA contains some homeomorphism h : Rm → Rm, which maps⋃

A into G. Consequently, h(A) = {h(A) : A ∈ A} ⊂ σK(G). Since |h(A)| =
|A| < add(M) ≤ b = add(σK(G)), we conclude that h(

⋃
A) is contained in

some σ-compact subset K ⊂ G. Then A = Rn∩h−1(K) is a σ-compact sub-
set of Rn with dim(A) ≤ dim(h−1(K)) = dim(K) ≤ dim(G) = k containing⋃
A and witnessing that add(σDk) ≥ add(M).
Next, we prove that cof(σDk) ≤ cof(M) = max{non(M), d}. Since

σK(G) = d, the ideal σK(G) has a base D ⊆ σK(G) with |D| = d. Fix any
non-meager subset H in H(Rm) with |H| = non(M(H(Rm))) = non(M).
It is clear that the family C = {Rn ∩ h−1(D) : h ∈ H, D ∈ D} has cardi-
nality |C| ≤ |H × D| ≤ max{non(M), d} = cof(M), and C ⊆ σDk. We will
complete the proof if we show that C is a base for σDk.

Let A ∈ σDk. Without loss of generality we can assume that A is the
countable union A =

⋃
i∈ω Ai of compact subsets Ai, i ∈ ω, of dimension

≤ k. By the choice of Σ, the set

HGA = {h ∈ H(Rm) : h(A) ⊆ G} =
⋂
i∈ω
HGAi

is a dense Gδ-set in H(Rm), and hence it meets H. Consequently, there is
h ∈ H such that h(A) ⊆ G. BecauseD is a base for σK(G), the σ-compact set
h(A) is contained in some σ-compact set D ∈ D. Then A ⊆ Rn∩h−1(D) ∈ C,
and the proof of Theorem 2.7 is complete.
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