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Abstract. We investigate the fixed point property for tree-like continua that are
unions of tree-like continua. We obtain a positive result if finitely many tree-like continua
with the fixed point property have dendrites for pairwise intersections. Using Bellamy’s
seminal example, we define (i) a countable wedge X̂ of tree-like continua, each having the
fpp, and X̂ admitting a fixed-point-free homeomorphism, and (ii) two tree-like continua
H and K such that H, K, and H ∩K have the fixed point property, but H ∪K admits
a fixed-point-free homeomorphism. In an appendix we verify some of the properties of
Bellamy’s continuum.

1. Introduction and definitions. A continuous function between to-
pological spaces will be called a map or mapping. A topological space X has
the fixed point property (fpp) if each self-mapping on X has a fixed point.
The additivity of the fpp, or lack thereof, has been a topic of interest in
topological fixed point theory for more than fifty years. Specifically, if X, Y ,
and X ∩ Y are topological spaces with the fpp, must X ∪ Y have the fpp?

It is easy to prove that additivity of the fpp holds for the wedge of two
spaces, that is, when X ∩ Y is degenerate. K. Borsuk’s theory of absolute
retracts from the 1940’s gives a positive result if each of X, Y , and X ∩ Y
is an absolute retract. M. Shtan’ko [27] showed in 1964 that if X and Y are
1-dimensional continua with the fpp and X ∩ Y is a dendrite, then X ∪ Y
has the fpp. We give a slight generalization of Shtan’ko’s result in §2.

In 1982, E. Duda and J. Kell III [7] showed that if X ∪ Y is an atriodic,
hereditarily unicoherent continuum, then X ∪Y has zero semispan if X ∩Y
is connected and each of X and Y has zero semispan. Since zero semispan
is equivalent to zero span for continua (see [6]), it follows that, in the class
of atriodic, hereditarily unicoherent continua, additivity of the fpp holds for
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continua that have zero span. As a corollary, additivity of the fpp also holds
for arc-like (or chainable) continua whose union is in this class.

In the three years from 1967 to 1969, three examples were provided
showing that, in general, the fpp is not additive:

(1) (W. Lopez [14], 1967) An example where X is a 17-dimensional
polyhedron with the fpp, Y is a disk, X ∩ Y is an arc, but X ∪ Y
does not have the fpp. (See [3, Th. 17] for discussion.)

(2) (A. L. Yandl [28], 1968) An example where each of X and Y is
a uniquely arcwise connected continuum with the fpp, X ∩ Y is a
chainable continuum, and X ∪ Y is a 1-dimensional, planar, arcwise
connected continuum that does not have the fpp.

(3) (R. H. Bing [3], 1969) An example where X is a 1-dimensional ar-
cwise connected continuum with the fpp, Y is a disk, X ∩ Y is an
arc, but X ∪ Y does not have the fpp.

Bing’s example is not planar. In 2005, C. L. Hagopian and J. R. Prajs [13]
constructed a planar example that has the same properties as Bing’s ex-
ample. In [17, 18], R. Mańka investigated the additivity of the fpp for
1-dimensional continua when both X and Y are uniquely arcwise connected.
He constructed examples where X ∩ Y is also uniquely arcwise connected,
yet additivity of the fpp fails. In [18], X∩Y is a contractible harmonic brush,
but still additivity of the fpp fails.

In all of these examples, neither X nor Y is tree-like. In light of this, we
investigate the additivity of the fpp for tree-like continua where the union
is also tree-like. We show, in §5, that the fpp is not additive in this setting
either. Additionally, we show that countable wedges of tree-like continua
with the fpp may not have the fpp.

A continuum is a non-degenerate, compact, connected metric space.
A continuum is indecomposable if it is not the union of two proper sub-
continua. Let x be a point of a continuum X. The x-composant of X is the
union of all proper subcontinua of X that contain x. If X is indecompos-
able, then X is the union of uncountably many dense disjoint composants.
A continuum X is hereditarily unicoherent if each pair of its intersecting sub-
continua has a connected intersection. A dendroid is an arcwise connected,
hereditarily unicoherent continuum. A dendrite is a locally connected den-
droid; or equivalently, it is locally connected and contains no simple closed
curve. For a set S in a continuum X, S will denote the closure of S in X.

Given ε > 0, a mapping f : X → Y is an ε-mapping if for each y ∈ Y ,
diam(f−1(y))< ε. A continuum X is arc-like if for each ε > 0, there exists an
ε-mapping from X onto [0, 1]. A continuum X is tree-like if for each ε > 0,
there exists a tree T and an ε-mapping from X onto T . A non-constant
mapping f : X → Y is atomic if for each subcontinuum K of X such that
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f(K) is non-degenerate, we have f−1(f(K)) = K. It was shown in [8] that
each atomic map is monotone. The following lemma is well-known and easy
to prove. We will use it later in the paper to establish the indecomposablity
of certain subcontinua of our examples.

Lemma 1. Suppose that f : X → Y is a surjective atomic map of con-
tinua. Then X is indecomposable if and only if Y is indecomposable.

2. A positive fixed-point result. We begin this section with a defi-
nition, and two lemmas that will be used in the proof of Theorem 1.

Let a 6= b be points in a uniquely arcwise connected continuum D. Let
[a, b] denote the unique arc from a to b and let f : [a, b]→ D be a mapping.
We say that [a, b] is stretched over itself by f if a lies in the unique arc
[f(a), b] and b lies in the unique arc [a, f(b)]. Note that if [a, b] is stretched
over itself, then [a, b] ⊂ [f(a), f(b)].

Lemma 2. Suppose that [a, b] is an arc in a uniquely arcwise connected
continuum D and f : [a, b]→ D is a mapping that stretches [a, b] over itself.
Then f has a fixed point.

Proof. First we note that for x ∈ (a, b), either f stretches [a, x] over itself
or f stretches [x, b] over itself. To see this, let β be the unique arc in D from
f(x) to [a, b], and simply note that β meets exactly one of [a, x] or (x, b].

Suppose that f is fixed-point-free and ε > 0 is such that d(x, f(x)) ≥ ε
for all x ∈ X. Let δ > 0 be such that if α is a subarc of [a, b] with diamα < δ,
then diam f(α) < ε. Partition [a, b] by points a = a0 < a1 < a2 < · · · <
an = b such that for each 0 ≤ i < n, diam[ai, ai+1] < δ. It follows from the
observation in the first paragraph of the proof that there exists 0 ≤ j < n
such that f stretches [aj , aj+1] over itself. So, [aj , aj+1] ⊂ [f(aj), f(aj+1)].
But since aj and f(aj) are in [f(aj), f(aj+1)] ⊂ f([aj , aj+1]), it follows that
diam f([aj , aj+1]) ≥ ε, a contradiction.

Lemma 3. Suppose H and K are continua, H ∩ K is a dendrite, and
neither H nor K contains a simple closed curve. Then H ∪K contains no
simple closed curve.

Proof. Assume H ∪K contains a simple closed curve S. By hypothesis,
S must intersect both H − K and K − H. So, let x ∈ S ∩ (H ∩ K) and
let a ∈ S ∩ (H −K). There are two arcs A and B with common endpoint
set {a, x} such that A ∪ B = S. Let [a, c] be the unique arc in A such
that [a, c] ∩ (H ∩K) = {c}, and let [a, b] be the unique arc in B such that
[a, b]∩(H∩K) = {b}. Note that [a, c]∪ [a, b] ⊂ H. Since H∩K is a dendrite,
there is a unique arc [b, c] in H ∩ K. We find that [a, c] ∪ [b, c] ∪ [a, b] is a
simple closed curve lying in H, which is a contradiction.
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The following theorem is a generalization, to higher-dimensional con-
tinua, of M. Shtan’ko’s theorem mentioned in §1.

Theorem 1. If H and K are continua with the fpp, H∩K is a dendrite,
and neither H nor K contains a simple closed curve, then H∪K has the fpp.

Proof. Suppose there exists a fixed-point-free map f of H∪K into itself.
Let E = H ∩K and note that E ∩ f(E) 6= ∅. By Lemma 3, H ∪K contains
no simple closed curve. Hence, D = E ∪ f(E) is a dendrite. Let r be the
retraction of D onto E that takes each x ∈ D − E to y ∈ E such that the
half-open arc [x, y) in D misses E. Since E has the fixed point property,
rf |E has a fixed point p. Note that p is the only fixed point of rf |E , for
otherwise, an arc in E would be stretched over itself by f , producing a fixed
point in E by Lemma 2, and thus contradicting that f is fixed-point-free.

Either f(p) ∈ H −K or f(p) ∈ K −H. Assume without loss of gener-
ality that f(p) ∈ H −K. Let k : K → E be an extension of the retraction
r|D∩K : D ∩K → E. Define h : H → H by

h(x) =

{
f(x) if f(x) ∈ H,

kf(x) if f(x) ∈ K.

We claim that h is fixed-point-free. If f(x) ∈ H, then h(x) = f(x) 6= x.
Suppose f(x) ∈ K and x = h(x). Then x = kf(x) and so x ∈ E. Since
f(E) ⊂ D, we have f(x) ∈ D ∩K. So, x = kf(x) = rf(x). Since p is the
only fixed point of rf |E , it follows that x = p. But then f(x) ∈ H − K,
contradicting f(x) ∈ K.

But H has the fpp, so H ∪K admits no fixed-point-free mapping.

We now state a few lemmas that will be used to establish corollaries that
extend Theorem 1 from two to finitely many continua.

Lemma 4. Suppose H1, . . . ,Hn are continua, Hi ∩Hj is a dendrite for
each 1 ≤ i < j ≤ n, and no Hi contains a simple closed curve. Then

⋂n
i=1Hi

is a dendrite if and only if
⋂
i∈J Hi is a dendrite for each non-degenerate

J ⊂ {1, . . . , n}.

Proof. ⇐: Obvious.

⇒: First we note that by Lemma 3, no simple closed curve is contained
in the union of two Hi’s. Suppose that

⋂
i∈J Hi is disconnected for some

J ⊂ {1, . . . , n}. By hypothesis, J contains more than two elements. As-
sume, without loss of generality, that 1, 2 ∈ J . Let a and b be points in
different components of

⋂
i∈J Hi. Since H1 ∩ H2 is a dendrite, there is an

arc A ⊂ H1 ∩H2 with endpoints a and b. For some j ∈ J , Hj does not
contain some point p in A. Since H1 ∩ Hj is a dendrite, there is an arc
B ⊂ H1 ∩Hj with endpoints a and b. Since p 6∈ B, A∪B contains a simple
closed curve. But A ∪ B ⊂ H1 ∪ Hj , contradicting our initial observation
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(or Lemma 3). Hence,
⋂
i∈J Hi is connected. Since

⋂
i∈J Hi ⊂ H1 ∩ H2, it

follows that
⋂
i∈J Hi is a dendrite.

Lemma 5. Suppose D1, . . . , Dn are dendrites, Di ∩Dj is a dendrite for
each 1 ≤ i < j ≤ n, and

⋂n
i=1Di is a dendrite. Then

⋃n
i=1Di is a dendrite.

Proof. That
⋃n
i=1Di is connected and locally connected follows from the

hypothesis. So, we only need to see that
⋃n
i=1Di contains no simple closed

curve. We use induction on n.

For n = 1, the result is trivial. Assume the statement holds for some
n − 1 ≥ 1. Note that by Lemma 4, the dendrites D1, . . . , Dn−1 satisfy the
hypothesis. So,

⋃n−1
i=1 Di is a dendrite. Set-theoretically, (

⋃n−1
i=1 Di) ∩Dn =⋃n−1

i=1 (Di∩Dn). We next observe that the dendrites Di∩Dn, for 1 ≤ i ≤ n−1,
satisfy the inductive hypothesis. For each i, j, (Di ∩ Dn) ∩ (Dj ∩ Dn) =

Di∩Dj ∩Dn is a dendrite by Lemma 4. Also,
⋂n−1
i=1 (Di∩Dn) =

⋂n
i=1Di is a

dendrite. So, by inductive assumption,
⋃n−1
i=1 (Di ∩Dn) = (

⋃n−1
i=1 Di)∩Dn is

a dendrite, and by Lemma 3, (
⋃n−1
i=1 Di)∪Dn =

⋃n
i=1Di contains no simple

closed curve. Therefore,
⋃n
i=1Di is a dendrite.

Lemma 6. Suppose H1, . . . ,Hn are continua, Hi ∩Hj is a dendrite for
each 1 ≤ i < j ≤ n, and

⋂n
i=1Hi is a dendrite. Then

(1) each Hi is tree-like if and only if
⋃n
i=1Hi is tree-like, and

(2) no Hi contains a simple closed curve if and only if
⋃n
i=1Hi contains

no simple closed curve.

Proof. (1) ⇐: Obvious.

⇒: H. Cook [4, Theorem 2] showed that the union of two tree-like con-
tinua that intersect in a connected set is tree-like. So, for n = 2 the result
follows from Cook’s theorem. Assume the result holds for some n − 1 ≥ 2.
Note that by Lemma 4, H1, . . . ,Hn−1 satisfy the hypothesis. So, by induc-
tive assumption,

⋃n−1
i=1 Hi is tree-like. Also, (

⋃n−1
i=1 Hi)∩Hn =

⋃n−1
i=1 (Hi∩Hn)

is a dendrite by Lemma 5. So, again by Cook’s theorem, (
⋃n−1
i=1 Hi) ∪Hn =⋃n

i=1Hi is tree-like.

(2) The proof, using Lemma 3, is similar to the proof of (1).

Corollary 1. Suppose H1, . . . ,Hn are continua with the fpp, Hi∩Hj is
a dendrite for all 1 ≤ i < j ≤ n,

⋂n
i=1Hi is a dendrite, and no Hi contains

a simple closed curve. Then
⋃n
i=1Hi has the fpp.

Proof. We use induction to establish the corollary. For n = 1, the result
is obvious. For n = 2, it follows from Theorem 1. Assume it holds for some
n−1 ≥ 2. By Lemma 4, the continuaH1, . . . ,Hn−1 also satisfy the conditions
of the hypothesis. So,

⋃n−1
i=1 Hi is a continuum with the fpp by inductive

assumption, and contains no simple closed curve by Lemma 6(2).
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As we have previously seen, (
⋃n−1
i=1 Hi) ∩ Hn =

⋃n−1
i=1 (Hi ∩ Hn) is a

dendrite. It follows from Theorem 1 that
⋃n
i=1Hi has the fpp.

Corollary 2. If H1, . . . ,Hn are tree-like continua with the fpp, Hi∩Hj

is a dendrite for each 1 ≤ i < j ≤ n, and
⋂n
i=1Hi is a dendrite, then

⋃n
i=1Hi

is a tree-like continuum with the fpp.

Proof. This follows immediately from Corollary 1 and Lemma 6(1).

Corollary 3. If H1, . . . ,Hn are tree-like continua with the fpp, and
C is a dendrite such that Hi ∩Hj = C for all 1 ≤ i < j ≤ n, then

⋃n
i=1Hi

is a tree-like continuum with the fpp.

The collection of tree-like continua in Corollary 3 is a clump of tree-
like continua as defined by Cook in [5]. Example 1 in §5 below shows that
Corollary 3 cannot be extended to countably many tree-like continua, even
when the intersection is degenerate.

The authors wish to thank R. Mańka for calling our attention to
M. Shtan’ko’s theorem [27], and J. R. Prajs for pointing out that Shtan’ko’s
theorem can be generalized to higher-dimensional continua. We also thank
the referee for suggesting the corollaries above which generalized the corol-
laries that we first had in mind.

We end this section with two related questions.

Question 1. Suppose H and K are tree-like continua with the fpp and
H ∩K is a dendroid. Does H ∪K have the fpp?

Question 2. Does additivity of the fpp hold for arc-like (chainable) con-
tinua? That is, if H, K, and H ∩K are chainable continua, does H ∪K
have the fpp?

Question 2 has an affirmative answer if H ∪ K is embeddable in the
plane.

3. Definitions and constructions. A matchbox manifold X is a sep-
arable metric space in which each point p of X has an open neighborhood
that is homeomorphic to the product of a 0-dimensional set and the real
numbers R. So, in particular, if C is a compact 0-dimensional set and (0, 1)
is the open segment in R between 0 and 1, then C × (0, 1) is a match-
box manifold. We will call a space that is homeomorphic to C × (0, 1) an
open matchbox and a space that is homeomorphic to C × [0, 1] a closed (or
compact) matchbox . The sets C × {0} and C × {1} will be called, respec-
tively, the left and right boundaries of both an open matchbox and a closed
matchbox.

For homeomorphic topological spaces X and Y , we write X
T
≈ Y . Let

M
T
≈ C × [0, 1] be a closed matchbox. Identify M with C × [0, 1] × {0} in
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C × [0, 1] × R. Let K =
⋃
c∈C Kc be a compact subset of C × [0, 1] × R,

where for each c ∈ C, Kc is a continuum such that Kc ⊂ {c} × [0, 1] × R,
Kc∩ ({c}×{0}×R) = {(c, 0, 0)}, and Kc∩ ({c}×{1}×R) = {(c, 1, 0)}. We
refer to K as an mbox replacement of the matchbox M . We let π : K → M
be the natural projection onto M . Note that M and K have the same left
and right boundaries, namely C × {0} × {0} and C × {1} × {0}.

Suppose f : C → D is a homeomorphism between compact 0-dimensional
sets. Let λ be a positive real number. Let fλ : C× [0, 1]→ D× [0,∞) be the
embedding given by fλ(c, t) = (f(c), λt). We call fλ a λ-rearrangement of the
matchbox C×[0, 1]. Note that fλ stretches or shrinks C×[0, 1] as λ is greater
or less than one. Any map, similarly defined (conjugate to such a map), on
a compact matchbox will be referred to analogously. In our examples, we
will typically have a homeomorphism, say f , already defined on an entire
matchbox C×[0, 1]. When we introduce the notation fλ relative to this map,
we mean fλ = (f |C×{0})λ, according to our definition above.

Let M
T
≈ C × [0, 1] be a closed matchbox and N = fλ(M), where

fλ : M → N is a λ-rearrangement of M . Let µ be a positive real num-
ber and let K be an mbox replacement of M . Let fλµ : K → N × [0,∞) be
the embedding given by fλµ(c, t, s) = (f(c), λt, µs). So, fλµ is a homeomor-
phism onto its image. Thus, fλµ(K) is an mbox replacement of N . We call
fλµ a λµ-rearrangement of the mbox K. If λ = µ, we write fλ for fλλ. Note
that a rearrangement of a matchbox either stretches or shrinks only in the
second coordinate, while a rearrangement of an mbox may stretch or shrink
in both the second and third coordinates.

The map π ◦ fλµ will be called a λ-flattening map. Note that the image
of a flattening map is a closed matchbox.

In our examples, we will be interested in defining an mbox replacement
in which exactly one arc is replaced by a continuum that is homeomorphic to
one of S, −S, or S2 defined below. Each is a variation of a topologist’s sine
curve. Our building block S is a topologist’s sine curve with an “extended”
limit bar, which is a subset of [0, 1]× [0, 1]. Let

S =
([

0, 12
]
× {0}

)
∪
({

1
2

}
× [0, 1]

)
∪
{(
x, 12

(
1 + sin 3π

4x−2
)) ∣∣ 1

2 < x ≤ 1
}
.

Note that π1 : S → [0, 1] is an atomic map that is one-to-one for x 6= 1
2 .

Also, π−11

({
1
2

})
is the limit bar of the topologist’s sine curve. The points

of the sine curve that have second coordinate 1 are the points with first
coordinates tk = 2k+2

4k+1 for k ≥ 1. We let Tk be the points of S whose first
coordinates are greater than or equal to tk.

Let −S denote the reflection of S through the line x = 1
2 , and let

S2 =
{

(x, y) ∈ −S
∣∣ 0 ≤ x ≤ 1

2

}
∪
{

(x, y) ∈ S
∣∣ 1
2 ≤ x ≤ 1

}
.
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Note that there is no surjective map between any two of S, −S, and S2 that
fixes (0, 0).

For M
T
≈ C × [0, 1] a closed matchbox and p ∈ C, we define an mbox

replacement of M so that Kp is S (or −S, or S2) and Kc is an arc for
c ∈ C − {p}. We call such K an Sp-mbox (or −Sp-mbox , or S2

p -mbox ). If
the point of C is unimportant or unspecified, we will simply use the terms
S-mbox , −S-mbox , and S2-mbox . There are numerous ways in which this
“replacement” construction can be done. One such way is indicated below
for an Sp-mbox.

So, assume Kp is S and has the arc {p}× [0, 1]×{0} in {p}× [0, 1]× [0, 1]
replaced. We wish to replace all arcs of the form {c} × [0, 1] × {0}, for
c ∈ C − {p}, with arcs Kc having endpoints (c, 0, 0) and (c, 1, 0), and so
that

⋃
c∈C Kc is compact. For c ∈ C, let dc denote the distance of c to p.

Assume, without loss of generality, that dc < 1 for all c ∈ C. For c 6= p and
1

k+1 ≤ dc <
1
k , let

Kc =
(
{c} ×

[
0, 12
]
× {0}

)
∪
(
{c} ×

{
1
2

}
× [0, 1]

)
∪
(
{c} ×

[
1
2 ,

2k+2
4k+1

]
× {1}

)
∪ Tk.

Let Sp =
⋃
c∈C Kc. Note that the left and right boundaries of Sp are

the same as the left and right boundaries of M . Also, Sp has the remaining
desired properties.

Analogous constructions give −S-mbox or S2-mbox replacements for a
given matchbox.

4. Attaching sequences of arcs to Bellamy’s second tree-like
continuum. In 1979, D. Bellamy [1] answered, in the negative, a question
that ten years earlier R. H. Bing had called one of the most interesting
questions in geometric topology. Namely, “Does each tree-like continuuum
have the fixed point property?” Using a modified 6-adic Knaster continuum,
Bellamy constructed an indecomposable tree-like continuum admitting a
fixed-point-free map. Bellamy applied to his example a technique used by
J. B. Fugate and L. Mohler [10] to get an indecomposable tree-like arc-
continuum admitting a fixed-point-free homeomorphism. We refer to this
example as Bellamy’s second example.

In 1980, L. G. Oversteegen and J. T. Rogers, Jr. [25] gave an inverse limit
description of a tree-like arc-continuum admitting an induced fixed-point-
free map. To obtain a simple description of the bonding maps, they used
rather complicated factor spaces. In 1982, the same authors [26] defined two
more examples using inverse limits. These examples have similar properties
to their first example, but additionally the fixed-point-free map is a home-
omorphism and the factor spaces are trees. The nature of the symmetry
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in the factor spaces and the folding of the bonding maps is reminiscent of
Bellamy’s example.

In 1993, L. Fearnley and D. G. Wright [9] gave a geometric description
of a tree-like continuum, consisting of a chainable continuum and a Cantor
fan, without the fixed point property.

In a number of papers between 1992 and 2000, P. Minc [20–24] provided
tree-like examples that answered other important questions in continuum
fixed point theory; for example, in [21], he constructed a periodic-point-free
homeomorphism on a tree-like continuum. For each positive integer j, Minc
altered an n-adic Knaster continuum, where

n = 2(41 − 1) · · · (4j − 1),

by replacing an arc containing the endpoint with a fan over a 0-dimensional
set. The resulting indecomposable tree-like continuum Bj admits a map
with no periodic points of period less than or equal to j. The continuum B1

is quite similar to Bellamy’s original example, a modification of the 6-adic
Knaster continuum. Applying the Fugate–Mohler technique, Minc defined

tree-like arc-continua B̃j that admit homeomorphisms with analogous prop-

erties. Minc used the sequences {Bj} and {B̃j} to construct his examples.
In 2012, C. L. Hagopian, M. M. Marsh, and J. R. Prajs [12] used Bel-

lamy’s second example to construct an indecomposable tree-like continuum
that admits a composant-preserving fixed-point-free homeomorphism.

Although defined in various ways, all of these examples either are con-
tinua or contain subcontinua that are fundamentally similar to either Bel-
lamy’s first or second example.

We will use Bellamy’s second example in the construction of our examples
in §5.

Let B be Bellamy’s indecomposable tree-like continuum in [1] that con-
tains a fan and admits a fixed-point-free mapping g. In Bellamy’s paper,
B is D̂ and g is F̂ . Some properties of B that we will use are the following:

• The endpoint set of the fan is invariant under g (see Appendix).
• The vertex of the fan is pulled by g out of the fan.
• There exist endpoints p and q such that g(p) = q and g(q) = p (see

Appendix).

Let B̂ be Bellamy’s second indecomposable tree-like continuum obtained
by applying the Fugate–Mohler technique, that is, B̂ = lim←−{B, g}. Some

properties of B̂ that we will use are the following:

• The shift map σ : B̂ → B̂ given by σ(x1, x2, . . .) = (g(x1), x1, x2, . . .) is
a fixed-point-free homeomorphism on B̂ that interchanges composants
that have endpoints.
• Each proper subcontinuum of B̂ is an arc.
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• If x ∈ B̂ is not an endpoint, then x has an open matchbox neighbor-
hood.
• If Ca and Cb are composants of B̂ with endpoints a and b respectively,

where σ(a) = b, then, relative to arc length, the distance of b to σ(x)
is twice the distance of a to x for a point x ∈ Ca.
• The points p̂ = (p, q, p, . . .) and q̂ = (q, p, q, . . .) are endpoints of B̂

with σ(p̂) = q̂ and σ(q̂) = p̂.

It may be helpful to refer to Figure 1 for all constructions that follow.
While the section of the continuum pictured in Figure 1 appears to be
planar, there is no such assumption. The figure is a simplified schematic
representation.

p̂ q̂

a0

W0

W1

W2

Y1

Y0

Y2

b0

a1

b1

a2

b2

b
-1

a
-2

a
-1

b
-2

U1

U2

V2

V1

Fig. 1

Let C1 and C2 be the composants of B̂ containing p̂ and q̂ respectively.
Let a0 and b0 be points of C1 and C2, respectively, whose arc-distances to p̂
and q̂ are assumed, without loss of generality, to be one. Let an = σn(a0) and
bn = σn(b0) for n ∈ Z (σ0 = id). Note that an ∈ C1 for even n, and an ∈ C2
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for odd n. Also, bn ∈ C2 for even n, and bn ∈ C1 for odd n. Furthermore,
by our assumption, for n < −1 and even, d(an, p̂) = 1

2d(an+1, q̂). Analogous
statements hold for odd n, and for the sequence of bn’s.

Let P = C1× [0, 1]∪C2× [0, 1]. Define α : P → P by α(x, t) =
(
σ(x), 12 t

)
.

Let W0, Y0 be the subsets of P given by W0 = {((1−t)p̂+ta0, t) | 0 ≤ t ≤ 1}
and Y0 = {((1− t)q̂+ tb0, t) | 0 ≤ t ≤ 1}. By our assumption, we may think
of W0 as the diagonal of [p̂, a0]× [0, 1] ⊂ C1× [0, 1] and Y0 as the diagonal of
[q̂, b0]×[0, 1] ⊂ C2×[0, 1]. Note that α is one-to-one, and that α(p̂, 0) = (q̂, 0)
and α(q̂, 0) = (p̂, 0). For n ≥ 1, let Wn = αn(W0) and Yn = αn(Y0). Observe
that for even n, Wn is an arc in C1 × [0, 1/2n] with endpoints (p̂, 0) and
(an, 1/2

n), and for odd n, Wn is an arc in C2× [0, 1/2n] with endpoints (q̂, 0)
and (an, 1/2

n). There are analogous statements for the {Yn} sequence. Let
F1 be the union of the Wn’s for all even n, and F2 be the union of the Wn’s
for all odd n. Let G1 be the union of the Yn’s for all odd n, and G2 be the
union of the Yn’s for all even n. We see that F i−Fi = Ci and Gi−Gi = Ci
in the space P for i ∈ {1, 2}.

Let Z = B̂ ∪ F1 ∪ F2 and let Ẑ = Z ∪ G1 ∪ G2. We will be using
modifications of both Z and Ẑ in our examples. It is easy to see that α
maps F1 homeomorphically onto F2, and maps F2 homeomorphically onto
F1− (W0−{p̂}). Also, α∪σ : Z → Z is an extension of σ : B̂ → B̂. So, α∪σ
is a fixed-point-free embedding of Z into Z. For notational convenience, we
will hereafter let σ denote the extended map α ∪ σ on Z.

Remark 1. We point out that σ and Z could be modified to have a
surjective homeomorphism by adding two null sequences of arcs to Z, one
sequence at p̂ and one at q̂, and extending σ to these sequences in the obvious
way; namely, σ maps each arc attached to p̂ to the arc twice as long that
is attached to q̂, and vice versa. Again, there are analogous statements for

the continuum Ẑ and the extended map σ.

The continua Z and Ẑ and the embedding σ of Z into Z (or Ẑ into Ẑ) will
be basic items in the construction of our examples. Note that Z is tree-like
since Z is hereditarily unicoherent and each indecomposable subcontinuum
of Z is tree-like [4, Th. 1]. Similarly, Ẑ is tree-like.

We will be replacing matchboxes in Z and Ẑ with S-mboxes, −S-mboxes,
and S2-mboxes. So, it should be helpful to refer to Figure 1 and think of the
mbox replacements as being inserted vertically above the matchboxes in Z
and in Ẑ.

5. Examples

Example 1. There exists a countable wedge of tree-like continua Xn

such that each Xn has the fpp, but X =
⋃
Xn is a tree-like continuum that

does not have the fpp. Furthermore, all but one of the Xn’s are arcs.
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Proof. We begin with the continuum Z and the fixed-point-free embed-
ding σ : Z → Z. So, for construction of this example, we are using B̂ with
the attached Wn arcs shown in Figure 1.

Let U1 be an open set in Z such that U1 is an open matchbox, U1 con-
tains a segment of Wn for all even n, and U1 ∩ C1 is the segment from b−1
to a0. Let B−1 and A0 be the compact 0-dimensional sets containing b−1
and a0 respectively, and so that U1 = U1 ∪ B−1 ∪ A0. We think of B−1 as
the 0-level left boundary of U1, and A0 as the 1-level right boundary of U1.
So, U1 is a closed matchbox. Note that σ−1(U1) is an open matchbox such
that σ−1(U1) ∩ C2 = (b−2, a−1). Let B−2 = σ−1(B−1) and A−1 = σ−1(A0).
We see that σ−1(U1) = σ−1(U1) ∪ B−2 ∪ A−1, which is a closed match-
box with left boundary B−2 and right boundary A−1. Now let K1 be an
Sb−1-mbox replacement of U1 −W0. Since σ−1 maps B−1 −W0 homeomor-

phically onto B−2, σ
−1
.5 is a 1

2 -rearrangement of the closed matchbox U1−W0.

So, K2 = σ−1.5 (K1) is an Sb−2-mbox replacement of σ−1(U1 −W0).
Let U2 be the open set in Z whose right boundary is the left boundary

of U1 and such that U2 ∩ C1 = (a−2, b−1). Clearly, U2 is an open matchbox
and V1 = σ(U2) is an open matchbox whose left boundary is the right
boundary of σ−1(U1). Note that V1∩C2 = (a−1, b0). Repeat for V 1 the mbox
replacement we applied to U1−W0, getting an Sa−1-mbox replacement of V 1.

Call this mbox L1. Let L2 = σ−1.5 (L1) and note that L2 is an Sa−2-mbox

replacement of U2. As above, let B0 denote the right boundary of L1, and
let A−2 denote the left boundary of L2. Observe that the left boundary
of L1 is A−1 and the right boundary of L2 is B−1. We see that σ2 is a
2-rearrangement of the mbox K2 ∪ L2 onto the mbox K1 ∪ L1.

Continue this backward construction toward p̂ and q̂ inductively from
Ln and Kn, getting Ln+1 and Kn+1 so that σ2 is a 2-rearrangement of
Ln+1 ∪Kn+1 onto Ln∪Kn. Also note that the backward sequences of topolo-
gist’s sine curves that are introduced into C1 and C2 are null sequences since
they are generated by 1

2 -mbox rearrangements. Clearly, they converge to p̂
and q̂.

Remark 2. We could have used S2-mboxes, rather than S-mboxes, in
this construction, and in Example 3 we will do just that.

Let X be the continuum that results after replacing the sequence {Un}
of matchboxes with the sequence K1, L2,K3, L4, . . . of S-mboxes and the
sequence {V n} of matchboxes with the sequence L1,K2, L3,K4, . . . of
S-mboxes, and otherwise leaving Z unaltered. The Wn’s are altered arcs
in Ki and Li for all i ≥ 1. We keep the labels Wn for these altered arcs
in the continuum X. Let B̃ = X −

⋃
n≥0(Wn − {p̂, q̂}). So, B̃ is Bellamy’s

second continuum with two backward null sequences of copies of S, one
sequence converging to p̂ and the other converging to q̂. The map from X
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onto Z that collapses the limit bars of S to points and otherwise is one-to-one
is an atomic map. Since the fibers of this atomic map are arcs, it follows
from [15, (6.14), p. 18] that X is tree-like. Also, the restriction of this map

to B̃ has image B̂. Since B̂ is indecomposable, Lemma 1 shows that B̃ is
indecomposable.

Define the fixed-point-free map f : X → X as follows. Let f = σ on
X−

⋃
(Kn∪Ln) = Z−

⋃
(Un∪V n). Let f = π ◦σ2 on K1∪L1. That is, f is

the 2-flattening map on K1 ∪ L1. Finally, let f = σ2 on Kn ∪ Ln for each
n ≥ 2. That is, f is the 2-rearrangement of the mboxes Kn and Ln, defined
according to the behavior of σ on the left boundaries of these sets.

Clearly, f is continuous and fixed-point-free by construction. Also, f is
one-to-one on X−(K1∪L1). The continuum X is the wedge promised in the
statement of this example. To see this, we define certain subcontinua of X.

Let X0 = (X −
⋃
{Wn | n is odd}) ∪ {q̂}. For i ≥ 1, let Xi = W2i−1. So,

X =
⋃
i≥0Xi is a wedge of tree-like continua with common intersection {q̂}.

For i 6= 0, Xi is an arc. Thus, all that remains is to see that X0 has the fpp.
Let F =

⋃
{Wn | n is even}, let C̃1 be the composant of B̃ that con-

tains p̂, and let C̃2 be the composant of B̃ that contains q̂.
Suppose ` : X0 → X0 is a fixed-point-free mapping. Suppose `(p̂)∈F .

Then `(p̂) ∈ Wn for some even n. It follows that ` has a fixed point
in Wn, which is a contradiction. So, `(p̂) ∈ B̃. Since F is an arc compo-
nent of X0, `(F ) is a subset of the arc component of B̃ that contains `(p̂).

Thus, `(F ) ⊂ B̃. Since B̃ is a subset of the closure of F , it follows that
`(B̃) ⊂ B̃. Since λ-dendroids have the fixed point property (see [16]), and
each proper subcontinuum of B̃ is a tree-like, hereditarily decomposable
continuum (a λ-dendroid), it follows that `(B̃) cannot be a proper subset

of B̃. So, `(B̃) = B̃.
Since B̃ is atriodic and tree-like, `|B̃ is weakly confluent (see [11]). Pick

a non-degenerate subcontinuum C of C̃1 that contains p̂. Since ` is weakly
confluent, some subcontinuum of B̃ must be mapped by ` onto C. Since C
is non-locally connected in each ε-neighborhood of p̂, it follows that either
`(p̂) = p̂ or `(q̂) = p̂. Since ` is fixed-point-free, we have `(q̂) = p̂, and
similarly `(p̂) = q̂. Again, since F is an arc component of X0, `(F ) = {q̂}.
Thus, `(F ) = `(X0) = {q̂}, a contradiction. Hence, ` has a fixed point.

There is a 1-dimensional non-tree-like example, similar to Example 1
above, in [19, Example 4], where a double Warsaw circle plays the role of
the modified Bellamy continuum.

Example 2. There exists a countable wedge of tree-like continua X̂n

such that each X̂n has the fpp, but X̂ =
⋃
X̂n is a tree-like continuum that

admits a fixed-point-free homeomorphism. Furthermore, all but one of the
X̂n’s are arcs.
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Proof. As pointed out in Example 1, the fixed-point-free map f : X → X
is not surjective and is not a homeomorphism. We will modify X and f
to get X̂ in this example. The basic idea is to add null sequences of arcs
to p̂ and q̂ (see Remark 1) to make α (from §4) surjective, which in turn
will make f (from Example 1) surjective. Thereafter, we apply the Fugate–
Mohler technique to the pair (X, f), getting the desired example.

Recalling the construction of Z (see end of §4), in C1 × [0, 1] we add a
null sequence {W−n} of arcs, for even positive n, to p̂, and in C2 × [0, 1]
we add a null sequence {W−n} of arcs, for odd positive n, to q̂, so that
Wi ∩Wj ⊂ {p̂, q̂} for all i, j ∈ Z. Also, we extend α, and thus f , so that for
all n ∈ Z, f maps Wn homeomorphically onto Wn+1. One way to do this is to
define in P , for n ≥ 1, the sets W−2n = {((1− t)p̂+ ta−2n, t/2

n) | 0 ≤ t ≤ 1}
and W−2n+1 = {((1− t)q̂ + ta−2n+1, t/2

n−1) | 0 ≤ t ≤ 1}.
So, assume that X and f from Example 1 have been modified by the

addition of the arcs W−n and the extension of f described. Throughout the
remainder of Example 2, the new X and new f will still be referred to as X
and f . Note that f : X → X is now surjective.

However, f is still not a homeomorphism, but is not one-to-one only
on the limit bars of K1 and L1. By adding two null sequences of copies
of S into C̃1 and C̃2, respectively, so that fn(K1) and fn(L1), for n ≥ 1,
contain copies of S alternating between C̃2 and C̃1, and between C̃1 and C̃2,
respectively, we can modify f to be a homeomorphism.

This is accomplished by simply applying the Fugate–Mohler technique

to the pair (X, f). That is, let X̂ = lim←−{X, f} and let f̂ be either the left

or the right shift map on the inverse limit space. The map f̂ : X̂ → X̂ is
a homeomorphism. That X̂ has the desired properties is straightforward to
verify. In this regard, it may be helpful to note the following.

Let D1 be the limit bar in K1 ∩ C̃1
T
≈ S and let E1 be the limit bar

in L1 ∩ C̃2
T
≈ S. Let f(D1) = {v}, where v ∈ C̃2, and let f(E1) = {u},

where u ∈ C̃1. Note that since the bonding map f is one-to-one except on
D1∪E1, the only points of X̂ that are not uniquely determined by their first
coordinates are of the form (fn−1(u), . . . , f(u), u, t, f−1(t), . . .) for t ∈ D1,
and (fn−1(v), . . . , f(v), v, t, f−1(t), . . .) for t ∈ E1. So, for given n ≥ 1, these

points form new limit bars in the inverse limits C̃1
f← C̃2

f← C̃1
f← · · · and

C̃2
f← C̃1

f← C̃2
f← · · · , respectively. The shift map f̂ takes each of these

limit bars to the next, alternating between the two inverse limits which are
composants of X̂.

Example 3. There exist tree-like continuua H and K such that H, K,
and H ∩K have the fpp, but H ∪K is a tree-like continuum that does not
have the fpp.
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Proof. To build our third example, we begin with the continuum Ẑ and
the fixed-point-free embedding σ : Ẑ → Ẑ (see §4 and Figure 1). Recall that
Ẑ only differs from Z by having an additional sequence of arcs {Yn} that are
exact copies of the Wn’s in Z, but if Wn is attached to p̂, then Yn is attached
to q̂, and vice versa. We apply the construction, as done in Example 1,
to the continuum Ẑ, but we use S2-mbox replacements rather than the
S-mbox replacements we used in Example 1, getting a continuum X ′ that
has “backward” null sequences of copies of S2 placed into the arcs [ p̂, a0]
and [q̂, b0]. This produces an indecomposable subcontinuum B̃ of X ′ that
is a modified Bellamy continuum. Also, the sequences {Wn} and {Yn} of

arcs are modified to limit to the modified composants C̃1 and C̃2 of B̃ ,
whose endpoints are p̂ and q̂ respectively. Let f ′ : X ′ → X ′ denote the
fixed-point-free embedding, defined analogously to Example 1, from X ′ onto
X ′ − (W0 ∪ Y0 − {p̂, q̂}).

Let D1 be the limit bar in C̃1 ∩ K1
T
≈ S2, and let E1 be the limit

bar in C̃2 ∩ L1
T
≈ S2. For n ≥ 2, let Dn = f ′

−1
(Dn−1) ⊂ Kn and En =

f ′
−1

(En−1) ⊂ Ln. So, the Dn’s and En’s are limit bars in copies of S2

that alternate between C̃1 and C̃2, each one half the length of its predeces-
sor.

To complete the construction we will replace a null sequence of arcs in
each Wi with copies of S and a null sequence of arcs in each Yi with copies
of −S. The resulting continuum will be our example. We begin by describing
the process for the {Wi} sequence.

For even i ≥ 0, let Wi(1) ⊂ Wi be a sequence of arcs converging to D1,
and for odd i ≥ 1, let Wi(1) ⊂ Wi be a sequence of arcs converging to E1.

For all i ≥ 1 and n ≥ 2, let Wi(n) = f ′
−1

(Wi(n − 1)). Note that for fixed
i ≥ 0, {Wi(n)}n≥1 is a null sequence of arcs in Wi.

We note that

M1 = D1 ∪
( ⋃
even i

Wi(1)
)
∪ E1 ∪

( ⋃
odd i

Wi(1)
)

is a closed matchbox. Let N1 be the mbox replacement of M1, where D1 and
E1 remain unchanged, and each Wi(1) is replaced with a copy of S, which
we call W̃i(1), so that the limit bar in W̃i+1(1) has length equal to one half
of the length of the limit bar in Wi(1). We observe that for even i, {W̃i(1)}
converges to D1, and for odd i, {W̃i(1)} converges to E1. So, indeed, N1 is
an mbox.

We note that f ′
−1

.5 is a 1
2 -rearrangement of M1−W0 onto its image, which

we denote by M2. As discussed in §3, it follows that N2 = f ′
−1

.5 (N1− W̃0(1))

is an mbox replacement of f ′
−1

.5 (M1 −W0). For i ≥ 0, let W̃i(2) denote the
copy of S that replaced the arc M2 ∩ Wi. Note that for even i, {W̃i(2)}
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converges to E2, and for odd i, {W̃i(2)} converges to D2. Also, we see that
each W̃i(2) is one half the size of W̃i+1(1).

We continue this process, getting a sequence {Nn} of mboxes replac-
ing {Mn}. Furthermore, for each n ≥ 1, we have copies W̃i(n), for i ≥ 0, of
S in Nn such that:

(1) for n fixed and even,

(i) for odd i, {W̃i(n)} converges to Dn,
(ii) for even i, {W̃i(n)} converges to En; and

(2) for n fixed and odd,

(i) for even i, {W̃i(n)} converges to Dn,
(ii) for odd i, {W̃i(n)} converges to En.

Since D1, E2, D3, E4, . . . is a backward null sequence of limit bars in C̃1,
and E1, D2, E3, D4, . . . is a backward null sequence of limit bars in C̃2, we
see that for n ≥ 1 and fixed, for even i, {W̃i(n)} converges to a limit bar
in C̃1, and for odd i, {W̃i(n)} converges to a limit bar in C̃2.

For i ≥ 0, let W̃i be the continuum obtained by replacing the arcs Wi(n)
in Wi with the copies W̃i(n) of S. Let F̃1 =

⋃
W̃i for even i, and F̃2 =

⋃
W̃i

for odd i.

Now, we do a similar construction on the sequence {Yi}, but we replace
arcs converging to limit bars in C̃1 and C̃2 with copies of −S. We get mboxes
Qn and new continua Ỹi replacing the arcs Yi and having analogous subcon-

tinua {Ỹi(n)}, for n ≥ 1, that are copies of −S. Let G̃1 =
⋃
Ỹi for even i,

and G̃2 =
⋃
Ỹi for odd i.

Let

X̃ = B̃ ∪ F̃1 ∪ F̃2 ∪ G̃1 ∪ G̃2.

Define the fixed-point-free map f̃ : X̃ → X̃ as follows. Let f̃ = f ′ on B̃. Let
f̃ = π ◦ f ′2 on N1 ∪Q1. That is, f̃ is the 2-flattening map on the mboxes N1

and Q1. And let f̃ = f ′2 on Nn ∪ Qn for each n ≥ 2. By construction, f̃ is
continuous and fixed-point-free. Also f̃ is one-to-one on X̃ − (N1 ∪Q1), and
only (W̃0 − {p̂}) ∪ (Ỹ0 − {q̂}) is not in the image of f̃ .

The continuum X̃ is tree-like for reasons analogous to those that implied
X is tree-like.

To see that X̃ is a union of two subcontinua H and K such that H, K,
and H ∩K have the fpp, we define the following subcontinua.

Let H = B̃∪F̃1∪G̃1 and K = B̃∪F̃2∪G̃1∪G̃2. Note that H∩K = B̃∪G̃1

and X̃ = H ∪K. The proofs that H, K, and H ∩K have the fpp are similar
to the proof that X0 has the fpp in Example 1. In reconstructing the basic
idea of that proof, one should recall that there is no surjective map between
any two of S, −S, and S2 that fixes an endpoint.
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Example 4. There exist tree-like continuua H and K such that H, K,
and H ∩K have the fpp, but H ∪K is a tree-like continuum that admits a
fixed-point-free homeomorphism.

Proof. We modify Example 3 to get this example in a manner analogous
to how we modified Example 1 to produce Example 2.

Appendix: On Bellamy’s example. Let B be Bellamy’s indecompos-
able tree-like continuum that contains a fan and admits a fixed-point-free
map (see [1], [2]). In [1], B is D̂. Otherwise, we use notation and termi-
nology that was introduced in [1]. The reader will need to be familiar with
Bellamy’s definitions and notation. In fact, it would be helpful to review
Bellamy’s paper and have it at hand while reading this Appendix.

We provide proofs for several properties of Bellamy’s example that are
not immediately evident from his paper. The properties primarily involve the
behavior of the points in the set J , which is the endpoint set of the fan in B,
under the fixed-point-free map F̂ . We will show that F̂ (J) = J , F̂−1(J) = J ,
F̂ |J is not one-to-one, and J contains periodic points of period two and of
period three under F̂ . The first observation of the existence of periodic
points of period two and three in J was made by Howard Cook after a
presentation by the second author of Bellamy’s example in the Cook–Ingram
faculty/student seminar at the University of Houston, circa 1977–1978.

We start with a few number-theoretic lemmas that will be used later.
The first two are easily established.

Lemma A1.

(i) If n is an even non-negative integer, then 2n ≡ 1 (mod 3).
(ii) If n is an odd positive integer, then 2n ≡ 2 (mod 3).

Lemma A2.

(i) If n is an even non-negative integer, then 23n ≡ 1 (mod 9).
(ii) If n is an odd positive integer, then 23n ≡ −1 (mod 9).

Lemma A3. For x, n ∈ N, x + 2nk ≡ 0 (mod 3) for some unique k in
{0, 1, 2}.

Proof. We consider three cases.

(i) Suppose x ≡ 0 (mod 3). Then x+ 2nk ≡ 0 + 2nk (mod 3). Note that
the unique solution, for k ∈ {0, 1, 2}, of 2nk ≡ 0 (mod 3) is k = 0.

(ii) Suppose x ≡ 1 (mod 3). Then x + 2nk ≡ 1 + 2nk (mod 3). By
Lemma A1, the unique solution of 1 + 2nk ≡ 0 (mod 3) is k = 1 for odd n,
and is k = 2 for even n.

(iii) If x ≡ 2 (mod 3), the proof is similar to case (ii).
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Hereafter, we identify a point eit on S1 with the number t (mod 2π).
So, exponentiation is replaced with multiplication, and multiplication with
addition. Since ei2kπ = 1 and ei(2k+1)π = −1 for all integers k, we identify
values t = 2kπ and t = (2k + 1)π with 1 and −1, respectively.

At this point, we begin using definitions and notation from Bellamy’s
paper. The set M , of real parts of the second non-real coordinates of points
of E (defined below), is an important set in Bellamy’s construction. We let
M ′ be a set of circle points whose real parts constitute M . We list the points
of M ′ for reference:

M ′ =
{
π
9 ,

4π
9 ,

7π
9 ,

10π
9 , 13π9 , 16π9 , π18 ,

7π
18 ,

13π
18 ,

19π
18 ,

25π
18 ,

31π
18 ,

π
12 ,

5π
12 ,

3π
4 ,

13π
12 ,

17π
12 ,

7π
4 ,

π
36 ,

5π
36 ,

13π
36 ,

17π
36 ,

25π
36 ,

29π
36 ,

37π
36 ,

41π
36 ,

49π
36 ,

53π
36 ,

61π
36 ,

65π
36

}
.

Recall that Bellamy begins his construction with the 6-adic solenoid Σ.
The unit circle S1 in the complex plane is, of course, a group under complex
multiplication. So, Σ is a topological group under coordinatewise multipli-
cation with identity element e = (1, 1, 1, . . .). The squaring map z 7→ z2 on
S1 is a homomorphism, and induces a squaring map f on Σ that is also
a homomorphism. By [1, Lemma 1], ker f = {e}. Thus, f is one-to-one; in
fact, f is a homeomorphism. The point e is the only fixed point of f , and
the composant of Σ that contains e is stretched away from e by f . In fact,
for each point x of this composant, f(x) is twice as far from e as x, relative
to arc length in the composant.

The set H is the set of points of Σ whose first coordinates are 1, and
E = H −{e}. A compactification of E is given so that the remainder J is a
totally disconnected compact set. The points of J become the endpoints of
the fan as the construction continues. The endpoint set J is constructed in
the product of two Cantor sets, namely K = H ×

∏∞
i=0M . For a point z ∈

E ⊂ Σ, φ(z) is the real part of the second non-real coordinate of z. So, φ is a
mapping from E into M . The squaring map f on Σ restricted to E is called
s, the map g : E → K is defined by g(x) = (x, 〈φsn(x)〉∞n=0), and s : K → K
is defined by s(x, 〈tk〉∞k=0) = (s(x), 〈tk+1〉∞k=0). The map ŝ = s|

g(E)
is an

extension of the squaring map s = f |E . Identifying E with g(E), we see
that J = g(E)−E. So, J is the remainder in the compactification of E. As
mentioned above, the points of J are the eventual endpoints of the fan in B.

An arc containing e is removed from Σ to get Σ0, and Σ̂ is obtained
by replacing the removed arc in Σ0 with a suspension over the set J . The
squaring map f induces a “squaring map” f̂ : Σ̂ → Σ̂ that agrees with f

on Σ0. Also, f̂ |J = ŝ|J = s|J . There are several steps remaining in the
construction of B, but the set J is maintained throughout the construction,
and the final fixed-point-free map F̂ : B → B interchanges the points of J
in the same manner as f̂ (or ŝ, or s).



Non-additivity of the fixed point property 131

The behavior of the fixed-point-free map on J . We claim that
f̂(J) = J and f̂−1(J) = J . The inclusion f̂(J) ⊂ J follows from the defini-

tion of f̂ and s.

Since the composant C of Σ that contains e is mapped to itself un-
der f , it follows from the one-to-one-ness of f that no other composant of Σ
is mapped by f into C. Let Ĉ be the composant of Σ̂ that contains the
set J . From Bellamy’s construction and the observation above, it follows
that f̂(Ĉ) = Ĉ, and no other composant of Σ̂ is mapped by f̂ into Ĉ. We

also know from the construction that each point x of Ĉ − J is mapped by f̂
twice as far from J as x. So, if x ∈ Ĉ −J , then f̂(x) 6∈ J . Thus f̂−1(J) ⊂ J .

Since f : Σ → Σ is surjective and f(C) = C, we get f(Σ −C) = Σ −C.

Since f̂ agrees with f on Σ0, it follows that f̂(Σ̂ − Ĉ) = Σ̂ − Ĉ. Hence,

f̂(Σ̂) = f̂(Σ̂ − Ĉ) ⊂ f̂(Σ̂ − Ĉ) = Σ̂ − Ĉ = Σ̂.

So, f̂ : Σ̂ → Σ̂ is surjective. Since J ⊂ Σ̂ and f̂−1(J) ⊂ J , it follows that

J ⊂ f̂(J). Together with f̂(J) ⊂ J from above, we have f̂(J) = J and

f̂−1(J) = J , establishing our claims.

For t1 a positive integer, we define a sequence {tn} recursively by letting
tn = 1

3(tn−1 + 2n+1kn), where kn is chosen from the set {0, 1, 2} so that
tn is an integer. It follows from Lemma A3 that t1, t2, t3, . . . is well-defined
and uniquely determined from the choice of t1. We will refer to a sequence
defined in this way as the sequence generated by t1.

Define xn = 1
2n+1 tnπ for n ≥ 1. We call {xn} the point of Σ derived

from {tn}. Note that for n ≥ 2,

6xn =
6

2n+1
tnπ =

3

2n
tnπ

=
3

2n
1

3
(tn−1 + 2n+1k)π for some k ∈ {0, 1, 2}

=
1

2n
tn−1π + 2kπ ≡ 1

2n
tn−1π (mod 2π).

That is, 6xn ≡ xn−1 (mod 2π).

It follows that the point x in
∏
n≥1 S

1 whose nth coordinate is xn is a
point of the 6-adic solenoid Σ.

A period two point of J

Lemma A4. Let u1 = 1 and consider the integer sequence {un}n≥1 gen-
erated by u1 = 1. For n ≥ 1,

un ≡
{

3 (mod 8) for even n,

1 (mod 8) for odd n.
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Proof. Note that u1 = 1 and u2 = 1
3(1 + 23(1)) = 9

3 = 3.

Case (i). Assume the lemma is true for some 2n ≥ 2. So, u2n ≡ 3
(mod 8). Now, u2n+1 = 1

3(u2n + 22n+2k) = 1
3(u2n − 3 + 22n+2k + 3). So,

u2n+1− 1 = 1
3(8`+ 22n+2k) = 81

3(`+ 22n−1k). Since u2n+1− 1 is an integer,
1
3(`+ 22n−1k) is also an integer. It follows that u2n+1 ≡ 1 (mod 8).

Case (ii). Assume the lemma is true for some 2n+1 ≥ 3. So, u2n+1 ≡ 1
(mod 8). Now, u2n+2 = 1

3(u2n+1 + 22n+3k) = 1
3(u2n+1 − 1 + 22n+3k + 1 +

23 − 23) = 1
3(8`+ (22nk − 1)23 + 9). So, u2n+2 − 3 = 8

3(`+ 22nk − 1). Since

u2n+2 − 3 is an integer, 1
3(` + 22nk − 1) is also an integer. It follows that

u2n+2 ≡ 3 (mod 8).

Lemma A5. Let v1 = 3 and consider the integer sequence {vn}n≥1 gen-
erated by v1 = 3. For n ≥ 1,

vn ≡
{

1 (mod 8) for even n,

3 (mod 8) for odd n.

Proof. Note that v2 = 1
3(3 + 23 · 0) = 1, and hence vn+1 = un for all

n ≥ 1. The result follows from Lemma A4.

Lemma A6. Let {xn}n≥1 be the point of Σ derived from {un}n≥1, and
let {yn}n≥1 be the point of Σ derived from {vn}n≥1.

(1) For n ≥ 1,

2n−1xn ≡

{ π
4 (mod 2π) for odd n,

3π
4 (mod 2π) for even n.

(2) For n ≥ 1,

2n−1yn ≡

{ π
4 (mod 2π) for even n,

3π
4 (mod 2π) for odd n.

Proof. (1) Note that 2n−1xn = 2n−1 1
2n+1unπ = 1

4unπ. If n is odd, by
Lemma A4,

1
4unπ = 1

4((un − 1)π + π) = 1
4(8`π + π) = 2`π + π

4 .

So, 2n−1xn ≡ π
4 (mod 2π).

If n is even, by Lemma A4,

1
4unπ = 1

4((un − 3)π + 3π) = 1
4(8`π + 3π) = 2`π + 3π

4 .

So, 2n−1xn ≡ 3π
4 (mod 2π).

(2) follows analogously from Lemma A5.

For n ≥ 1, let p1 =
(
1,−1, 3π2 , x1, x2, . . .

)
, p2 =

(
1, 1,−1, 3π2 , x1, x2, . . .

)
,

and in general, pn =
(
1, 1, . . . , 1,−1, 3π2 , x1, x2, x3, . . .

)
, where each of the
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first n coordinates of pn is 1, the (n+ 1)st coordinate is −1, the (n+ 2)nd
coordinate is 3π

2 , and the x sequence begins in the (n+3)rd coordinate of pn.
Note that pn ∈ Σ for each n, and more specifically, pn ∈ E. Clearly, {pn}
converges to the point e = (1, 1, 1, . . .).

Analogously define a sequence {qn} using the y sequence beginning in
the (n + 3)rd coordinate of qn. That is, q1 =

(
1,−1, π2 , y1, y2, . . .

)
, q2 =(

1, 1,−1, π2 , y1, y2, . . .
)
, etc. Each qn is in E, and {qn} converges to the point

e = (1, 1, 1, . . .).

Lemma A7. For each n ≥ 1,

〈φ(pn), φ(s(pn)), φ(s2(pn)), . . .〉 =
〈√

2
2 ,−

√
2
2 ,
√
2
2 , . . .

〉
,〈

φ(qn), φ(s(qn)), φ(s2(qn)), . . .〉 = 〈−
√
2
2 ,
√
2
2 ,−

√
2
2 , . . .

〉
.

Proof. Recalling the definition of φ, note that the second non-real co-

ordinate of pn is x1 = π
4 . So, φ(pn) =

√
2
2 . Since s is the squaring map

on E, through our identification, s “multiplies by 2” in each coordinate
of pn. Since 2 · 3π2 = 3π ≡ −1 and (−1)2 = 1, the second non-real coordinate

of s(pn) is 2x2. Similarly, the second non-real coordinate of sk(pn) is 2kxk+1.

By Lemma A6(1), 2x2 ≡ 3π
4 (mod 2π); so φ(s(pn)) = −

√
2
2 . In general,

2kxk+1 is equivalent (mod 2π) to either π
4 or 3π

4 as k is even or odd. It

follows that φ(s2(pn)) =
√
2
2 , φ(s3(pn)) = −

√
2
2 , and the values of φ(sk(pn))

continue to alternate between
√
2
2 and −

√
2
2 .

Similarly, the second non-real coordinate of qn is y1 = 3π
4 . So, φ(qn)

= −
√
2
2 , and by Lemma A6(2) the values of φ(sk(qn)) alternate between

−
√
2
2 and

√
2
2 .

Let p =
(
e,
〈√

2
2 ,−

√
2
2 ,
√
2
2 , . . .

〉)
and q =

(
e,
〈
−
√
2
2 ,
√
2
2 ,−

√
2
2 , . . .

〉)
.

Theorem A1. The points p and q form a period two orbit in J . That
is, p and q are in J , s(p) = q, and s(q) = p.

Proof. By Lemma A7 and the definition of g, we see that g(pn) =(
pn,
〈√

2
2 ,−

√
2
2 ,
√
2
2 , . . .

〉)
for each n ≥ 1. It follows that {g(pn)} converges

to p =
(
e,
〈√

2
2 ,−

√
2
2 ,
√
2
2 , . . .

〉)
.

Similarly, g(qn) =
(
qn,
〈
−
√
2
2 ,
√
2
2 ,−

√
2
2 , . . .

〉)
for each n ≥ 1, and {g(qn)}

converges to q =
(
e,
〈
−
√
2
2 ,
√
2
2 ,−

√
2
2 , . . .

〉)
.

By construction, we see that p, q ∈ g(E) − E = J ⊂ K. Recalling the
definition of s : K → K, we conclude that s(p) = q and s(q) = p.

So, p is a point of period 2 under s, and hence a point of period 2 under F̂ .
To complete this section, we wish to show that no point of Σ̂ other than

q maps to p, and vice versa. That is, f̂−1(p) = {q} and f̂−1(q) = {p}.
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From the section concerning the behavior of f̂ on J , we know that if

f̂(x) = s(x) = p for some x ∈ Σ̂, then x ∈ J . Let x = (e, 〈x1, x2, . . .〉) and
suppose that s(x) = p. We have

s(x) = (e, 〈x2, x3, . . .〉) =
(
e,
〈√

2
2 ,−

√
2
2 ,
√
2
2 , . . .

〉)
.

So, x =
(
e,
〈
x1,

√
2
2 ,−

√
2
2 , . . .

〉)
. Since x ∈ J , there exists a sequence

{wn} of points in Ê = g(E) that converges to x. For n ≥ 1, let wn =
(zn, 〈φ(zn), φ(s(zn)), . . .〉). Since M is finite, the sequence {φ(s(zn))} must

eventually be the constant sequence
{√

2
2

}
. So, for large n, the second non-

real coordinate of s(zn) is either π
4 or 7π

4 . Hence, the third non-real coordi-

nate of zn is 9π
8 , π

8 , 7π
8 , or 15π

8 . Thus, the second non-real coordinate of zn
must be 6 · 9π8 , 6 · π8 , 6 · 7π8 , or 6 · 15π8 . But each of these circle points has real

part −
√
2
2 . So, φ(zn) = −

√
2
2 for large n, and thus x1 = −

√
2
2 . So, x = q.

The proof that f̂−1(q) = {p} is similar.

A period three point of J

Lemma A8. Let n ∈ N.

(i) If n ≡ 0 (mod 3), then 2n · 2π9 ≡
2π
9 (mod 2π) for even n, and

2n · 2π9 ≡
16π
9 (mod 2π) for odd n.

(ii) If n ≡ 1 (mod 3), then 2n · 2π9 ≡
4π
9 (mod 2π) for even n, and

2n · 2π9 ≡
14π
9 (mod 2π) for odd n.

(iii) If n ≡ 2 (mod 3), then 2n · 2π9 ≡
8π
9 (mod 2π) for even n, and

2n · 2π9 ≡
10π
9 (mod 2π) for odd n.

Proof. (i) Suppose first that n ≡ 0 (mod 3) and n is even. Then by
Lemma A2(i), 2n − 1 = 9k for some integer k. So,

2n − 1

9
= k,

2n2π

9
− 2π

9
= 2πk.

That is, 2n · 2π9 ≡
2π
9 (mod 2π).

Suppose n ≡ 0 (mod 3) and n is odd. Then by Lemma A2(ii), 2n+1 = 9k
for some integer k. So,

2n − 8 = 9(k − 1),

2n − 8

9
= k − 1,

2n2π

9
− 16π

9
= 2π(k − 1).

That is, 2n · 2π9 ≡
16π
9 (mod 2π).

The proofs of cases (ii) and (iii) are similar.
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Note that in each case of Lemma A8, the real part of 2n · 2π9 is the same
whether n is even or odd.

For n ≥ 1, define the sequences{
an =

π

2n−23n+1

}
,

{
bn =

π

2n−33n+1

}
,

{
cn =

π

2n−43n+1

}
.

It is easy to check that these sequences are points of Σ.

Define three sequences of points in E as follows. For n ≥ 1, let αn =(
1, 1, . . . , 1, 4π3 , a1, a2, . . .

)
, where the {ai} sequence starts in the (n + 2)nd

coordinate, which is the second non-real coordinate of αn. For n ≥ 1, define
βn and γn analogously using the sequences {bi} and {ci}. That is, βn =(
1, 1, . . . , 1, 2π3 , b1, b2, . . .

)
and γn =

(
1, 1, . . . , 1, 4π3 , c1, c2, . . .

)
.

Let t2, t4, and t8 be, respectively, the real parts of 2π
9 , 4π

9 , and 8π
9 .

Applying Lemma A8, it is easy to see that for each n ≥ 1,

〈φ(αn), φ(s(αn)), φ(s2(αn)), φ(s3(αn)), . . .〉 = 〈t2, t4, t8, t2, . . .〉,

〈φ(βn), φ(s(βn)), φ(s2(βn)), φ(s3(βn)), . . .〉 = 〈t4, t8, t2, t4, . . .〉,

〈φ(γn), φ(s(γn)), φ(s2(γn)), φ(s3(γn)), . . .〉 = 〈t8, t2, t4, t8, . . .〉.

So, {g(αn)} converges to the point α = (e, 〈t2, t4, t8, t2, . . .〉), {g(βn)} con-
verges to the point β = (e, 〈t4, t8, t2, t4, . . .〉), and {g(γn)} converges to the
point γ = (e, 〈t8, t2, t4, t8, . . .〉). Hence, we have the following theorem.

Theorem A2. The points α, β, and γ form a period three orbit in J .
That is, α, β, and γ are in J , s(α) = β, s(β) = γ, and s(γ) = α.

Unlike the period two orbit, other points of J can be mapped by s, and
thus by F̂ , into the period three orbit. To see this, we note that s−1(α)
6= {γ}. Let t1 be the real part of π

9 , which is not equal to any of t2, t4,
or t8. We can show, in a similar manner that we showed p, q, α, β, and γ
are in J , that the point y = (e, 〈t1, t2, t4, t8, t2, t4, . . .〉) is in J . Also, y 6= γ.
By definition of s we see that s(y) = α. So, s is not one-to-one on J , and
therefore F̂ |J is not one-to-one.
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