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Abstract. We investigate the structure of kneading sequences that belong to uni-
modal maps for which the omega-limit set of the turning point is a minimal Cantor set.
We define a scheme that can be used to generate uniformly recurrent and regularly recur-
rent infinite sequences over a finite alphabet. It is then shown that if the kneading sequence
of a unimodal map can be generated from one of these schemes, then the omega-limit set
of the turning point must be a minimal Cantor set.

1. Introduction. One of the simplest examples of a dynamical system is
a continuous map of an interval to itself, and one subcollection of such maps
that has received a great deal of interest in the literature are the unimodal
maps [3, 4, 5, 6]. There has been recent interest in locating unimodal maps f
where ω(c), the omega-limit set of the turning point, is a minimal Cantor set
and f |ω(c) is a homeomorphism. Many sufficient conditions exist that can be
placed on a unimodal map to guarantee such a homeomorphic restriction,
although there is no known combinatoric characterization of this behavior.
In order to better study these homeomorphic restrictions, we first investigate
conditions that can be placed on the kneading sequence of a unimodal map
to guarantee ω(c) will be a minimal Cantor set.

It is well-known that if limk→∞Q(k) = ∞, where Q(k) is the kneading
map of a unimodal map f , then ω(c) is a minimal Cantor set. However,
there exist many unimodal maps for which limk→∞Q(k) 6= ∞ but ω(c) is
still a minimal Cantor set. Further, it is well-established that if the kneading
sequence K(f) for a unimodal map f is infinite and c is recurrent, then
ω(c) is a minimal Cantor set if and only if K(f) is a uniformly recurrent
sequence. We thus study the structure of uniformly recurrent sequences and
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then provide a sufficient condition for a kneading sequence to belong to a
unimodal map f with ω(c) a minimal Cantor set.

2. Background

2.1. Unimodal maps. A unimodal map is a continuous map f : [0, 1]→
[0, 1] for which there exists a point c ∈ (0, 1) such that f |[0,c) is strictly in-
creasing and f |(c,1] is strictly decreasing. We call the point c the turning point
of the map and for each n ∈ N we set cn = fn(c). Examples of unimodal
maps include symmetric tent maps and logistic maps. The symmetric tent
map Ta : [0, 1]→ [0, 1] with a ∈ [0, 2] is given by Ta(x) = min{ax, a(1−x)},
whereas the logistic map ga : [0, 1] → [0, 1] with a ∈ [0, 4] is defined by
ga(x) = ax(1 − x). In this paper, unless otherwise stated, we assume that
all maps are unimodal, have no wandering intervals, and have no attracting
periodic orbits; thus we may assume the map is from either the symmet-
ric tent family or the logistic family. We further suppose c2 < c < c1 and
c2 ≤ c3, as otherwise the asymptotic dynamics will be uninteresting.

Let fn be an iterate of f and let J be a maximal subinterval on which
fn|J is monotone. If c ∈ ∂J , then fn : J → [0, 1] is called a central branch
of fn. An iterate n is called a cutting time if the image of the central branch
of fn contains c. We denote the cutting times S0, S1, S2, . . . , where S0 = 1
and S1 = 2. As the difference between two consecutive cutting times is again
a cutting time, we define a function Q : N → N ∪ {0}, called the kneading
map, by SQ(k) = Sk − Sk−1. A function Q is the kneading map for some

unimodal map f if and only if {Q(k + j)}j≥1 = {Q(Q2(k) + j)}j≥1 and
Q(k) < k for all k ≥ 1, where = represents the lexicographical ordering [7].

Given a unimodal map f and a point x ∈ [0, 1], the itinerary of x under f
is given by I(x) = I0I1I2 · · · where Ij = 1 if f j(x) > c, Ij = 0 if f j(x) < c,
and Ij = ∗ if f j(x) = c. The kneading sequence of f , denoted K(f), is the
itinerary I(c1). We make the convention that the kneading sequence stops
the first time an ∗ appears, as the turning point is thus periodic; if cn 6= c
for all n ∈ N, then K(f) is infinite.

We compare itineraries using the parity lexicographical ordering, or plo
for short. Suppose that v and w are two itineraries such that v 6= w. Find
the first position in which v and w differ and compare that position using
the ordering 0 ≺ ∗ ≺ 1 if the number of 1’s preceding that position is even
(even parity); else (odd parity) use the ordering 0 � ∗ � 1. Let e be either
an infinite sequence of 1’s and 0’s or a finite sequence of 1’s and 0’s ending
in ∗; then e is shift maximal if σk(e) � e for all k ∈ N, where σ represents
the shift map. Every unimodal map has a shift maximal kneading sequence,
and if e is a shift maximal sequence of 0’s, 1’s and ∗’s, then there exists a
unimodal map f such that K(f) = e (see [2]). Further, the sequence of cut-
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ting times, kneading map, and kneading sequence all completely determine
the associated unimodal map up to conjugacy.

A unimodal map f is renormalizable of period n ≥ 2 provided there
exists an interval J 3 c such that fn(J) ⊂ J and fn|J is again a unimodal
map, relaxing the definition of unimodal to allow for decreasing to the left
of the turning point and increasing to the right. If fn|J is again renormal-
izable, then we say f is twice renormalizable. Similarly, if we can continue
this process forever, then f is infinitely renormalizable. As we assume all
unimodal maps have no wandering intervals and no attracting periodic or-
bits, if the unimodal map f is non-renormalizable, then we may take f to
be from the symmetric tent family; in the case where f is renormalizable,
we may assume f is logistic [3].

We conclude this section by noting there is a natural relationship between
renormalization and kneading sequences that is well-understood. A uni-
modal map is renormalizable if and only if its kneading sequence may be
written as a star product [6, Chapter II.2].

Let n,m ∈ N, P = P1 · · ·Pn ∈ {0, 1}n, and Q = Q1 · · ·Qm ∈ {0, 1}m.
The star product (?-product) of P and Q is defined by

P ? Q =

{
PQ̃1 · · ·PQ̃mP if P has odd parity,

PQ1 · · ·PQmP if P has even parity,

where Q̃i = 1−Qi. If P∗ and Q∗ are both shift maximal, then (P ?Q)∗ is also
shift maximal. Further, these definitions and results extend to sequences P
and Q where P has finite length and Q ∈ {0, 1}N.

2.2. Omega-limit sets and recurrence. The omega-limit set of a
point x ∈ [0, 1] under f is defined by ω(x, f) = ω(x) = {y ∈ [0, 1] | ∃n1 <
n2 < · · · with fni(x)→ y}. A point x ∈ [0, 1] is recurrent if for every open
set U 3 x, there exists an m ∈ N such that fm(x) ∈ U ; equivalently, x is
recurrent if and only if x ∈ ω(x). The point x ∈ [0, 1] is uniformly recurrent
if for every open set U 3 x, there exists an M ∈ N such that whenever
f j(x) ∈ U for j ≥ 0, then f j+k(x) ∈ U for some 0 < k ≤ M . We say
x ∈ [0, 1] is regularly recurrent if for every open set U 3 x, there exists an
M ∈ N such that fM ·n(x) ∈ U for all n ∈ N. Note that every regularly
recurrent point is uniformly recurrent and every uniformly recurrent point
is recurrent, but the converses do not hold.

Given a continuous map f : E → E of a compact metric space, a set
F ⊆ E is minimal provided F is non-empty, closed, invariant, and no proper
subset of F has these properties. As we are interested in determining which
unimodal maps f are such that ω(c) is a minimal Cantor set, we now consider
the concepts of recurrence and minimality in terms of infinite sequences.
Given a finite alphabet A, the sequence w ∈ AN is uniformly recurrent or
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minimal if for any word u appearing in w, there exists an M such that every
word of length M in w contains at least one occurrence of u. A sequence
w = w1w2 · · · ∈ AN is called a Toeplitz sequence if for every i ∈ N, there
exists a pi > 1 such that wi = wi+npi for all n ∈ N. A point x ∈ [0, 1] is reg-
ularly recurrent under f if and only if its itinerary is a Toeplitz sequence [1];
we will refer to Toeplitz sequences as regularly recurrent sequences.

We note the following well-known results relating omega-limit sets, min-
imality, and recurrence. For a more thorough discussion see [3].

Theorem 2.1. Let f : E → E be a continuous map of a compact metric
space and x ∈ E. If x ∈ ω(x, f), then ω(x, f) is minimal if and only if x is
uniformly recurrent.

Lemma 2.2. Let f : I → I be a continuous map of a closed interval. If
F ⊂ I is infinite and minimal, then F is a Cantor set.

Corollary 2.3. Let K(f) be an infinite kneading sequence. If c ∈ ω(c),
then ω(c) is a minimal Cantor set if and only if c is uniformly recurrent.

Corollary 2.4. Let K(f) be an infinite kneading sequence. Then c is
uniformly recurrent if and only if K(f) is uniformly recurrent. Similarly, a
point x ∈ [0, 1] (with fn(x) 6= c for all n ∈ N) is uniformly recurrent if and
only if its itinerary I(x) is uniformly recurrent.

Proposition 2.5. Let f be a unimodal map and suppose that limk→∞Q(k)
=∞. Then c is uniformly recurrent and ω(c) is a minimal Cantor set.

We now make some observations about ω(c, f), where f is a unimodal
map. If f has an attracting periodic orbit in [c2, c1], then ω(c) is precisely
that orbit. Further, if f is infinitely renormalizable, then c is regularly re-
current and ω(c) is a minimal Cantor set. We note that if f is finitely renor-
malizable, then there exists a restrictive interval J and an integer k such
that fk|J is topologically conjugate to a non-renormalizable map. As we are
interested in unimodal maps with no wandering intervals and no attracting
periodic orbits, if we further restrict our attention to non-renormalizable
maps, then we may assume f is a symmetric tent map.

For a symmetric tent map f and turning point c, if the orbit of c is infinite
but not dense in the core, then ω(c) is a nowhere dense, totally disconnected
set. In this case either all points in the orbit of c are isolated with respect to
the orbit, or at most finitely many points in the orbit of c are isolated with
respect to the orbit. In the former case, either ω(c) is countable or ω(c) is
the union of a Cantor set and a (possibly empty) countable set; in the latter
case, ω(c) is exactly a Cantor set [3, Section 10.2].

We focus on the case where at most finitely many ci are isolated with
respect to the orbit of c, as ω(c) will be a Cantor set and there will exist
an M such that cn ∈ ω(c) for all n ≥ M . It follows that ω(c) = ω(cM )
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will be minimal if and only if cM is uniformly recurrent. We thus study the
structure of uniformly recurrent sequences in order to begin to characterize
those unimodal maps f for which ω(c) is a minimal Cantor set. It is still
unknown whether ω(c) can be an infinite minimal Cantor set if every point
in the orbit of c is isolated with respect to the orbit.

3. Uniform recurrence in sequences. In this section we explore the
occurrences of words that appear in uniformly recurrent sequences. We ob-
serve that if x is a word occurring at a position congruent to q mod k in
a uniformly recurrent sequence w, then x will again appear in a position
congruent to q mod k within a fixed number of positions.

Let w = w1w2 · · · be a uniformly recurrent sequence. The function
Rw : N→ N is a recurrence return function of w if every word of length n
that occurs in w occurs in each block of length Rw(n) in w. Note that be-
cause w is uniformly recurrent, such a function does exist. That is, consider
the list of all words of length n that appear in w. Each of these words will
have a first occurrence in w, so let w1 · · ·wN be the smallest initial block
of w that contains every word of length n. As w is uniformly recurrent, there
exists an Mn such that every block of length Mn contains w1 · · ·wN as a
subword. Let Rw(n) = Mn.

Lemma 3.1. Suppose that w = w1w2 · · · is a uniformly recurrent se-
quence. Fix k ∈ N and let x = wiwi+1 · · ·wj be a word that appears in w. If
i ≡ q mod k, then x appears in w at x = wi′ · · ·wj′ for some i′ ≡ q mod k
with i < i′ < Rk−1(Rw(|x|)) + i, where R(n) = Rw(n+ 1).

Proof. Let x0 = wiwi+1 · · ·wj be a word that appears in w such that
i ≡ q mod k. Let wi0 · · ·wj0 be the first occurrence of x0 in w such that
i0 > i. Then j0 ≤ Rw(|x0|) + i. Suppose that i0 ≡ q0 mod k. If q0 = q, then
the conclusion holds. Thus suppose q0 6= q.

Let x1 = wiwi+1 · · ·wj0 and suppose wi1 · · ·wj1 is the first occurrence of
x1 in w such that i1 > i. Thus j1 ≤ Rw(Rw(|x0|) + 1) + i = R(Rw(|x0|)) + i.
Let i1 + i0 − i ≡ q1 mod k. If q1 = q, then wi1+i0+i · · ·wj1 = x0 and the
conclusion holds. Similarly, if q1 = q0, then wi1 · · ·wi1+j−i = x0 and the
conclusion holds. Hence we suppose q1 6= q and q1 6= q0.

Let x2 = wiwi+1 · · ·wj1 and suppose wi2 · · ·wj2 is the first occurrence
of x2 in w such that i2 > i. Then j2 ≤ Rw(Rw(Rw(|x0|) + 1) + 1) + i
= R2(Rw(|x0|)) + i. Let i2 + i1 + i0 − 2i ≡ q2 mod k. If q2 = q, then
wi2+i1+i0−2i · · ·wj2 = x0; if q2 = q0, then wi2+i1−i · · ·wi2+i1+j−2i = x0; if
q2 = q1, then wi2 · · ·wi2+j−i = x0. In each case the conclusion is satisfied,
so we assume q2 6= q, q2 6= q0 and q2 6= q1.

Continue this process inductively for all n < k − 1. That is, set xn =
wiwi+1 · · ·wjn−1 and suppose win · · ·wjn is the first occurrence of xn in w
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such that in > i. Then jn ≤ Rn(Rw(|x0|)) + i. Let in + in−1 + · · ·+ i0−ni ≡
qn mod k where qn ∈ {0, 1, . . . , k − 1}. If qn = qi for some 0 ≤ i ≤ n − 1
or qn = q, then we have an occurrence of x0 starting at a position which
is congruent to q mod k, and the result holds. Thus assume qn 6= qi for all
0 ≤ i ≤ n− 1 and qn 6= q.

As there are only k possible words in the set {0, 1, . . . , k − 1}, it follows
that if xk−1 = wi · · ·wjk−2

and wik−1
· · ·wjk−1

is the first occurrence of xk−1
in w such that ik−1 > i, then if ik−1+ ik−2+ · · ·+ i0−(k−1)i ≡ qk−1 mod k,
it must be that qk−1 = qi for some i < k − 1 or qk−1 = q. We thus have
x0 = wi′ · · ·wj′ with i′ ≡ q mod k, i′ > i, and j′ ≤ Rk−1(Rw(|x0|))+i. Hence
the result holds.

4. A-uniform schemes. In this section we define a scheme that can
be used to construct all uniformly recurrent one-sided sequences of sym-
bols from the finite alphabet A. We then modify this definition in order
to construct all regularly recurrent sequences in AN. Connections are made
to kneading sequences of unimodal maps, and it is shown that a sequence
A ? B is uniformly recurrent if and only if B is uniformly recurrent. The
definitions and techniques used in this section are motivated by computer
science results in [8] and [9].

Definition 4.1. An A-uniform scheme is a sequence of pairs 〈ln, An〉
such that

(1) {ln} is an increasing sequence of positive integers.
(2) Each word in An is in Aln .
(3) For each n and for each u ∈ An+1, u = v1 · · · vk where vi ∈ An for

each i, and for each w ∈ An there exists an i < k such that w = vi.

We say a sequence w ∈ AN is generated by an A-uniform scheme 〈ln, An〉
if for every i, n ∈ N, wiln+1wiln+2 · · ·w(i+1)ln ∈ An.

Theorem 4.2. A sequence w ∈ AN is uniformly recurrent if and only if
w is generated by an A-uniform scheme.

Proof. Suppose a sequence w is generated by an A-uniform scheme
〈ln, An〉. Let x be a word in w such that x = wm+1 · · ·wm+|x| is the first ap-
pearance of x in w. Choose an n such that ln ≥ m+|x|. Then w1 · · ·wln ∈ An

and w1 · · ·wln contains x as a subword. As every word in An+1 contains a
copy of w1 · · ·wln , every word in An+1 contains x as a subword. Hence, every
block of length 2ln+1 in w contains a full copy of at least one word from
An+1 and thus contains x as a subword. It follows w is uniformly recurrent.

On the other hand, suppose that w is uniformly recurrent. We will con-
struct a uniform scheme 〈ln, An〉 that generates w. We say the occurrence
wi+1 · · ·wi+|x| of the word x is a good occurrence of x ∈ An if ln | i.
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Let An = {u ∈ Aln | u has infinitely many good occurrences in w}.
First of all note that An 6= ∅ as there are only finitely many words of
length ln and w is an infinite sequence. We define the sequence {ln} by
induction. Suppose ln is given; for completeness, define l0 = 1.

Let M be chosen such that w1 · · ·wM contains a good occurrence of
each word in An. By Lemma 3.1 there exists a good occurrence of w1 · · ·wM

within every block of length Rln−1(Rw(M)). Thus let ln+1 be the least num-
ber with ln+1 ≥ Rln−1(Rw(M)) and ln | ln+1. It follows that every block of
length ln+1 contains a good occurrence of each word in An.

It remains to show that 〈ln, An〉 is an A-uniform scheme generating w.
Note that conditions (1) and (2) of Definition 4.1 are clearly met. Fix
n ∈ N and let u ∈ An+1. Then u has infinitely many good occurrences
in w, including u = wjln+1+1wjln+1+2 · · ·w(j+1)ln+1

for some j ∈ N. Note
that because |u| = ln+1 and ln | ln+1, we have u = v1 · · · vk where each
|vi| = ln and k = ln+1/ln. Hence there are infinitely many good occur-
rences of each vi in w, and thus we have vi ∈ An for each i. Now, be-
cause each block of length ln+1 contains a good occurrence of each word
in An, wjln+1wjln+1+1 · · ·w(j+1)ln+1−1 contains a good occurrence of each
word in An. Thus v1 · · · vk−1 contains each word in An. Hence condition
(3) from Definition 4.1 is satisfied. Lastly, for all i, n ∈ N the word x =
wiln+1wiln+2 · · ·w(i+1)ln starts at a position congruent to 1 mod ln. By Lem-
ma 3.1, x occurs infinitely often in w starting at positions congruent to
1 mod ln. That is, x ∈ An, as desired.

Using Theorem 4.2 and the results stated in Section 2.2, we make the
following observations.

Corollary 4.3. Let K(f) be an infinite kneading sequence. Then c is
uniformly recurrent if and only if K(f) is generated by a {0, 1}-uniform
scheme.

Corollary 4.4. Let K(f) be an infinite kneading sequence and suppose
that at most finitely many points in the orbit of c are isolated with respect to
the orbit of c. Then ω(c) is a minimal Cantor set if and only if σM (K(f))
is generated by a {0, 1}-uniform block scheme for some M ≥ 0, where σ is
the shift map.

We now add one additional condition to the uniform scheme to gain a
stronger result involving regular recurrence.

Theorem 4.5. A sequence w ∈ AN is regularly recurrent if and only if
w may be generated by an A-uniform scheme 〈ln, An〉 with the additional
property that each word in An+1 begins with w1 · · ·wln.

Proof. Let w be generated by an A-uniform scheme with the above addi-
tional property. Fix N ∈ N and choose m ∈ N such that 1 ≤ N ≤ lm. Hence
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w1 · · ·wN · · ·wlm ∈ Am and wi(lm+1)+1 · · ·wi(lm+1)+lm = w1 · · ·wN · · ·wlm for
all i ∈ N. Therefore w1 · · ·wN = wi(lm+1)+1 · · ·wi(lm+1)+N for all i ∈ N. It
follows that w is regularly recurrent.

Conversely, let w be regularly recurrent. We construct a uniform scheme
with the additional property that for all n ∈ N, every word in An+1 begins
with w1 · · ·wln .

Let l0 = 1 and A0 be the smallest subset of A containing every letter
that appears in w. Let N1 be the smallest integer such that w1 · · ·wN1−1
contains each word from A0. As w is regularly recurrent, there exists a T1
such that w1 · · ·wN1 = wiT1+1 · · ·wiT1+N1 for all i ∈ N. Set l1 = T1 and let
A1 = {wil1+1wil1+2 · · ·w(i+1)l1 | i ∈ N}.

Now letN2 be the smallest integer such that w1 · · ·wN2−1 contains a good
occurrence of each word in A1. As w is regularly recurrent, there exists a
T2 > N2 such that T1 |T2 and w1 · · ·wN2 = wiT2+1 · · ·wiT2+N2 for all i ∈ N.
Set l2 = T2 and let A2 = {wil2+1wil2+2 · · ·w(i+1)l2 | i ∈ N}.

Continue this process inductively for each n ∈ N: Let Nn be the smallest
integer for which w1 · · ·wNn−1 contains a good occurrence of each word from
An−1; let Tn>Nn be such that Tn−1 |Tn and w1 · · ·wNn =wiTn+1 · · ·wiTn+Nn

for all i ∈ N; set ln = Tn and then set An = {wiln+1wiln+2 · · ·w(i+1)ln |
i ∈ N}.

We now show 〈ln, An〉 is a uniform scheme with the additional property
that An begins with w1 · · ·wln−1 for all n ∈ N. Note that conditions (1) and
(2) of Definition 4.1 are clearly met. Further, since ln−1 < Nn < ln and
ln−1 | ln, each word u ∈ An is such that u = v1 · · · vk where vi ∈ An−1 for
each i, and each word w ∈ An−1 is such that w = vi for some i < k. Finally,
based on the construction of 〈ln, An〉, the additional property that every
word of An begins with w1 · · ·wln−1 is satisfied.

We refer to an A-uniform scheme that is given the additional property
that for each n ∈ N there is a word u ∈ An−1 such that each word in An

begins with u as an A-regular scheme.

Corollary 4.6. Let K(f) be an infinite kneading sequence. Then c
is regularly recurrent if and only if K(f) is generated by a {0, 1}-regular
scheme.

Note that in the above theorems and corollaries it does not matter if
f is a renormalizable unimodal map or if it is non-renormalizable. If f is
infinitely renormalizable, then c is regularly recurrent, c ∈ ω(c), ω(c) is a
minimal Cantor set, andK(f) can be generated from a {0, 1}-regular scheme.
If f is finitely renormalizable, then K(f) = A ? B, where B is the kneading
sequence of a non-renormalizable unimodal map. We now show:
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Lemma 4.7. The infinite sequence A?B ∈ {0, 1}N is uniformly recurrent
if and only if the infinite sequence B ∈ {0, 1}N is uniformly recurrent.

Proof. Let A = a1 · · · an ∈ {0, 1}n and B = b1b2 · · · ∈ {0, 1}N. Without
loss of generality we assume that A has even parity; thus A?B = Ab1Ab2 · · · .

First suppose that B is uniformly recurrent. Then for each M there exists
anN such that if b1 · · · bM = bi+1 · · · bi+M , then b1 · · · bM = bi+1+j · · · bi+M+j

for some j ≤ N . Thus whenever Ab1 · · ·AbM = Abi+1 · · ·Abi+M , then
Abi+1+j · · ·Abi+M+j = Ab1 · · ·AbM for some j ≤ N . It follows that A?B is
uniformly recurrent.

Conversely, suppose that A?B is uniformly recurrent. For ease we denote
A ? B = c1c2 · · · . Fix M and consider c1 · · · c(n+1)M = Ab1 · · ·AbM . By
Lemma 3.1, Ab1 · · ·AbM appears in A ? B at ci+1 · · · ci+(n+1)M for some i ≡
0 mod (n+1)M with 0 < i < R(n+1)M−1(RA?B((n+1)M)). In fact, whenever
Ab1 · · ·AbM appears in an initial position congruent to 0 mod (n+ 1)M , it
appears again in a position congruent to 0 mod (n+ 1)M within a bound of
R(n+1)M−1(RA?B((n+1)M)). Thus, there exists aK ∈ N such that whenever
b1 · · · bM = bi+1 · · · bi+M , then bi+j+1 · · · bi+j+M = b1 · · · bM for some j ≤ K.
That is, B is uniformly recurrent.

Corollary 4.8. The infinite sequence A ? B is such that σM (A ? B)
is uniformly recurrent for some M ≥ 0 if and only if σk(B) is uniformly
recurrent for some k ≥ 0.

We note that both Lemma 4.7 and Corollary 4.8 can be extended to the
regularly recurrent case.

5. Constructing kneading sequences via uniform schemes. In
this section we focus on generating kneading sequences from {0, 1}-uniform
schemes. This leads to our main result, Theorem 5.2, which provides suffi-
cient conditions for a kneading sequence to belong to a unimodal map f for
which ω(c, f) is a minimal Cantor set. Such a map is constructed in Example
5.3.

Suppose w ∈ {0, 1}N is generated from a {0, 1}-uniform scheme. Then
w1 · · ·wln ∈ An for all n. Further,

w1 · · ·wln+1 = (w1 · · ·wln)(wln+1 · · ·w2ln) · · · (wln+1−ln+1 · · ·wln+1),

where wiln+1 · · ·w(i+1)ln ∈ An for each i. Hence, we may denote the words

in An as A1
n, . . . , A

kn
n where kn = |An| and A1

n = w1 · · ·wln for all n.

Lemma 5.1. The sequence w ∈ {0, 1}N generated by a uniform scheme
is shift maximal if and only if A1

n � σk(A1
n) for all k ≥ 0 and all n ≥ 1.
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Proof. If w is shift maximal, then w � σk(w) for all k ∈ N. As w is the
concatenation of blocks from An beginning with A1

n (this can be done for
each n ≥ 1), A1

n � σk(A1
n) for all k ≥ 0 and all n ≥ 1.

If w is not shift maximal, then there exists some k ∈ N such that w ≺
σk(w). If m ∈ N is the first position in w where w and σk(w) differ, then
choose n such that ln > k +m. This implies A1

n ≺ σk(A1
n).

It thus follows that a sequence w generated by a {0, 1}-uniform scheme
〈ln, An〉 is the kneading sequence for a unimodal map if and only if An =
{A1

n, . . . , A
kn
n } where

(1) A1
n+1 = v1 · · · vk where vi ∈ An for all n, v1 = A1

n, and each x ∈ An

is such that x = vi for some i < k.
(2) A1

n � σk(A1
n) for all n, k ∈ N.

(3) w = limn→∞A
1
n.

Theorem 5.2. A sequence w ∈ {0, 1}N is the kneading sequence for
a unimodal map f such that ω(c, f) is a minimal Cantor set if w = BA
(with B possibly the empty word) where A is generated by a {0, 1}-uniform
scheme 〈ln, An〉 with An = {A1

n, . . . , A
kn
n } satisfying:

(1) A1
n+1 = v1 · · · vk where vi ∈ An for all n, v1 = A1

n, and each u ∈ An

is such that u = vi for some i < k.
(2) A = limn→∞A

1
n.

(3) BA1
n � σk(BA1

n) for all n, k ∈ N.

Proof. This follows directly from Corollary 4.4 and Lemma 5.1

We now provide an example of a unimodal map whose kneading sequence
is generated by a {0, 1}-uniform scheme.

Example 5.3. For each n, set ln = 32 · 4n−1. Let

A1
1 = 10001010100110101010101010001011,

A2
1 = 10001010100110101000101010001011.

For each n ≥ 1, let

A1
n+1 = A1

nA
2
nA

1
nA

1
n, A2

n+1 = A1
nA

2
nA

1
nA

2
n.

Set A = limn→∞A
1
n. We let g be the unimodal map such that K(g) = A;

this is precisely the map constructed in [1, Example 4.3]. Here c ∈ ω(c) and
ω(c) is a minimal Cantor set. In fact, since 〈ln, An〉 is also a regular scheme,
c is regularly recurrent.

Now set B = 10000. Then BA is shift maximal and non-renormalizable.
Thus BA = K(T ) for some symmetric tent map T . Note that in this example
c is not uniformly recurrent, but cn is uniformly recurrent for all n ≥ 5 (in
fact, cn is regularly recurrent for all n ≥ 5). In this case ω(c) is a minimal
Cantor set.
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Remark 5.4. Theorem 5.2 gives a sufficient condition for ω(c) to be a
minimal Cantor set for a unimodal map f . At this time the author is un-
certain whether it is possible to have a minimal Cantor set ω(c) when every
point in the orbit of c is isolated with respect to the orbit (see Example 5.5
for a non-minimal Cantor set ω(c)). If this is not possible, then Theorem 5.2
will provide a complete characterization for when a unimodal map f is such
that ω(c) is a minimal Cantor set. Further, if it is possible, then such an
example would be interesting.

We conclude by showing that there exists a unimodal map for which
every point in the orbit of c is isolated with respect to the orbit and ω(c) is
a Cantor set. In this case ω(c) is not minimal.

Example 5.5. Let A = 111, B = 101, and C = 010. Let XB denote the
Cantor set of all concatenations of A and B and their shifts; similarly, let
XC denote the Cantor set of all concatenations of A and C and their shifts.
Note that XB ∩XC = {1∞}.

Consider the sequence

e = 1012.A.B.1.A.C.12.AA.AB.BA.BB.13.AA.AC.CA.CC.14.AAA.AAB.

ABA.ABB.BAA.BAB.BBA.BBB.15.AAA.AAC.ACA.ACC.CAA.

CAC.CCA.CCC.16.AAAA.AAAB.AABA.AABB.ABAA.ABAB. . . .

where the dots are inserted only to clarify the pattern. Note that e is shift
maximal and is the kneading sequence of a non-renormalizable symmetric
tent map f . Let I(ω(c)) denote the set of all itineraries of points in ω(c). We
note that as f is a non-renormalizable symmetric tent map, each point in
ω(c) has a unique itinerary and that itinerary corresponds to a limit point
of {σk(e) | k ≥ 0}.

Clearly XB ∪XC ⊆ I(ω(c)). Suppose y ∈ I(ω(c)) \ (XB ∪XC); then y
contains at least one copy of both B and C. It is not possible for B and C
to appear consecutively in y, as there is no shift of e containing consecutive
copies of B and C. Further, B1mC and C1mB can appear at most finitely
many times in e by construction, so y cannot contain B1mC or C1mB for
any m ≥ 1. Hence I(ω(c)) \ (XB ∪XC) = ∅.

It follows that I(ω(c)) = XB ∪ XC , and as XB ∩ XC = {1∞}, ω(c) is
a Cantor set. Further, no iterate of the turning point is recurrent; that is,
every point in the orbit of c is isolated with respect to the orbit. Finally,
ω(c) is not minimal, since if we let x be the point whose itinerary is 1∞,
then ω(c) 6= ω(x).
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