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The rational field is not universally definable in
pseudo-exponentiation

by

Jonathan Kirby (Norwich)

Abstract. We show that the field of rational numbers is not definable by a universal
formula in Zilber’s pseudo-exponential field.

Introduction. Boris Zilber’s pseudo-exponential field B is conjecturally
isomorphic to the complex exponential field Cexp, when both are considered
as structures in the language of rings expanded by a unary function sym-
bol for the exponential map [Zil05]. While Cexp is defined analytically, B
is constructed entirely by algebraic and model-theoretic methods, and for
example it does not have a canonical topology. The conjecture that they are
isomorphic contains Schanuel’s conjecture of transcendental number theory,
so seems out of reach of current methods. However, it is interesting to ask
what properties known to hold of one of the structures can be proved to
hold of the other, and often this sheds new light on both structures.

A structure M is model complete if every definable subset of Mn is
definable by an existential formula. Equivalently, every definable subset is
defined by a universal formula, or equivalently again, whenever M1 and M2

are both elementarily equivalent to M and M1 ⊆M2, then M1 4M2.
The rational field Q is definable both in Cexp and in B by the existential

formula
∃y1∃y2[ey1 = 1 ∧ ey2 = 1 ∧ x · y1 = y2 ∧ y1 6= 0],

which states that x is a ratio of kernel elements. (As usual, we write ea to
mean exp(a).) We write Q(M) for the subset of a model M defined by this
formula. We also write ker(M) for the subset defined by ex = 1, and Z(M)
for the subset defined by ∀y[ey = 1→ exy = 1]. We have Z(Cexp) =Z(B) =Z,
the standard integers, and ker(B) = τZ(B) for a transcendental number τ
(corresponding to 2πi in C). Laczkovich showed that Z is also definable by
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an existential formula in Cexp [Lac03], and the same formula works in B
[KMO12], so Z is not a counterexample to model completeness.

Marker [Mar06] gave a topological proof that Q is not definable by a
universal formula in Cexp, thus proving that Cexp is not model complete.
Macintyre asked whether B is model complete [Mac08]. We answered this
negatively [Kir13] by finding a pair of models M1 ⊆ M2 of the first-order
theory of B with M1 64 M2. However, that paper only dealt with models
of the theory of B with standard kernel, that is, ker(M) = τZ, and the
definable set shown to be existentially definable but not universally definable
has nothing to do with the rationals. The paper [KZ14] extends the methods
of [Kir13] to the case of models of Th(B) with nonstandard kernel. Using
these extended methods, this note proves:

Theorem 1. The rational field Q is not definable by a universal formula
in B.

The proof goes by constructing exponential fields F ⊆M , both elemen-
tarily equivalent to B, and an element q ∈ F such that q ∈ Q(M) but
q /∈ Q(F ). That shows that Q cannot be universally definable in B. The
construction of the element q is somewhat separate from the construction of
F and M , and also demonstrates that Q is not universally definable in the
structure CZ which consists of the complex field expanded by a predicate
for the integers. This result for CZ can also be deduced from Marker’s result
above, but we give an explicit proof in Section 1 below. Section 2 contains
the necessary background about exponentially closed fields, and the proof
of Theorem 1 forms Section 3.

1. The complex field with a predicate for the integers. Write
CZ for the structure 〈C; +, ·,−, 0, 1,Z〉, the complex field with a predicate
Z naming the integers. The rational field Q is defined in CZ by the formula

(∗) ∃y1∃y2[Z(y1) ∧ Z(y2) ∧ x · y1 = y2 ∧ y1 6= 0],

and we write Q(M) for the realisation of this formula in any model M of
Th(CZ).

Proposition 2. There is an elementary extension M of CZ with an
element q ∈ Q(M) such that q is transcendental, but Q(q)alg ∩ Z(M) = Z.

From the proposition, we can deduce quickly:

Corollary 3. The rational field Q is not universally definable in CZ.

Proof. Given M and q as in the proposition, let F = Q(q)alg, considered
as a substructure of M . Then Z(F ) = Z, and so F |= Th(CZ) because
models of this theory are just algebraically closed field extensions of a ring
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Z elementarily equivalent to Z [Voz07]. But q ∈ (F ∩ Q(M)) r Q(F ), so
there is no universal formula defining Q.

Proof of Proposition 2. We consider the type p(y) given by formula (∗)
stating that y is rational together with the formulas

{f(y) 6= 0 | f ∈ Z[Y ] r {0}},

which collectively say that y is transcendental, and the formulas{
ϕg(y)

∣∣∣∣ g ∈ Z[Y,W ], irreducible over Z,
∂g

∂Y
6= 0,

∂g

∂W
6= 0

}
where ϕg(y) is the formula ∀w[g(y, w) = 0→ ¬Z(w)].

Then if M is a model of Th(CZ) and M |= p(q), we have q ∈ Q(M),
transcendental. Furthermore if a ∈ Q(q)alg∩Z(M), then either a is algebraic,
in which case a ∈ Z becauseM |= Th(CZ), or there is g ∈ Z[Y,W ] irreducible
over Z with both partial derivatives nonzero and g(q, a) = 0, witnessing the
algebraic dependence between a and q. Then a /∈ Z(M) because M |= ϕg(q),
a contradiction. So Q(q)alg ∩ Z(M) = Z, as required.

So it is enough to show that p(y) is consistent, which we do by showing
any finite subtype is realised in the standard model CZ.

Fix a real transcendental number y0. We claim that for each g ∈ Z[Y,W ]

which is irreducible over Z and such that ∂g
∂Y and ∂g

∂W are nonzero, there is
a neighbourhood Ug of y0 in C such that for any y ∈ Ug, CZ |= ϕg(y).

For such a g, let h(W ) = g(y0,W ). Then dh
dW = ∂g

∂W (y0,W ), which is

nonzero because ∂g
∂W is nonzero and y0 is transcendental, so h(W ) is a non-

constant polynomial and hence has zeros w1, . . . , wd in C, where d is the de-
gree of h. Since g is irreducible over Z, we have h irreducible over Z[y0], and

so the wi are distinct and it follows that dh
dW (wi) 6= 0, that is, ∂g

∂W (y0, wi) 6= 0
for each i.

We next apply the complex implicit function theorem to the polynomial
g(Y,W ) at each point (y0, wi) to find a neighbourhood Ug of y0 in C, disjoint
neighbourhoods Vi of wi in C, and analytic functions si : Ug → Vi such that
si(y0) = wi, and for all y ∈ Ug and each i = 1, . . . , d we have g(y, si(y)) = 0,
and the only solution w in Vi to g(y, w) = 0 is si(y). Since for each y ∈ Ug
the polynomial g(y,W ) has degree (at most) d in W , these must be the only
solutions w in C to g(y, w) = 0.

If some wi were in Z (or even algebraic), then since y0 is transcendental
and g(y0, wi) = 0 we must have g(Y,wi) = 0. Then W− wi would be a factor
of g(Y,W ) so, since g(Y,W ) is irreducible, we get g(Y,W ) = ±(W − wi).
Then ∂g

∂Y vanishes, a contradiction. So no wi is in Z. Since all the functions
si are continuous and Z is discrete, we can shrink Ug to ensure that for all
y ∈ Ug and each i = 1, . . . , d we have si(y) /∈ Z. That proves the claim.
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Now let p0 be a finite subtype of p and let U =
⋂
ϕg∈p0 Ug. Then U is

open and contains the real point y0, so Q ∩ U is infinite. Choose q ∈ Q ∩ U
satisfying all the finitely many conditions f(y) 6= 0 from p0. Then p0 is
consistent and, by compactness, so is p.

2. Exponentially closed fields. We consider structures M in the lan-
guage 〈+, ·,−, 0, 1, exp〉 of rings expanded by a unary function symbol exp,
satisfying some or all of the following list of axioms, which are numbered as
in [KZ14].

1. ELA-field: M is an algebraically closed field of characteristic zero,
and its exponential map exp is a homomorphism from its additive
group to its multiplicative group, which is surjective.

Any model of axiom 1 is called an ELA-field.

2. Standard kernel: The kernel of the exponential map is an infinite
cyclic group generated by a transcendental element τ .

Since standard kernel is not preserved under elementary extensions, we
also consider the following weaker version of axiom 2:

2′. There is τ ∈ M , transcendental over Z(M), such that ker(M) =
{τz | z ∈ Z(M)}. Furthermore, 〈Z(M); +, ·,−, 0, 1〉 is a model of
the full first-order theory of the ring of standard integers.

For the last two axioms we need some more notation and terminol-
ogy. By td(Y/X) we mean the transcendence degree of the field extension
Q(XY )/Q(X), and by ldimQ(Y/X) we mean the dimension of the Q-vector
space spanned by X∪Y , quotiented by the subspace spanned by X. If X, Y
are subsets of the multiplicative group Gm(M), we write mrk(Y/X) for the
multiplicative rank, that is, the Q-linear dimension of the divisible subgroup
spanned by X ∪ Y , quotiented by the divisible subgroup spanned by X and
all the torsion.

Let V be a subvariety of Gn
a (M)×Gn

m(M) and let (ā, b̄) be a point in V ,
generic over M . Then V is said to be additively free if ldimQ(ā/M) = n,
and multiplicatively free if mrk(b̄/Gm(M)) = n. Furthermore, V is rotund if
for every matrix L ∈ Matn×n(Z), we have td(Lā, b̄L/M) ≥ rkL, where rkL
means the rank of the matrix L, and b̄L is just the usual matrix action as a
linear map but in the multiplicative group rather than the additive group.

3′. The Schanuel property over the kernel: The predimension
function

∆(b̄) := td(b̄, exp(b̄)/ker(M))− ldimQ(b̄/ker(M))

satisfies ∆(b̄) ≥ 0 for all tuples b̄ from M .
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4. Strong exponential-algebraic closedness: If V is a rotund, addi-
tively and multiplicatively free subvariety of Gn

a (M)×Gn
m(M) defined

over M and of dimension n, and ā is a finite tuple from M , then there
is b̄ ∈Mn such that (b̄, eb̄) is in V and is generic in V over ā.

Axiom 3′ puts a strong restriction on what systems of exponential poly-
nomial equations can have solutions in M , based on Schanuel’s conjecture.
Axiom 4 is a suitable form of existential closedness, the content of which
is that any system of equations which has a solution in an extension of M
which does not violate axiom 3′ already has a solution in M .

Definition 4. The class ECF of exponentially closed fields is defined
to be the class of models of axioms 1, 2′, 3′ and 4.

If the diophantine conjecture CIT is true, ECF is exactly the class of all
models elementarily equivalent to B [KZ14, Theorem 1.3]. However we do not
need to rely on CIT as unconditionally all models in ECF are elementarily
equivalent to B.

We will make use of a strengthening of axiom 4.

Definition 5. A model M ∈ ECF is said to be saturated over its kernel
if whenever V is as in axiom 4 and A is a subset of M with |A| < |M |, then

there is b̄ in M such that (b̄, eb̄) is in V and is generic in V over A, and also
the exponential transcendence degree of M is equal to |M |.

We will not make use of the exponential transcendence degree, so we do
not give the definition. The main theorem of [KZ14] states that models as
described above exist in large enough cardinalities, and are unique once the
model of the ring of integers is specified.

Theorem 6 ([KZ14, Theorem 1.1]). For each ℵ0-saturated model R of
Th(Z), and for each cardinal λ > 2ℵ0 with λ ≥ |R|, there is exactly one
model M ∈ ECF such that Z(M) = R and such that M is saturated over
its kernel.

For the rest of this note we fix an M ∈ ECF such that Z(M) is an
ℵ0-saturated model of Th(Z) and M is saturated over its kernel. The kernel
generator described in axiom 2′ is defined only up to ±, so we choose one of
them to be τ .

We need a little more notation. For subsets A, B and C of M we

write A
ACF

^
C
B to mean that A is independent of B over C in the sense

of algebraically closed fields, that is, every finite tuple ā ∈ A satisfies
td(ā/B ∪ C) = td(ā/C).

By Aalg, we mean the field-theoretic algebraic closure of A in M , and we
write 〈A〉 for the Q-linear span of A in M .
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Definition 7. We say that A is semistrong in M and write A ≺pM if

(i) for every finite tuple b̄ from M , the relative predimension function

∆(b̄/A) := td
(
b̄, exp(b̄)/ker(M), A, exp(A)

)
− ldimQ(b̄/ker(M), A)

satisfies ∆(b̄/A) ≥ 0, and

(ii) A, exp(A)
ACF

^
ker(M)∩〈A〉

ker(M).

Note that ldimQ(b̄/ker(M), A) = mrk(exp(b̄)/exp(A)), so we can also
write the relative predimension function as

∆(b̄/A) = td
(
b̄, exp(b̄)/ker(M), A, exp(A)

)
−mrk(exp(b̄)/exp(A)).

If B = 〈A, b̄〉 we also write ∆(B/A) for ∆(b̄/A), and if A = 〈ā〉 we write

∆(b̄/ā) for ∆(b̄/A). The addition property for ∆ is easily verified: for all
A, ā, b̄ we have

∆(āb̄/A) = ∆(b̄/Aā) +∆(ā/A).

In the paper [KZ14], much use is made of partial exponential fields, and
the semistrong property is defined for them. Here we will work inside the
fixed model M , so it is equivalent and notationally simpler to work with
Q-linear subspaces.

3. The proof of Theorem 1. Since Z(M) is ℵ0-saturated, there are
r1, r2 ∈ Z(M) such that q = r1/r2 satisfies the type p(y) from the proof of
Proposition 2. It is easy to check that r1 and r2 are algebraically independent
over Q (that is, they do not satisfy any nontrivial polynomial equations with
standard rational coefficients). Indeed, otherwise they would lie in Q(q)alg,
but then the type p implies they are both standard integers, contradicting
the transcendence of q.

So q ∈ Q(M), but q is not in the Q-linear span of Z(M). Let p1 = τr1 and
p2 = τr2, so q = p1/p2 and p1, p2 ∈ ker(M). Then p1 and p2 are algebraically
independent over the kernel generator τ because τ is transcendental over
Z(M) by axiom 2′.

We will build F as the union of a chain of Q-linear subspaces of M . At
each stage we need certain conditions to hold to ensure that we do not run
into problems later. We capture these conditions in the next definition.

Definition 8. Let A be a Q-linear subspace of M such that τ, q ∈ A.
Then A is good (for the purpose of this proof) if

(1) (A ∪ exp(A))alg ∩ ker(M) = τZ, so in particular A ∩ ker(M) = τZ
and p1, p2 /∈ A,

(2) 〈A, p1, p2〉 ≺pM , and
(3) |A| < |M |.



Q is not ∀-definable in B 85

Condition (2) splits into clauses (i) and (ii) of the definition of semistrong-
ness above. Clause (i) does not depend on p1 and p2 at all, but clause (ii)
does, since it says (given condition (1)) that the only algebraic dependencies
between A ∪ exp(A) and the kernel of M are witnessed by {τ, p1, p2}, that

is, A, exp(A)
ACF

^
{τ,p1,p2}

ker(M).

We will start the chain with A0 = 〈τ, q〉.

Lemma 9. A0 is good.

Proof. First we observe using the Schanuel property over the kernel that
∆(q) ≥ 0, that is,

(†) td(q, eq/ker(M))− ldimQ(q/ker(M)) ≥ 0.

Now q is algebraic over ker(M) because q = p1/p2, but q is not in the
Q-linear span of the kernel, so (†) reduces to td(eq/ker(M)) = 1, and it
follows that ∆(q) = 0. Moreover ∆(τ, q) = ∆(q) = 0, so for any b̄ ∈M ,

∆(b̄/τ, q) = ∆(b̄, τ, q)−∆(τ, q) = ∆(b̄, τ, q) ≥ 0

by the addition property for ∆ and the Schanuel property over the kernel.
So clause (2)(i) holds.

We have shown that eq is transcendental over ker(M), and we have

τ, q ∈ {τ, p1, p2}alg ⊆ ker(M)alg, so it follows that {τ, q, eq}
ACF

^
{τ,p1,p2}

ker(M),

which is clause (2)(ii).

For clause (1), we note that (A0 ∪ exp(A0))alg = {τ, q, eq}alg. Suppose
a ∈ {τ, q, eq}alg ∩ ker(M). Then a, τ, q ∈ ker(M)alg but eq is transcendental
over ker(M), so in particular eq /∈ {a, τ, q}alg. By the exchange property for
algebraic closure, a ∈ {τ, q}alg, so we have

(A0 ∪ exp(A0))alg ∩ ker(M) = {τ, q}alg ∩ ker(M).

Suppose a ∈ {τ, q}alg ∩ ker(M) and let x = a/τ , so x ∈ {τ, q}alg ∩Z(M).
Then x, q ∈ Z(M)alg but τ is transcendental over Z(M) by axiom 2′ so,
again by exchange, x ∈ Q(q)alg ∩ Z(M). Then since q satisfies the type p,
we have x ∈ Z. So (1) holds.

Finally, |A0| = ℵ0 < |M |. So clause (3) holds and thus A0 is good.

Lemma 10. If A is a good Q-linear subspace of M , then there is an
ELA-subfield K of M containing A such that |K| = |A| and K is also good.

Proof. The union of a chain of length < |M | of good subspaces of M
is still good because conditions (1) and (2) have finite character, so it is
enough to show that, given a ∈ (A ∪ exp(A))alg, nonzero, there is a good
subspace A2 of M containing A such that a ∈ A2 ∩ exp(A2).
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First let A1 = 〈A, a〉. Since 〈A, p1, p2〉 ≺pM we have

td(ea/ker(M), A, exp(A)) = td(a, ea/ker(M), A, exp(A))

≥ ldimQ(a/ker(M), A).

Since a ∈ (A ∪ exp(A))alg and (A ∪ exp(A))alg ∩ ker(M) = τZ ⊆ A,
we deduce that ldimQ(a/ker(M), A) = ldimQ(a/A). Then it follows that
td(ea/ker(M), A, exp(A)) ≥ ldimQ(a/A). If a ∈ A we have A1 = A and we
are done. Otherwise ldimQ(a/A) = 1, so td(ea/ker(M), A, exp(A)) = 1 and
∆(a/A) = ∆(a/A, p1, p2) = 1− 1 = 0.

Thus (A1 ∪ exp(A1))alg ∩ ker(M) = (A ∪ exp(A))alg ∩ ker(M) = τZ. If b̄
is a tuple from M then

∆(b̄/A1, p1, p2) = ∆(b̄/A, a, p1, p2) = ∆(ab̄/A, p1, p2)−∆(a/A, p1, p2)

= ∆(ab̄/A, p1, p2)− 0 ≥ 0

because 〈A, p1, p2〉 ≺pM . Thus 〈A1, p1, p2〉M ≺pM . Clearly |A1| = |A| < |M |,
so A1 is good.

If a ∈ exp(A1) then set A2 = A1 and we are done. Otherwise, choose
any c ∈ M such that ec = a, and set A2 = 〈A1, c〉. Then we use the same
argument as above, with A1 in place of A and swapping the roles of the
additive and multiplicative sides, to show that A2 is good. In detail,

td(c/ker(M), A1, exp(A1)) = td(c, ec/ker(M), A1, exp(A1))

≥ ldimQ(c/ker(M), A1) = mrk(a/exp(A1)) = 1,

which means that c is transcendental over ker(M) ∪ A1 ∪ exp(A1), and
so ∆(A2, p1, p2/A1, p1, p2) = 0. Then, by the same argument as above,
〈A2, p1, p2〉 ≺pM . Hence A2 is good.

Lemma 11. Suppose K is a good ELA-subfield of M and V is a rotund,
additively and multiplicatively free subvariety of Gn

a (M) × Gn
m(M), defined

over K and of dimension n. Then there is a good ELA-extension field KV

of K inside M such that there is (ā, eā) ∈ V (KV ), generic in V over K,
and |KV | = |K|.

Proof. Since M is saturated over its kernel, there is ā ∈ Mn such that
(ā, eā) ∈ V (M), generic in V over K ∪ {p1, p2}. We have 〈K, p1, p2〉M ≺pM ,
so td(ā, eā/ker(M),K) ≥ mrk(eā/K). Since V is multiplicatively free and
(ā, eā) is generic in V over K we have mrk(eā/K) = n, and we deduce
td(ā, eā/ker(M),K) = n.

Let H = 〈K, ā)〉M and H ′ = 〈K, ā, p1, p2〉M . Then H
ACF

^
K

ker(M), so

Halg ∩ ker(M) = kalg ∩ ker(M) = τZ. Moreover H ′alg ∩ ker(M) = Kalg ∩

ker(M), so H
ACF

^
K

K, p1, p2. We also know K, p1, p2

ACF

^
{τ,p1,p2}

ker(M), so we get
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H
ACF

^
{τ,p1,p2}

ker(M). Also ∆(H ′/K, p1, p2) = 0, so H ′ ≺p M . Thus H is good.

Applying Lemma 10 we can take KV to be some good ELA-extension of H
in M .

Proposition 12. There is F ⊆M containing τ , q such that F ∈ ECF
and q /∈ Q(F ).

Proof. By Lemma 9, A0 is good, so in view of Lemma 10 there is a
countable good ELA-subfield F1 of M . Now enumerate all the rotund, ad-
ditively and multiplicatively free subvarieties defined over F1, and apply
Lemma 11 in turn for each and iterate, noting that the union of a chain of
good ELA-subfields of M is still a good ELA-subfield. At stage ω2 we get an
ELA-subfield F of M which is strongly exponentially-algebraically closed. It
satisfies the Schanuel property over the kernel, since every exponential sub-
field of M does. Since F is good, it has standard kernel. Hence F ∈ ECF
and, by construction, q ∈ F .

Since F has standard kernel, Q(F ) = Q. The element q is transcendental,
so is not in Q(F ).

That completes the proof of Theorem 1.
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