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Abstract. We introduce a new method which combines Prikry forcing with an it-
eration between the Prikry points. Using our method we prove from large cardinals that
it is consistent that the tree property holds at ℵn for n ≥ 2, ℵω is strong limit and
2ℵω = ℵω+2.

Introduction. The typical method for interleaving collapses with a
Prikry sequence is to use a product of collapses. The original paper us-
ing this method is Magidor’s paper [8] where he obtains the failure of the
Singular Cardinals Hypothesis (SCH) at ℵω. There are many generalizations
and variations on this method; examples include [9, 5, 6, 3]. In this paper
we introduce a method for replacing the usual product with an iteration.

Broadly speaking, Prikry forcing is a poset of finite approximations to a
witness that some large cardinal κ (and perhaps some cardinals above κ) is
singular of cofinality ω. The finite approximations are often called the stem
of a condition. To avoid collapsing κ, the growth of the stem is controlled
by measure one sets from some appropriate measure. The key lemma which
allows us to prove that κ is preserved is called the Prikry Lemma. The result
of the forcing is a singular cardinal κ which is still large in the sense that it
is a limit of inaccessible cardinals.

Collapses can be added to Prikry forcing in order to make κ into a small
cardinal like ℵω. In particular we add collapses between the ordinals in the
stem. We cannot only use a finite support product of collapses, since this
would collapse κ. The solution is to constrain the values of future collapse
conditions. For this we define constraining functions whose domains are
measure one sets and whose values are elements of collapsing posets. To
extend a condition, we select an element x from a measure one set which
we add to the stem, and we select a collapse condition which is below the
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value of the constraining function at x. This allows us to recover a version
of the Prikry Lemma and show that again κ is preserved and the collapses
have their desired effect.

The usual method of adding collapses to a Prikry forcing uses a product
of posets which collapse between elements of the stem. A trivial but impor-
tant observation is that in the usual scenario the values of the constraining
functions do not depend on the stem. In particular the collapses are defined
in a uniform way and each condition only has one constraining function.
When we seek to iterate between the elements of the stem, the value of a
given constraining function must depend on the stem, because the stem de-
termines the space from which the name for a constrained collapse condition
is taken.

To deal with this, our technique has a complex system of constraining
functions rather than just a single constraining function. One could think
of our forcing as resembling a tree Prikry forcing with interleaved collapses
where associated with each stem we have a measure one set and a constrain-
ing function. However, instead of doing this we have integrated functions and
measure one sets into a single sequence which has a function of n variables
for each n.

The motivation for this technique comes from an old question of Magidor,
“Is it consistent that every regular cardinal greater than ℵ1 has the tree
property?” The question was formulated in light of Mitchell’s result [11], and
progress was made by Abraham [1] and Cummings and Foreman [4]. The
current longest known intervals of regular cardinals which can consistently
have the tree property are due to Neeman [12] and the author [14]. Neeman
showed that from countably many supercompact cardinals it is consistent to
have the tree property at every regular cardinal on the interval [ℵ2,ℵω+1].
In Neeman’s model, ℵω is strong limit. In [14], by forcing ℵω not to be
strong limit, we showed that the interval can be extended to [ℵ2,ℵω·2). The
argument uses Neeman’s work in an essential way.

There is an important distinction between models where ℵω is strong
limit and models where it is not. We note that by an old theorem of
Specker [13], if 2ℵω = ℵω+1, then there is a special ℵω+2-tree. So a model for
a positive answer to Magidor’s question where ℵω is strong limit must also
have the failure of SCH at ℵω. In search of a positive answer, we return to
the method of Prikry forcing with interleaved collapses, but we wish to use
collapses that will enforce the tree property at each ℵn.

The known methods for getting the tree property at each ℵn for n ≥ 2
are due to Cummings and Foreman [4] and Neeman [12]. Cummings and
Foreman define a full support iteration with countably many stages and
Neeman revises their iteration to make it act somewhat like a product. Both
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methods either explicitly or implicitly require an iteration. A recent paper of
Friedman and Honzik [7] obtains the tree property at each ℵ2n for n ≥ 1 and
the failure of SCH at ℵω. Their method uses a product of collapses between
the Prikry points, which as discussed above must look quite different from
an iteration between the Prikry points.

So it appears that a model which gives a positive answer to Magidor’s
question with ℵω strong limit must combine Prikry forcing with an iteration
of some kind. In this paper we develop such a method and prove the following
theorem.

Theorem 0.1. Suppose there is a cardinal κ with an elementary embed-
ding j : V → M witnessing that κ is huge with target λ and λ++

M ⊆ M .
There is a generic extension in which for all n ≥ 2, the tree property holds
at ℵn, ℵω is strong limit and 2ℵω = ℵω+2.

We use Cummings and Foreman’s iteration for obtaining the tree prop-
erty at each ℵn. For practical purposes, very little knowledge of the specifics
of this iteration is required. Where we need a specific property of the itera-
tion we cite the relevant lemma from the original paper. For completeness
we recall that the iterates are posets of the form R(τ, κ, V,W, F ), which are
κ-cc and designed to force 2τ = κ = τ++ while preserving τ+. Moreover,
if κ is supercompact and F is a Laver function for κ, then the tree property
holds at κ in an indestructible way in the extension.

Barbanel [2] proved that from our large cardinal hypothesis one can
obtain 2κ = κ++ preserving the hugeness of κ. Working in this model we
extract a measure which will be used in the definition of our Prikry forcing.
Let j : V → M witness that κ is huge with target λ and assume that
2κ = κ++. Let µ < j(κ) be a regular cardinal. It follows that the collection
Uµ = {A ⊆ Pκ(µ) | j“µ ∈ j(A)} is a supercompactness measure on Pκ(µ).
Moreover, by the closure of M , Uµ ∈ M . So in M , for all µ < j(κ), κ is
µ-supercompact. We define U to be Uκ+ and we note that the projection of
U to a normal measure on κ concentrates on a set of cardinals which are
<κ-supercompact.

1. Definition of the forcing. In this section we define the main forc-
ing. Our Prikry forcing without the collapses will be the usual supercompact
Prikry forcing from [8] defined with respect to the measure U .

Let Z={x∈Pκ(κ+) |x∩κ∈κ is <κ-supercompact and o.t.(x) = (x∩κ)+}.
Combining standard arguments with the argument at the end of the previous
section, we have Z ∈ U . For x ∈ Z we define κx = x ∩ κ. Fix a class Laver
function as in [10], that is, a function F : On → V such that if θ is a
supercompact cardinal, then F �θ is a Laver function for θ. We begin by
defining a class of initial segments of Cummings–Foreman iterations. Let
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P(∅) be the trivial forcing. Let ~x = 〈xi | i < n〉 be a supercompact Prikry
stem from Z of length n, that is, a sequence of elements of Z which are
increasing in the sense that if i < j, then xi ⊆ xj and |xi| < xj ∩ κ.
Let P(~x) be the first n − 1 stages of a Cummings–Foreman iteration using
the supercompact cardinals κx0 , . . . , κxn−1 and the Laver function F (see

[4, Definitions 3.1 and 4.1]). Next we define a P(~x)-name for a poset Q̇(~x).
There are a few cases:

Case 1: n = 0. Then ~x is the empty stem and P(~x) is the trivial forcing.
In this case let Q(∅) be R(ℵ0, κ, V, V, F ).

Case 2: n = 1. Let Q̇(~x) be the canonical P(~x)-name for

R(ℵV1 , κ, V, V [P(~x)], F~x)

where F~x is a function whose value at some α is the interpretation of F (α)
if F (α) is a P(~x)-name, and is 0 otherwise.

Case 3: n ≥ 2. Let Q̇(~x) be the canonical P(~x)-name for

R(κxn−2 , κ, V [P(~x�n− 1)], V [P(~x)], F~x)

where F~x is a function defined as in Case 2.

This finishes the definition of the iteration part of the forcing. We prove
a lemma which shows that the definition of the Prikry forcing is possible.

Lemma 1.1. For every supercompact Prikry stem ~x, every ~p ∈ P(~x) and
every q̇ such that P(~x) q̇ ∈ Q̇(~x), there is an α < κ such that for all y ∈ Z
with κy > α, we have ~p_〈q̇〉 ∈ P(~x_y).

Proof. Fix ~x, ~p and q̇ as in the lemma. Note that in V [P(~x)] the inter-
pretation of q̇ is a triple with each coordinate occupied by partial functions,
and that the union of the domains has size less than κ. Let τ be a P(~x)-
name for the union of the domains. If ~x = 〈x0, . . . , xn−1〉, then P(~x) has the
κxn−1-cc. It follows that in the ground model we can find α inaccessible so
that ~p P(~x) α > sup τ . The claim follows from the uniformity of the defi-
nition of the forcings. We need to work through the cases of the definition
of Q̇(~x).

Case 1: n = 0. In V for all y ∈ Z, we have R(ℵ0, κy, V, V, F ) ⊆ Q(∅) =
R(ℵ0, κ, V, V, F ). Now when κy > α we have ~p_〈q̇〉 ∈ P(〈y〉).

Case 2: n = 1. In this case ~x = 〈x〉. In V [P(~x)] for all y ∈ Z with
κy > κx, we have

R(ℵV1 , κy, V, V [P(~x)], F~x) ⊆ Q(~x) = R(ℵV1 , κ, V, V [P(~x)], F~x).

So if α < κy, then p_〈q̇〉 ∈ P(〈x, y〉).
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Case 3: n ≥ 2. In V [P(~x)] for all y ∈ Z with κy > κxn−1 , we have

R(κxn−2 , κy, V [P(~x)�n− 1], V [P(~x)], F~x) ⊆ Q(~x),

since Q(~x) = R(κxn−2 , κ, V [P(~x)�n − 1], V [P(~x)], F~x). So again, if α < κy,
then ~p_〈q〉 ∈ P(~x_〈y〉).

We are now ready to define the conditions of the main forcing. A condi-
tion is of the form

〈x0, p0, . . . , xn−1, pn−1, Fn, Fn+1, . . . 〉

where ~x = 〈x0, . . . , xn−1〉 is a stem from the supercompact Prikry forcing,
〈p0, . . . , pn−2〉 ∈ P(~x) and P(~x) pn−1 ∈ Q(~x). There is an X ∈ U whose
powers form the domains of the functions Fn+i for i < ω. In particular Fn+i
is a function of i+1 variables and has domain [X]i+1, and for each ~y ∈ [X]i+1,
Fn+i(~y ) is a P(~x_~y )-name for a condition in Q̇(~x_~y ). This finishes the
definition of the conditions.

We will refer to conditions as 〈~s, ~F 〉 where

~s := 〈x0, p0, . . . , xn−1, pn−1〉, ~F := 〈Fn, Fn+1, . . . 〉.

We define operators cp,pp so that cp(~s) = 〈p0, . . . , pn−1〉 and pp(~s) =
〈x0, . . . , xn−1〉. The acronyms cp, pp stand for collapse part and Prikry part

respectively. We write dom ~F for the measure one set whose powers form the
domains of the functions. We also call n the length of the condition 〈~s, ~F 〉
and sometimes denote it `(~s) or `(~x).

We move to the definition of the ordering:

〈x0, p0, . . . , xn−1, pn−1, Fn, Fn+1, . . . 〉
≥ 〈x0, q0, . . . , xn−1, qn−1, xn, qn, . . . , xm−1, qm−1, Gm, . . . 〉

if and only if

(a) For all n ≤ i < m, xi ∈ dom ~F and dom ~G ⊆ dom ~F .
(b) 〈p0, . . . , pn−1, Fn(xn), . . . , Fm−1(〈xn, . . . , xm−1〉)〉 ≥ 〈q0, . . . , qm−1〉 in

P(〈x0, . . . , xm−1〉) ∗Q(〈x0, . . . , xm−1〉).
(c) For all i < ω and for all Prikry stems ~y ∈ [dom ~G]i,

~q_〈1〉 P(~x_~y ) Fm+i−1(〈xn, . . . , xm−1〉_~y ) ≥ Gm+i−1(~y )

where 〈1〉 is the sequence of top elements of a final segment of the
coordinates in P(~x_~y ).

We define a direct extension to be an extension that preserves the length
of a condition. We will often need to refer to the minimal possible constraints
available for a given stem. Suppose ~t is the stem of some extension of 〈~s, ~F 〉;
then we define ~F �~t as follows. Let ~x = pp(~t ) r pp(~s) and suppose that
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`(~x) = n. For Prikry stems ~y of length i from dom ~F , we set (~F �~t )i(~y ) =

Fn+i(~x
_~y ). It is not hard to check that 〈~t, ~F �~t 〉 ≤ 〈~s, ~F 〉.

It is straightforward to check that the ordering is transitive. Suppose
that we have

〈x0, p0, . . . , xn−1, pn−1, Fn, Fn+1, . . . 〉
≥ 〈x0, q0, . . . , xn−1, qn−1, xn, qn, . . . , xm−1, qm−1, Gm, Gm+1, . . . 〉
≥ 〈x0, r0, . . . , xn−1, rn−1, xn, rn, . . . , xm−1, rm−1,

xm, rm, . . . , xl−1, rl−1, Hl, Hl+1, . . . 〉.

For convenience we let ~x = 〈x0, . . . , xl−1〉. Now (a) is obvious, since this is
exactly the condition that we have in the usual supercompact Prikry forcing.
For (b), we want to see that

〈p0, . . . , pn−1, Fn(xn), . . . , Fl−1(~x�[n, l))〉 ≥ 〈r0, . . . , rl−1〉

in the poset P(~x) ∗Q(~x). To do this we insert a collapse condition given by
the second condition. It is enough to show

〈p0, . . . , pn−1, Fn(xn), . . . , Fl−1(~x�[n, l))〉
≥ 〈q0, . . . , qm−1, Gm(xm), . . . , Gl−1(~x�[m, l))〉 ≥ 〈r0, . . . , rl−1〉.

For the first ≥ we use both (b) and (c) from the definition. By (b) the
first ≥ holds between the conditions restricted to m, and by (c) and an
easy induction it holds for the rest. The second ≥ is exactly (b) from the
definition of the ordering. So we have shown (b) for the desired conditions.

For (c) we notice that for all ~y ∈ [dom ~G]i+1,

~q_〈1〉  Fm+i(〈xn, . . . , xm−1〉_~y ) ≥ Gm+i(~y ),

and for all ~z ∈ [dom ~H]k+1,

~r_〈1〉  Gl+k(〈xm, . . . , xl−1〉_~z ) ≥ Hl+k(~z ).

We fix ~z ∈ [dom ~H]k+1. We set ~y := 〈xm, . . . , xl−1〉_~z. We apply the above
inequalities for our fixed ~z, ~y. Note that 〈xn, . . . , xm−1〉_~y=〈xn, . . . , xl−1〉_~z
and that ~r_〈1〉 ≤ ~q_〈1〉. (In each we adjoin a different number of 1’s.) It
follows from the transitivity of Q̇(~x_~z ) in V [P(~x_~z )] that

~r_〈1〉  Fl+k(〈xn, . . . , xl−1〉_~z ) ≥ Hl+k(~z ),

which is what we wanted.

2. The Prikry Lemma. In this section we prove a version of the Prikry
Lemma for our poset. Typical proofs of the Prikry Lemma for forcing with
interleaved collapses use closure (or at least distributivity) of the collapses to
diagonalize over possible stems. This method is not possible for us, since our
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collapses are not closed enough. We get around this by carefully constructing
names in our iteration between the Prikry points.

Lemma 2.1. Fix a condition in the forcing 〈~s, ~F 〉 and a statement in the

forcing language ϕ. There is a direct extension of 〈~s, ~F 〉 that decides ϕ.

Proof. Fix 〈~s, ~F 〉 and ϕ as in the lemma. We let pp(~s) = ~x and cp(~s) = ~p.
The argument proceeds in three rounds. For each round we have a claim that
provides a direct extension. Fix an enumeration of supercompact Prikry
stems 〈~xα | α < κ+〉 with the property that for all α, if ~xα is a stem of
length n, then for all m < n there is a β < α such that ~xα�m = ~xβ.

Claim 2.2. There is 〈~s, ~G〉 ≤ 〈~s, ~F 〉 such that if 〈~t, ~G′〉 ≤ 〈~s, ~G〉 decides

ϕ then there is a ~u such that `(~u) = `(~t ), pp(~u) = pp(~t ), cp(~u) ≤ cp(~t )

and 〈~u, ~G�~u 〉 decides ϕ in the same way as 〈~t, ~G′〉.
We build a sequence of constraints 〈~Fα | α < κ+〉 which are suitable for

~s and so that 〈〈~s, ~Fα〉 | α < κ+〉 is a decreasing sequence in the forcing. We
also record measure one sets Xα in order to take a diagonal intersection at
the end.

We go by induction on α < κ+. Define ~F 0 = ~F . Assume that we have
constructed ~Fα for some α < κ+. Consider the set

Bα := {~p ∈ P(~xα) ∗ Q̇(~xα) | there is a stem ~t~p with pp(~t~p) = ~xα,

cp(~t~p) = ~p and there is a system of constraints ~F~p

such that 〈~t~p, ~F~p〉 ≤ 〈~s, ~Fα〉 decides ϕ}.
Choose an antichain A′α that is contained in Bα and is maximal. Extend

A′α to a maximal antichain Aα in P(~xα) ∗ Q̇(~xα). By the κ-cc of this forcing,

|Aα| < κ. For each ~p ∈ Aα fix a system of constraints ~F~p witnessing that

~p ∈ Bα if possible, and otherwise let ~F~p = ~Fα�~t~p where ~t~p is determined by

pp(~t~p) = ~xα and cp(~t~p) = ~p.
Now that the reader has a feel for the forcing, we make a small but

helpful notational change. From here on we will write things like ~F (~y ) to
denote the constraint value for stem ~y when plugged into the appropriate
function from ~F . There is no risk of confusion and we alleviate the clut-
ter of subscripts. We define the constraint functions ~Fα+1 as follows. We
leave the domain unchanged, but record the set Xα :=

⋂
~p∈Aα dom(~F~p),

which is in U by κ-completeness. For every ~y from Xα we define the term
~Fα+1((~xαr~x)_~y ) as follows (recall that ~x is pp(~s)). For each ~p ∈ Aα,

~p_〈1〉  ~Fα+1((~xα r ~x)_~y ) = ~F~p(~y ).

For all other ~z we let ~Fα+1(~z ) = ~Fα(~z ). In order to show that 〈~s, ~Fα+1〉
≤ 〈~s, ~Fα〉, we need to show that for all relevant ~z, cp(~s)  ~Fα+1(~z ) ≤
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~Fα(~z ). The nontrivial case is when ~z = (~xα r ~x)_~y for some ~y from Xα.
Choose a P(~x_α ~y )-generic G so that cp(~s) ∈ G�n. Now Aα is a maximal

antichain, so we have ~p ∈ G�`(~xα) ∩ Aα and hence in V [G], ~Fα+1(~z ) =
~F~p(~y ). Now there are two cases. If ~p /∈ Bα, then in V [G] we have ~F~p(~y ) =
~Fα((~xαr~x)_~y ), which is certainly enough. If ~p ∈ Bα, then in V [G] we have
~F~p(~y ) ≤ ~Fα((~xα r ~x)_~y ) by the choice of ~F~p. So in either case we are done.
This completes the successor step of the construction.

Suppose that γ is a limit ordinal and we have constructed ~Fα for all
α < γ. By construction, all of the domains of functions remain the same.
So for every ~y from the common domain, ~s forces that 〈~Fα(~y ) | α < γ〉 is a
decreasing sequence. We claim that we can find a lower bound, because the
sequence only decreases finitely many times. At stage α+1 we only decreased
the constraint values for stems extending ~xα r ~x. So if we decreased the
constraint value at stage α+ 1, then necessarily ~xαr ~x is an initial segment
of ~y. Hence for each ~y we can find a term ~F γ(~y ) that cp(~s) forces to be a

lower bound for the sequence 〈~Fα(~y ) | α < γ〉.
By a similar argument can find a lower bound for 〈〈~s, ~Fα〉 | α < κ+〉

with stem ~s. We restrict the resulting constraint to domains formed from
the set

X := {x ∈ Pκ(κ+) | for all α < κ+, if ~x_α x is a stem, then x ∈ Xα}.

We call this constraint ~G and note that 〈~s, ~G〉 is a condition. We are ready

to finish the proof of the claim. Suppose that 〈~t, ~G′〉 ≤ 〈~s, ~G〉 decides ϕ.
Then we have pp(~t ) = ~xα for some α < κ+. We claim that cp(~t ) ∈ Bα as

witnessed by ~t and ~G′. In particular we need to show that 〈~t, ~G′〉 ≤ 〈~s, ~Fα〉.
This is clear from the transitivity of the ordering, since 〈~s, ~G〉 is between
them. It follows that there is ~p ∈ A′α such that ~p is compatible with cp(~t ).
Let ~r be a common extension and let ~u be the stem obtained from combin-
ing ~xα and ~r . We claim that 〈~u, ~G�~u〉 decides ϕ in the same way that 〈~t, ~G′〉
does.

By construction, there is a stem ~t~p and a system of constraints ~F~p chosen

at the inductive step with pp(~t~p) = ~xα and cp(~t~p) = ~p, such that 〈~t~p, ~F~p〉
≤ 〈~s, ~Fα〉 decides ϕ. We claim that 〈~u, ~G�~u〉 ≤ 〈~t~p, ~F~p〉. We check (a)–(c) in
the definition of the ordering. The conditions have the same length, so for (a)

it suffices to check that dom(~G�~u) ⊆ dom ~F~p. Suppose that x ∈ dom(~G�~u).
Then x ∈ X. Since in the definition of a condition we state that ~x_α x is a

stem, it follows that x ∈ Xα. We are done since dom ~F~p ⊇ Xα. For (b), we

have cp(~t~p) = ~p ≥ ~r = cp(~u), and this is enough since the conditions have

the same length. For (c) we need that for all ~y from dom(~G�~u), cp(~u) forces

(~G�~u)(~y ) ≤ ~F~p(~y ). This follows from collected facts about the construction
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of ~G:
(~G�~u)(~y ) = ~G((~xα r ~x)_~y ),

~p  ~F~p(~y ) = ~Fα+1((~xα r ~x)_~y ),

cp(~s)  ~Fα+1((~xα r ~x)_~y ) ≥ ~G((~xα r ~x)_~y ).

To finish the proof we note that ~p ≤ cp(~s)_〈1〉 and ~r ≤ ~p. It follows that

〈~u, ~G�~u〉 decides ϕ. We would like to see that 〈~u, ~G�~u〉 and 〈~t, ~G′〉 give the

same decision. To do so we note that they are compatible, since 〈~u, ~G′�~u〉 is
below both. Running through the definition of the ordering is routine. This
finishes the first round of the construction.

Remark 2.3. Every direct extension of 〈~s, ~G〉 retains the same universal
property.

We turn to the second round of the construction, for which we have the
following claim.

Claim 2.4. There is a direct extension 〈~s, ~H〉 ≤ 〈~s, ~G〉 such that if an

extension 〈~t, ~H ′〉 ≤ 〈~s, ~H〉 decides ϕ, then there is a stem ~v such that

(1) pp(~t ) = pp(~v),
(2) cp(~v)�(`(~v)− 1) ≤ cp(~t )�(`(~t )− 1),

(3) cp(~v)(`(~v)− 1) = ~H(pp(~v) r pp(~s)), and

(4) 〈~v, ~H�~v 〉 decides ϕ in the same way as 〈~t, ~H ′〉.
Recall that we enumerated the Prikry stems extending pp(~s) = ~x as

〈~xα | α < κ+〉. Our approach is similar to the previous claim. We construct

a decreasing sequence of conditions 〈〈~s, ~Gα〉 | α < κ+〉. To begin we set
~G0 = ~G.

Suppose that we have constructed ~Gα for some α < κ+. Let

Bα := {~p ∈ P(~xα) | there are ~u, q̇ such that cp(~u) = ~p_〈q̇〉,
pp(~u) = ~xα, ~p  q̇ ≤ ~Gα(~xα r ~x) and 〈~u, ~Gα�~u〉 decides ϕ}.

Again we pick a maximal antichain A′α ⊆ Bα and then extend it to a
maximal antichain Aα ⊆ P(~xα). Note that this time we have |Aα| < κx
where x is the top element of ~xα. For each ~p ∈ Aα, if ~p ∈ Bα, then we
let q̇~p witness this. Otherwise we define q̇~p = ~Gα(~xα r ~x). Define ~Gα+1 as

follows. Let ~Gα+1(~xα r ~x) to be a P(~xα)-term such that for all ~p ∈ Aα,

~p  ~Gα+1(~xαr~x) = q̇~p. For all other ~y we let ~Gα+1(~y ) = ~Gα(~y ). We need to

check that 〈~s, ~Gα+1〉 ≤ 〈~s, ~Gα〉. Conditions (a) and (b) are obvious. For (c)
notice that the only interesting case is when ~y = ~xαr~x. In this case we have
a maximal antichain Aα such that for each ~p ∈ Aα, ~p  ~Gα+1(~y ) ≤ ~Gα(~y ).

So in fact for all ~y it is forced that ~Gα+1(~y ) ≤ ~Gα(~y ). Therefore ~s_〈1〉
forces this.
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Assume that γ is a limit ordinal. We can take a lower bound for the
construction so far since for all ~y the sequence 〈~Gα(~y ) | α < κ+〉 only
decreases at stage α where ~y = ~xα r ~x. We can assume that all of our
functions have the same domain and so we have a sequence of constraint
functions defined on measure one sets, ~Gγ .

A similar argument allows us to find a lower bound 〈~s, ~H〉 for the whole

construction. We will show that 〈~s, ~H〉 is as required for the claim. Suppose

that 〈~t, ~H ′〉 ≤ 〈~s, ~H〉 decides ϕ. Then by the first claim there is a ~u such that

`(~u) = `(~t ), cp(~u) ≤ cp(~t ) and 〈~u, ~G�~u〉 decides ϕ in the same way as 〈~t, ~H ′〉.
Then there is an α < κ+ such that pp(~u) = ~xα. Let cp(~u) := 〈q0, . . . , qk−1〉.
We claim that 〈q0, . . . , qk−2〉 ∈ Bα and that this is witnessed by ~u, qk−1 in
place of ~u, q̇ respectively. Clearly, cp(~u) = 〈q0, . . . , qk−2〉_〈qk−1〉. From the
definition of the ordering we have

〈q0, . . . , qk−2〉  qk−1 ≤ H(~xα r ~x),

cp(~s)_〈1〉  ~H(~xα r ~x) ≤ ~Gα(~xα r ~x).

It follows that 〈q0, . . . , qk−2〉  qk−1 ≤ ~Gα(~xα r ~x). To finish we recall

that 〈~u, ~G�~u〉 decides ϕ. So by the choice of A′α, there is a ~p ∈ A′α such
that ~p is compatible with 〈q0, . . . , qk−2〉. Let ~u~p, q̇~p witness that ~p ∈ Bα.
Choose ~r below both 〈q0, . . . , qk−2〉 and ~p. Let ~v be the stem determined
by ~r_〈H(~xα r ~x)〉 and ~xα. It is clear that parts (1)–(3) of the claim are
satisfied.

To complete the proof of the claim, we need to show that 〈~v, ~H�~v 〉 decides

ϕ in the same way as 〈~u, ~G�~u〉. We show that the above condition decides

ϕ by showing that it is below 〈~u~p, ~Gα�~u~p〉. Note that the first part of (a)
is trivial since pp(~u~p) = pp(~v). We leave the second part of (a) until after
we have proved (b). Let k = `(~v). Then by the choice of ~v we deduce that
cp(~v)�k−1 = ~r ≤ ~p = cp(~u~p)�k−1. To finish with (b) we need to show that

~r  ~H(~xα r ~x) ≤ q̇~p. To do so we collect some facts about the construction

of ~Gα+1:

~p  ~Gα+1(~xα r ~x) = q̇~p, cp(~s)_〈1〉  ~H(~xα r ~x) ≤ ~Gα+1(~xα r ~x).

This finishes (b), since ~r is below both ~s_〈1〉 and ~p. It follows that dom(~H�~v)

⊆ (dom ~Gα)�~u~p, since dom ~H = dom ~Gα and if ~v_y is a stem, then ~u_~p y is

a stem. (c) follows from the fact that 〈~s, ~H〉 ≤ 〈~s, ~Gα〉.
To see that 〈~v, ~H�~v 〉 gives the same decision as 〈~u, ~G�~u〉 we show that

they are compatible. For this we need to see that ~r  qk−1 ≤ ~H(~xα r ~x).
Recall that in fact 〈q0, . . . , qk−2〉 forces this and ~r is below it. So we can take

the stem determined by ~xα and ~r_〈qk−1〉 together with ~H restricted to this
stem, and this is below both conditions. This finishes the second claim.
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In the third round we restrict the measure one set to obtain the same
decision. This will be enough to finish the proof of the Prikry Lemma. For
this third and final round we actually need an enumeration of all stems
〈~sα | α < κ+〉, not just Prikry stems. For each α < κ+ we partition the
set of x ∈ Z such that ~s_α x is a stem into three sets, writing p(x) for
~H((pp(~sα)_x) r ~x) for ease of notation:

Y 0
α = {x ∈ Z | 〈~s_α 〈x, p(x)〉, ~H�(~s_α 〈x, p(x)〉)〉  ϕ},
Y 1
α = {x ∈ Z | 〈~s_α 〈x, p(x)〉, ~H�(~s_α 〈x, p(x)〉)〉  ¬ϕ},
Y 2
α = {x ∈ Z | 〈~s_α 〈x, p(x)〉, ~H�(~s_α 〈x, p(x)〉)〉 ∦ ϕ}.

For each α there is mα ∈ 3 such that Y mα
α ∈ U . Let Y = {x ∈ Z |

for all α < κ+, if ~s_α x is a stem, then x ∈ Y mα
α }. We have Y ∈ U and

we let ~I be the restriction of ~H to Y . Clearly 〈~s, ~I 〉 ≤ 〈~s, ~H〉. We present a
claim that finishes the proof.

Claim 2.5. There is a direct extension of 〈~s, ~I 〉 that decides ϕ.

For contradiction, suppose that no direct extension of 〈~s, ~I 〉 decides ϕ.
Then any extension which decides ϕ must add at least one Prikry point. Let
〈~t, ~I ′〉 be an extension of minimal length that decides ϕ; without loss of gen-
erality we assume that it forces ϕ. By the second round there is a stem ~v sat-
isfying (1)–(4) of Claim 2.4. There is an α < κ+ such that ~v�(`(~v)− 1) = ~sα.
From the definition of Y , the top element of pp(~v) is in Y mα

α . It follows from
the conditions of Claim 2.4 that mα = 0. Now we can define a condition
of shorter length that forces ϕ, a contradiction. We claim that 〈~sα, ~I�~sα〉
forces ϕ. Every one-step extension is below a condition of the form

〈~s_α x_ ~H((pp(~sα)_x) r ~x), ~H�(~s_α x_ ~H((pp(~sα)_x) r ~x))〉

for some x ∈ Y 0
α . Hence there is a dense set of conditions below 〈~sα, ~I�~sα〉

which force ϕ. This proves the claim and hence finishes the proof of the
Prikry Lemma.

We need an additional argument to show that bounded subsets of κ come
from initial segments of the generic. We recall a part of [4, Lemma 4.3] that
has been modified to fit our new context.

Lemma 2.6. For all n ≥ 3, if ~x is a Prikry stem of length n, then
V [P(~x)] � Q̇(~x) is ℵn−1-closed.

For a stem of length n ≥ 2, P(~x) preserves ℵ0,ℵ1 and for 0 ≤ i ≤ n− 1
makes κxi into ℵi+2. The following lemma is clear from the above facts.

Lemma 2.7. Fix a Prikry stem ~x of length n ≥ 3. Given a sequence of
fewer than κ~x(n−3) many P(~x)-terms for conditions in Q̇(~x), if ~p ∈ P(~x)
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forces the sequence to be decreasing, then there is a P(~x)-term that ~p forces
to be a lower bound.

From this we have the following lemma which is used in our lemma about
bounded subsets.

Lemma 2.8. Given a µ < κ and a condition 〈~s, ~F 〉, there is an extension

〈~s, ~G〉 of 〈~s, ~F 〉 such that every extension of 〈~s, ~G〉 which adds at least two
Prikry points has the property that the term forcing in the constraints is
µ+-closed.

Proof. To show this it suffices to shrink the measure one set of the con-
dition 〈~s, ~F 〉. We restrict the domains of the ~F so that for all x in the

restriction, κx > µ+. This defines 〈~s, ~G〉. Suppose that 〈~t, ~H ′〉 ≤ 〈~s, ~H〉 is an
extension that adds at least two Prikry points, say xn, xn+1. By the choice
of ~G we have µ+ < κxn < κxn+1 . By the previous lemma, all of the term
forcings in the constraints are at least κxn-closed in the ground model.

Below we use ~̇x for the canonical name for the Prikry sequence.

Lemma 2.9. Suppose that ḃ is a name in the main forcing for a subset
of some µ < κ. Then it is forced that there is an n such that ḃ in V [P(~̇x�n)].

Proof. By the previous lemma there is a dense set of conditions such that
the forcing in the constraint is µ+-closed. Suppose that 〈~s, ~F 〉 is a condition
in this dense set. Let `(~s) = k, pp(~s) = ~x and cp(~s) = ~p. We construct

an extension 〈~s, ~G〉 which forces that ḃ ∈ V [P(~̇x)�k + 1]. We construct a

decreasing sequence of µ many conditions 〈〈~s, ~Fα〉 | α < µ〉. We let ~F 0 = ~F .
At stage α+1 of the construction we repeatedly apply the Prikry Lemma to
the condition 〈~s, ~Fα〉 and the statement “α ∈ ḃ” to obtain ~Fα+1 such that
there is a maximal antichain of elements ~q of P(~x) ∗Q(~x) below ~p where if ~t

is obtained from ~x and ~q, then 〈~t, ~Fα+1〉 decides “α ∈ ḃ”. As in the proof

of Claim 2.2 we amalgamate different extensions of ~Fα over the maximal
antichain in P(~x) ∗Q(~x) to obtain ~Fα+1.

The closure of the forcing in the constraining functions allows us to
take a lower bound at limit stages of the construction and also for the
whole sequence of conditions. We call this lower bound 〈~s, ~G〉. Clearly this
condition forces that ḃ is in the extension V [P(~̇x�k + 1)].

Corollary 2.10. In the extension κ = ℵω and for all n ≥ 2, the tree
property holds at ℵn.

This follows easily from facts about the original Cummings–Foreman
model and the previous lemma.

3. Cardinals above κ. In this section we seek to show that the tech-
nique from Magidor’s paper [8] is enough to give us the failure of SCH at
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ℵω with our forcing. In particular we show that an inner model of the full
extension preserves cardinals above κ.

We need the following variation of Claim 2.2. Fix a condition 〈~s, ~F 〉 and
suppose that γ̇ is a name for an ordinal. We claim that there is a direct

extension 〈~s, ~G〉 such that if 〈~t, ~G′〉 ≤ 〈~s, ~G〉 forces the value of γ̇ to be γ,

then so does 〈~t, ~G�~t 〉. To see this we repeat the proof of Claim 2.2, but
instead of deciding ϕ, we decide the value of γ̇ if possible. The proof goes
through because 〈~t, ~G′〉 and 〈~t, ~G�~t 〉 are compatible and so must force the
same value for γ̇.

Let G be generic for our forcing. We are interested in the inner model
of V [G] corresponding to the measurable Prikry sequence and the generics
generated by the Cummings–Foreman iteration. In particular, if 〈xn | n < ω〉
is the Prikry sequence and gω is the sequence of generics such that gω�n is
generic for P(~x�n + 1) obtained from G, then we are interested in V0 :=
V [〈κxn | n < ω〉, gω]. Note that Lemma 2.9 shows that in V0, κ = ℵω and
for all n ≥ 2 the tree property holds at ℵn.

Theorem 3.1. The cardinals κ+ and κ++ are preserved in V0.

We will prove this by analyzing automorphisms of our forcing. Suppose
that Γ is a permutation of κ+ that fixes κ. Then we can apply Γ to a
condition 〈~s, ~F 〉 where ~s = 〈x0, p0, . . . , xn−1, pn−1〉 and ~F = 〈Fn, Fn+1, . . . 〉,
as follows:

Γ (〈~s, ~F 〉) =
〈
Γ“x0, p0, . . . , Γ“xn−1, pn−1, Fn◦Γ−1, . . . , Fn+m◦

⊕
i<m

Γ−1 . . .
〉
.

Note that Γ (〈~s, ~F 〉) is a condition since Γ fixes κ. It is easy to see that Γ is
an automorphism of the forcing and that any name for 〈κn | n < ω〉 and gω
is fixed by Γ .

Straight from [8] we have the following lemma.

Lemma 3.2. Let Γ be a permutation of α and U be a normal fine measure
on Pκ(α). Then {x | Γ“x = x} ∈ U .

Lemma 3.3. Let

〈~s, ~F 〉 = 〈x0, p0, . . . , xn−1, pn−1, Fn, Fn+1, . . . 〉,
〈~t, ~G〉 = 〈y0, p0, . . . , yn−1, pn−1, Gn, Gn+1, . . . 〉

where κxi = κyi for all i < n and the constraint functions agree on the
intersection of their domains. Then there is a permutation Γ of κ+ which
fixes κ such that Γ (〈~s, ~F 〉) is compatible with 〈~t, ~G〉.

Proof. Recall that for all x ∈ Z, |x| = (x ∩ κ)+. An easy inductive
construction yields Γ such that Γ �xi : xi → yi is a bijection for all i < n.
This Γ works by Lemma 3.2.
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Proof of Theorem 3.1. Suppose that κ+i+1 is collapsed in Vi where i ∈ 2
and V1 = V [G]. Let µ be the cofinality of κ+i+1 in Vi. Fix a condition 〈~s, ~F 〉
as above. Suppose that ḃ is a name for a function from µ cofinally into κ+i+1

such that iG(ḃ) ∈ Vi. We may assume as in Lemma 2.9 that the forcing in the

upper part of 〈~s, ~F 〉 is µ+-closed. Note that for all Γ , if Γ is a permutation
of κ+ fixing κ+i then Γ fixes ḃ.

Applying the variation of the Prikry Lemma from the beginning of the
section, we can obtain 〈~s, ~G〉 ≤ 〈~s, ~F 〉 such that if 〈~t, ~G′〉 ≤ 〈~s, ~G〉 forces that

ḃ(λ) = α then 〈~t, ~G�~t 〉 forces ḃ(λ) = α.

Define Aλ = {α | there is 〈~t, ~G′〉 ≤ 〈~s, ~G〉 such that 〈~t, ~G′〉  ḃ(λ) = α}.
Claim 3.4. |Aλ| ≤ κ+i.
This claim is enough since the union of the Aλ has size ≤ κ+i and

therefore ḃ cannot collapse κ+i+1, a contradiction. Suppose the claim is false,
that is, |Aλ| > κ+i. Then for each α ∈ Aλ there is 〈~tα, ~Fα〉 ≤ 〈~s, ~G〉 which

forces ḃ(λ) = α. We may assume that ~Fα = ~G�~tα. First find a set unbounded
in κ+i+1 such that all the conditions have the same length. Then if i = 1
there are only κ+ many stems of a given length, and it follows that there are
α, β such that 〈~tα, ~Fα〉 = 〈~tβ, ~F β〉, contradicting the choice of 〈~tα, ~Fα〉 and

〈~tβ, ~F β〉. If i = 0, then there are only κ many possibilities for the projected
stems where we intersect each x with κ. It follows that there are α, β such
that 〈~tα, ~Fα〉 and 〈~tβ, ~F β〉 satisfy the hypotheses of Lemma 3.3. Hence there

is an automorphism Γ such that Γ (〈~tα, ~Fα〉) ‖ 〈~tβ, ~F β〉 but Γ fixes ḃ, again

contradicting the choice of 〈~tα, ~Fα〉 and 〈~tβ, ~F β〉. This completes the proof
of the claim and with it the proof of Theorem 3.1.
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