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On physical measures for Cherry flows

by

Liviana Palmisano (Warszawa)

Abstract. Studies of the physical measures for Cherry flows were initiated in Saghin
and Vargas (2013). While the non-positive divergence case was resolved, the positive
divergence case still lacked a complete description. Some conjectures were put forward.
In this paper we make a contribution in this direction. Namely, under mild technical
assumptions we solve some conjectures stated in Saghin and Vargas (2013) by providing
a description of the physical measures for Cherry flows in the positive divergence case.

1. Introduction. One of the main goals of dynamical systems theory is
to describe the typical behavior of orbits, especially when time goes to infin-
ity, and understanding how this behavior is affected by small perturbations
of the law that governs the system.

Such questions are especially difficult when the system is sensitive to
initial conditions; that is, when a small change in the initial state results in
a large variation in the long term behavior of the orbits. One way to address
this problem is using the so-called physical measures. These are probability
measures of a particular interest as they describe the statistical properties
of a large set of orbits.

In general physical measures are still poorly understood. Even their exis-
tence has been established only for a narrow class of systems. In this paper
we make a contribution to this area by studying the physical measures for
Cherry flows.

We recall the classical construction of a Cherry flow given in [1]. It is a C∞
flow on the two-dimensional torus without closed orbits and with two singu-
larities, a sink and a saddle. In this case it is relatively easy to check that the
only physical measure is the Dirac delta at the sink. The inverted flow, still
called a Cherry flow, is a C∞ flow on the torus T2, without closed orbits and
with two singularities, a saddle point and a repelling point, both hyperbolic
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Fig. 1. Cherry flow

(see Figure 1). Describing the physical measures in this framework, which is
the topic of this paper, is much more difficult and interesting.

Our results answer some open questions of [11].
Before we can state them formally, it is necessary to recall some basic

definitions.

1.1. Basic definitions and general remarks

Physical measures. Let φ be a continuous flow on a compact mani-
foldM . A probability measure ν onM is invariant under the flow if ν(φt(A))
= ν(A) for all t ∈ R and for any measurable set A ⊂M .

Definition 1.1. Let t > 0. We define a family of probability measures
mt(z), z ∈M , on M by

�

M

αdmt(z) =
1

t

t�

0

α(φs(z)) ds

for each continuous function α :M → R.
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Definition 1.2. Let ν be an invariant probability measure. The basin
of attraction B(ν) = Bφ(ν) of ν is the set of z ∈M such that

lim
t→∞

mt(z) = ν in the weak-? topology.

The measure ν is said to be physical if its basin of attraction has strictly
positive Lebesgue measure.

Cherry flows. In the following we provide some definitions and proper-
ties concerning Cherry flows. We will state them in compact form. For more
details the reader can refer to [4]–[8].

Definition 1.3. A Cherry flow is a C∞ flow on the torus T2 without
closed orbits and with two singularities, a saddle point and a repelling point,
both hyperbolic.

From now on, φ will denote a Cherry flow as in Definition 1.3. Moreover
ps will denote the saddle point of φ, and pr its repelling point.

Proposition 1.4. Let φ be a Cherry flow and let Sing(φ) be the set of
singularities of φ. There exists a closed C∞ curve C on T2 \Sing(φ) with the
following properties:

• C is everywhere transversal to the flow;
• C is not contractible to a point.

Definition 1.5. The closed curve C constructed in Proposition 1.4 is
called a closed transversal.

Fact 1.6. Every Cherry flow admits a closed transversal C. The set
T 2 \ C is C∞-equivalent to an annulus S1 × (0, 1) and we can write T 2 ∼=
S1 × [0, 1]/∼, where (s, 0) ∼ (s, 1). Consider φ as a flow on T 2 ∼= S1 × [0, 1]
where we identify S1 × {0} and S1 × {1}. After this change of coordinates,
the resulting flow is a Cherry flow.

Let now g be the first return map of the flow φ to the closed transversal.
The existence of g is guaranteed by [5, Theorem 2.6.1] and by the absence of
closed trajectories for Cherry flows. Observe that g is C∞ everywhere except
at one point which belongs to the stable manifold of the saddle point and
which we will assume to be zero (we identify S1 with [−1/2, 1/2]−1/2∼1/2).
We denote by a and b respectively the left-side and the right-side limit of
the orbit of the discontinuity point 0, and by U the interval (a, b).

We now consider the flow ϕ obtained by reversing the direction of φ. The
repelling point of φ becomes an attractive point for ϕ, which is then a Cherry
flow as in Cherry’s example [1]. In this case, the first return map f of ϕ to the
closed transversal is a circle endomorphism which is C∞ everywhere except at
a and b, where it is continuous, and it is constant on the interval U = (a, b).
Moreover, after a change of coordinates, on a half-open neighborhood of
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these two points, f can be written as xλ1/(−λ2) where λ1 > 0 > λ2 are the
eigenvalues of the saddle point ps of φ. The corresponding formula for g is
clearly x−λ2/λ1 .

Rotation number. As f is a monotone circle map, it has a rotation
number, measuring the rate at which an orbit winds around the circle. More
precisely, if F is a lift of f to the real line, the rotation number of f is the
limit

ρ(f) = lim
n→∞

Fn(x)

n
(mod 1).

This limit exists for every x and its value is independent of x.
We can then define the rotation number of any flow ϕ obtained by re-

versing the direction of a Cherry flow φ as follows:

Definition 1.7. The rotation number of ϕ is the rotation number of its
first return map to any closed transversal.

It is easy to check

Fact 1.8. The rotation number ρ of ϕ does not depend on the choice of
the closed transversal.

Consequently, the rotation number of any Cherry flow is defined:

Definition 1.9. Let φ be a Cherry flow as in Definition 1.3. The rotation
number of φ is the rotation number of the flow ϕ obtained by reversing the
direction of φ.

Since the flow under consideration does not have closed orbits, f has
an irrational rotation number ρ which admits an expansion as an infinite
continued fraction

ρ =
1

a1 +
1

a2 +
1

· · ·

,

where the ai are positive integers.
If we cut off the portion of the continued fraction beyond the nth position,

and write the resulting fraction in lowest terms as pn/qn, then the numbers
qn for n ≥ 1 satisfy the recurrence relation

(1.1) qn+1 = an+1qn + qn−1, q0 = 1, q1 = a1.

The number qn is the number of times we have to iterate the rotation by
ρ in order that the orbit of any point makes its closest return so far to the
point itself (see [2, Chapter I, Sect. I]).

Definition 1.10. Let ρ be an irrational number and let (ai)i∈N be the
integers in the infinite continued fraction expansion of ρ. We say that ρ is of
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bounded type if there exists a positive real number M such that ai < M for
any i.

First return time

Definition 1.11. Let z be a point of the closed transversal. The first
return time τ(z) for φ to S1 is the number of iterations of g needed by z to
come back to S1 for the first time.

Fact 1.12. The first return time τ(z) for φ to S1 has a logarithmic sin-
gularity at 0. This means that for each ε > 0, there exists a constant C > 0
such that, for all z ∈ (−ε, ε), we have

1

C
≤ τ(z)

− log |z|
≤ C.

In other words, τ(z) is of order of − log |z|.

Since f preserves the order and it does not have periodic points, by
Poincaré’s Theorem there exists a continuous order preserving degree one
function h : S1 → S1 such that h ◦ f = Rρ ◦h, where Rρ is the rotation by ρ.
Then the probability measure µ = h∗(Leb) supported on the minimal set is
well defined and it is the only invariant ergodic measure for f .

By [10, Proposition 2] the measure µ can be extended to an invariant
probability measure ν on the torus supported on the quasi-minimal set if	
S1 τ dµ is convergent.

1.2. Discussion and statement of the results. In this paper we are
interested in the physical measures for Cherry flows which are C∞ flows
on the torus T2, without closed orbits and with two singularities, a saddle
point ps and a repelling point pr, both hyperbolic (see Figure 2).

This problem was first studied in [11] where the authors gave a description
of the physical measures for some class of Cherry flows. They discovered that
this problem is related to the variation of the divergence of the flow at the
saddle point.

To be more precise, let λ1 > 0 > λ2 be the two eigenvalues at the saddle
point. In the non-positive divergence case when λ1 ≤ −λ2, [11] shows that
the Dirac deltas at the singularities are the only ergodic invariant probability
measures. Moreover [11] establishes that the Dirac delta at the saddle point
is the physical measure for the flow.

On the other hand, in the positive divergence case, λ1 > −λ2, in addition
to the Dirac deltas at the singularities, there exists another ergodic invariant
probability measure ν, which is supported on the quasi-minimal set of the
flow and it is different from the Dirac delta at the saddle point. Under the
additional assumptions of strictly positive divergence, λ1 > −2λ2, and of the
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Fig. 2. Cherry flow

rotation number being of bounded type, the authors of [11] prove that ν is
physical and they conjecture that this holds for any λ1 > −λ2.

In this paper we present some new results in this direction.
If the divergence at the saddle point is positive, under the hypothesis

that the rotation number is of bounded type, we have:

Theorem 1.13. Let φ be a Cherry flow with eigenvalues λ1 > 0 > λ2
at the saddle point. If λ1 > −λ2 and φ has rotation number of bounded
type, then the ergodic invariant probability measure ν supported on the quasi-
minimal set is the physical measure for φ with attraction basin having full
Lebesgue measure.

If the divergence at the saddle point becomes strictly positive, without
any assumption on the rotation number, we have:

Theorem 1.14. Let φ be a Cherry flow with eigenvalues λ1 > 0 > λ2
at the saddle point. If λ1 ≥ −3λ2, then the ergodic invariant probability
measure ν supported on the quasi-minimal set is the physical measure for φ
with attraction basin having full Lebesgue measure.

Theorem 1.13 together with the results of [11] provides a complete de-
scription of the physical measures for Cherry flows having rotation num-
ber of bounded type (bounded regime). In the unbounded regime the case
1 < λ1/(−λ2) < 3 remains still open. We will comment on technical prob-
lems arising in this case in Remark 3.1.
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1.3. Standing assumptions and notation. Let 0 be the discontinuity
point of g. In order to simplify the notation we shall write

i = f i(0), iR = Riρ(0).

We observe that, because of the properties of f , underlined non-positive
integers of the type −i represent intervals.

Distance between points. We denote by (a, b) = (b, a) the shortest
open interval between a and b regardless of the order of these two points.
The length of that interval in the natural metric on the circle will be denoted
by |a − b|. Following [3], let us adopt these notational conventions for the
distance between the preimages of the first return function f :

• |−i| stands for the length of the interval −i.
• Consider a point x and an interval −i not containing it. Then the dis-

tance from x to the closest endpoint of −i will be denoted by |(x,−i)|,
and the distance to the most distant endpoint by |(x,−i]|.
• We define the distance between the endpoints of two intervals −i and
−j analogously. For example, |(−i,−j)| denotes the distance between
the closest endpoints of these two intervals while |[−i,−j)| stands for
|−i|+ |(−i,−j)|.

2. Proof of Theorem 1.13. We consider the sequence

αn =
|(−qn, 0)|
|[−qn, 0)|

and we prove the following proposition:

Proposition 2.1. Let λ1 > 0 > λ2 be the eigenvalues at the saddle
point of φ and let f be the first return function of the reverse flow ϕ. If f
has rotation number of bounded type and λ1/(−λ2) ∈ (1, 2], then there exist
constants K > 0 and C < 1 such that for n large enough,

− logαn
qn+1

≤ KCn.

The constant C does not depend on the eigenvalues λ1 and λ2 at the saddle
point.

Proof. We write ` = λ1/(−λ2). Before beginning the proof it is necessary
to recall that:

(1) q0 = 1, q1 = a1 and qn+1 = an+1qn + qn−1 by (1.1),

(2) by [3, Proposition 6], for n large enough, αn ≥ K1α
1−`

−an+1

`−1

n−1 α`
−an

n−2
where K1 is a positive constant.
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In order to simplify the proof we will work assuming that, for n large enough,

(2.1) αn ≥ α
1−`

−an+1

`−1

n−1 α`
−an

n−2 .

This hypothesis is not restrictive. Indeed, observe that for every n we have
qn ≥ βn/K2 with β = (1 +

√
5)/2 and K2 a positive constant. Then the

estimation remains true also in the general case as one could add to each
inequalities below the term log(K1)/qn which trivially satisfies the desired
estimation.

To lighten the notation, we introduce a new sequence (θn)n∈N defined by
θn := − logαn for all n.

We fix n0 ∈ N such that (2.1) is satisfied for all n ≥ n0.
We shall prove the proposition by induction on n ≥ n0. We take

C = C(`) = sup
i

(
1− `−ai
(`− 1)ai

)1/n0

and K ≥ max{θn0−2, θn0−1}.

We observe that, for all 1 < ` ≤ 2, we have C < 1; if we consider C as a
function of `, then, in the interval (1, 2], C(`) is continuous, decreasing, and
moreover lim`→1C(`) = 1 and C(2) < 1.

We observe that, for any natural number i ≥ 1,

(2.2) `−ai ≤ 1− `−ai
(`− 1)ai

≤ Cn0 ≤ C.

We now begin the proof by induction.

• Let n0 be as above. By (2.1) and (2.2), we have

θn0 ≤
1− `−an0+1

`− 1
θn0−1 + `−an0θn0−2

≤ Cn0Kan0+1 + Cn0K ≤ KCn0(an0+1 + 1).

By point (1),

θn0 ≤ KCn0qn0+1.(2.3)

We now prove the assertion for n0 + 1. By (2.1)–(2.3),

θn0+1 ≤
1− `−an0+2

`− 1
θn0 + `−an0+1θn0−1

≤ KCn0
1− `−an0+2

(`− 1)an0+2
an0+2qn0+1 +KCn0 ;

and by point (1) and (2.2),

θn0+1 ≤ KCn0+1

(
an0+2qn0+1 +

Cn0

C

)
≤ KCn0+1qn0+2.
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• We now assume that the assertion is true for n− 2 and for n− 1, and
we prove it for n. By (2.1) and the inductive hypothesis we have

θn ≤
1− `−an+1

`− 1
θn−1 + `−anθn−2

≤ K
(
(1− `−an+1)

(`− 1)an+1
Cn−1an+1qn + Cn−2`−anqn−1

)
.

Finally, by (2.2) and by point (1),

θn ≤ KCn
(
an+1qn +

`−an

C2
qn−1

)
≤ KCnqn+1.

So, the assertion of the lemma is true for all n ∈ N large enough.

As a direct consequence of Proposition 2.1 we have the following.

Corollary 2.2. Let λ1 > 0 > λ2 be the eigenvalues at the saddle point
of φ and let f be the first return function of the reverse flow ϕ. If f has rota-
tion number of bounded type and λ1/(−λ2) ∈ (1, 2], then there exist constants
K > 0 and C < 1 such that for n large enough, − log |(qn, 0)|/qn+1 ≤ KCn.
The constant C does not depend on the eigenvalues λ1 and λ2 at the saddle
point.

We recall the following theorem proved in [3]:

Theorem 2.3. Let λ1 > 0 > λ2 be the eigenvalues at the saddle point
of φ and let f be the first return function of the reverse flow ϕ. If λ1 > −λ2,
then

⋃∞
i=0 f

−i(U) has full Lebesgue measure on S1.
The proof of Theorem 1.13 uses the main ideas of [11, proof of Theorem 3].

Proof of Theorem 1.13. By [11, Theorem 2] we know that the flow φ
has an invariant probability measure ν supported on the quasi-minimal set
which corresponds to the extension of the f -invariant measure µ (defined by
µ = h?(Leb)). It remains to prove that ν is a physical measure for φ and
that its basin of attraction has full Lebesgue measure.

By Theorem 2.3, it is sufficient to prove that the points of the wandering
set of ϕ are in the basin of attraction of ν. Since all points of the wandering
set pass through the flat interval of f , we just have to prove that any point
of U is in the basin of attraction of ν.

Let z ∈ U , ng = gn−1(z) and tn = τ(ng). For all t > 0 there exists N ∈ N
such that t = t1 + · · ·+ tN + t̃ where 0 < t̃ ≤ tN+1. Moreover, let n ∈ N be
such that qn ≤ N < qn+1. Since τ is uniformly bounded below, we have

(2.4) t ≥ CN
with C a positive constant.

Let mt be the probability measure introduced in Definition 1.1. Since the
only invariant probability measures are δs, δr and ν (for more details see [11,
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Theorem 2]) and since pr is repelling, the limits for mt will be of the form

(2.5) γδs + (1− γ)ν
for some γ ∈ [0, 1]. To prove that z is in the basin of attraction of ν, which
means that limt→∞mt = ν, we have to prove that γ = 0.

We fix 0 < n0 < n and we will prove that the trajectory of z under φ
spends most of the time outside of

An0 = {φs(w) : w ∈ (qn0 , qn0+1), 0 ≤ s ≤ τ(w)}.
We will show that by choosing n0 correctly, the time tAn0

which the tra-
jectory φs(z), 0 ≤ s ≤ t, spends in An0 can be made arbitrarily small in
comparison to t, for all t large enough.

To do so we divide An0 and we start by estimating the time tBl
spent by

the trajectory φs(z), 0 ≤ s ≤ t, in
Bl = {φs(w) : w ∈ (ql, ql+2), 0 ≤ s ≤ τ(w)}.

We observe that, since f is the first return function of the flow obtained
by reversing the direction of φ, if h is the semiconjugation between f and
the rotation Rρ, then

h(ng) = h(gn−1(z)) = h(f−n+1(z)) = h(f−n(0)) = −nR.
Then for all l ∈ N we have qlg ∈ (ql−1, ql+1) and ql ∈ (ql−1g, ql+1g

). So the
number of points ig, 1 ≤ i ≤ N , in (ql, ql+2) is equal to the number of points
−iR, 1 ≤ i ≤ N , in (qlR, ql+2R

).
Now we estimate the number Nl of points −iR, 1 ≤ i ≤ N , which are in

(qlR, 0). Since |(qlR, 0)| is of the order of 1/ql+1 and since the rotation is a
bijection preserving the distance, we can divide the circle into exactly ql+1

disjoint images of (qlR, 0), and any image has Nl points −iR, 1 ≤ i ≤ N .
In conclusion,

ql+1Nl ≤ N
and the number of points −iR, 1 ≤ i ≤ N , which are in (qlR, ql+2R

) is less
than or equal to N/ql+1.

By Fact 1.12, equation (2.4) and Corollary 2.2 we have

tAn0

t
=

1

t

n−1∑
l=n0

tBl
≤ C3N

t

n−1∑
l=n0

− log |(ql+2, 0)|
ql+1

≤ C3

C

n−1∑
l=n0

− log |(ql+2, 0)|
ql+1

≤ C3

CC4

n−1∑
l=n0

(C5)
l+2.

Observe that we are assuming a supplementary hypothesis on the eigenvalues
λ1 > 0 > λ2 of the saddle point: λ1 ≤ −2λ2. The case λ1 > −2λ2 is proved
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in [11, Theorem 3]. Finally, since
∑∞

l=n0
(C5)

l is convergent, taking n0 large
enough, we can make tAn0

/t as small as we want.
We observe that we have the same result if in place of An0 we consider

An0−c with c > 0 and An0 b An0−c.
It remains to prove that if limn0→∞ tAn0

/t = 0 then γ = 0.
We suppose for contradiction that γ > 0, and we recall that there exists

a strictly non-decreasing sequence (tn)n∈N of positive reals with tn →∞ as
n→∞ such that limtn→∞mtn(z) = γδs + (1− γ)ν (see (2.5)).

Let us fix ε > 0. There exists T > 0 such that for all n ∈ N for which
tn > T and for any continuous α : T2 → R,

(2.6)
∣∣∣ �
T2

αdmtn(z)−
�

T2

αd(γδs + (1− γ)ν)
∣∣∣ < ε.

Now let c > 0 be such that An0 b An0−c. Let α be a bump function with
compact support such that α(x) = 1 for all x ∈ An0 , and α(x) = 0 for all
x ∈ (An0−c)

c. We observe that
tAn0

tn
≤

�

T2

αdmtn(z) ≤
tAn0−c

tn

and we recall that by hypothesis limn0→∞ tAn0
/tn = limn0→∞ tAn0−c/tn = 0.

Then, for n large enough, we deduce from (2.6) that

(2.7) γ − ε < γ + (1− γ)ν(An0)− ε < ε,

which contradicts the hypothesis that γ > 0.
So γ = 0 and limt→∞mt(z) = ν in the weak-? topology. By Definition 1.2,

z is in the basin of attraction of φ.

3. Proof of Theorem 1.14. The idea of the proof is similar to the
proof of Theorem 1.13. The main technical tool is that, under the condition
λ1 ≥ −3λ2, without any assumption on the rotation number, the sequence
|(0, qn)|/|(0, qn−2)| is bounded away from zero [9, Theorem 1.2, second claim].

Proof of Theorem 1.14. By [9, Theorem 1.2, second claim] we can assume
that there exist n0 ∈ N and a constant α ∈ (0, 1) such that |(0, qn)|/|(0, qn−2)|
> α2 for n ≥ n0 > 0. Then, by induction,

(3.1) |(0, qn)| > Cαn

for some C > 0.
By [11, Theorem 2], there exists an invariant probability measure ν sup-

ported on the quasi-minimal set. We prove that the basin of attraction of ν
has full Lebesgue measure, so ν is a physical measure for φ.

As in the proof of Theorem 1.13, we prove that any point of U is in the
basin of attraction of ν.
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Let z ∈ U , ng = gn−1(z) and tn = τ(ng). For all t > 0 there exists N ∈ N
such that t = t1 + · · · + tN + t̃ where 0 < t̃ ≤ tN+1 and there exists n ∈ N
such that qn ≤ N < qn+1. Since τ is uniformly bounded below, we have

(3.2) t ≥ C1N

with C1 > 0 a positive constant.
Let mt be the probability measure as introduced in Definition 1.1. The

possible limits formt must have the form γδs+(1−γ)ν for some γ ∈ [0, 1]. We
have to prove that γ is zero (for the details see the proof of Theorem 1.13).

We fix 0 < n0 < n and we prove that the orbit of z under φ spends most
of the time outside of

An0 = {φs(w) : w ∈ (qn0 , qn0+1), 0 ≤ s ≤ τ(w)}.

The time tAn0
spent in An0 will be calculated as the sum of the times

tBl
spent in small pieces of An0 of the form

Bl = {φs(w) : w ∈ (ql, ql+2), 0 ≤ s ≤ τ(w)}.
For these reasons, we have to estimate the number of points ig, 1 ≤ i ≤ N ,
in (ql, ql+2), which, just as in Theorem 1.13, coincides with the number of
points −iR, 1 ≤ i ≤ N , in (qlR, ql+2R

), which is less than or equal to N/ql+1.
Finally by (3.1), (3.2), Fact 1.12 and the fact that ql ≥ βl/C6 for β =

(1 +
√
5)/2 we have

tAn0

t
=

1

t

n−1∑
l=n0

tBl
≤ C5N

t

n−1∑
l=n0

− log |(ql+2, 0)|
ql+1

≤ C5

C1

n−1∑
l=n0

− log |(ql+2, 0)|
ql+1

≤ C5Cα

C1

n−1∑
l=n0

l

ql+1
≤ C5CαC6

C1

n−1∑
l=n0

l

βl+1
.

In conclusion, taking n large enough, we can make tAn/t as small as we
want; hence, as in the proof of Theorem 1.13, γ = 0 and z is in the basin of
attraction of ν.

Remark 3.1. The proof of Theorem 1.13 hinges on the recursive es-
timate (2.1) for αn (used to demonstrate Proposition 2.1). In the case of
rotation number of bounded type such an estimate was found in [3] and is
sufficient to conduct the proof. The case of unbounded type is more prob-
lematic, since the estimate provided by [9] is not sufficient any more. To
circumvent this problem we assume additionally that the ratio of the eigen-
values at the saddle point is greater than or equal to 3, which ensures that
the sequence αn is bounded away from zero (Theorem 1.14). We note that
an improved estimate may lead to a complete description of the physical
measures for Cherry flows without any assumption on the rotation number.
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