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Abstract. We define a countable antichain condition (ccc) property for partial or-
derings, weaker than precalibre-ℵ1, and show that Martin’s axiom restricted to the class
of partial orderings that have the property does not imply Martin’s axiom for σ-linked
partial orderings. This yields a new solution to an old question of the first author about
the relative strength of Martin’s axiom for σ-centered partial orderings together with the
assertion that every Aronszajn tree is special. We also answer a question of J. Steprāns
and S. Watson (1988) by showing that, by a forcing that preserves cardinals, one can
destroy the precalibre-ℵ1 property of a partial ordering while preserving its ccc-ness.

Introduction. A question asked in [1] is if MA(σ-centered) plus “Every
Aronszajn tree is special” implies MA(σ-linked). The interest in this ques-
tion originated in the result of Harrington–Shelah [5] showing that if ℵ1 is
accessible to reals, i.e., there exists a real number x such that the cardinal
ℵ1 in the model L[x] is equal to the real ℵ1, then MA implies that there
exists a ∆1

3(x) set of real numbers that does not have the Baire property.
The hypothesis that ℵ1 is accessible to reals is necessary, for if ℵ1 is inacces-
sible to reals and MA holds, then ℵ1 is actually weakly compact in L ([5]),
and K. Kunen showed that starting from a weakly compact cardinal one can
get a model where MA holds and every projective set of reals has the Baire
property.

In [1], using Todorčević’s ρ-functions [12], it was shown that MA(σ-cen-
tered) plus “Every Aronszajn tree is special” is sufficient to produce a ∆1

3(x)

set of real numbers without the Baire property, assuming ℵ1 = ℵL[x]1 . Thus,
it was natural to ask how weak is MA(σ-centered) plus “Every Aronszajn
tree is special” as compared to the full MA, and in particular if it im-
plies MA(σ-linked). The answer is negative, since it has been observed by
D. Chodounský and J. Zapletal that a finite-support iteration of σ-centered
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posets combined with the forcing that specializes Aronszajn trees has the
Y-c.c. property, and therefore does not add random reals (see [2]).

In the first part of the paper we give a new and stronger negative answer,
namely we show that a fragment of MA that includes MA(σ-centered), and
even MA(3-Knaster), and implies “Every Aronszajn tree is special”, does
not imply MA(σ-linked). A partial ordering with the precalibre-ℵ1 property
plays the key role in the construction of the model.

In the second part of the paper we answer a question of Steprāns–Wat-
son [9]. They ask if it is possible to destroy the precalibre-ℵ1 property of a
partial ordering, while preserving its ccc-ness, in a forcing extension of the
set-theoretic universe V that preserves cardinals. This is a natural question
considering that, as shown in [9], on the one hand, assuming MA plus the
Covering Lemma, every precalibre-ℵ1 partial ordering has precalibre-ℵ1 in
every forcing extension of V that preserves cardinals; and on the other hand,
the ccc property of a partial ordering having precalibre-ℵ1 can always be
destroyed while preserving ℵ1, and consistently even preserving all cardinals.

We answer the Steprāns–Watson question positively, and in a very strong
sense. Namely, we show that it is consistent, modulo ZFC, that the Contin-
uum Hypothesis holds and there exist a forcing notion T of cardinality ℵ1
that preserves ℵ1 (and therefore it preserves all cardinals, cofinalities, and
the cardinal arithmetic), and two precalibre-ℵ1 partial orderings, such that
forcing with T preserves their ccc-ness, but it also forces that their product
is not ccc and therefore they do not have precalibre-ℵ1.

1. Preliminaries. Recall that a partially ordered set (or poset) P is
ccc if every antichain of P is countable; it is productive-ccc if the product
of P with any ccc poset is also ccc; it is Knaster (or has property K) if
every uncountable subset of P contains an uncountable subset consisting of
pairwise compatible elements. More generally, for k ≥ 2, P is k-Knaster if
every uncountable subset of P contains an uncountable subset such that any
k of its elements have a common lower bound. Thus, Knaster is the same
as 2-Knaster. Furthermore, P has precalibre-ℵ1 if every uncountable subset
of P has an uncountable subset such that any finite set of its elements has a
common lower bound; it is σ-linked (or σ-2-linked) if it can be partitioned
into countably many pieces so that each piece is pairwise compatible. More
generally, for k ≥ 2, P is σ-k-linked if it can be partitioned into countably
many pieces so that any k elements in the same piece have a common lower
bound. Finally, P is σ-centered if it can be partitioned into countably many
pieces so that any finite number of elements in the same piece have a common
lower bound. We have the following implications, for every k ≥ 2:

σ-centered ⇒ σ-k-linked ⇒ k-Knaster ⇒ productive-ccc ⇒ ccc,
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and
σ-centered ⇒ precalibre-ℵ1 ⇒ k-Knaster.

These are the only implications that can be proved in ZFC.
For any property Γ of posets that implies the ccc, and an infinite car-

dinal κ, Martin’s axiom for Γ and for families of κ-many dense open sets,
denoted by MAκ(Γ ), asserts: for every P that satisfies the property Γ and
every family {Dα : α < κ} of dense open subsets of P, there exists a filter
G ⊆ P that is generic for the family, that is, G ∩Dα 6= ∅ for every α < κ.

When κ = ℵ1 we omit the subscript and write MA(Γ ) for MAℵ1(Γ ).
Also, for an infinite cardinal θ, the notation MA<θ(Γ ) means: MAκ(Γ ) for
all κ < θ. The axiom MAℵ0(Γ ) is provable in ZFC; and it is consistent,
modulo ZFC, that the Continuum Hypothesis fails and MA<2ℵ0 (ccc) holds
(see [7], or [6]). Martin’s axiom, denoted by MA, is MA(ccc).

Thus, we have the following implications, for every k ≥ 2:

MAκ(ccc) ⇒ MAκ(productive-ccc) ⇒
⇒ MAκ(k-Knaster)⇒ MAκ(σ-k-linked)⇒ MAκ(σ-centered),

and

MAκ(k-Knaster) ⇒ MAκ(precalibre-ℵ1) ⇒ MAκ(σ-centered).

Again, the arrows cannot be reversed (see [13], [10] for even finer distinctions,
and also [11] for Borel examples).

For all the facts mentioned in the rest of the paper without a proof, as
well as for all undefined notions and notation, see [6].

2. The property Prk. Let us consider the following property of partial
orderings, weaker than the k-Knaster property.

Definition 1. For k ≥ 2, let Prk(Q) mean that Q is a forcing notion
such that if pε ∈ Q, for all ε < ℵ1, then we can find ū such that:

(a) ū = 〈uξ : ξ < ℵ1〉.
(b) uξ is a finite subset of ℵ1.
(c) uξ0 ∩ uξ1 = ∅ whenever ξ0 6= ξ1.
(d) If ξ0 < · · · < ξk−1, then we can find εl ∈ uξl , for l < k, such that
{pεl : l < k} has a common lower bound.

Notice that Prk(Q) implies that Q is ccc, and that Prk+1(Q) implies
Prk(Q). Also note that if Q is k-Knaster, then Prk(Q) holds. For a given
subset {pε : ε < ℵ1} of Q, there exists an uncountable X ⊆ ℵ1 such that
{pεl : l < k} has a common lower bound for every ε0 < · · · < εk−1 in X,
so we can take uξ to be the singleton that contains the ξth element of X.
Finally, observe that if Q has precalibre-ℵ1, then Prk(Q) holds for every
k ≥ 2.
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Recall that if T is an Aronszajn tree on ω1, then the forcing that special-
izes T consists of finite functions p from ω1 into ω such that if α 6= β are in
the domain of p and are comparable in the tree ordering, then p(α) 6= p(β).
The ordering is the reversed inclusion. It is consistent, modulo ZFC, that the
specializing forcing is not productive-ccc, an example being the case when
T is a Suslin tree. However, we have the following:

Lemma 2. If T is an Aronszajn tree and Q = QT is the forcing that
specializes T with finite conditions, then Prk(Q) holds for every k ≥ 2.

Proof. Without loss of generality, T = (ω1, <T ). Let pα ∈ Q for α < ℵ1.
By a ∆-system argument we may assume that {dom(pα) : α < ℵ1} forms
a ∆-system with root r. Moreover, we may assume that for some fixed n,
|dom(pα) \ r| = n for all α < ω1. Let 〈α1, . . . , αn〉 be an enumeration of
dom(pα) \ r. We may also assume that if α < β, then the highest level of T
that contains some αi (1 ≤ i ≤ n) is strictly lower than the lowest level of
T that contains some βj (1 ≤ j ≤ n).

Fix a uniform ultrafilter D over ω1. For each α < ω1 and 1 ≤ i, j ≤ n,
let

Dα,i,j := {β > α : αi <T βj}, Dα,i,0 := {β > α : αi 6<T βj for all j}.
For every α and every i, there exists jα,i ≤ n such that Dα,i,jα,i ∈ D.
Moreover, for every 1 ≤ i ≤ n, there exists Ei ∈ D such that jα,i is fixed,
say with value ji for all α ∈ Ei. We claim that ji = 0 for all 1 ≤ i ≤ n.
For suppose i is such that ji 6= 0. Pick α < β < γ in Ei ∩ Dα,i,ji ∩ Dβ,i,ji .
Then αi, βi <T γji , hence αi <T βi. This yields an ω1-chain in T , which is
impossible. Now let E :=

⋂
1≤i≤nEi ∈ D.

We claim that for every m and every α we can find u ∈ [ω1 \ α]m such
that if β < γ are in u, then βi 6<T γj for every 1 ≤ i, j ≤ n. Indeed,
given m and α, choose any β0 ∈ E \ α. Now given β0, . . . , βl, all in E, let
βl+1 ∈ E ∩

⋂
1≤i≤n

⋂
l′≤lDβl′ ,i,0. Then the set u := {β0, . . . , βm−1} is as

required.

We can now choose 〈uξ : ξ < ℵ1〉 pairwise disjoint, with |uα| > k · n,
so that if ξ1 < ξ2, then sup(uξ1) < min(uξ2), and each uξ is as above, i.e.,
if β < γ are in uξ, then βi 6<T γj for every 1 ≤ i, j ≤ n. We claim that
〈uξ : ξ < ℵ1〉 is as required. So, suppose ξ0 < · · · < ξk−1. We choose α` ∈ uξ`
by downward induction on ` ∈ {0, . . . , k − 1} so that {pα` : ` < k} has
a common lower bound. Let αk−1 be any element of uξk−1

. Now suppose

α`+1, . . . , αk−1 have already been chosen and we shall choose α`. We may
assume that for each β ∈ uξ` , pβ is incompatible with pα`′ for some `′ in
{` + 1, . . . , k − 1}, for otherwise we could take as our α` any β ∈ uξ` with
pβ compatible with all pα`′ , `

′ ∈ {` + 1, . . . , k − 1}. Thus, for each β ∈ uξ`
there exist `′ ∈ {`+ 1, . . . , k − 1} and 1 ≤ i, j ≤ n such that βi <T α

`′
j . So,
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since |uξβ | > k ·n, there must exist β, β′ ∈ uξ` and `′ such that βi, βi′ <T α
`′
j

for some 1 ≤ i, i′, j ≤ n with βi 6= βi′ . But this implies that βi and βi′ are
<T -comparable, contradicting our choice of uξ` .

We show next that the property Prk for forcing notions is preserved
under iterations with finite support, of any length.

Lemma 3. For any k ≥ 2, the property Prk is preserved under finite-
support forcing iterations. That is, if

〈Pα,Q∼β
: α ≤ λ, β < λ〉

is a finite-support iteration of forcing notions such that Prk(P0) holds and

Pβ “ Prk(Q∼β

) holds” for every β < λ, then Prk(Pλ) holds.

Proof. We use induction on α ≤ λ. For α = 0 it is trivial. If α is a limit
ordinal with cf(α) 6= ℵ1, and pε ∈ Pα for all ε < ℵ1, then either uncountably
many pε have the same support (in the case cf(α) = ω) or the support of
all pε is bounded by some α′ < α. In either case Prk(Pα) follows easily from
the induction hypothesis.

If cf(α) = ℵ1, then we may use a ∆-system argument, as in the usual
proof of the preservation of the ccc.

So, suppose α = β + 1. Let pε ∈ Pα for all ε < ℵ1. Without loss of
generality, we may assume that β ∈ dom(pε) for all ε < ℵ1.

Since Pβ is ccc, there is q ∈ Pβ such that

q 
Pβ “|{ε : pε�β ∈ G∼β}| = ℵ1”.

Let G ⊆ Pβ be generic over V and with q ∈ G. In V [G] we observe that
pε(β)[G] ∈ Q

∼β
[G], and Prk(Q∼β

[G]) holds. So, there is 〈u0ξ : ξ < ℵ1〉 as in

Definition 1 for the sequence 〈pε(β)[G] : pε�β ∈ G〉. Hence,

q 
Pβ “〈u∼
0
ξ : ξ < ℵ1〉 is as in Definition 1 for 〈pε(β) : pε�β ∈ G∼β〉”.

For each ξ, let (qξ, u
1
ξ) be such that:

• qξ ∈ Pβ and qξ ≤ q.
• qξ 
Pβ “u∼

0
ξ = u1ξ”, so u1ξ is finite.

• qξ ≤ pε�β for every ε ∈ u1ξ . (This can be ensured because if ε ∈ u1ξ ,
then qξ 
Pβ “pε�β ∈ G∼β”, so we may as well take qξ ≤ pε�β.)

Now apply the induction hypothesis for Pβ to obtain 〈u2ζ : ζ < ℵ1〉 as in the
definition of Prk for the sequence 〈qξ : ξ < ℵ1〉. We may assume, by refining
the sequence if necessary, that max(u2ζ) < min(u2ζ′) whenever ζ < ζ ′.

Let u∗ζ :=
⋃
{u1ξ : ξ ∈ u2ζ}. We claim that ū∗ = 〈u∗ζ : ζ < ℵ1〉 is as

in the definition, for the sequence 〈pε : ε < ℵ1〉. Clearly, the u∗ζ are finite
and pairwise disjoint. Moreover, given ζ0 < · · · < ζk−1, we can find ξ0 ∈
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u2ζ0 , . . . , ξk−1 ∈ u
2
ζk−1

such that in Pβ there is a common lower bound q∗ to

{qξ0 , . . . , qξk}. Since q∗ ≤ qξ0 , . . . , qξk−1
≤ q, there are some q∗∗ ≤ q∗ and

εl ∈ u1ξl , for each l < k, such that for some Pβ-name p
∼

,

q∗∗ 
 “p
∼
≤Q
∼β

pε0(β), . . . , pεk−1
(β)”.

Then the condition q∗∗ ∗ p∼
is a common lower bound for the conditions

pε0 , . . . , pεk−1
.

3. On fragments of MA. We shall now prove that MA(Prk+1) does
not imply MA(σ-k-linked), which yields a negative answer to the first ques-
tion stated in the Introduction. The following is the main lemma.

Lemma 4. For k ≥ 2, there is a forcing notion P∗ = Pk∗ and P∗-names
A∼ and QA∼ = Qk

A∼
such that:

(1) P∗ has precalibre-ℵ1 and is of cardinality ℵ1.
(2) 
P∗ “A∼ ⊆ [ℵ1]k+1”.

(3) 
P∗ “QA∼ = {v ∈ [ℵ1]<ℵ0 : [v]k+1 ∩ A∼ = ∅}, ordered by ⊇, is σ-k-

linked”.
(4) 
P∗ “I∼α := {v ∈ QA∼ : v 6⊆ α} is dense for all α < ℵ1”.

(5) 
P∗ “If vα ∈ QA∼ is such that vα 6⊆ α for α < ℵ1, and uξ ∈ [ℵ1]<ℵ0,

for ξ < ℵ1, are non-empty and pairwise disjoint, then there exist
ξ0 < · · · < ξk such that for every 〈α` : ` ≤ k〉 ∈

∏
`≤k uξ` the set⋃

`≤k vα` does not belong to QA∼”.

Proof. We define P∗ by: p ∈ P∗ if and only if p has the form (u,A, h) =
(up, Ap, hp), where

(a) u ∈ [ℵ1]<ℵ0 ,
(b) A ⊆ [u]k+1, and
(c) h : ℘p → ω, where ℘p := {v ⊆ u : [v]k+1 ∩ A = ∅} is such that if

w0, . . . , wk−1 ∈ ℘p and h is constant on {w0, . . . , wk−1}, then w0 ∪
· · · ∪ wk−1 ∈ ℘p.

The order is given by: p ≤ q if and only if uq ⊆ up, Aq = Ap ∩ [uq]
k+1, and

hq ⊆ hp (hence ℘q = ℘p ∩ P(uq) and hp�℘q = hq).

(1) Clearly, P∗ has cardinality ℵ1, so we show that it has precalibre-ℵ1.
Given {qξ = (uξ, Aξ, hξ) : ξ < ℵ1} ⊆ P∗, and writing ℘ξ instead of the more
cumbersome ℘qξ , we can find an uncountable W ⊆ ℵ1 such that:

(i) The set {uξ : ξ ∈W} forms a ∆-system with heart u∗.
(ii) The sets [u∗]

k+1 ∩ Aξ for ξ ∈ W are all the same. Hence the sets
℘ξ ∩ P(u∗) for ξ ∈W are also all the same.

(iii) The functions hξ�(℘ξ ∩ P(u∗)) for ξ ∈W are all the same.
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(iv) The ranges of hξ, for ξ ∈W , are all the same, say R. So, R is finite.
(v) For each i ∈ R, the sets {w ∩ u∗ : hξ(w) = i} for ξ ∈ W are the

same.

We will show that every finite subset of {qξ : ξ ∈ W} has a common lower
bound. Given ξ0, . . . , ξm ∈W , let q = (uq, Aq, hq) be such that:

• uq =
⋃
`≤m uξ` .

• Aq =
⋃
`≤mAξ` . Note that this implies that the ℘ξ` are contained

in ℘q = {v ⊆ uq : [v]k+1 ∩ Aq = ∅}. Indeed, if, say, w ∈ ℘ξ` , then
[w]k+1 ∩ Aξ` = ∅, and we claim that also [w]k+1 ∩ Aξj = ∅ for j ≤ m.

Indeed, if v ∈ [w]k+1 ∩ Aξj with j 6= `, then v ⊆ u∗, and therefore

v ∈ [u∗]
k+1 ∩ Aξj = [u∗]

k+1 ∩ Aξ` . Hence, v ∈ [w]k+1 ∩ Aξ` , which is

impossible because [w]k+1 ∩Aξ` is empty.
• hq : ℘q → ω is such that hq(v) = hξ`(v) for all v ∈ ℘ξ` , and the
hq(v) are all distinct and greater than sup{hq(v) : v ∈

⋃
`≤m ℘ξ`} for

v 6∈
⋃
`≤m ℘ξ` . Notice that hq is well-defined because the restrictions

hξ`�(℘ξ` ∩ P(u∗)) for ` ≤ m are all the same.

We claim that q ∈ P∗. For this, we only need to show that if {w0, . . . , wk−1}
⊆ ℘q and hq is constant on {w0, . . . , wk−1}, then [

⋃
j<k wj ]

k+1∩Aq = ∅. So fix
a set {w0, . . . , wk−1} ⊆ ℘q and suppose hq is constant on it, say with constant
value i. By definition of hq we must have {w0, . . . , wk−1} ⊆

⋃
`≤m ℘ξ` . Now

suppose, towards a contradiction, that v ∈ [
⋃
j<k wj ]

k+1 ∩ Aξ` for some
` ≤ m. Let s = {wj : j < k} ∩ ℘ξ` , and let t = {wj : j < k} \ s. Thus,
v ⊆

⋃
s∪ (

⋃
t∩u∗), for if α ∈ v \

⋃
s, then α ∈

⋃
t and α ∈

⋃
℘ξ`′ for some

`′ 6= `, hence α ∈ uξ ∩ uξ′ = u∗.
By (v),

{w ∩ u∗ : hξ`(w) = i} = {w ∩ u∗ : hξ`′ (w) = i}
for every `′ ≤ m. So, for every wj ∈ t, there exists w′j ∈ ℘ξ` such that
wj ∩ u∗ = w′j ∩ u∗ and hξ`(w

′
j) = i. Let t′ = s ∪ {w′j : wj ∈ t}. Note that

t′ ⊆ ℘ξ` and t′ ⊆ {w : hξ`(w) = i}. So,

v ⊆
⋃
t′ ⊆

⋃
{w : hξ`(w) = i}.

Thus, v ∈ [
⋃
{w : hξ`(w) = i}]k+1∩Aξ` . But this is impossible because

⋃
{w :

hξ`(w) = i} ∈ ℘ξ` (since hξ` satisfies property (c) above), and therefore[⋃
{w : hξ`(w) = i}

]k+1
∩Aξ` = ∅.

Now one can easily check that q ≤ qξ0 , . . . , qξm . And this shows that the
set {qξ : ξ ∈W} is finite-wise compatible.

(2) Let
A∼ = {(v̌, p) : v ∈ Ap, p ∈ P∗}.
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Thus, A∼ is a name for the set
⋃
{Ap : p ∈ G}, where G is the P∗-generic

filter. Clearly, (2) holds.

(3) Let

QA∼ = {(v̌, p) : v ∈ ℘p, p ∈ P∗}.

Thus, QA∼ is a name for the set
⋃
{℘p : p ∈ G}, where G is the P∗-generic

filter. Clearly, 
P∗ “QA∼ = {v ∈ [ℵ1]<ℵ0 : [v]k+1 ∩A∼ = ∅}”. Moreover, if G is

P∗-generic over V , then, by (c), the function
⋃
{hp : p ∈ G} witnesses that

the interpretation iG(QA∼), ordered by ⊇, is σ-k-linked.

(4) Clear.

(5) Suppose that p ∈ P∗ forces v̇α ∈ QA∼ is such that v̇α 6⊆ α for all

α < ℵ1; and it also forces u̇ξ ∈ [ℵ1]<ℵ0 for all ξ < ℵ1 are non-empty and
pairwise disjoint.

For each ξ < ℵ1, let qξ = (uξ, Aξ, hξ) ≤ p and let u∗ξ ∈ [ℵ1]<ℵ0 and

v̄∗ξ = 〈v∗ξ,α : α ∈ u∗ξ〉, with v∗ξ,α ∈ [ℵ1]<ℵ0 , be such that

qξ 
P∗ “u̇ξ = u∗ξ and v̇α = v∗ξ,α for α ∈ u∗ξ”.
We may assume, by extending qξ if necessary, that u∗ξ ∪

⋃
α∈u∗ξ

v∗ξ,α ⊆ uξ.
As in (1), we can find an uncountable W ⊆ ℵ1 such that (i)–(v) hold

for the set of conditions {qξ : ξ ∈ W}. Hence {qξ : ξ ∈ W} is pairwise
compatible (in fact, finite-wise compatible), from which it follows that the
set {u∗ξ : ξ ∈ W} is pairwise disjoint. Now choose ξ0 < · · · < ξk from W so
that:

• the heart u∗ of the ∆-system {uξ : ξ ∈W} is an initial segment of uξ`
for all ` ≤ k,
• sup(uξ`) < inf(uξ`+1

\ u∗) for all ` < k, and
• u∗ξ` ⊆ uξ` \ u∗ for all ` ≤ k.

For each σ = 〈α` : ` ≤ k〉 ∈
∏
`≤k u

∗
ξ`

, pick wσ ∈ [
⋃
`≤k v

∗
ξ`,α`

]k+1 such

that |wσ∩ (v∗ξ`,α` \α`)| = 1 for all ` ≤ k. This is possible because v∗ξ`,α` 6⊆ α`.
Claim 5. wσ 6⊆ uξ`, hence wσ 6∈ Aξ`, for all σ ∈

∏
`≤k u

∗
ξ`

and all ` ≤ k.

Proof. Fix σ = 〈α` : ` ≤ k〉 and ` ≤ k, and suppose for a contradiction
that wσ ⊆ uξ` . Then wσ ⊆ uξ` \u∗. If ` < k, then as sup(uξ`) < inf(uξ`+1

\u∗)
≤ inf(u∗ξ`+1

) ≤ α`+1, we would have wσ \ α`+1 = ∅, which contradicts our

choice of wσ. But if `=k, then since sup(v∗ξ`−1,α`−1
)≤sup(uξ`−1

)< inf(uξ`\u∗),
we would have wσ∩v∗ξ`−1,α`−1

= ∅, which contradicts again our choice of wσ.

Now define q = (uq, Aq, hq) as follows:

• uq =
⋃
`≤k uξ` .
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• Aq = (
⋃
`≤k Aξ`) ∪ {wσ : σ ∈

∏
`≤k u

∗
ξ`
}. Note that since wσ 6⊆ uξ`

(Claim 5), we have wσ 6∈ ℘ξ` for all σ ∈
∏
`≤k u

∗
ξ`

and ` ≤ k. Hence,
℘ξ` ⊆ ℘q for all ` ≤ k.
• hq : ℘q → ω is such that hq(v) = hξ`(v) for v ∈ ℘ξ` , for all ` ≤ k, and

the hq(v) are all distinct and greater than sup{hq(v) : v ∈
⋃
`≤k ℘ξ`}

for v 6∈
⋃
`≤k ℘ξ` .

As in (1), we can now check that q ∈ P∗. Moreover, by Claim 5, Aξ` =
Aq ∩ [uξ` ]

k+1. Hence, q ≤ qξ` for all ` ≤ k, and so

q 
P∗ “u̇ξ` = u∗ξ` and v̇α = v∗ξ`,α for α ∈ u∗ξ`”.

And since wσ ∈ [
⋃
`≤k v

∗
α`

]k+1 ∩Aq for every σ ∈
∏
`≤k u

∗
ξ`

, we have

q 
P∗ “
⋃
`≤k

v̇α` 6∈ QA∼ for all 〈α` : ` ≤ k〉 ∈
∏
`≤k

u̇ξ`”.

This finishes the proof of Lemma 4.

Lemma 6. Let k ≥ 2 and let P∗ be as in Lemma 4. Suppose Q
∼

is a
P∗-name for a forcing notion that satisfies Prk+1. Then


P∗∗Q∼
“There is no directed G ⊆ QA∼ such that I∼α ∩G 6= ∅ for all α < ℵ1”,

where I∼α is a name for the dense open set {v ∈ QA∼ : v 6⊆ α}.

Proof. Suppose for a contradiction that p ∗ q̇ ∈ P∗ ∗Q∼
and

p ∗ q̇ 
P∗∗Q∼
“There exists G ⊆ QA∼ directed with I∼α ∩G 6= ∅

for all α < ℵ1”.
Suppose G0 ⊆ P∗ is a filter generic over V with p ∈ G0. So, in V [G0], letting
q = iG0(q̇) and Q = iG0(Q

∼
), we see that for some Q-name G∼,

q 
Q “G∼ ⊆ QA is directed and Iα ∩G∼ 6= ∅ for all α < ℵ1”.

For each α < ℵ1, let qα ≤ q, and let vα ∈ [ℵ1]<ℵ0 be such that

qα 
Q “v̌α ∈ Iα ∩G∼”.

Thus, vα 6⊆ α for all α < ℵ1.
Since Q satisfies Prk+1, there exists ū = 〈uξ : ξ < ℵ1〉 such that:

(a) uξ is a finite subset of ℵ1 for all ξ < ℵ1,
(b) uξ0 ∩ uξ1 = ∅ whenever ξ0 6= ξ1, and
(c) if ξ0 < · · · < ξk, then we can find α` ∈ uξ` for ` ≤ k such that
{qα` : ` ≤ k} have a common lower bound.

By Lemma 4, we can find ξ0 < · · · < ξk such that for every 〈α` : ` ≤ k〉 in∏
`≤k uξ` the set

⋃
`≤k vα` does not belong to QA.
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By (c), let α` ∈ uξ` for ` ≤ k be such that {qα` : ` ≤ k} have a common
lower bound, say r. Then r forces that {v̌α` : ` ≤ k} ⊆ G∼. And since r forces
that G∼ is directed, it also forces that

⋃
`≤k vα` ∈ QA, a contradiction.

All elements are now in place to prove the main result of this section.

Theorem 7. Let k ≥ 2. Assume λ = λ<θ, where θ = cf(θ) > ℵ1. Then
there is a finite-support iteration

P̄ = 〈Pα,Q∼β
: α ≤ λ, β < λ〉,

where:

(1) P0 is the forcing P∗ from Lemma 4.
(2) 
Pβ “ Prk+1(Q∼β

)” for every 0 < β < λ.

(3) In V Pλ the axiom MA<θ(Prk+1) holds, hence in particular (Lem-
ma 2) every Aronszajn tree on ω1 is special.

(4) QA∼ witnesses that MA(σ-k-linked) fails in V Pλ.

Proof. To obtain (3), we proceed in the standard way as in all itera-
tions forcing (some fragment of) MA, that is, we iterate all posets with the
Prk+1 property and having cardinality < θ, which are given by some fixed
bookkeeping function (see [6] or [7] for details).

Since after forcing with P0 the rest of the iteration P̄ has the property
Prk+1 (Lemma 3), (4) follows immediately from Lemma 6.

Corollary 8. For every k ≥ 2, ZFC plus MA(Prk+1) does not imply
MA(σ-k-linked).

Thus, since MA(Prk+1) implies both MA(σ-centered) and “Every Aron-
szajn tree is special”, the corollary answers in the negative and in a strong
way the question from [1]: Does MA(σ-centered) plus “Every Aronszajn tree
is special” imply MA(σ-linked)?

4. On destroying precalibre-ℵ1 while preserving the ccc. We
turn now to the second question stated in the Introduction (Steprāns–Wat-
son [9]): Is it consistent that there exists a precalibre-ℵ1 poset which is ccc
but does not have precalibre-ℵ1 in some forcing extension that preserves
cardinals?

Note that the forcing extension cannot be ccc, since ccc forcing preserves
the precalibre-ℵ1 property. Also, as shown in [9], assuming MA plus the
Covering Lemma, every forcing that preserves cardinals also preserves the
precalibre-ℵ1 property. Moreover, the examples provided in [9] of cardinal-
preserving forcing notions that destroy precalibre-ℵ1 do so by actually de-
stroying the ccc property.



Partial orderings having precalibre-ℵ1 191

A positive answer to the Steprāns–Watson question is provided by the
following theorem. Before stating it, let us recall a strong form of Jensen’s
diamond principle, diamond-star relativized to a stationary set S, which is
also due to Jensen. For S a stationary subset of ω1, let

♦∗S : There exists a sequence 〈Sα : α ∈ S〉, where Sα is a countable set
of subsets of α, such that for every X ⊆ ω1 there is a club C ⊆ ω1

with X ∩ α ∈ Sα for every α ∈ C ∩ S.

The principle ♦∗S holds in the constructible universe L, for every station-
ary S ⊆ ω1 (see [3, 3.5] for a proof in the case S = ω1, which can be easily
adapted to any stationary S). Also, ♦∗S can be forced by a σ-closed forcing
notion (see [7, Chapter VII, Exercises H18 and H20], where it is shown how
to force the even stronger form of diamond known as ♦+

S ).

Theorem 9. It is consistent, modulo ZFC, that the CH holds and there
exist:

(1) A forcing notion T of cardinality ℵ1 that preserves cardinals.
(2) Two posets P0 and P1 of cardinality ℵ1 that have precalibre-ℵ1 and

are such that


T “P0,P1 are ccc, but P0 × P1 is not ccc”.

Hence 
T “P0 and P1 do not have precalibre-ℵ1”.

Proof. Let {S1, S2} be a partition of Ω := {δ < ω1 : δ limit} into two
stationary sets. By a preliminary forcing, we may assume that ♦∗S1

holds.
So, there exists 〈Sα : α ∈ S1〉, where Sα is a countable set of subsets of α,
such that for every X ⊆ ω1 there is a club C ⊆ ω1 with X ∩ α ∈ Sα for
every α ∈ C ∩ S1. In particular, the CH holds. Using ♦∗S1

, we can build

an S1-oracle, i.e., an ⊂-increasing sequence M̄ = 〈Mδ : δ ∈ S1〉 with Mδ

countable and transitive, δ ∈Mδ, Mδ |= “ZFC−+ δ is countable”, and such
that for every A ⊆ ω1 there is a club CA ⊆ ω1 such that A∩δ ∈Mδ for every
δ ∈ CA ∩ S1. (For the latter, one simply needs to require that Sδ ⊆ Mδ for
all δ ∈ S1.) Moreover, we can build M̄ so that it has the following additional
property:

(∗) For every regular uncountable cardinal χ and a well-ordering <∗χ of
H(χ), the set of all (universes of) countable N � 〈H(χ),∈, <∗χ〉 such
that the Mostowski collapse of N belongs to Mδ, where δ := N ∩ω1,
is stationary in [H(χ)]ℵ0 .

Property (∗) will be needed to prove that the tree partial ordering T (de-
fined below) has many branches, and also to prove that the product partial
ordering Q × T (defined below) is S1-proper (Claim 10 later on), and so it
does not collapse ℵ1.
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To ensure (∗), take a large enough regular cardinal λ and define the
sequence M̄ so that, for every δ ∈ S1, Mδ is the Mostowski collapse of a
countable elementary substructure X of H(λ) that contains M̄�δ, for all
ordinals ≤ δ, and all elements of Sδ. To see that (∗) holds, fix a regular un-
countable cardinal χ, a well-ordering <∗χ of H(χ), and a club E ⊆ [H(χ)]ℵ0 .

Let N̄ = 〈Nα : α < ℵ1〉 be an ⊂-increasing and ∈-increasing continuous
chain of elementary substructures of 〈H(χ),∈, <∗χ〉 with the universe of Nα

in E for all α < ℵ1. We shall find δ ∈ S1 such that the transitive collapse of
Nδ belongs to Mδ, where δ = Nδ ∩ ω1.

Fix a bijection h : ℵ1 →
⋃
α<ℵ1 Nα, and let Γ : ℵ1 × ℵ1 → ℵ1 be the

standard pairing function (cf. [6, Chapter 3]). Observe that the set

D := {δ < ℵ1 : δ is closed under Γ and h maps δ onto Nδ}
is a club. Now let

X1 := {Γ (i, j) : h(i) ∈ h(j)},
X2 := {Γ (α, i) : h(i) ∈ Nα},
X3 := {Γ (i, j) : h(i) <∗χ h(j)},
X := {3j + i : j ∈ Xi and i ∈ {1, 2, 3}}.

The set S′1 := {δ ∈ S1 : X ∩ δ ∈ Mδ} is stationary. Thus, since the set
C := {δ < ℵ1 : δ = Nδ ∩ ω1} is a club, we can pick δ ∈ C ∩D ∩ S′1. Since
δ ∈ D, the structure

Y :=
〈
X2 ∩ δ, {〈i, j〉 : Γ (i, j) ∈ X1 ∩ δ}, {〈i, j〉 : Γ (i, j) ∈ X3 ∩ δ}

〉
is isomorphic to Nδ, and therefore Y and Nδ have the same transitive col-
lapse; and Y belongs to Mδ, because δ ∈ S′1. Hence, since Mδ |= ZFC−, the
transitive collapse of Y belongs to Mδ. Finally, since δ ∈ C, δ = Nδ ∩ ω1.

We shall now define the forcing T . Let us write ℵ<ℵ11 for the set of all
countable sequences of countable ordinals. Let

T := {η ∈ ℵ<ℵ11 : Range(η) ⊂ S1, η is increasing and continuous,

of successor length, and if ε < lh(η), then η�ε ∈Mη(ε)}.
Let ≤T be the partial order on T given by end-extension. Thus, (T,≤T )
is a tree. Note that, since δ ∈ Mδ for every δ ∈ S1, if η ∈ T , then η in
MsupRange(η). Also notice that if η ∈ T , then η_〈δ〉 ∈ T for every δ ∈ S1
greater than sup Range(η). In particular, every node of T of finite length
has ℵ1-many extensions of any greater finite length. Now suppose α < ω1 is
a limit, and suppose inductively that for every successor β < α, every node
of T of length β has ℵ1-many extensions of every higher successor length
below α.

We claim that every η ∈ T of length less than α has ℵ1-many extensions
in T of length α + 1 (and in fact, the set of their suprema is stationary).
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For every δ < ω1, let Tδ := {η ∈ T : sup Range(η) < δ}. Notice that
Tδ is countable: otherwise, uncountably many η ∈ Tδ would have the same
sup Range(η), and therefore they would all belong to the modelMsupRange(η),
which is impossible because it is countable. Now fix a node η ∈ T of length
less than α, and let B := {bγ : γ < ω1} be an enumeration of all the branches
(i.e., linearly ordered subsets of T closed under predecessors) b of T that
contain η and have length α (i.e.,

⋃
{dom(η′) : η′ ∈ b} = α). For a club C

of δ the set {bγ : γ < δ} belongs to Mδ.

We shall next build a sequence B∗ := 〈b∗ξ : ξ < ω1〉 of branches from

B so that the set supB∗ := 〈sup Range(
⋃
b∗ξ) : ξ < ω1〉 is the increasing

enumeration of a club. To this end, start by fixing an increasing sequence
〈αn : n < ω〉 of successor ordinals converging to α, with α0 greater than the
length of η. Then let b∗0 := b0. Given b∗ξ , let γ be the least ordinal such that⋃
bγ(α0)>sup Range(

⋃
b∗ξ), and let b∗ξ+1 := bγ . Finally, given b∗ξ for all ξ<δ,

where δ < ω1 is a limit ordinal, pick an increasing sequence 〈ξn : n < ω〉
converging to δ. By construction, the sequence 〈sup Range(

⋃
b∗ξn) : n < ω〉

is increasing. Now let f : α→ ℵ1 be such that f�[0, α0] =
⋃
b∗ξ0�[0, α0], and

f�(αn, αn+1] =
⋃
b∗ξn+1

�(αn, αn+1] for all n < ω. Then set b∗δ := {f�β : β < α

is a successor}. One can easily check that b∗δ is a branch of T of length α
with sup Range(

⋃
b∗δ) = sup{sup Range(

⋃
b∗ξ) : ξ < ζ}. Finally, notice that

if δ ∈ S1∩C is greater than α and belongs to the club enumerated by supB∗,
then since Mδ |= “δ is countable”, we can pick the sequences 〈αn : n < ω〉
and 〈ξn : n < ω〉 in Mδ. Then the sequence 〈b∗ξn : n < ω〉 belongs to Mδ,
and therefore (

⋃
b∗δ)

_〈δ〉 ∈ T .

By (∗) the set of all countable N � 〈H(ℵ2),∈, <∗ℵ2〉 that contain B∗ and
〈αn : n < ω〉, with α ⊆ N , and such that the Mostowski collapse of N
belongs to Mδ, where δ := N ∩ ω1, is stationary in [H(χ)]ℵ0 . So, since the
set Lim(supB∗) of limit points of supB∗ is a club, there is such an N with
δ := N ∩ ω1 ∈ Lim(supB∗). If N̄ is the transitive collapse of N , we deduce
that B∗�δ ∈ N̄ ∈ Mδ, and so in Mδ we can build, as above, the branch b∗δ .
Therefore, since δ = sup Range(

⋃
b∗δ), we see that

⋃
b∗δ ∪ {〈α, δ〉} is in T

and extends η. We have thus shown that η has ℵ1-many extensions in T of
length α + 1. Even more, the set {sup Range(

⋃
b) : b is a branch of length

α+ 1 that extends η} is stationary.

Note however that since the complement of S1 is stationary, T has no
branch of length ω1, because the range of such a branch would be a club
contained in S1. But since every η ∈ T has extensions of length α + 1 for
every α greater than or equal to the length of η, forcing with (T,≥T ) yields
a branch of T of length ω1.

In order to obtain the forcing notions P0 and P1 claimed by the theorem,
we need first to force with the forcing Q which we define as follows. For u a
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subset of T , let [u]2T be the set of all pairs {η, ν} ⊆ u such that η 6= ν and η
and ν are <T -comparable. Let

Q := {p : [u]2T → {0, 1} : u is a finite subset of T},
ordered by reversed inclusion.

It is easily seen that Q is ccc and it has cardinality ℵ1, so forcing with
Q does not collapse cardinals, does not change cofinalities, and preserves
cardinal arithmetic. (In fact, Q is equivalent, as a forcing notion, to the
poset for adding ℵ1 Cohen reals, which is σ-centered, but we shall not make
use of this fact.)

Notice that if G ⊆ Q is a generic filter over V , then
⋃
G : [T ]2T → {0, 1}.

Recall that, for S ⊆ ℵ1 stationary, a forcing notion P is called S-proper
if for all (some) large enough regular cardinals χ and all (stationarily many)
countable 〈N,∈〉 � 〈H(χ),∈〉 that contain P and are such that N ∩ℵ1 ∈ S,
and all p ∈ P ∩ N , there is a condition q ≤ p that is (N,P)-generic. If P is
S-proper, then it does not collapse ℵ1. (See [8] or [4] for details.)

Claim 10. The forcing Q×T is S1-proper, hence it does not collapse ℵ1.

Proof. Let χ be a large enough regular cardinal, and let <∗χ be a well-
ordering of H(χ). Let N � 〈H(χ),∈, <∗χ〉 be countable and such that Q×T
belongs to N , δ := N ∩ ℵ1 ∈ S1, and the Mostowski collapse of N belongs
to Mδ. Fix (q0, η0) ∈ (Q × T ) ∩ N . It will be sufficient to find a condition
η∗ ∈ T such that η0 ≤T η∗ and (q0, η∗) is (N,Q× T )-generic.

Let

Qδ := {p ∈ Q : if {η, ν} ∈ dom(p), then η, ν ∈ Tδ}.
Thus, Qδ is countable. Moreover, notice that Tδ = T ∩ N , and therefore
Qδ = Q ∩ N . Hence, Tδ and Qδ are the Mostowski collapses of T and Q,
respectively, and so they belong to Mδ.

In Mδ, let 〈(pn, Dn) : n < ω〉 list all pairs (p,D) such that p ∈ Qδ and
D is a dense open subset of Qδ × Tδ that belongs to the Mostowski collapse
of N . That is, D is the Mostowski collapse of a dense open subset of Q× T
that belongs to N .

Also in Mδ, fix an increasing sequence 〈δn : n < ω〉 converging to δ, and
let

D′n := {(p, ν) ∈ Dn : lh(ν) > δn}.
Clearly, D′n is dense open.

Note that, as the Mostowski collapse of N belongs to Mδ, we find that
<∗χ�(Qδ × Tδ) = (<∗χ�(Q× T )) ∩N ∈Mδ.

Now, still in Mδ, and starting with (q0, η0), we inductively choose a
sequence 〈(qn, ηn) : n < ω〉 with qn ∈ Qδ and ηn ∈ Tδ, and such that if
n = m+ 1, then:
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(a) pn ≥ qn and ηm <T ηn.
(b) (qn, ηn) ∈ D′n.
(c) (qn, ηn) is the <∗χ-least such that (a) and (b) hold.

Then η∗ := (
⋃
n ηn) ∪ {〈δ, δ〉} ∈ T and η∗ ∈ Mδ, hence (q0, η∗) ∈ Q × T .

Clearly, (q0, η∗) ≤ (q0, η0). So, we need only check that (q0, η∗) is (N,Q×T )-
generic.

Fix an open dense E ⊆ Q × T that belongs to N . We need to see that
E∩N is predense below (q0, η∗). So, fix (r, ν) ≤ (q0, η∗). Since Q is ccc, q0 is
(N,Q)-generic, so we can find r′ ∈ {p : (p, η) ∈ E for some η} ∩ N that
is compatible with r. Let n be such that pn = r′ and Dn is the Mostowski
collapse of E. Then (pn, ηn) belongs to the transitive collapse of E, hence
to E ∩N , and is compatible with (r, ν), as (pn, η∗) ≤ (pn, ηn).

We thus conclude that if G ⊆ Q is a filter generic over V , then in V [G]
the forcing T does not collapse ℵ1, and therefore, being of cardinality ℵ1, it
preserves cardinals, cofinalities, and the cardinal arithmetic.

We shall now define the Q-names for the forcing notions P∼`, for ` ∈ {0, 1},
as follows: in V Q, let b∼ =

⋃
G∼, where G∼ is the standard Q-name for the

Q-generic filter over V . Then let

P∼` := {(w, c) : w ⊆ T is finite, c is a function from w into ω such that

if {η, ν} ∈ [w]2T and b∼({η, ν}) = `, then c(η) 6= c(ν)}.

A condition (w, c) is stronger than a condition (v, d) if and only if w ⊇ v
and c ⊇ d.

We shall show that if G is Q-generic over V , then in the extension V [G],
the partial orderings P` = P∼`[G], for ` ∈ {0, 1}, and the forcing T are as
required.

Claim 11. In V [G], P` has precalibre-ℵ1.

Proof. Assume pα = (wα, cα) ∈ P` for α < ω1. We shall find an un-
countable S ⊆ ℵ1 such that {pα : α ∈ S} is finite-wise compatible. For each
δ ∈ S2, let

sδ := {η�(γ+1) : η ∈ wδ, and γ is maximal such that γ < lh(η)∧ η(γ) < δ}.
As η is an increasing and continuous sequence of ordinals from S1, hence
disjoint from S2, the set sδ is well-defined. Notice that sδ is a finite subset
of Tδ := {η ∈ T : sup Range(η) < δ}, which is countable.

Let s1δ := wδ ∩ Tδ. Note that s1δ ⊆ sδ.
Let f : S2 → ω1 be given by f(δ) = max{sup Range(η) : η ∈ sδ}. Thus,

f is regressive, hence constant on a stationary S3 ⊆ S2. Let δ0 be the
constant value of f on S3. Then sδ ⊆ Tδ0 for every δ ∈ S3. So, since Tδ0
is countable, there exist S4 ⊆ S3 stationary and s∗ such that sδ = s∗ for
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every δ ∈ S4. Further, there is a stationary S5 ⊆ S4 and s1∗ and c∗ such that
for all δ ∈ S5,

s1δ = s1∗, cδ�s
1
∗ = c∗, and ∀α < δ(wα ⊆ Tδ).

Hence, if δ1 < δ2 are from S5, then not only wδ1 ∩ wδ2 = s1∗, but also if
η1 ∈ wδ1 − s1∗ and η2 ∈ wδ2 − s1∗, then η1 and η2 are <T -incomparable.
Indeed, suppose otherwise, say η1 <T η2. If γ+1 = lh(η1), then η2�(γ+1) =
η1 <T η2, and η2(γ) = η1(γ) < δ2, by choice of S5. Hence, by the definition of
sδ2 , η2�(γ+1) = η1 is an initial segment of some member of sδ2 = s∗, and so
it belongs to Tδ1 , hence η1 ∈ s1∗, contradicting the assumption that η1 6∈ s1∗.

So, {pδ : δ ∈ S5} is as required.

It only remains to show that forcing with T over V [G] preserves the
ccc-ness of P0 and P1, but makes their product not ccc.

Claim 12. If GT is T -generic over V [G], then in the generic extension
V [G][GT ], the forcing P` is ccc.

Proof. First notice that, by the Product Lemma (see [6, 15.9]), G is
Q-generic over V [GT ], and V [G][GT ] = V [GT ][G]. Now suppose that A∼ =
{(w∼α, c∼α) : α < ω1} ∈ V [GT ] is a Q-name for an uncountable subset of P`.
For each α < ω1, let pα ∈ Q and (wα, cα) be such that pα 
 “(w∼α, c∼α) =
(wα, cα)”. Let uα be such that dom(pα) = [uα]2T . By extending pα if nec-
essary, we may assume that wα ⊆ uα for all α < ω1. We shall find α 6= β
and a condition p that extends both pα and pβ and forces that (wα, cα)
and (wβ, cβ) are compatible. For this, first extend (wα, cα) to (uα, dα) by
letting dα give different values in ω \Range(cα) to all η ∈ uα \wα. We may
assume that the set {uα : α < ω1} forms a ∆-system with root r. Moreover,
we may assume that pα restricted to [r]2T is the same for all α < ω1, and
also that dα restricted to r is the same for all α < ω1. Now pick α 6= β
and let p : [uα ∪ uβ]2T → {0, 1} be such that p�[uα]2T = pα, p�[uβ]2T = pβ,

and p({η, ν}) 6= ` for all other pairs in [uα ∪ uβ]2T . Then p extends both pα
and pβ, and forces that (uα, dα) and (uβ, dβ) are compatible, hence it forces
that (wα, cα) and (wβ, cβ) are compatible.

But in V [G][GT ], the product P0×P1 is not ccc. Indeed, let η∗ =
⋃
GT .

For every α < ω1, let p`α := ({η∗�(α+1)}, c`α) ∈ P`, where c`α(η∗�(α+1)) = 0.
Then the set {(p0α, p1α) : α < ω1} is an uncountable antichain.

This finishes the proof of Theorem 9.
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