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Abstract. We define a countable antichain condition (ccc) property for partial or-
derings, weaker than precalibre-X;, and show that Martin’s axiom restricted to the class
of partial orderings that have the property does not imply Martin’s axiom for o-linked
partial orderings. This yields a new solution to an old question of the first author about
the relative strength of Martin’s axiom for o-centered partial orderings together with the
assertion that every Aronszajn tree is special. We also answer a question of J. Steprans
and S. Watson (1988) by showing that, by a forcing that preserves cardinals, one can
destroy the precalibre-R; property of a partial ordering while preserving its ccc-ness.

Introduction. A question asked in [1] is if MA (o-centered) plus “Every
Aronszajn tree is special” implies M A (o-linked). The interest in this ques-
tion originated in the result of Harrington—Shelah [5] showing that if N; is
accessible to reals, i.e., there exists a real number x such that the cardinal
N; in the model L[z] is equal to the real X;, then MA implies that there
exists a Al(z) set of real numbers that does not have the Baire property.
The hypothesis that N is accessible to reals is necessary, for if Xy is inacces-
sible to reals and MA holds, then X; is actually weakly compact in L ([5]),
and K. Kunen showed that starting from a weakly compact cardinal one can
get a model where MA holds and every projective set of reals has the Baire
property.

In [I], using Todorcevié’s p-functions [12], it was shown that MA (o-cen-
tered) plus “Every Aronszajn tree is special” is sufficient to produce a A}(z)
set of real numbers without the Baire property, assuming Xy = Nle. Thus,
it was natural to ask how weak is MA (o-centered) plus “Every Aronszajn
tree is special” as compared to the full MA, and in particular if it im-
plies MA(o-linked). The answer is negative, since it has been observed by
D. Chodounsky and J. Zapletal that a finite-support iteration of o-centered
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posets combined with the forcing that specializes Aronszajn trees has the
Y-c.c. property, and therefore does not add random reals (see [2]).

In the first part of the paper we give a new and stronger negative answer,
namely we show that a fragment of MA that includes MA (o-centered), and
even MA(3-Knaster), and implies “Every Aronszajn tree is special”, does
not imply MA (o-linked). A partial ordering with the precalibre-R; property
plays the key role in the construction of the model.

In the second part of the paper we answer a question of Steprans—Wat-
son [9]. They ask if it is possible to destroy the precalibre-R; property of a
partial ordering, while preserving its ccc-ness, in a forcing extension of the
set-theoretic universe V' that preserves cardinals. This is a natural question
considering that, as shown in [9], on the one hand, assuming MA plus the
Covering Lemma, every precalibre-X; partial ordering has precalibre-N; in
every forcing extension of V' that preserves cardinals; and on the other hand,
the ccc property of a partial ordering having precalibre-R; can always be
destroyed while preserving N;, and consistently even preserving all cardinals.

We answer the Steprans—Watson question positively, and in a very strong
sense. Namely, we show that it is consistent, modulo ZFC, that the Contin-
uum Hypothesis holds and there exist a forcing notion 7' of cardinality N;
that preserves N; (and therefore it preserves all cardinals, cofinalities, and
the cardinal arithmetic), and two precalibre-8; partial orderings, such that
forcing with 1" preserves their ccc-ness, but it also forces that their product
is not ccc and therefore they do not have precalibre-N;.

1. Preliminaries. Recall that a partially ordered set (or poset) P is
ccc if every antichain of P is countable; it is productive-ccc if the product
of P with any ccc poset is also ccc; it is Knaster (or has property K) if
every uncountable subset of P contains an uncountable subset consisting of
pairwise compatible elements. More generally, for k > 2, P is k-Knaster if
every uncountable subset of P contains an uncountable subset such that any
k of its elements have a common lower bound. Thus, Knaster is the same
as 2-Knaster. Furthermore, P has precalibre-X; if every uncountable subset
of P has an uncountable subset such that any finite set of its elements has a
common lower bound; it is o-linked (or o-2-linked) if it can be partitioned
into countably many pieces so that each piece is pairwise compatible. More
generally, for k£ > 2, P is o-k-linked if it can be partitioned into countably
many pieces so that any k elements in the same piece have a common lower
bound. Finally, P is o-centered if it can be partitioned into countably many
pieces so that any finite number of elements in the same piece have a common
lower bound. We have the following implications, for every k > 2:

o-centered = o-k-linked = k-Knaster = productive-ccc = ccc,
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and
o-centered = precalibre-N; = k-Knaster.

These are the only implications that can be proved in ZFC.

For any property I" of posets that implies the ccc, and an infinite car-
dinal k, Martin’s axziom for I' and for families of k-many dense open sets,
denoted by MA,(I"), asserts: for every P that satisfies the property I" and
every family {D, : @ < k} of dense open subsets of P, there exists a filter
G C P that is generic for the family, that is, G N D, # 0 for every a < k.

When £ = N; we omit the subscript and write MA(I") for MAy, (I).
Also, for an infinite cardinal 6, the notation MA _y(I") means: MA,(I") for
all kK < 0. The axiom MAy,(I") is provable in ZFC; and it is consistent,
modulo ZFC, that the Continuum Hypothesis fails and MA _,x, (ccc) holds
(see [T], or [6]). Martin’s aziom, denoted by MA, is MA (ccc).

Thus, we have the following implications, for every k > 2:

MA, (ccc) = MA,(productive-ccc) =
= MA, (k-Knaster) = MA (o-k-linked) = MA, (o-centered),
and
MA, (k-Knaster) = MA, (precalibre-8;) = MA,(o-centered).

Again, the arrows cannot be reversed (see [13], [10] for even finer distinctions,
and also [I1] for Borel examples).

For all the facts mentioned in the rest of the paper without a proof, as
well as for all undefined notions and notation, see [6].

2. The property Pri. Let us consider the following property of partial
orderings, weaker than the k-Knaster property.

DEFINITION 1. For k > 2, let Pri(Q) mean that Q is a forcing notion
such that if p. € Q, for all € < Ny, then we can find @ such that:
(a) @ = (ug : & < NVy).
(b) e is a finite subset of R;.
(c) ug, Nug, =0 whenever & # &;1.
(d) If & < -+ < &—1, then we can find g € ug,, for [ < k, such that
{ps, : 1 < k} has a common lower bound.

Notice that Pri(Q) implies that Q is ccc, and that Prgy1(Q) implies
Pr(Q). Also note that if Q is k-Knaster, then Prg(Q) holds. For a given
subset {p: : € < N1} of Q, there exists an uncountable X C X; such that
{ps, : I < k} has a common lower bound for every g9 < --- < g5_1 in X,
so we can take ug to be the singleton that contains the {th element of X.
Finally, observe that if Q has precalibre-Ry, then Pri(Q) holds for every
k> 2.
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Recall that if T is an Aronszajn tree on w1, then the forcing that special-
izes T' consists of finite functions p from w; into w such that if o # B are in
the domain of p and are comparable in the tree ordering, then p(a) # p(p).
The ordering is the reversed inclusion. It is consistent, modulo ZFC, that the
specializing forcing is not productive-ccc, an example being the case when
T is a Suslin tree. However, we have the following:

LEMMA 2. If T is an Aronszajn tree and Q = Qr is the forcing that
specializes T with finite conditions, then Pri(Q) holds for every k > 2.

Proof. Without loss of generality, 7' = (w1, <r). Let po € Q for o < N;.
By a A-system argument we may assume that {dom(p,) : @ < X;} forms
a A-system with root r. Moreover, we may assume that for some fixed n,
|dom(py) \ 7| = n for all @ < w;. Let (ai,...,a,) be an enumeration of
dom(pq) \ 7. We may also assume that if @ < 3, then the highest level of T’
that contains some «; (1 < i < n) is strictly lower than the lowest level of
T that contains some f; (1 < j < n).

Fix a uniform ultrafilter D over w;. For each a < wy and 1 < 4,5 < n,
let

Da%]‘ = {B > oo < /Bj}, Doc,i,() = {ﬂ > oo {T ,Bj for all j}

For every a and every i, there exists j,; < n such that Ds;;,, € D.
Moreover, for every 1 < i < n, there exists F; € D such that j,; is fixed,
say with value j; for all a € E;. We claim that j; = 0 for all 1 < i < n.
For suppose i is such that j; # 0. Pick o < 8 <~ in E; N Dy 5, N Dg; -
Then oy, 8; <1 7vj,, hence a; <r ;. This yields an wi-chain in 7', which is
impossible. Now let E :=(,,-,, Ei € D.

We claim that for every m and every a we can find u € [w; \ a]™ such
that if 8 < v are in w, then B; £ ~; for every 1 < 4,5 < n. Indeed,
given m and «, choose any 8° € E \ a. Now given 3°,..., 4% all in E, let
B e ENNjcicnNir<i Dy ;- Then the set u := {B%...,8m 1} is as
required.

We can now choose (ug : & < Ny) pairwise disjoint, with |us| > k - n,
so that if & < &, then sup(ug,) < min(ug,), and each u¢ is as above, i.e.,
if B < « are in ug, then B; £ 7; for every 1 < 4,5 < n. We claim that
(ue : £ < Nyp) is as required. So, suppose &y < -+ < §,—1. We choose o e U,
by downward induction on ¢ € {0,...,k — 1} so that {p,e : ¢ < k} has
a common lower bound. Let a*~! be any element of ug, ,. Now suppose

a1 .. aF71 have already been chosen and we shall choose af. We may
assume that for each 3 € wug,, pg is incompatible with p_, for some ¢ in
{¢+1,... k— 1}, for otherwise we could take as our o' any § € ug, with

pp compatible with all p ., ¢ € {{ +1,...,k — 1}. Thus, for each § € u,
there exist ¢/ € {{+1,...,k — 1} and 1 < i,j < n such that 3; <p ozg/. So,
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since |ug,| > k-n, there must exist 3, 8’ € ug, and ¢’ such that 8;, By <r aﬁ'
for some 1 < 4,4',j < n with 8; # ;. But this implies that 8; and 3y are
<r-comparable, contradicting our choice of u¢,. m

We show next that the property Prp for forcing notions is preserved
under iterations with finite support, of any length.

LEMMA 3. For any k > 2, the property Pry is preserved under finite-
support forcing iterations. That is, if

(Pa, Qg <A, B <)

is a finite-support iteration of forcing notions such that Pri(Py) holds and
IFp, “Pre(Qp) holds” for every B < A, then Pri(Py) holds.

Proof. We use induction on a < A. For a = 0 it is trivial. If « is a limit
ordinal with cf(«) # Ry, and p. € P, for all € < Xy, then either uncountably
many p. have the same support (in the case cf(a) = w) or the support of
all p. is bounded by some o’ < a. In either case Pry(P,) follows easily from
the induction hypothesis.

If cf(a) = Ny, then we may use a A-system argument, as in the usual
proof of the preservation of the ccc.

So, suppose @ = [+ 1. Let p. € P, for all ¢ < N;. Without loss of
generality, we may assume that S € dom(p,) for all £ < N;.

Since IPg is ccc, there is ¢ € Pg such that

g e, “H{e:pIB € Gs}l =Ny,

Let G C Pg be generic over V and with ¢ € G. In V[G] we observe that
p:(B)[G] € Qs[G], and Pri(Qg[G]) holds. So, there is (ug : & < Ny) as in
Definition or the sequence (p-(8)[G] : p:|p € G). Hence,

qlFp, “<g\1}g 1§ < Ny) is as in Definition [ for (p.(8) : pe[8 € Gp)”.

For each &, let (g, ué) be such that:

° ngPﬁ andq£§q.

e g lFp, “}\62 = ué”, SO ué is finite.

o g: < p:|B for every € € u% (This can be ensured because if ¢ € u%,
then g¢ IFp, “pe[8 € Gg”, so we may as well take g¢ < pe [5.)

Now apply the induction hypothesis for Pg to obtain (ug : ( < Np) as in the
definition of Pry, for the sequence (ge : £ < Nq). We may assume, by refining
the sequence if necessary, that max(u%) < min(ug,) whenever ¢ < (.

Let uf := U{ué : €€ ug} We claim that @* = (uf : ( < Ny) is as
in the definition, for the sequence (p. : ¢ < Ny). Clearly, the uz are finite
and pairwise disjoint. Moreover, given (5 < --- < (x_1, we can find & €
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“Z‘o’ N < “Z‘k_1 such that in Pg there is a common lower bound ¢, to

{aeo,---1qe.}- Since qx < qgyy ..., e, , < ¢, there are some g, < ¢, and
€€ uél, for each [ < k, such that for some Pg-name p,

Qe I+ “£ Sgﬁ pso(ﬂ); s 7p6k_1(6)”'

Then the condition ¢« * p is a common lower bound for the conditions

Pegy---sPe_,- ™

3. On fragments of MA. We shall now prove that MA(Pry;) does
not imply MA (o-k-linked), which yields a negative answer to the first ques-
tion stated in the Introduction. The following is the main lemma.

LEMMA 4. For k > 2, there is a forcing notion P, = P* and P,-names
.él and Q4 = Qﬁ\ such that:

(1) P, has precalibre-Xy and is of cardinality N;.

(2) IFp, “AC [R]FH17.

(3) IFp. “Qu = {v € RN = "N A = 0}, ordered by 2, is o-k-
linked”.

(4) IFp, “Io:={v€Qu:v Za} is dense for all a <Ry ”.

(5) IFp, “If va € Qgu is such that va € o for a <Ny, and ug € [Ry]<Ro,
for & < Ny, are non-empty and pairwise disjoint, then there exist
§o < -+ < & such that for every (ap : £ < k) € [[,<) ug, the set
Up<p va, does not belong to Q4”.

Proof. We define P, by: p € P, if and only if p has the form (u, A, h) =
(up, Ap, hp), where
(a) u < [N1]<NO7
(b) A C [u]**!, and
(¢) h: o, = w, where p, := {v C u: [v]¥*1 N A = @} is such that if
wo, ..., W1 € pp and h is constant on {wy, ..., w1}, then wy U
- Uwg1 € pp-
The order is given by: p < ¢ if and only if u; C up, A; = A, N [uy)**, and
hq € hy (hence pg = o NP (ug) and hylpg = he).
(1) Clearly, P, has cardinality R, so we show that it has precalibre-N;.
Given {q¢ = (ug, A¢, he) 1 € <Ry} C Py, and writing p¢ instead of the more
cumbersome g, , we can find an uncountable W C Xy such that:

(i) The set {ug¢ : £ € W} forms a A-system with heart u,.
(ii) The sets [u,]"T1 N A¢ for € € W are all the same. Hence the sets
pe NP(uy) for £ € W are also all the same.
(ili) The functions he[(pe NP (uy)) for & € W are all the same.
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(iv) The ranges of he, for £ € W, are all the same, say R. So, R is finite.
(v) For each i € R, the sets {w Nu, : he(w) = i} for £ € W are the
same.

We will show that every finite subset of {g¢ : £ € W} has a common lower
bound. Given &,...,&n € W, let ¢ = (uq, Ag, hy) be such that:

o ug = Uy, e,

e Ay = Ujcpn A¢,- Note that this implies that the p¢, are contained
in p, = {v C uy : PN A, = 0}. Indeed, if, say, w € ©¢,, then
[w]* N Ag, = 0, and we claim that also [w]*™ N Ae, = 0 for j < m.
Indeed, if v € [w]**! N Ag; with j # ¢, then v C wy, and therefore
v € [u PN Ag, = [w ] N Ag,. Hence, v € [w]f*! N Ag,, which is
impossible because [w]**! N A, is empty.

® hy : pg — w is such that hy(v) = he,(v) for all v € gg,, and the
hg(v) are all distinct and greater than sup{hq(v) : v € U<, 9¢,} for
v & Upesn 0¢,- Notice that hy is well-defined because the restrictions
he, [ (e, NP (uy)) for £ < m are all the same.

We claim that ¢ € P,. For this, we only need to show that if {wo, ..., wg_1}
C g and hg is constant on {wo, ..., wx_1}, then [, w;]FINA, = 0. So fix
aset {wo, ..., wg_1} C pg and suppose hy is constant on it, say with constant
value i. By definition of hq we must have {wo, ..., wr—1} C Up<,, pg,- Now

suppose, towards a contradiction, that v € [U; w;F*t1 N Ag, for some
¢ <m. Let s ={w; : j <k}Nge, and let t = {w; : j < k} \ s. Thus,
v CUsU(UtNuy), forif a € v\Us, then a € (Jt and o € | p¢,, for some
0" # £, hence o € ug Nug = uy.
By (v),
{wNus s he,(w) =i} = {wNus: he, (W) =i}

for every ¢/ < m. So, for every w; € t, there exists w; € ¢, such that
wj Nus = wi Nuy and he,(w)) = i. Let ¢ = s U{w) : w; € t}. Note that
t' C p¢, and t' C {w : he,(w) = i}. So,

v C Ut/ - U{w : he,(w) =i}

Thus, v € [J{w : he,(w) = i}]¥T1N Ag,. But this is impossible because [J{w :
he,(w) =i} € g, (since hg, satisfies property (c) above), and therefore

(Utw: he,(w) = 1} w

Now one can easily check that ¢ < ¢gg,,...,qe,,. And this shows that the
set {qe : £ € W} is finite-wise compatible.

(2) Let

1
ﬂA& = 0.

A={(0,p):veA,peP.}
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Thus, A is a name for the set (J{A, : p € G}, where G is the P,-generic
filter. Clearly, (2) holds.

(3) Let
QJA == {(T)vp) HEONS p}% p S ]P)*}

Thus, Q4 is a name for the set [J{gp, : p € G}, where G is the P,-generic
filter. Clearly, IFp, “Qq = {v € [R;]<N0 : W]l A = 0}". Moreover, if G is

P,-generic over V, then, by (c), the function | J{h, : p € G} witnesses that
the interpretation ig(Q.4), ordered by D, is o-k-linked.

(4) Clear.

(5) Suppose that p € P, forces 0, € Q4 is such that v, € « for all
a < Ny; and it also forces ¢ € [Ny]<Ro for all & < Wy are non-empty and
pairwise disjoint.

For each £ < Wy, let q¢ = (ug, A¢, he) < p and let ug € [Ry]<®o and
Uf = (Vg o 1@ € ug), with vf | € [R1]<N0_ be such that

qe IFp, “le = ug and 04 = vg, for o € ug”.

We may assume, by extending g¢ if necessary, that ug U Upeur vga C ug.

As in (1), we can find an uncountable W C X; such that (i)—(v) hold
for the set of conditions {g: : £ € W}. Hence {q¢ : £ € W} is pairwise
compatible (in fact, finite-wise compatible), from which it follows that the
set {ug : £ € W} is pairwise disjoint. Now choose §y < - -+ < & from W so
that:

the heart u, of the A-system {ug : £ € W} is an initial segment of u,
for all £ < k,

sup(ug,) < inf(ug, , \ us) for all £ < k, and

U’Ze C ug, \ uy for all £ < k.

For each o = (o : £ < k) € [, v, pick wo € [Up<y, Ua’aé]kﬂ such
that |we N (vg, ,, \ )| =1 for all £ < k. This is possible because vf, , € .
CLAIM 5. wo & ug,, hence wy & Ag,, for all o € [],<) ug, and all € < k.

Proof. Fix 0 = (ay : £ < k) and ¢ < k, and suppose for a contradiction
that wy C ug,. Then wy C ug, \us. If £ < k, then as sup(ue,) < inf(ug,, , \us)
< inf(ua“) < ayy1, we would have w, \ ayy1; = 0, which contradicts our
choice of w,. But if {=Fk, then since sup(v, | ,, ) <sup(ug, ) <inf(ug,\u.),
we would have waﬂvg]_l agg = (), which contradicts again our choice of w,. =

Now define ¢ = (uq, Aq, hq) as follows:

® Ug = Uegk Ug,-
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o Ay = (Upcp Ae,) U{ws 0 € [[jpug,t- Note that since w, € ug,
(Claim , we have wo & pg, for all o € [[,<) uf, and ¢ < k. Hence,
©¢, € g for all £ < k. -

® hy:pg — wis such that hy(v) = he,(v) for v € gg,, for all £ < k, and
the hg(v) are all distinct and greater than sup{hg(v) : v € Uy<p 06, }

As in (1), we can now check that ¢ € P,. Moreover, by Claim [5| A¢, =
AN [u&]kﬂ. Hence, g < g¢, for all £ < k, and so

qlFp, “ug, = ua and v, = v’&"ba for a € uze”.
And since w, € Uy, vl PN Ay for every o € [Te<y ui,, we have
q ke, “|J ta, & Qu for all (o : € < k) € [] g,
<k <k
This finishes the proof of Lemma 4. =

LEMMA 6. Let k > 2 and let P, be as in Lemma [ Suppose Q is a
P.-name for a forcing notion that satisfies Priiq1. Then ~

IFp,«q “There is no directed G C Q4 such that ITan G # 0 for all a < Ry7,

where 1o is a name for the dense open set {veQq:v<Za}.
Proof. Suppose for a contradiction that p * ¢ € P, * Q and

p*qlFp,«q “There exists G C Qg directed with T, NG # 0
for all a < Ny”.

Suppose Gy C P, is a filter generic over V with p € Gy. So, in V[G], letting
q=1ic,(¢) and Q =i, (Q), we see that for some Q-name G,

qlF@ “G € Qa is directed and I, NG # (0 for all o < Vy”.

For each a < Ny, let ¢, < ¢, and let v, € [N1]<N° be such that
da lFQ “Va € In N g”.

Thus, v, € « for all a < Ny.
Since Q satisfies Pry 41, there exists 4 = (u¢ : £ < Ry) such that:

(a) ug is a finite subset of Ny for all £ < Ny,

(b) ug, Nug, =0 whenever & # &1, and

(c) if & < -+ < &, then we can find oy € wug, for £ < k such that
{¢a, : ¢ < k} have a common lower bound.

By Lemma {4, we can find {y < -+ < & such that for every (ay : £ < k) in
[1s< ug, the set Uy« va, does not belong to Q4.
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By (c), let oy € g, for £ < k be such that {¢a, : £ < k} have a common
lower bound, say r. Then r forces that {0, : £ < k} C G. And since r forces
that G is directed, it also forces that Uzg i Vo, € Q4, a contradiction. m

All elements are now in place to prove the main result of this section.

THEOREM 7. Let k > 2. Assume X = \<?, where 0 = cf(0) > Ny. Then
there is a finite-support iteration

P=(Py,Qg:a< A <),

where:

(1) Py is the forcing Py from Lemma[d]
(2) IFp, © Prk+1(95)” for every 0 < B < A.
(3) In VPx the awiom MA _y(Pry.1) holds, hence in particular (Lem-

ma|2) every Aronszajn tree on wy is special.
(4) Q4 witnesses that MA(o-k-linked) fails in VE».

Proof. To obtain (3), we proceed in the standard way as in all itera-
tions forcing (some fragment of) MA, that is, we iterate all posets with the
Pri41 property and having cardinality < 6, which are given by some fixed
bookkeeping function (see [6] or [7] for details).

Since after forcing with Py the rest of the iteration P has the property
Prj11 (Lemma3), (4) follows immediately from Lemma [6]

COROLLARY 8. For every k > 2, ZFC plus MA(Pri11) does not imply
MA((o-k-linked).

Thus, since MA (Prg41) implies both MA (o-centered) and “Every Aron-
szajn tree is special”, the corollary answers in the negative and in a strong
way the question from [I]: Does MA (o-centered) plus “Every Aronszajn tree
is special” imply MA (o-linked)?

4. On destroying precalibre-8; while preserving the ccc. We
turn now to the second question stated in the Introduction (Steprans—Wat-
son [9]): Is it consistent that there exists a precalibre-8; poset which is ccc
but does not have precalibre-N; in some forcing extension that preserves
cardinals?

Note that the forcing extension cannot be ccc, since ccc forcing preserves
the precalibre-R; property. Also, as shown in [9], assuming MA plus the
Covering Lemma, every forcing that preserves cardinals also preserves the
precalibre-R; property. Moreover, the examples provided in [9] of cardinal-
preserving forcing notions that destroy precalibre-X; do so by actually de-
stroying the ccc property.
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A positive answer to the Steprans—Watson question is provided by the
following theorem. Before stating it, let us recall a strong form of Jensen’s
diamond principle, diamond-star relativized to a stationary set S, which is
also due to Jensen. For S a stationary subset of wq, let

¢%: There exists a sequence (S, : a € S), where S, is a countable set
of subsets of «a, such that for every X C wq there is a club C C wy
with X Na € §, for every a € C' N S.

The principle $% holds in the constructible universe L, for every station-
ary S C wy (see [3, 3.5] for a proof in the case S = w;, which can be easily
adapted to any stationary S). Also, ¢ can be forced by a o-closed forcing
notion (see [7, Chapter VII, Exercises H18 and H20], where it is shown how
to force the even stronger form of diamond known as $F).

THEOREM 9. It is consistent, modulo ZFC, that the CH holds and there
exist:

(1) A forcing notion T of cardinality Ny that preserves cardinals.
(2) Two posets Py and Py of cardinality Ny that have precalibre-Ny and
are such that

k7 “Po, Py are cce, but Pg x Py is not ccc”.
Hence lFp “Py and P1 do not have precalibre-X,” .

Proof. Let {S1, 52} be a partition of {2 := {0 < w;y : ¢ limit} into two
stationary sets. By a preliminary forcing, we may assume that % holds.
So, there exists (S, : o € S1), where S, is a countable set of subsets of «,
such that for every X C wj there is a club C C wy with X Na € S, for
every a € C'N S1. In particular, the CH holds. Using {%, , we can build
an Si-oracle, i.e., an C-increasing sequence M = (Mj : § € S1) with M
countable and transitive, § € Ms, My = “ZFC™ + § is countable”, and such
that for every A C wy there is a club Cy4 C wy such that ANJ € M; for every
d € C4NSy. (For the latter, one simply needs to require that S5 C My for
all § € S1.) Moreover, we can build M so that it has the following additional
property:

(¥) For every regular uncountable cardinal y and a well-ordering <y of
H(x), the set of all (universes of) countable N < (H(x), €, <}) such
that the Mostowski collapse of N belongs to Mg, where ¢ := N Nwy,
is stationary in [H(x)]™°.

Property (%) will be needed to prove that the tree partial ordering 7" (de-
fined below) has many branches, and also to prove that the product partial
ordering Q x T (defined below) is Si-proper (Claim [10| later on), and so it
does not collapse N;.
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To ensure (x), take a large enough regular cardinal A and define the
sequence M so that, for every 6 € Sy, My is the Mostowski collapse of a
countable elementary substructure X of H()) that contains M6, for all
ordinals < §, and all elements of S5. To see that () holds, fix a regular un-
countable cardinal x, a well-ordering <} of H(x), and a club ' C [H (x)]Ro.
Let N = (N, : a < ®1) be an C-increasing and €-increasing continuous
chain of elementary substructures of (H(x), €, <}) with the universe of N,
in F for all o < Ny. We shall find § € S; such that the transitive collapse of
Nj; belongs to Mg, where § = Ng Nws.

Fix a bijection A : Ny — Ua<N1 Ng, and let I' : Xy x Xy — Xy be the
standard pairing function (cf. [6l Chapter 3]). Observe that the set

D := {6 < Np :0 is closed under I" and h maps ¢ onto Ns}

is a club. Now let

X1 :={I'(i,j) : h(i) € h(j)},

Xy :={I(a,i) : h(i) € Nuo},

Xg = {I'(i,j) : (i) < h(j)},

X :={3j+i:j€ X, andic{1,2,3}}.
The set S| := {0 € S1 : X N € Ms} is stationary. Thus, since the set
C:={6<N;:6=NsNuwi}is a club, we can pick § € C N D NS} Since
6 € D, the structure

Y = (XoN0,{(i,j): I'(3,5) € X1 N}, {(i,4) : I'(4,5) € X3Nd})

is isomorphic to Ng, and therefore Y and Ns have the same transitive col-
lapse; and Y belongs to Mg, because § € S]. Hence, since My = ZFC™, the
transitive collapse of Y belongs to M. Finally, since § € C, § = Ns N wy.

We shall now define the forcing T'. Let us write me for the set of all
countable sequences of countable ordinals. Let

T:={ne Nle : Range(n) C S1, 1 is increasing and continuous,
of successor length, and if &€ < 1h(n), then nle € M}

Let <7 be the partial order on T given by end-extension. Thus, (T, <r)
is a tree. Note that, since § € My for every § € Sy, if n € T, then 7 in
Mgup Range(n)- Also notice that if n € T', then n™(0) € T for every § € S
greater than sup Range(n). In particular, every node of T of finite length
has Ni-many extensions of any greater finite length. Now suppose a < wj is
a limit, and suppose inductively that for every successor # < «, every node
of T of length 8 has Ni;-many extensions of every higher successor length
below a.

We claim that every nn € T of length less than « has Nj-many extensions
in T of length a4+ 1 (and in fact, the set of their suprema is stationary).
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For every § < wi, let T5 := {n € T : supRange(n) < ¢}. Notice that
Ts is countable: otherwise, uncountably many n € T would have the same
sup Range(n), and therefore they would all belong to the model My, Range(n)
which is impossible because it is countable. Now fix a node n € T' of length
less than a, and let B := {b, : v < w1} be an enumeration of all the branches
(i.e., linearly ordered subsets of T' closed under predecessors) b of T' that
contain 1 and have length « (i.e., [J{dom(n’) : € b} = «). For a club C
of 0 the set {b, : v < ¢} belongs to M;.

We shall next build a sequence B* := (bz : £ < wy) of branches from
B so that the set sup B* := (supRange(lJb;) : { < wi) is the increasing
enumeration of a club. To this end, start by fixing an increasing sequence
(v, 1 m < w) of successor ordinals converging to «, with g greater than the
length of . Then let b := bg. Given b¢, let v be the least ordinal such that
U by(an) >sup Range(lJ b;), and let b, := by. Finally, given b; for all £ <4,
where § < w; is a limit ordinal, pick an increasing sequence (£, : n < w)
converging to d. By construction, the sequence (sup Range([Jb;,) : n < w)
is increasing. Now let f : o — N be such that f[[0,ap] = b, 110, ap], and
fian, ant1] = szn+1 [(on, apyr] foralln < w. Thenset by :={f[f: <«
is a successor}. One can easily check that b is a branch of T' of length o
with sup Range(|J b5) = sup{sup Range(|J bz) : £ < (}. Finally, notice that
if 6 € S1NC is greater than o and belongs to the club enumerated by sup B*,
then since Ms = “0 is countable”, we can pick the sequences (v, : n < w)
and (§, : n < w) in M;. Then the sequence (b :n < w) belongs to Ms,
and therefore (|Jb5)™(0) € T

By (x) the set of all countable N < (H(X2), €, <g,) that contain B* and
(o, : n < w), with @« € N, and such that the Mostowski collapse of N
belongs to Mg, where § := N Nwy, is stationary in [H(x)]"°. So, since the
set Lim(sup B*) of limit points of sup B* is a club, there is such an N with
§ := N Nw; € Lim(sup B*). If N is the transitive collapse of N, we deduce
that B*[6 € N € Ms, and so in Ms we can build, as above, the branch bs.
Therefore, since § = sup Range(|Jbj), we see that | Jb5 U {(«,0)} is in T’
and extends 7. We have thus shown that n has R;-many extensions in 7" of
length o 4+ 1. Even more, the set {sup Range(|Jb) : b is a branch of length
a + 1 that extends 7} is stationary.

Note however that since the complement of S; is stationary, 7' has no
branch of length wy, because the range of such a branch would be a club
contained in S;. But since every 1 € T' has extensions of length o + 1 for
every « greater than or equal to the length of 7, forcing with (7, >7) yields
a branch of T of length w.

In order to obtain the forcing notions Py and P; claimed by the theorem,
we need first to force with the forcing Q which we define as follows. For u a
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subset of T, let [u]% be the set of all pairs {n, v} C u such that n # v and n
and v are <p-comparable. Let

Q:={p: [u]%> — {0,1} : u is a finite subset of T},

ordered by reversed inclusion.

It is easily seen that Q is ccc and it has cardinality Xy, so forcing with
Q does not collapse cardinals, does not change cofinalities, and preserves
cardinal arithmetic. (In fact, Q is equivalent, as a forcing notion, to the
poset for adding ¥; Cohen reals, which is o-centered, but we shall not make
use of this fact.)

Notice that if G C Q is a generic filter over V, then |JG : [T]2 — {0,1}.

Recall that, for S C X; stationary, a forcing notion P is called S-proper
if for all (some) large enough regular cardinals y and all (stationarily many)
countable (N, €) < (H(x), €) that contain P and are such that NN¥; € S,
and all p € PN N, there is a condition ¢ < p that is (N, P)-generic. If P is
S-proper, then it does not collapse X;. (See [8] or [4] for details.)

CraM 10. The forcing Q x T is S1-proper, hence it does not collapse Ny.

Proof. Let x be a large enough regular cardinal, and let <} be a well-
ordering of H(x). Let N = (H(x), €, <}) be countable and such that Q x T
belongs to N, é := N NNy € S1, and the Mostowski collapse of N belongs
to Ms. Fix (qo,m0) € (Q x T') N N. It will be sufficient to find a condition
n« € T such that ny <7 n. and (qo,nx) is (IV,Q x T')-generic.

Let

Qs :={p € Q:if {n,v} € dom(p), then n,v € Ts}.
Thus, Qs is countable. Moreover, notice that T5 = T N N, and therefore
Qs = QN N. Hence, Ts and Qg are the Mostowski collapses of T' and Q,
respectively, and so they belong to Mj.

In Mg, let ((pn, Dp) : n < w) list all pairs (p, D) such that p € Qs and
D is a dense open subset of Qs x T that belongs to the Mostowski collapse
of N. That is, D is the Mostowski collapse of a dense open subset of Q x T'
that belongs to V.

Also in Mg, fix an increasing sequence (4, : n < w) converging to d, and
let

D), :={(p,v) € Dy, : 1h(v) > &,}.

Clearly, D), is dense open.

Note that, as the Mostowski collapse of N belongs to Mg, we find that
<11Qs x Ts) = (<LHQ@x T)) N N € M;.

Now, still in My, and starting with (g, 7n0), we inductively choose a
sequence ((qn,nn) : 1 < w) with ¢, € Qs and n, € T, and such that if
n=m+ 1, then:



Partial orderings having precalibre-R 195

(a) Pn > qn and Mm <T Tn-
(b) (gnsnm) € Dy,

(¢) (gn,mn) is the <}-least such that (a) and (b) hold.

Then 7, := (U, 7) U {(6,9)} € T and n* € M;, hence (qo,n«) € Q x T
Clearly, (qo, 7+) < (qo,m0). So, we need only check that (qo, 7x) is (N,Qx T')-
generic.

Fix an open dense £ C Q x T that belongs to N. We need to see that
ENN is predense below (qo,7x). So, fix (r,v) < (go,7«). Since Q is ccc, qp is
(N, Q)-generic, so we can find ' € {p : (p,n) € E for some n} N N that
is compatible with r. Let n be such that p, = v’ and D,, is the Mostowski
collapse of E. Then (pn,n,) belongs to the transitive collapse of E, hence
to EN N, and is compatible with (r,v), as (pp, 7x) < (Pn, Mn)- =

We thus conclude that if G C Q is a filter generic over V, then in V[G]
the forcing T does not collapse Vi, and therefore, being of cardinality Ny, it
preserves cardinals, cofinalities, and the cardinal arithmetic.

We shall now define the Q-names for the forcing notions Py, for £ € {0,1},
as follows: in V@, let b = Ug, where G is the standard Q-name for the
Q-generic filter over V. Then let

Py = {(w,c) : w C T is finite, c is a function from w into w such that
if {n, v} € [w]F and b ({n,v}) = ¢, then c(n) # c(v)}.
A condition (w, ¢) is stronger than a condition (v, d) if and only if w D v
and ¢ D d.
We shall show that if G is Q-generic over V, then in the extension V[G],

the partial orderings P, = P/[G], for £ € {0,1}, and the forcing T" are as
required.

CraM 11. In VG|, Py has precalibre-X; .

Proof. Assume p, = (wq,co) € Py for @ < wj. We shall find an un-
countable S C N; such that {p, : @ € S} is finite-wise compatible. For each
0 €5y, let

ss == {nl(y+1) : n € ws, and v is maximal such that v < lh(n) An(y) < d}.

As 7 is an increasing and continuous sequence of ordinals from Sj, hence
disjoint from So, the set ss is well-defined. Notice that ss is a finite subset
of Ts := {n € T : sup Range(n) < d}, which is countable.

Let s% := wg N Ts. Note that s% C ss.

Let f : Sy — w; be given by f(§) = max{sup Range(n) : n € ss}. Thus,
f is regressive, hence constant on a stationary S3 C S;. Let g be the
constant value of f on S3. Then ss C T§, for every € S3. So, since T,
is countable, there exist S4 C S5 stationary and s, such that s; = s, for
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every 0 € S4. Further, there is a stationary S; C Sy and si and c, such that
for all § € S;,

st =sb cslsl=c., and Va < d(we C Tj).

Hence, if 01 < &2 are from S5, then not only ws, Nws, = si, but also if

m € ws, — si and ny € ws, — sl, then 1 and 7y are <p-incomparable.

Indeed, suppose otherwise, say m <7 n2. If y+1 =1h(n;), then n2[(y+1) =

m <t 2, and n2(y) = n1(y) < d2, by choice of S5. Hence, by the definition of

Ss,, 2] (y+1) = m1 is an initial segment of some member of ss5, = s, and so

it belongs to Tj,, hence 11 € s, contradicting the assumption that 1y & s..
So, {ps : 6 € S5} is as required. m

It only remains to show that forcing with T over V[G] preserves the
cce-ness of Py and P1, but makes their product not ccc.

CrLam 12. If Gt is T-generic over V[G], then in the generic extension
V[G][Gr], the forcing Py is cce.

Proof. First notice that, by the Product Lemma (see [6, 15.9]), G is
Q-generic over V[Gr], and V[G][Gr] = V[Gr][G]. Now suppose that A =
{(wa, ca) 1 @ <wi} € V[Gr] is a Q-name for an uncountable subset of Py.
For each a < w1, let po, € Q and (wq, ¢o) be such that p, IF “(%a,ga) =
(W, ca)”. Let uy be such that dom(p,) = [ua]?. By extending pg, if nec-
essary, we may assume that ws, C u, for all a < wi. We shall find o #
and a condition p that extends both p, and pg and forces that (wq,cq)
and (wg, cg) are compatible. For this, first extend (wq,cqa) to (ta,ds) by
letting d,, give different values in w \ Range(c,) to all n € uq \ wo. We may
assume that the set {u, : @ < wp} forms a A-system with root r. Moreover,
we may assume that p, restricted to [r]% is the same for all o < wy, and
also that d, restricted to r is the same for all @ < w;. Now pick a # (3
and let p : [uq Uugl% — {0,1} be such that pllua)? = pa, pllusls = ps,
and p({n,v}) # ¢ for all other pairs in [u, Uugl%. Then p extends both p,
and pg, and forces that (uq,d) and (ug, dg) are compatible, hence it forces
that (wa,cq) and (wg, cg) are compatible. =

But in V[G][G7], the product Py x P; is not ccc. Indeed, let n* = |J Gr.
For every o < wy, let pt, := ({n*[(a+1)}, %) € Py, where ¢, (n*[(a+1)) = 0.
Then the set {(p%,pl) : @ < wy} is an uncountable antichain.

This finishes the proof of Theorem 9. =
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