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Abstract. We apply the theory of infinite two-person games to two well-known prob-
lems in topology: Suslin’s Problem and Arhangel’skii’s problem on the weak Lindelöf num-
ber of the Gδ topology on a compact space. More specifically, we prove results of which
the following two are special cases: 1) every linearly ordered topological space satisfying
the game-theoretic version of the countable chain condition is separable, and 2) in every
compact space satisfying the game-theoretic version of the weak Lindelöf property, every
cover by Gδ sets has a continuum-sized subcollection whose union is Gδ-dense.

1. Introduction. Infinite games have been exploited in recent years
to give partial answers to various important problems in general topology,
including van Douwen’s D-space problem (see [1]), Arhangel’skii’s problem
on the cardinality of Lindelöf spaces with Gδ points (see [14], [2]) and Bell,
Ginsburg and Woods’s problem on the cardinality of weakly Lindelöf first-
countable regular spaces (see [6], [4]). We use them to give partial ZFC
answers to Suslin’s Problem and Arhangel’skii’s question of whether in every
compact space, a cover by Gδ sets has a continuum-sized subfamily with a
Gδ-dense union.

It was already known to Cantor that the real line is the unique complete
dense linear order without endpoints which is separable. In the first issue of
Fundamenta Mathematicae, Suslin asked whether in this result separability
could be replaced with the countable chain condition. Any counterexample
to this assertion came to be known as a Suslin Line. The problem turned
out to be independent of the usual axioms of ZFC: under MAω1 there are
no Suslin Lines, and thus the answer to Suslin’s question is yes. However,
Suslin Lines can be found in certain models of set theory, for example under
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V = L. Various mathematicians have wondered whether there is a natural
strengthening of the ccc which implies a positive answer to Suslin’s Problem.
Following this line, Knaster proved that every ordered continuum with the
Knaster property is separable, and Shapirovskĭı proved that every compact
space with countable tightness and Shanin’s condition is separable (see [15]).

Another strengthening of the ccc was suggested by Scheepers [13] and
involves a two-person game in countably many moves: at inning n < ω
player I chooses a maximal family of pairwise disjoint open sets Un, and
player II picks an open set Un ∈ Un. Player II wins if

⋃
{Un : n < ω} = X.

Let us use the term playful ccc for the property that player II has a winning
strategy in this game. The name is justified by the fact that if X contains
an uncountable (maximal) pairwise disjoint family of non-empty open sets,
all player I has to do to win is choose that family at every inning. So player I
has a winning strategy in every space which does not have the countable
chain condition. Hence the playful ccc implies the usual ccc.

Daniels, Kunen and Zhou [7] proved that, unlike the ccc, the playful ccc
is productive in ZFC. We show that every complete dense linear order with
the playful ccc is separable.

The weak Lindelöf number of a topological space X (denoted wL(X)) is
defined as the minimum cardinal κ such that every open cover has a κ-sized
subfamily with a dense union. A space is called weakly Lindelöf if it has
countable weak Lindelöf number. Every Lindelöf space is clearly weakly Lin-
delöf, and it is not hard to prove that every space with the countable chain
condition is weakly Lindelöf. Woods [16] used the weak Lindelöf property to
characterize the C∗-embedded subsets of the Stone–Čech compactification
of the integers under CH, and Bell, Ginsburg and Woods [5] exploited it in
their elegant generalization of Arhangel’skii’s theorem on the cardinality of
compact first-countable spaces.

Given a topological space X, we indicate with Xδ the space whose un-
derlying set is X and whose topology is generated by the Gδ sets of X.
Arhangel’skii asked (see [10]) whether wL(Xδ) ≤ 2ℵ0 for every compact
space X. This problem remains open.

Juhász [10] gave a partial positive answer by proving that wL(Xδ) ≤
2c(X) for every compact space X (a related result was given in [11] for an-
other chain-condition type cardinal invariant known as Noetherian type).
His result is a consequence of the Erdős–Rado theorem from infinite com-
binatorics. In particular, Arhangel’skii’s question has a positive answer for
compact ccc spaces. Here we prove another partial positive result: if X is a
countably compact space where player II has a winning strategy in the weak
Lindelöf game of length ω1 (see below for the definition) then wL(Xδ) ≤ 2ℵ0 .
Juhász’s result follows from ours, but our proof uses no infinite combina-
torics other than elementary counting arguments.
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Let us recall some standard notation regarding games.
Given collections A and B of families of subsets of a topological space X,

we indicate with Gκ1(A,B) (respectively Gκfin(A,B)) the two-player game in
κ many innings where at inning α player I plays Aα ∈ A and player II plays
Aα ∈ Aα (respectively Fα ∈ [A]<ω), and player II wins if {Aα : α < κ} ∈ B
(respectively

⋃
Fα ∈ B).

We denote by CX the collection of all maximal families of pairwise dis-
joint non-empty open sets of X, and by OXD the collection of all open families
with dense union. Obviously CX ⊂ OXD . Moreover, OX is the collection of
all open covers of X. When there is no danger of ambiguity we will omit X
from the superscript.

We call the game Gκ1(O,OD) the weak Lindelöf game of length κ.
In our proofs we will often use elementary submodels of the structure

(H(µ), ε). Dow’s survey [8] on this topic is enough to read our paper, and
we give a brief informal refresher here. Recall that H(µ) is the set of all sets
whose transitive closure has cardinality smaller than µ. When µ is regular
uncountable, H(µ) is known to satisfy all axioms of set theory except the
power set axiom. We say, informally, that a formula is satisfied by a set S if
it is true when all existential quantifiers are restricted to S. A set M ⊂ H(µ)
is said to be an elementary submodel of H(µ) (and we write M ≺ H(µ))
if a formula with parameters in M is satisfied by H(µ) if and only if it is
satisfied by M .

The downward Löwenheim–Skolem theorem guarantees that for every
S ⊂ H(µ), there is an elementary submodel M ≺ H(µ) such that |M | ≤
|S| · ω and S ⊂ M . This theorem is sufficient for many applications, but it
is often useful (especially in cardinal bounds for topological spaces) to have
the following closure property. We say that M is κ-closed if for every S ⊂M
such that |S| ≤ κ we have S ∈M . For large enough regular µ and for every
countable set S ⊂ H(µ) there is always a κ-closed elementary submodel
M ≺ H(µ) such that |M | = 2κ and S ⊂M .

The following theorem is also used frequently: Let M ≺ H(µ) be such
that κ+ 1 ⊂M , and S ∈M be such that |S| ≤ κ. Then S ⊂M .

Undefined notions can be found in [9] for topology and [12] for set theory.

2. Arhangel’skii’s problem about Gδ covers in compact spaces.
A game-theoretic version of the weak Lindelöf property can be obtained
by considering the game Gκ1(O,OD). At inning α < κ player I chooses an
open cover Uα, and player II chooses an open set Uα ∈ Uα. Player II wins
if
⋃
{Uα : α < κ} = X. If player II has a winning strategy in Gκ1(O,OD),

then wL(X) ≤ κ. But there are even compact spaces where player I has a
winning strategy in Gω1

1 (O,OD) (and hence player II cannot have a winning
strategy in that game, see [3]).
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In [4] we proved that the weak Lindelöf game is the dual of the open-
picking game. It will be convenient to exploit this duality in the proof of our
partial solution to Arhangel’skii’s problem.

Definition 2.1. The game Gpo(κ) is the two-player game in κ many
innings defined as follows: at inning α < κ, player I picks a point xα ∈ X
and player II chooses an open set Uα such that xα ∈ Uα. Player I wins if⋃
{Uα : α < κ} = X.

Lemma 2.2 ([4]).

(1) Player I has a winning strategy in Gκ1(O,OD) if and only if player II
has a winning strategy in Gpo(κ).

(2) Player II has a winning strategy in Gκ1(O,OD) if and only if player I
has a winning strategy in Gpo(κ).

Proof. We prove only the direct implication of (2), because it is the only
one we will need in our proof of Theorem 2.3 below, and we refer the reader
to [4] for the other implications.

Let σ be a winning strategy for player II in Gκ1(O,OD) on some space X.

Claim. Let (Oα : α < β) be a sequence of open covers, where β < κ.
Then there is a point x ∈ X such that for every neighbourhood U of x there
is an open cover U with U = σ((Oα : α < β)_(U)).

Proof. Recalling that O denotes the set of all open covers of X, let V =
{V open: (∀U ∈ O)(V 6= σ((Oα : α < β)_(U))}. Its definition easily implies
that V cannot be an open cover, and hence there is a point x ∈ X \

⋃
V.

By definition of V, for every neighbourhood U of x there is an open cover
U such that U = σ((Oα : α < β)_(U)), and hence we are done. 4

We are now going to define a winning strategy τ for player I in Gpo(κ).

Use the Claim to choose a point x0 such that for every neighbourhood
U of x0 there is an open cover U with σ((U)) = U and let τ(∅) = x0.

Suppose we have defined τ for the first α many innings. Let now {Vβ :
β ≤ α} be a sequence of open sets and {Oβ : β < α} be a sequence of open
covers such that Vβ = σ((Oγ : γ ≤ β)) for every β < α. Use the Claim to
choose a point xα such that for every open neighbourhood U of xα there is an
open cover O with U = σ((Oβ : β < α)_(O)) and let τ((Vβ : β ≤ α)) = xα.

We now claim that τ is a winning strategy for player I in Gpo(κ). Indeed,
let (x0, V0, x1, V1, . . . xα, Vα, . . . ) be a play where player I uses τ . Then there
must be a sequence {Oα : α < κ} of open covers such that Vβ = σ((Oα :
α ≤ β)) for every β < κ. Since σ is a winning strategy for player II in
Gκ1(O,OD), we see that

⋃
{Vα : α < κ} is dense in X, and this proves that

τ is a winning strategy for player I in Gpo(κ).
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Theorem 2.3. Let κ be a regular uncountable cardinal and X be a
countably compact regular space where player II has a winning strategy in
Gκ1(O,OD). Then wL(Xδ) ≤ 2<κ.

Proof. Denote by ρ the set of all open subsets of X. Fix a winning
strategy τ for player I in Gpo(κ) and let U be an open cover of Xδ. Since X is
regular, we can assume without loss of generality that for every U ∈ U there
are {Un : n < ω} ⊂ ρ such that Un+1 ⊂ Un for every n < ω and U =

⋂
{Un :

n < ω} =
⋂
{Un : n < ω}. Let M be a <κ-closed elementary submodel of

H(θ) for large enough regular θ such that X, ρ, τ,U ∈ M , |M | = 2<κ and
2<κ + 1 ⊂M . We claim that U ∩M is dense in Xδ. Suppose this is not the
case and let V be an open subset of Xδ such that V ∩

⋃
(U ∩M) = ∅. We

can assume that V =
⋂
{Vn : n < ω}, where {Vn : n < ω} is a family of

open subsets of X such that Vn+1 ⊂ Vn for every n < ω.

Claim. X ∩M is countably compact.

Proof. Let A ⊂ X ∩M be a countable set. By countable compactness
of X, the set A must have an accumulation point x ∈ X. In other words,

H(θ) |= (∃x ∈ X)(∀U ∈ ρ)(x ∈ U ⇒ U ∩A 6= ∅).
By <κ-closedness of M we have A ∈M , and hence, by elementarity,

M |= (∃x ∈ X)(∀U ∈ ρ)(x ∈ U ⇒ U ∩A 6= ∅).
This means that we can fix a point p ∈ X ∩M such that for every neigh-
bourhood U of p with U ∈M we have U ∩A 6= ∅. It follows that

M |= (∀U ∈ ρ)(p ∈ U ⇒ U ∩A 6= ∅).
Hence, by elementarity,

H(θ) |= (∀U ∈ ρ)(p ∈ U ⇒ U ∩A 6= ∅).
So p is actually an accumulation point for A in the topology of X, and since
p ∈ X ∩M , the Claim is proved. 4

For all x ∈ X ∩M there is Bx ∈ U ∩M such that x ∈ Bx, and hence
Bx∩V = ∅. Since Bx ∈M , there are {Bx

n : n < ω} ⊂M ∩ρ such that Bx =⋂
n<ω B

x
n and Bx

n+1 ⊂ Bx
n for every n < ω. Fix x ∈ X ∩M . By countable

compactness, taking into account that Bx and V are closed Gδ’s and that
Bx∩V = ∅, we can find a positive integer m(x) such that Bx

m(x)∩Vm(x) = ∅.
Let Bn = {Bx

m(x) : m(x) = n}. Set Bn =
⋃
Bn. Then {Bn : n < ω} is an

open cover of X ∩M , and hence by the Claim there is an integer k < ω such
that {Bn : n ≤ k} covers X ∩M . Let B′ =

⋃
{Bn : n ≤ k} ⊂ M and note

that B′ is an open cover of X ∩M .

We are going to play a game of Gp0(κ) where player I uses τ and player II
picks their moves inside B′.
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More precisely, in the first inning player I plays the point x0 = τ(∅).
Since τ ∈ M , we have x0 ∈ X ∩M . Hence there is an open set B0 ∈ B′
such that x0 ∈ B0. Let α < κ and Bβ ∈ B′ be the open set played by
player II at inning β, for every β < α. Since α < κ and M is <κ-closed,
we have {Bβ : β < α} ∈ M and hence xα = τ((Bβ : β < α)) ∈ M . So
there is Bα ∈ B′ such that xα ∈ Bα. Since τ is a winning strategy for
player I, we must have

⋃
{Bα : α < κ} = X, but this contradicts the fact

that Bα ∩ Vk = ∅ for every α < κ.

Corollary 2.4. Let X be a countably compact regular space where
player II has a winning strategy in Gω1

1 (O,OD). Then wL(Xδ) ≤ 2ℵ0.

Let us now see how Juhász’s result from [10] follows from Theorem 2.3.

Recall that ĉ(X) is the minimal cardinal κ such that X does not have a
κ-sized pairwise disjoint family of non-empty open sets.

Lemma 2.5. Let X be any space. Then player II has a winning strategy

in G
ĉ(X)
1 (O,OD).

Proof. Let ĉ(X) = κ. We describe the strategy by induction. Let β < κ
and suppose player II has picked the open set Uα at inning α for every α < β.
Suppose we have chosen open sets {Vα : α < β} such that {Uα∩Vα : α < β}
is a pairwise disjoint family of non-empty open sets. If

⋃
{Uα : α < β} is

dense in X then player II has won, otherwise let Vβ be a non-empty open set
such that Vβ ∩

⋃
{Uα : α < β} = ∅. Suppose at inning β player I chooses the

open cover Oβ. Let Uβ ∈ Oβ be an open set such that Uβ ∩ Vβ 6= ∅ and let
player II pick Uβ at inning β. If this could be carried on for κ many moves
then {Uα ∩ Vα : α < κ} would be a pairwise disjoint family of non-empty
open sets having size κ, which contradicts ĉ(X) = κ. Therefore there must
be β < κ such that

⋃
{Uα : α < β} = X.

Corollary 2.6 (Juhász, [10]). Let X be a compact Hausdorff space.
Then wL(Xδ) ≤ 2c(X).

Question 2.7. Let X be a countably compact regular space such that
player II has a winning strategy in Gω1

1 (C,OD). Is then c(Xδ) ≤ 2ℵ0?

We note that consistently, the above question has a positive answer.

Proposition 2.8. Assume 2ℵ0 = 2ℵ1. Let X be a countably compact
regular space such that player II has a winning strategy in Gω1

1 (C,OD). Then
c(Xδ) ≤ 2ℵ0.

Proof. It is easy to see that if c(X) > ℵ1, then player I has a winning
strategy in Gω1

1 (C,OD). It follows that c(X) ≤ ℵ1. Now, Juhász [10] proved
that c(Yδ) ≤ 2c(Y ) for every countably compact regular space Y , and so
c(Xδ) ≤ 2ℵ1 = 2ℵ0 .
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Question 2.9. Let X be a countably compact regular space such that
player II has a winning strategy in Gκfin(O,OD), where κ is an infinite regular
cardinal. Is wL(Xδ) ≤ 2<κ?

A playful version of the weak Lindelöf property alternative to the one
considered by us is the property that player I has no winning strategy in
Gω1 (O,OD). Of course this is weaker than player II having a winning strategy
in that game. We do not know whether it is enough to provide a positive
answer to Arhangel’skii’s question.

Question 2.10. Let X be a countably compact regular space such that
player I has no winning strategy in Gω1 (O,OD). Is wL(Xδ) ≤ 2ℵ0?

3. The Suslin Problem for the playful ccc. Recall that a π-base
is a family P of non-empty open sets such that for every non-empty open
set U ⊂ X there is P ∈ P such that P ⊂ U . The π-weight of X (denoted
πw(X)) is defined as the minimal size of a π-base for X.

A local π-base at x ∈ X is a family P of non-empty open subsets of X
such that for every open neighbourhood U of x there is P ∈ P such that
P ⊂ U . The local π-character of x (denoted πχ(x,X)) is defined as the
minimum cardinality of a local π-base at x.

We are going to prove the following theorem.

Theorem 3.1. Let X be a regular space with a dense set of points of
countable π-character. If player II has a winning strategy in Gω1 (C,OD) then
X has a countable π-base.

Before going to the proof, let us see how the announced partial ZFC
solution to Suslin’s Problem follows as a corollary.

Lemma 3.2. Let L be a complete dense linear order. Then L contains a
dense set of points of countable π-character.

Proof. Let (a, b) be a non-empty open interval. We claim that (a, b)
contains a point of countable π-character. Let c ∈ (a, b) and suppose we
have constructed {xi : i ≤ n} ⊂ (a, c). Choose xn+1 ∈ (xn, c). Then y =
sup{xn : n < ω} ∈ (a, b) and {(xn, y) : n < ω} is a local π-base at y.

Corollary 3.3. Let X be a continuous linearly ordered topological space
without isolated points such that player II has a winning strategy in the game
Gω1 (C,OD). Then X has a countable π-base.

Although we could give a more direct proof of Theorem 3.1, we think
that the duality between Gκ1(C,OD) and the open-open game makes this
result a lot more transparent. We believe this duality has been known for
some time, but since we could not find a proof in the literature, we provide
one in Lemma 3.5 for the reader’s convenience.
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The open-open game of length κ (denoted Goo(κ)) is the two-player game
where at inning α < κ player I chooses a non-empty open set Uα ⊂ X
and player II chooses a non-empty open set Vα ⊂ Uα. Player I wins if⋃
{Vα : α < κ} = X (see [7]).

First of all we note that the game Gκ1(C,OD) is equivalent to the game
Gκ1(OD,OD). The proof of the following proposition is routine.

Proposition 3.4. Player I (resp. player II ) has a winning strategy in
Gκ1(OD,OD) if and only if player I (resp. player II ) has a winning strategy
in Gκ1(C,OD).

Finally, we prove that the latter game is the dual of the open-open game.

Lemma 3.5.

(1) Player I has a winning strategy in Goo(κ) if and only if player II has
a winning strategy in Gκ1(OD,OD).

(2) Player II has a winning strategy in Goo(κ) if and only if player I has
a winning strategy in Gκ1(OD,OD).

Proof. To prove the direct implication of (1), let τ be a winning strategy
for player I in Goo(κ). Given O ∈ OD, let σ((O)) be any open set O ∈ O
such that O ∩ τ(∅) 6= ∅.

Now, suppose we have defined σ for sequences of order type ≤ α and let
(Oβ : β ≤ α) be a sequence of members of OD. Then just let σ((Oβ : β ≤ α))
be any open set O ∈ Oα such that τ((σ((Oβ : β ≤ γ)) : γ < α))∩O 6= ∅. We
claim that σ is a winning strategy for player II in Gκ1(OD,OD). Indeed, let
(O0, O0,O1, O1, . . . ,Oα, Oα, . . . ) be a play of Gκ1(OD,OD) where player II
plays according to σ. Then the set Vα = τ((σ((Oγ : γ ≤ β)) : β < α)) ∩Oα
is non-empty. But since Vα ⊂ τ((σ((Oγ : γ ≤ β)) : β < α)) and τ is a
winning strategy for player I in Goo(κ), the union

⋃
α<κ Vα must be dense.

Hence
⋃
α<κOα is dense too, and we are done.

Conversely, let σ be a winning strategy for player II in Gκ1(OD,OD).

Claim. Let β < κ and {Oα : α < β} ⊂ OD. Then there is an open set V
such that for every U ⊂ V there is O ∈ OD with U = σ((Oα : α < β)_(O)).

Proof. Let U = {U open: (∀O ∈ OD)(U 6= σ((Oα : α < β)_(O))}. By
definition U /∈ OD, so there must be a non-empty open set V such that
V ∩

⋃
U = ∅. By definition of U , for every U ⊂ V open there must also be

an O ∈ OD such that U = σ((Oα : α < β)_(O)), as we wanted.

Now, use the Claim to choose an open set V0 such that for all U ⊂ V0

there is O ∈ OD such that σ((O)) = U , and let τ(∅) = V0.
Suppose we have defined τ for every sequence of order type ≤ α. Let

{Uβ : β ≤ α} be a sequence of open sets and {Oβ : β ≤ α} be a sequence of
elements of OD such that Uβ = σ((Oγ : γ ≤ β)). Use the Claim to choose
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an open set Vα such that for every open set U ⊂ Vα there is O ∈ OD such
that U = σ((Oβ : β < α)_(O)), and define τ((Uβ : β ≤ α)) to be Vα. We
claim that τ is a winning strategy for player I in Goo(κ).

Indeed, let (V0, U0, V1, U1, . . . , Vα, Uα, . . . ) be a play of Goo(κ) where
player I plays according to τ . Then there must be a sequence (Oα : α < κ)
of elements of OD such that Uβ = σ((Oα : α ≤ β)) for all β < κ. Since σ is a
winning strategy for player II in Gκ1(OD,OD), we see that

⋃
β<κ Uβ is dense

and this proves that τ is a winning strategy for player I in Goo(κ).
To prove the direct implication of (2), let τ be a winning strategy for

player II in Goo(κ). Denote by ρ the set of all open sets of X. We first let
σ(∅) = {τ(O) : O ∈ ρ}. Now suppose we have defined σ for sequences of or-
der type≤ α in such a way that if Uβ is the open set played by player II in the
βth inning, then there are open sets {Vβ : β ≤ α} with Uβ = τ((Vγ : γ ≤ β)).
We simply define σ((Uβ : β ≤ α)) to be {τ((Vγ : γ ≤ α)_(O)) : O ∈ ρ}.
We now check that σ is a winning strategy for player I in Gκ1(OD,OD). Let
{O0, U0,O1, U1, . . . ,Oα, Uα, . . . } be a game of Gκ1(OD,OD) where player I
uses the strategy σ. So we can find a sequence {Vβ : β < κ} of open sets
such that Uα = τ((Vβ : β ≤ α)) and hence

⋃
{Uα : α < κ} is not dense, since

τ is a winning strategy for player II in Goo(κ). So σ is a winning strategy for
player I in Gκ1(OD,OD).

To prove the converse implication of (2), let σ be a winning strategy for
player I in Gκ1(OD,OD). Given an open set U , let V ∈ σ(∅) be any open set
such that U ∩ V 6= ∅ and set τ((U)) = U ∩ V . Suppose τ has been defined
for all sequences of open sets of order type ≤ α. Given (Uβ : β ≤ α) ⊂ ρ, let
V be any open set V ∈ σ((τ((Uγ : γ ≤ β)) : β < α)) such that Uα ∩ V 6= ∅
and set τ((Uβ : β ≤ α)) = Uα∩V . We claim that τ thus defined is a winning
strategy for player II in Goo(κ). Indeed, let (V0, U0, V1, U1, . . . , Vα, Uα, . . . ) be
a play where player II plays according to τ . Then, for every α < κ, there is
Gα ∈ σ((τ((Uγ : γ ≤ β)) : β < κ)) such that Uα ⊂ Gα. Now

⋃
α<κGα is not

dense because σ is a winning strategy for player I in Gκ1(OD,OD) and hence⋃
{Uα : α < κ} cannot be dense either. Therefore τ is a winning strategy

for player II in Goo(κ), and we are done.

Theorem 3.6. Let κ be an infinite regular cardinal and X be a regular
space with a dense set of points of π-character ≤ 2<κ where player I has a
winning strategy in Goo(κ). Then πw(X) ≤ 2<κ.

Proof. Denote by ρ the set of all open sets of X. Fix a winning strategy τ
for player I in Goo(κ) and let D = {x ∈ X : πχ(x,X) ≤ 2<κ}. By assumption,
the set D is dense in X. Let θ be a large enough regular cardinal and M
be a <κ-closed elementary submodel of H(θ) such that X, ρ, τ,D ∈ M ,
|M | = 2<κ and 2<κ + 1 ⊂M .
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We claim that D ∩M is dense in X. Suppose this is not the case. Then
there is an open set G ⊂ X such that G∩D∩M = ∅. Note that nevertheless
D ∩M is dense in the possibly coarser topology generated by ρ ∩M . Now,
the first move of player I, τ(∅), is an open set belonging to M , and thus we
can fix a point x1 ∈ τ(∅) ∩ D ∩M . Let U1 be an open neighbourhood of
x1 such that U1 ∩ G = ∅. Let P(x1) ∈ M be a local π-base at x1 having
size 2<κ. We actually have P(x1) ⊂ M , so we can find P1 ∈ M such that
P1 ⊂ U1 ∩ τ(∅). We let player II choose P1 in their first move.

Let β < κ and suppose that player II has picked open sets {Pα : α < β}
⊂M with Pα ∩G = ∅. By <κ-closedness of M we have {Pα : α < β} ∈M ,
and since τ ∈ M we have τ((Pα : α < β)) ∈ M . Hence we can find a point
xβ ∈ D ∩M ∩ τ((Pα : α < β)). Let Uβ be an open neighbourhood of xβ
disjoint from G. Let P(xβ) ∈M be a local π-base at xβ having size 2<κ. We
actually have P(xβ) ⊂ M , and hence we can fix an open set Pβ ∈ M such
that Pβ ⊂ τ((Pα : α < β)) ∩ Uβ. We let player II pick Pβ in the βth inning.

Since τ is a winning strategy for player I in Goo(κ), it must be the case
that

⋃
{Pα : α < κ} is dense in X; this contradicts the fact that Pα ∩G = ∅

for every α < κ.

ThereforeD∩M is dense inX, and henceX has a 2<κ-sized dense set of
points of π-character 2<κ. Now, putting together the 2<κ-sized π-bases at all
points of D ∩M one gets a 2<κ-sized (global) π-base for our space.

Corollary 3.7. Let X be a regular space with a dense set of points of
countable π-character where player I has a winning strategy in Goo(ω). Then
X has a countable π-base.

Question 3.8. Let X be a space with a dense set of points of countable
π-character were player II has a winning strategy in Gωfin(C,OD). Is it true
that X has a countable π-base?

We note that the property that player I has no winning strategy in
Gω1 (OD,OD) is not strong enough to imply a positive ZFC answer to Suslin’s
Problem. Indeed, Scheepers noted in [13] that a Suslin Line has the property
that for every sequence {Un : n < ω} of maximal pairwise disjoint families
of non-empty open sets we can choose Un ∈ Un, for every n < ω, such that⋃
{Un : n < ω} is dense in X, and that this is equivalent to player I not

having a winning strategy in Gω1 (C,OD).
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