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Abstract. We introduce an analog to the notion of Polish space for spaces of weight
≤ κ, where κ is an uncountable regular cardinal such that κ<κ = κ. Specifically, we
consider spaces in which player II has a winning strategy in a variant of the strong Choquet
game which runs for κ many rounds. After discussing the basic theory of these games
and spaces, we prove that there is a surjectively universal such space and that there are
exactly 2κ many such spaces up to homeomorphism. We also establish a Kuratowski-like
theorem that under mild hypotheses, any two such spaces of size > κ are isomorphic by
a κ-Borel function. We then consider a dynamic version of the Choquet game, and show
that in this case the existence of a winning strategy for player II implies the existence of
a winning tactic, that is, a strategy that depends only on the most recent move. We also
study a generalization of Polish ultrametric spaces where the ultrametric is allowed to
take values in a set of size κ. We show that in this context, there is a family of universal
Urysohn-type spaces, and we give a characterization of such spaces which are hereditarily
κ-Baire.

1. Introduction. While descriptive set theory began as the study of
definable subsets of the real line, it has since grown into a rich field with
applications across many different areas. One of the keys behind this growth
was the observation that the relevant properties of the real line are also
available in the broader context of Polish spaces.

Recall that a topological space is said to be Polish if it is second countable
and completely metrizable. The Polish space, together with certain relatives
such as the Polish metric space and the standard Borel space, turn out to
be just the right frameworks for generalizing properties of very well-behaved
topological spaces such as the real line R, the Cantor space ω2, and the Baire
space ωω.
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For example, many classes of countable or separable structures can nat-
urally be parameterized by elements of a Polish space. It is then possible to
use the descriptive-set-theoretic framework to address questions about the
complexity of properties or operations on these structures. In the subfield
known as Borel equivalence relations, one can compare the complexity of
classification problems for various classes of structures by studying equiva-
lence relations on spaces of such structures.

Motivated by a desire to generalize applications such as these to larger
structures, a great deal of research has been dedicated to finding generaliza-
tions and analogs of results from classical descriptive set theory for larger
spaces such as κ2 or κκ. Here, each space is endowed with the <κ-supported
product topology. We will always make the assumption that κ<κ = κ.

Many results of classical descriptive set theory do not readily general-
ize to higher cardinals. Some regularity properties fail for definable subsets
of κκ, for example some Σ1

1 sets do not have the κ-Baire property [HS01,
Theorem 4.2]. Moreover for κ > ω, continuous images of closed subsets of κκ
have properties unlike those for κ = ω, for instance not every image of κκ
under a continuous injection is κ-Borel [LS15a].

Still, many classical results do admit generalizations to higher cardinals,
at least, consistently. For example, although disjoint Σ1

1 subsets of κκ cannot
necessarily be separated by a ∆1

1 set, in [MV93] Mekler and Väänänen were
able to establish a weak version of the Suslin separation theorem. Regarding
regularity properties, Schlicht showed in [Sch15] that it is consistent that all
definable subsets of κκ have the perfect set property.

Many results about Borel equivalence relations have also been gener-
alized. For instance, a classical result of López-Escobar states that Borel
classes of countable structures are axiomatizable by a sentence of the in-
finitary language Lω1ω. In [Vau74], Vaught generalized this result to the
case of κ-Borel classes of structures of size κ and the language Lκ+κ. In
[Tuu92], Tuuri further generalized Vaught’s result to deal with ∆1

1 classes
of structures of size κ. In [MR13], Motto Ros has generalized several results
of Louveau–Rosendal concerning analytic quasi-orders. An overview of the
descriptive set theory of κκ can be found in [FHK11].

Given these successes, it is natural to look for one or more general frame-
works, analogous to Polish spaces or standard Borel spaces, in which to carry
out generalizations of classical descriptive set theory. It is natural to define
that X is κ-standard Borel if there is a κ-Borel bijection between X and
a κ-Borel subset of κκ (this definition has been proposed for instance in
[MR13]). Moreover, in the definition of Polish topological space, the second
countability can naturally be replaced with the assumption that the space
has weight at most κ (i.e., has a basis of size ≤ κ). However, the completeness
of the compatible metric can be replaced by a variety of assumptions.
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In this article we consider several such assumptions, with a focus on two
of them in particular. Our first attempt goes via the following classical char-
acterization due to Choquet: X is Polish if and only if X is second countable
and player II has a winning strategy in the strong Choquet game. We will
consider the analog of this notion in which the classical Choquet game is
replaced with an analogous game of longer length. Our second attempt will
be to define completeness directly by considering only spaces which admit
a (generalized) ultrametric which takes values in a set of size κ.

In a forthcoming work, we will use the framework developed here to
study κ-Choquet groups, κ-ultrametric groups, and their actions.

The present paper is organized as follows. In the next section, we intro-
duce a variant of the strong Choquet game which runs for κ many rounds.
We then use the game to define a generalization of Polish topological spaces
called strong κ-Choquet spaces, and outline some elementary properties en-
joyed by such spaces. In the third section, we give an analog of Kuratowski’s
isomorphism theorem which states that, if X and Y are κ-Choquet spaces
of weight ≤ κ and size > κ such that no point is the intersection of fewer
than κ many open sets, then X and Y are κ-Borel isomorphic. We also
prove that there are exactly 2κ many κ-Choquet spaces of weight ≤ κ up to
homeomorphism.

In the fourth section, we consider a dynamic variant of the strong
κ-Choquet game where in each round, instead of playing an open set, the
players play a set which is the intersection of fewer than κ many open sets.
We show that for spaces of weight ≤ κ, the existence of a winning strategy
in the dynamic game implies the existence of a winning tactic—a strategy
which depends only on the most recent move.

In the fifth section, we study generalizations of Polish ultrametric spaces
in which the ultrametric is replaced by a distance function which takes
values in a set of size κ. We show that, as is the case with Polish ultrametric
spaces, there exists a family of universal Urysohn spaces of this type. Finally,
in the last section we give a generalization of a classical result of Debs which
characterizes the hereditarily Baire subspaces of the Baire space in terms of
their spherically closed subsets.

2. Generalized Choquet spaces. In this section, we introduce a gen-
eralization of Choquet spaces obtained by lengthening the classical Choquet
game. We then give some of the most basic properties of these spaces. Unless
otherwise specified, we always assume the following:

• The cardinal κ is regular and uncountable, and satisfies κ<κ = κ.
• Topological spaces X,Y, . . . are Hausdorff and regular.

The Choquet game was originally introduced in [Cho69]. We begin with
our generalization.
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Definition 2.1. Let X be a topological space. The strong κ-Choquet
game in X is played by two players, I (sometimes called empty) and II
(sometimes called nonempty):

I: U0, x0 U1, x1 · · · Uλ, xλ · · ·
II: V0 V1 · · · Vλ · · ·

In the first half of each round, I plays Uα, xα such that xα ∈ Uα and Uα is
a relatively open subset of

⋂
β<α Uβ. In the second half of each round,

II responds with Vα such that xα ∈ Vα and Vα is a relatively open sub-
set of Uα. We say that II wins the play if for all limit ordinals λ ≤ κ, we
have

⋂
α<λ Uα 6= ∅.

Of course, if at any limit ordinal λ < κ we have
⋂
α<λ Uα = ∅, then I

wins immediately; the run cannot and need not continue.

Definition 2.2. We say that X is a strong κ-Choquet space if player II
has a winning strategy in the strong κ-Choquet game in X.

We will occasionally also mention (weak) κ-Choquet spaces, where II has
a winning strategy in the simpler game in which the points xα are not played
and not used.

The canonical example of a strong κ-Choquet space is of course the
κ-Baire space κκ with the topology generated by the basic open sets of the
form

Ns = {x ∈ κκ | s ⊂ x}
where s ∈ <κκ. Of course, the κ-Cantor space κ2 with the analogous topology
is also a fundamental example. Each of these spaces is κ-additive, which
means that the intersection of fewer than κ many open sets is again open.

For an example of a κ-Choquet space that is not κ-additive, we often use
the linearly ordered spaces (κκ, lex) and (κ2, lex) with the topology generated
by the lexicographic open intervals. The next result shows that these spaces
are indeed κ-Choquet.

Proposition 2.3. The spaces (κκ, lex) and (κ2, lex) are 1-dimensional,
strong κ-Choquet spaces. Moreover, (κ2, lex) is compact.

Proof. By [GJ76, Lemma 13.17], every subset of (κ2, lex) has a least up-
per bound and a greatest lower bound, and this property characterizes com-
pactness for linearly ordered topological spaces. Similarly, every bounded
subset of (κκ, lex) has a least upper bound and a greatest lower bound. It
follows from this property that none of these spaces is zero-dimensional, and
it is clear that each is at most one-dimensional.

Next, we show that player II has a winning strategy in the strong
κ-Choquet game in each of these spaces. Without loss of generality we can
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suppose that the players play intervals (see Lemma 2.5 below). Furthermore,
it follows from the least upper bound property that the decreasing intersec-
tion of closed and bounded intervals is always nonempty. Thus, in response
to a set U , player II can play any open interval V such that V ⊂ U , and
this strategy will be a winning one.

We can use this last example to generate 2κ many distinct examples of
κ-Choquet spaces. In Corollary 3.6 below, we will show conversely that there
are at most 2κ many homeomorphism types of such spaces.

Proposition 2.4. There are at least 2κ many homeomorphism types of
connected strong κ-Choquet spaces of weight ≤ κ.

Proof. For each A ⊂ κ, we will construct a spaceX(A) in such a way that
no two of them are homeomorphic. In our construction, we let X = (κκ, lex)
and let X = X together with a maximum element. To build X(A) begin
with a copy of X, and for each α ∈ A attach another copy of X to αa0κ, and
for each α /∈ A attach a copy of X to αa0κ. Then X(A) is strong κ-Choquet,
since player II can follow the winning strategy for X as long as player I plays
points in the base copy, and follow the winning strategy for one of the new
copies of X once a point played by player I leaves the base copy.

To see that no two of these are homeomorphic, note that every non-
endpoint of X or X is a cut point, i.e., removing it from the space leaves
exactly two connected components. Since any homeomorphism preserves cut
points, X(A) and X(B) are not homeomorphic if A 6= B.

As we saw in the proof of Proposition 2.3, we will occasionally have use
for the following result, which states that in the κ-Choquet game we may
assume that the players use basic open sets instead of just open sets.

Lemma 2.5. Suppose that X has weight ≤ κ. Suppose that one of the
players has a winning strategy in the (strong) κ-Choquet game. Then this
player has a winning strategy in which she only plays basic open sets (as
usual, intersected with the run so far).

Proof. We only consider the case of player II in the strong κ-Choquet
game. Let σ be a winning strategy for II in the strong κ-Choquet game.
Consider the modified strategy in which II always plays a basic open subset
of the set that she would have played according to σ. It is clear that if
U0, x0, V0, U1, x1, V1, . . . is a run of this game and λ is a limit ordinal, then⋂

α<λ

Vα =
⋂
α<λ

Uα =
⋂
α<λ

σ(U0, x0, . . . , Uα, xα).

This implies that the modified strategy consists of valid plays, and that it
is a winning strategy if σ is.
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Recall that a space is κ-Baire if the intersection of κ many dense open
sets is dense, and weakly κ-Baire if the intersection of κ many dense open
sets is nonempty. Although each of the example spaces listed above has the
additional property that it is κ-Baire, it worth noting that not all κ-Choquet
spaces turn out to be weakly κ-Baire. For instance, ωω is a strong κ-Choquet
space for somewhat trivial reasons, but if we assume as usual that κ<κ = κ,
then ωω is not κ-Baire for κ > ω.

Proposition 2.6 (cf. [Kec95, Theorem 8.11]). Suppose that X is a space
of weight ≤ κ such that the intersection of any decreasing sequence of fewer
than κ many open sets has nonempty interior. Then:

(a) X is not κ-Baire if and only if player I has a winning strategy in the
modified version of the weak κ-Choquet game where player II plays
first at limits but the winning condition remains the same.

(b) X is not weakly κ-Baire if and only if player I has a winning strategy
in the modified version of the weak κ-Choquet game where player II
begins and plays first at limits but the winning condition remains the
same.

Proof. We address only part (a). Suppose first that X is not κ-Baire.
Then there exists a sequence (Uα)α<κ of dense open sets such that

⋂
α<κ Uα

is not dense, so there is a nonempty basic open set U with U ∩
⋂
α<κ Uα = ∅.

Let player I play U ∩ U0 in his first move. Then by the hypothesis on X, it
is valid for player I to simply play Uα (intersected with the run so far) in
each round α. Moreover, this is clearly a winning strategy for I.

Conversely, suppose that player I has a winning strategy σ for this game.
We will construct a κ-closed subtree T ⊂ κκ and sets Us for s ∈ T successor
such that:

• for each b ∈ [T ], the sequence Ub�0, Ub�1, . . . forms a valid sequence of
moves for player I according to σ;
• Us ∩ Ut = ∅ for s 6= t in T of the same length;
• for each α successor, the set Gα+1 =

⋃
{Us | Dom(s) = α+ 1} is dense

and open in Gα =
⋃
{Us | Dom(s) = α}.

To carry out the construction, we initially let U∅ denote the starting move of
player I. Given s ∈ T such that Dom(s) is a successor, we let Usaβ enumerate
a maximal pairwise disjoint sequence of σ’s responses to a valid player II
response to the run Us�0, . . . , Us�α, . . . , Us (α a successor ordinal). We close T
under limits, and for s ∈ T such that Dom(s) is limit we define its successors
Usaβ similarly.

To show that X is not κ-Baire, let γ ≤ κ be least such that
⋂
α<γ Gα is

not dense in U∅. If γ < κ, then
⋂
α<γ Gα is not dense and hence X is not



Generalized Choquet spaces 233

κ-Baire. If γ = κ, then
⋂
α<κGα is empty, since σ is a winning strategy for

player I, and hence X is not κ-Baire.

We remark that as in the classical case, in Proposition 2.6(a) the weak
κ-Choquet game cannot be replaced by the strong κ-Choquet game. To see
this, let T be a subtree of <κκ which is isomorphic to <κ2 and let D be a
dense subset of [T ] of size κ. We consider the space X = (κκ r [T ]) ∪ D.
Then X is κ-Baire and so player I does not have a winning strategy in the
weak κ-Choquet game on X. But there is a strategy for player I in the
strong κ-Choquet game consisting in playing basic open subsets of [T ] while
successively avoiding elements of D.

We now briefly address inheritance and preservation of the strong
κ-Choquet property. The strong κ-Choquet property is clearly inherited by
open subsets, as well as subsets which are the intersection of < κ many open
sets. However, the property is not necessarily inherited by closed subsets.
For example, the subspace of κκ consisting of those x such that x(i) 6= 0 for
all but finitely many i < κ is neither ω-Choquet nor ω-Baire. The follow-
ing proposition gives some preservation properties that do hold for strong
κ-Choquet spaces.

Proposition 2.7 (cf. [Gao09, Theorem 4.1.2]).

(a) If X is strong κ-Choquet and f : X → Y is continuous, open, and
surjective, then Y is strong κ-Choquet.

(b) The <κ-supported product of κ many strong κ-Choquet spaces is
strong κ-Choquet.

Proof outline. (a) Given a winning strategy τ for II in X, we construct
a winning strategy for II in Y as follows. Given a run U0, y0, . . . , Uα, yα, let
Vα be the result of τ applied to the run f−1(U0), x0, . . . , f

−1(Uα), xα, where
xβ is any point in f−1(yβ). We then let II respond with f(Vα). Since f is
open, this is a valid move, and it is easy to see that τ is winning implies this
strategy is winning.

(b) Given a run U0, x0, . . . , Uα, xα in
∏
i∈I Xi with α < κ, we can suppose

without loss of generality that each Uβ for β ≤ α is equal to a basic open
set of the form

∏
i∈I Uβ,i, where there is Iβ ⊂ I with |Iβ| < κ such that

Uβ,i = Xi for all i /∈ Iβ, intersected with the run so far. Let πi :
∏
j∈I Xj

→ Xi denote the projection onto the ith coordinate. For each i, the sequence
U0,i, πi(x0), . . . , Uα,i, πi(xα) determines a run of the strong Choquet game
in Xi, for which player II has a response Vα,i given by a winning strategy. We
can suppose that Vα,i = Xi for all i /∈ Iα, so that in X we may let player II
respond with Vα =

∏
i∈I Vα,i. Since player II wins the game in each Xi, the

set
⋂
α<γ Vα,i is nonempty for every i ∈ I and γ ≤ κ, and it follows that⋂

α<γ Vα =
∏
i∈I
⋂
α<γ Vα,i is nonempty.
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3. Borel isomorphisms. In this section we will establish a generaliza-
tion of the Kuratowski isomorphism theorem for strong κ-Choquet spaces.
Recall that the classical Kuratowski theorem states that all uncountable
Polish spaces are Borel isomorphic. We begin with a (weak) version of the
Cantor embedding theorem which gives conditions for κ2 to embed into a
given strong κ-Choquet space.

Our proof of the Cantor embedding theorem will be the first to illus-
trate the method by which we eliminate the use of a metric from classical
arguments. When a sequence of shrinking balls is used, we use our assump-
tion that the space has weight ≤ κ. When completeness is used to find a
point in the intersection of a family of closed sets, we use the Choquet prop-
erty instead. For a comparison with the classical argument, see for instance
[Gao09, Theorem 1.3.6].

Our result differs from the classical one in that we need to assume the
given space X is κ-perfect. Here, we say that x ∈ X is κ-isolated if {x}
can be written as the intersection of fewer than κ many open sets, and that
X is κ-perfect if X has no κ-isolated points. It is easy to see that if X
has weight κ (and as always κ<κ = κ) then X contains at most κ many
κ-isolated points. (Indeed, there are only κ many intersections of basic open
sets of length < κ.) The hypothesis in Proposition 3.1 that X is κ-perfect
is needed because the Choquet property is not necessarily inherited by the
set of κ-nonisolated points. (For instance, let T0 denote the subtree of <κ2
consisting of just those sequences with finitely many 0’s, and let T = T0
together with a branch of length κ added on top of every ω-path in T0.
Then [T ] is strong κ-Choquet, but its perfect kernel [T0] is not.)

Proposition 3.1 (cf. [Gao09, Theorem 1.3.6]). If X is a nonempty
κ-perfect κ-Choquet space with weight ≤ κ, then there is a continuous injec-
tion from 2κ into X.

Proof. Let σ be a winning strategy for player II in the Choquet game
in X. Let (Bα, Cα) enumerate the set of pairs of basic open sets such that
Bα ⊂ Cα. We construct families of subsets Us and Vs for s ∈ <κ2 (with
U∅ = X) satisfying:

(a) Usa0 and Usa1 are relatively open subsets of Vs such that Usa0 and

Usa1 are disjoint;
(b) if Dom(s) = α then Us is either contained in Cα or disjoint from Bα;
(c) for s of limit length λ, we have Us =

⋂
α<λ Us�α;

(d) for each s, we have Vs = σ(Us�0, Us�1, . . . , Us).

The construction is possible because the space is κ-perfect.

Now, for x ∈ κ2, the set
⋂
α<κ Ux�α is nonempty by (d) and it is a

singleton by (b). Hence, we may let f(x) be this unique element, and it is
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clear that f is one-to-one. To see that it is continuous, suppose that f(x) ∈ O
and O is open. Choose a pair (Bα, Cα) such that f(x) ∈ Bα and Cα ⊂ O.
Then since f(x) ∈ Ux�(α+1) we must have had Ux�(α+1) ⊂ Cα. Hence for all
y ∈ κ2 with y�(α+ 1) = x�(α+ 1) we have f(y) ∈ Cα ⊂ O.

Since there is a continuous injection from κκ into 2κ, we can even get a
continuous injection from κκ into X.

Question 3.2. If X is a κ-perfect κ-Choquet space, then is there a
continuous injection from 2κ into X with closed image?

The next two results use similar arguments to represent a given strong
κ-Choquet space as a surjective image.

Theorem 3.3 (cf. [Gao09, Theorem 1.3.7]). If X is strong κ-Choquet
with weight ≤ κ, then there is a subtree T ⊂ <κκ without end nodes and a
continuous bijection f : [T ]→ X.

Proof. As before, let σ be a winning strategy for player II in the strong
κ-Choquet game inX, and let (Bα, Cα)α<κ enumerate the pairs of basic open
sets in X such that Bα ⊂ Cα. This time we construct a subtree T ⊂ <κκ
with no end nodes, subsets Us, U

′
s ⊂ X for s ∈ T , and elements xs ∈ X for

s ∈ T and Dom(s) a successor, such that:

(a) for each b ∈ [T ] the sequence (Ub�0, xb�1, Ub�1, xb�2, . . .) is a valid se-
quence of plays for player I in a run of the strong κ-Choquet game
in which player II plays by σ;

(b) if Dom(s)=α, then Us is either contained in Cα or disjoint from Bα;
(c) for s ⊂ t ∈ T we have U ′t ⊂ U ′s ⊂ Us;
(d) for each α, {U ′s | s ∈ T, Dom(s) = α} is a partition of X.

To carry out the construction, we begin by letting U∅ = U ′∅ = X. Next,
if s ∈ T with Dom(s) = α and Us, U

′
s, xs have been defined, we define the

immediate successors Usaβ as follows. For x ∈ U ′s, first let

Wx =

{
σ(Us�0, xs�1, Us�1, xs�2, . . . , Us, x) ∩ Cα if x ∈ Bα,

σ(Us�0, xs�1, Us�1, xs�2, . . . , Us, x) rBα otherwise.

Note that the family of all Wx for x ∈ U ′s covers U ′s. We let Usaβ enumerate
a minimal subcover and xsaβ the corresponding x’s. We also define

U ′saβ = Usaβ r
⋃
{Usaγ | γ < β}.

If s has limit length λ and s�α ∈ T for all α < λ, then we define Us =⋂
α<λ Us�α and also U ′s = Us r

⋃
{Ut | t <lex s} (as in the successor case).

Finally, we set s ∈ T if and only if U ′s 6= ∅. It is straightforward to verify
that if s ∈ T has limit length λ, then U ′s =

⋂
t(s U

′
t , and furthermore that

the requirements (c) and (d) are fulfilled. This completes the construction.
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Now, for all branches b ∈ [T ] the set
⋂
α<κ Ub�α is nonempty by (a) and

is a singleton by (b). Hence, we may let f(b) denote this unique element. To
see that f is continuous, suppose that f(b) ∈ O and O is open. Choose a pair
(Bα, Cα) such that f(b) ∈ Bα and Cα ⊂ O. Then since f(b) ∈ Ub�α+1, we
must have had Ub�α+1 ⊂ Cα. Hence for all c ∈ [T ] with c�(α+ 1) = b�(α+ 1)
we have f(c) ∈ Cα ⊂ O.

To show that f is injective, we first claim that
⋂
α<κ Ub�α =

⋂
α<κ U

′
b�α for

every branch b ∈ [T ]. Otherwise f(b) ∈ Ub�α r U ′b�α for some α < κ, and we

can find some s <lex b�α with f(b) ∈ Us. Since xb�β ∈ U ′b�β and thus xb�β /∈ Us
for all β ≥ α, and since Us is open, we have f(b) = limα<κ xb�α /∈ Us. Thus
f is injective by (d).

To show that f : [T ] → X is surjective, suppose that x ∈ X and find
the unique sα ∈ α2 with x ∈ U ′sα for each α < κ. Then sα ⊂ sβ for all
α < β < κ. Hence f(b) = x for the unique branch b through all sα.

Corollary 3.4. If X is strong κ-Choquet and of weight ≤ κ, then X
is standard Borel, that is, X is in κ-Borel bijection with a κ-Borel subset
of κκ.

We next show that the κ-Baire space is surjectively universal among
strong κ-Choquet spaces.

Theorem 3.5. If X is nonempty and strong κ-Choquet with weight ≤ κ,
then there is a continuous surjection f : κκ → X. If X is additionally
κ-additive, then f can be chosen open as well.

Proof. The construction of a continuous surjection f : κκ→ X is similar
to the previous proof, and we will use the same notation. This time we
construct subsets Us ⊂ X for s ∈ κκ, and elements xs ∈ X for s ∈ κκ
successor satisfying:

(a) for each b ∈ κκ the sequence (Ub�0, xb�1, Ub�1, xb�2, . . .) is a valid se-
quence of plays for I in a run of the strong κ-Choquet game in which
II plays by σ;

(b) if Dom(s)=α, then Us is either contained in Cα or disjoint from Bα;
(c) for s ⊂ t ∈ <κκ we have Ut ⊂ Us;
(d) for each s ∈ <κκ, {Usaβ | β < κ} covers Us.

If s ∈ T and Us, xs have been defined, we specify the immediate suc-
cessors Usaα as follows. For x ∈ Us, define Wx as in the previous proof, so
that the set of Wx for x ∈ Us covers Us. This time we let Usaβ enumerate a
subcover of size κ, with repetitions allowed, and xsaβ be the corresponding
x’s. For s of limit length λ we define Us =

⋂
α<λ Us�α.

We may now define f as in the previous proof, and it will be continuous
and surjective by the same arguments.
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The above results have a number of consequences. The first provides
the upper bound of 2κ on the number of strong κ-Choquet spaces up to
homeomorphism. The second is the promised Kuratowski-like result which
gives conditions under which any two strong κ-Choquet spaces of size > κ
are isomorphic by a κ-Borel function.

Corollary 3.6. There are exactly 2κ many homeomorphism types of
strong κ-Choquet space of weight ≤ κ.

Proof. We have already shown in Proposition 2.4 that there are at least
2κ many such spaces. To see that there are at most 2κ, by Theorem 3.5 there
is a continuous surjection f : κκ→ X. Let (Bα)α<κ denote a base for X and
let U = {f−1(Bα) | α < κ}. Then the topology of X is determined up to
homeomorphism by f and U .

Now, since a continuous function is determined by its restriction to a
dense subset, there are at most 2κ many continuous maps with domain κκ.
Similarly, there are at most 2κ many possible open sets U . Thus there are
at most 2κ many possible pairs (f,U), and so at most 2κ many possible
topologies on X.

Corollary 3.7.

(a) Any two κ-perfect, strong κ-Choquet spaces of weight ≤ κ and of size
> κ are κ-Borel isomorphic.

(b) Suppose that any subtree T ⊂ <κκ with |[T ]| > κ has a perfect binary
subtree. Then any two strong κ-Choquet spaces of weight ≤ κ and
size > κ are κ-Borel isomorphic.

Proof. Given any strong κ-Choquet space X of size > κ, we first claim
that the map [T ]→ X constructed in the proof of Theorem 3.3 is a κ-Borel
isomorphism. We have already said it is continuous and bijective, but it is
also easy to see that it maps basic open sets to κ-Borel sets. Indeed, as
we showed in the proof of Theorem 3.3,

⋂
α<κ Ub�α =

⋂
α<κ U

′
b�α for every

branch b ∈ [T ], and thus the image of the basic open set given by t ∈ T is
the κ-Borel set U ′t = Ut r

⋃
s<lext

Us.

If X is κ-perfect, then it is additionally straightforward to check that for
the injection f : κ2 → X constructed in Proposition 3.1, the image of any
basic open set is κ-Borel. Moreover, it is easy to see that κκ is homeomorphic
to a Gδ subset of κ2. (Here, Gδ means an intersection of κ many open sets.)
Thus we can apply a Cantor–Schröder–Bernstein argument to conclude that
X is κ-Borel isomorphic to κκ, as desired.

If instead we assume the hypothesis in part (b), then κ2 is homeomor-
phic to a closed subset of [T ] ⊂ κκ. Hence [T ], and therefore X, is κ-Borel
isomorphic to κκ by a Cantor–Schröder–Bernstein argument.
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We cannot drop the set-theoretic hypothesis in Corollary 3.7(b). Indeed,
suppose that T0 is a κ-Kurepa tree with κ+ many branches and κ+ < 2κ,
and let T = T0 together with a branch added on top of every path through
T0 of limit length < κ. Then [T ] is a strong κ-Choquet space, but since it
has cardinality κ+ < 2κ, it is not isomorphic to κ2. We remark that by a
result of Silver, the hypothesis in Corollary 3.7(b) does hold after collapsing
an inaccessible λ to κ+ using the Lévy collapse.

Corollary 3.8. Suppose that G is Col(κ,<λ)-generic over V , where
λ > κ is inaccessible in V , and work in V [G]. Suppose that X is a strong
κ-Choquet space of weight ≤ κ. If A ⊂ X is definable from ordinals and
subsets of κ and |A| > κ, then there is a continuous injection f : κ2→ A.

Proof. Again, we have a continuous bijection f : [T ] → X from Theo-
rem 3.3 where T ⊂ <κκ. By [Sch15], in this model the perfect set property
holds for all subsets of κκ that are definable from ordinals and subsets of κ,
in particular for f−1(A). Hence there exists a perfect binary subtree S ⊂ T
such that [S] ⊂ f−1(A).

We close this section with the question of whether there is a single
strong κ-Choquet space into which all of them embed as a closed subspace.
Ilmavirta [Ilm11] has shown that κ2 is universal for κ-additive spaces of
weight ≤ κ. However, this space is not universal for all strong κ-Choquet
spaces, and we have yet to find one that is. By Theorem 3.5, κκ is surjectively
universal for strong κ-Choquet spaces of weight ≤ κ.

Question 3.9. Is there a universal strong κ-Choquet space of weight
≤ κ?

In Section 5 we will discuss the analog of this question for generalized
ultrametric spaces.

4. Dynamic games. In this section, we consider a generalization of the
strong κ-Choquet game where instead of playing open sets, each player may
play the intersection of < λ many open sets in each round, where λ is a fixed
cardinal ≤ κ. We discuss the implications between the corresponding types
of spaces as λ varies. We show that when λ = κ, the existence of a winning
strategy in this game is equivalent to the existence of a winning tactic.

Definition 4.1. A tactic for player II in the strong κ-Choquet game is
a strategy which depends only on the most recent move of player I.

In the classical strong Choquet game on a separable space, the existence
of a winning strategy for player II implies the existence of a complete metric,
and therefore the existence of a winning tactic. We will see that this is also
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true for the κ-dynamic version of the strong κ-Choquet game, which we
define presently.

Definition 4.2. (a) Suppose that λ ≤ κ. The λ-dynamic strong
κ-Choquet game is played as the strong κ-Choquet game, except that rather
than open sets, the players may play the intersection of fewer than λ many
open sets (as usual, intersected with the run up until that point).

(b) A space X is said to be λ-dynamic strong κ-Choquet if player II has
a winning strategy in the λ-dynamic strong κ-Choquet game on X.

Of course, the ω-dynamic game is simply the ordinary game. Impor-
tantly, all of the results in the previous two sections hold just as well with
strong κ-Choquet spaces replaced by λ-dynamic strong κ-Choquet spaces.
For instance, we have the following:

• The λ-dynamic strong κ-Choquet property is preserved by continuous
open images (see Proposition 2.7).
• If X is λ-dynamic strong κ-Choquet and of weight ≤ κ, then X is

standard Borel (see Corollary 3.4).
• If X is additionally κ-perfect and of size > κ, then X is κ-Borel iso-

morphic to κκ (see Corollary 3.7).

We continue with further properties of the λ-dynamic games.

Proposition 4.3. Suppose that λ, µ are cardinals with ω ≤ λ < µ ≤ κ.

(a) Every λ-dynamic strong κ-Choquet space is µ-dynamic strong κ-Cho-
quet.

(b) If λ is regular, then there is a µ-dynamic strong κ-Choquet space of
weight 2<λ which is not λ-dynamic strong κ-Choquet.

Proof. (a) Given a winning strategy for player II in the λ-dynamic strong
κ-Choquet game, we can easily derive a winning strategy for II in the
µ-dynamic strong κ-Choquet game as follows. Suppose that at some stage
player I plays (W,x) where W =

⋂
α<θWα, each Wα is open, and θ < µ.

Then II turns to a side-run of the λ-dynamic game where she instructs I
to play (Wα, x) sequentially and responds with Vα according to his winning
strategy there. She then responds in the µ-dynamic game with

⋂
α<θ Vα.

Since θ < µ, this is a valid move for II, and it is easy to see this strategy is
winning too.

(b) Let Cλ denote the set of all x∈λ2 such that {α<λ | x(α)=1} contains
a club in λ. Then player I has a winning strategy in the λ-dynamic game by
simply extending with a 0 in limit steps < λ (as in [HS01, Theorem 4.2]).
On the other hand, II has a winning strategy in the µ-dynamic game since II
can always answer the first move with a singleton.
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Given a topological space X, we define the λ-topology on X to be gen-
erated by sets which are the intersection of fewer than λ many open sets. If
X has weight ≤ κ and λ ≤ κ, then the λ-topology on X has weight ≤ κ as
well (as usual, κ<κ = κ).

Lemma 4.4. Suppose that λ ≤ κ and that X is a space of weight ≤ κ.
Then X is λ-dynamic strong κ-Choquet if and only if its λ-topology is strong
κ-Choquet.

We now come to the promised result that in the κ-dynamic game, win-
ning strategies give rise to winning tactics.

Theorem 4.5. Suppose that X is κ-dynamic strong κ-Choquet of weight
≤ κ. Then there is a winning tactic for player II in the κ-dynamic strong
κ-Choquet game on X.

Proof. Since the κ-topology on X is strong κ-Choquet, there exists a
continuous surjection f : κκ → X by Proposition 3.3. Since the κ-topology
on X is κ-additive, we can assume that f maps open sets to κ-open sets.
Since κκ is κ-additive as well, every κ-open set is mapped to a κ-open set.
Note that II has a winning tactic in the strong κ-Choquet game on κκ;
in fact II wins every run no matter what she plays. As in the proof of
Proposition 2.7, this tactic can be transferred to a winning tactic for II in
the κ-dynamic strong κ-Choquet game on X.

5. Generalized ultrametric spaces. In this section we discuss a gen-
eralization of Polish ultrametric spaces to higher cardinalities; similar spaces
have been studied in [Del84], and extensively in a series of articles begin-
ning with [PCR95]. We generalize several properties of ultrametric spaces
and their isometry groups to κ-ultrametric spaces, which we presently define.

Definition 5.1. Let Dκ denote the naturally ordered set of all symbols
1/α for 0 < α < κ, together with 0. A space X together with a map
d : X×X → Dκ is said to be a κ-ultrametric space if the usual axioms hold:

• d(x, y) = 0 iff x = y;
• d(x, y) = d(y, x);
• d(x, z) ≤ max(d(x, y), d(y, z)).

We say that a sequence (xα)α<λ is κ-Cauchy if d(xα, xβ) → 0 whenever
α, β → λ (here λ ≤ κ), and we say that X is complete if every κ-Cauchy
sequence converges.

For example, κκ is a complete κ-ultrametric space with the metric d(x, y)
= 1/α, where α is the length of the largest common initial segment of
x and y. Also, the subset Sym(κ) ⊂ κκ consisting of all bijections of κ is a com-
plete κ-ultrametric space with the metric given by max(d(x, y), d(x−1, y−1)).
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It has been shown in [Sik50, Section 3] that κκ contains a homeomorphic
copy of every κ-ultrametric space of weight ≤ κ. In fact, we will show that
κκ exhibits a high degree of homogeneity and plays the role of a universal
Urysohn space in this context.

Before stating this result, we take a moment to generalize the notion of
κ-ultrametric spaces a little further. Let R be any linearly ordered set with
a minimal zero element. Then an R-ultrametric space is defined analogously
to κ-ultrametric spaces, but with the set of metric values Dκ replaced by
the set R. Ultrametric spaces have been studied in even greater generality;
for instance in [PCR95] the authors consider metrics which take values in a
partially ordered set. We confine ourselves to the linearly ordered case. We
remark that these generalized ultrametric spaces share many of the basic
properties of ordinary ultrametric spaces, for instance:

• For all x, y, z, two of the distances d(x, y), d(x, z), and d(y, z) are equal,
and the third is no greater.
• Every open ball is closed.
• Any two open balls are either disjoint or nested.
• The set of metric values on any dense subset of the space is equal to

the set of metric values on the whole space.

In the remainder of the section, we will show that for each reasonable
set of metric values R there exists a universal Urysohn space among the
R-ultrametric spaces.

Definition 5.2. An R-ultrametric space U is said to be Urysohn if U
is complete, has density ≤ κ, and satisfies the extension property : for every
X ⊂ U of cardinality < κ and for every one-point (R-ultrametric) extension
X ∪ {a}, there exists u ∈ U such that d(x, a) = d(x, u) for all x ∈ X.

The completeness and extension properties of the Urysohn space UR of
course guarantee that it is universal for R-ultrametric spaces of density ≤ κ.
As mentioned above, κκ itself is a κ-ultrametric Urysohn space:

Proposition 5.3. κκ is a κ-ultrametric Urysohn space.

Proof. We verify that κκ has the extension property. Let λ < κ and
suppose that xα ∈ κκ for α < λ. Let X ∪ {a} be a κ-ultrametric extension
of X. We inductively build a branch u ∈ κκ such that d(x, a) = d(x, u) for
all x ∈ X. At each stage α we must select u(α) to agree with all those x ∈ X
such that d(x, a) < 1/α and disagree with all x ∈ X such that d(x, a) = 1/α.

If this prescription fails, let α be the least place where it gives contradic-
tory instructions. Then either u is required to agree with x(α) and disagree
with x′(α) but x(α) = x′(α), or u(α) is required to agree with both x(α) and
x′(α) but x(α) 6= x′(α). In the first case d(a, x) < 1/α and d(a, x′) = 1/α,
so d(x, x′) ≤ 1/α. But then x(α) = x′(α) implies that d(x, x′) < 1/α, which
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in turn implies that d(a, x′) < 1/α after all, a contradiction. In the second
case we have d(a, x), d(a, x′) < 1/α and so d(x, x′) < 1/α, contradicting
x(α) 6= x′(α).

The following result states that an Urysohn space exists for any reason-
able set R of distances. As always, we are assuming that κ<κ = κ.

Theorem 5.4. If R is a set of distances which admits greatest lower
bounds and is such that R r 0 has coinitiality κ, then there exists an
R-ultrametric Urysohn space UR.

Proof outline. We follow the Katětov-style construction of an ordinary
ultrametric Urysohn space given in [GS11]. This version of the proof will al-
low us to conclude that the isometry group of each Urysohn space is universal
among isometry groups. The details of the construction are very similar to
the argument found in the above paper.

To begin, if X is a κ-ultrametric space, we say that a function f : X → R
is Katětov if for all x, y ∈ X,

d(x, y) ≤ max(f(x), f(y)),

f(x) ≤ max(d(x, y), f(y)),

f(y) ≤ max(d(x, y), f(x)).

The Katětov functions thus correspond to the one-point extensions of X. If
Z ⊂ X, we say that a Katětov function is supported on Z ⊂ X if for all
x ∈ X,

f(x) =

{
max(f(z), d(z, x)) if z ∈ Z and f(z) 6= d(z, x),

infz∈Z f(z) if for all z ∈ Z, f(z) = d(z, x).

The following lemma states that Katětov functions are plentiful.

Lemma 5.5 (cf. [GS11, Theorem 5.5]). If Z ⊂ X, then any Katětov
partial function on Z extends to a Katětov function on X which is supported
on Z.

If X is an R-ultrametric space, then the set E(X) of Katětov functions
on X with a support of size < κ is naturally an R-ultrametric space (with
d(f, g) = max(f(x), g(x)) where x is such that f(x) 6= g(x)). Moreover,
identifying each x ∈ X with the function fx(z) = d(x, z) gives a natural em-
bedding of X as a subspace of E(X). The next lemma states that assuming
κ<κ = κ, if X has density ≤ κ, then so does E(X).

Lemma 5.6 (cf. [GS11, Theorem 5.9]). Assume as usual that κ<κ = κ.
If D is a dense subset of X of size ≤ κ, let E(X,D) denote the subspace of
E(X) consisting of Katětov functions with a support contained in D. Then
E(X) rX is contained in E(X,D) and hence has size ≤ κ.
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Given any R-ultrametric space X0 of density ≤ κ, we now let Xα+1 =
E(Xα), and Xλ =

⋃
α<λXα for λ limit. It follows easily from the above

results that Xκ satisfies the extension property. While it may not be com-
plete, it follows from [GS11, Proposition 2.4] that its completion will then
be an R-ultrametric Urysohn space. This concludes the outline of the proof
of Theorem 5.4.

As in the classical case, an argument due to Uspenskij shows that the
group of isometries of the Urysohn space is universal among isometry groups.

Corollary 5.7. If X is an R-ultrametric space with density ≤ κ, then
there is a continuous embedding from Iso(X) into Iso(UR).

We remark that the R-ultrametric Urysohn spaces even satisfy the ex-
tension property for κ-compact subsets. To see this, cover a given compact
set with a family of small open balls and choose a subcover of size < κ.
Then apply the extension property to the set of centers of these balls.

We conclude with the question of whether there exists an Urysohn-type
space for a broader class of spaces than just the κ-ultrametric spaces. For
example, the space κκ with the lexicographic topology is an important space
that is not even κ-additive.

Question 5.8. Is there a homogeneous strong κ-Choquet space of weight
≤ κ which contains a copy of (κκ, lex)?

Here “homogeneous” can mean having the extension property, or for a
simpler question it can mean that for any x, y there is a homeomorphism
mapping x to y.

6. Hereditarily Baire spaces. In this section we characterize the sub-
spaces X of κκ such that every spherically closed (see below) subset of X
is κ-Baire. This extends a result of Debs for separable spaces (see [Deb88,
Théorème 3.2]).

Definition 6.1. (a) A κ-ultrametric space is spherically (µ-, <µ-, ≤µ-)
complete if the intersection of every decreasing sequence (of length µ, <µ,
≤µ) of open balls is nonempty.

(b) A subset A of a κ-ultrametric space X is spherically (µ-, <µ-, ≤µ-)
closed in X if whenever Bα is a decreasing sequence of open balls (of length
µ, <µ, ≤µ) such that each Bα meets A and

⋂
Bα 6= ∅ then

⋂
Bα ∩A 6= ∅.

(c) A κ-ultrametric space X is hereditarily (weakly) κ-Baire if every
spherically closed subset of X is (weakly) κ-Baire.

We begin with several remarks on these definitions. It is clear that every
≤κ-spherically complete space is strong κ-Choquet. In fact, X is spherically



244 S. Coskey and P. Schlicht

≤κ-complete if and only if player II wins every run of the version of the
weak κ-Choquet game in which both players can only play open balls.

There are surprising examples of spherically closed subsets of κκ. For
example, by [LS15b] it is consistent that there is a <κ-closed κ-Kurepa tree
T ⊂ <κκ for arbitrarily large κ. It follows that [T ] is spherically closed for
such T ; in fact, a subset A ⊂ κκ is spherically <κ-closed in κκ iff the tree
T = {s ∈ <κκ | (∃x ∈ A) s ⊂ x} is <κ-closed.

It also follows from this last fact that κκ is an example of a hereditarily
κ-Baire space. But there do exist κ-Baire spaces X which are not hereditarily
κ-Baire. For example, letQ ⊂ κκ be a dense subset of size κ. We shall define a
space X as a union of copies Xq of κκ for q ∈ Q. First, realize Q as a subspace
of X by identifying q ∈ Q with 0κ ∈ Xq. Then, extend the usual ultrametrics
on Q and Xq to all of X by d(x, x′) = max(d(x, q), d(q, q′), d(q′, x′)) for
x ∈ Xq, x

′ ∈ Xq′ , and q 6= q′. Now, X is a κ-Baire κ-ultrametric space of
density ≤ κ; and Q is a κ-perfect subset of X which is spherically closed
in X, but Q is not κ-Baire.

The following result shows that the example in the previous paragraph
is in some sense typical of spaces which are κ-Baire but not hereditarily
κ-Baire.

Theorem 6.2. If X ⊂ κκ, then the following are equivalent:

(a) X is not hereditarily κ-Baire.
(b) There is a subset Q ⊂ X such that Q is spherically closed in X,

Q has size κ, and Q has no κ-isolated points.

We remark that X ⊂ κκ is hereditarily κ-Baire if and only if it is hered-
itarily weakly κ-Baire, since basic open subsets of κκ are spherically closed.
It is worth noting that the result could also be stated for X a κ-ultrametric
space of density ≤ κ, since any such space is homeomorphic to a subspace
of κκ.

Proof of Theorem 6.2. (b)⇒(a). Clearly, if there is such a subspace Q,
then Q is not κ-Baire and hence X is not hereditarily κ-Baire.

(a)⇒(b). Suppose that X is not weakly hereditarily κ-Baire. Let Y ⊂ X
be a spherically closed subset of X which is not weakly κ-Baire. Then by
Proposition 2.6, player I has a winning strategy σ in the modified version of
the basic κ-Choquet game for Y where player II begins and plays at limits
but the winning condition remains the same. Recall that Ns denotes the
basic open subset κκ with stem s; we will write Us = Ns ∩ Y in this proof.

We construct a tree T ⊂ <κκ and (rt, st, xt)t∈T such that rt, st ∈ <κκ,
xt ∈ Y , and for all t ∈ T :

• Ust 6= ∅;
• xt ∈ Ust and xt is nonisolated in Y ;
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• for every branch b in T of length γ, the sequence (Urb�α , Usb�α)α<γ is a
valid run according to σ;

• if t ∈ T , then taα ∈ T for all α < κ.

To begin, let r∅ = ∅ and choose s∅ so that Us∅ is the answer of σ to Ur∅ . Since
σ is a winning strategy for player I, Us∅ cannot have any isolated (equiva-
lently κ-isolated) points, since otherwise player II could win by playing this
singleton point. In particular, we may let x∅ ∈ Us∅ be nonisolated in Y .

Next suppose that t ∈ T and that rt′ , st′ , xt′ are defined for all t′ ⊂ t.
Since xt ∈ Ust is nonisolated in Y , we can find a sequence (rtaα)α<κ such
that st ⊂ rtaα, rtaα 6⊂ xt, the intersections (rtaα ∩ xt)α<κ form a strictly
increasing sequence in <κκ, and Ur

taα
is nonempty for all α < κ. We then

choose staα such that Us
taα

is the answer of σ to the run beginning with the

sets Urt′ , Ust′ for t′ ⊂ t and ending with Ur
taα

. Again, since σ is a winning
strategy for I, we may choose xtaα ∈ Ustaα nonisolated in Y for all α < κ.

Finally suppose that t ∈ <κκ has limit length, that t′ ∈ T for all t′ ( t,
and that rt′ , st′ are defined for all t′ ( s. Let s =

⋃
t′(t st′ . If Us is empty,

let t /∈ T . If Us is nonempty, let t ∈ T and rt = s. Then choose st such that
Ust is the answer of σ to the run beginning with the sets Urt′ , Ust′ for t′ ⊂ t
in S and ending with Urt . Again, there is some xt ∈ Ust nonisolated in Y ,
since σ is a winning strategy for I. This completes the construction.

Now, we let Q = {xt | t ∈ T}. The successor stages of the construction
ensure that Q has no isolated points, and equivalently no κ-isolated points,
and hence that Q is κ-perfect. Thus it only remains to show that Q is
spherically closed in Y , and hence in X. We begin by showing that Q is
spherically <κ-closed in Y . In other words, letting S = {xt�α : t ∈ T,
α < κ}, (sα)α<δ be a strictly increasing sequence in S (with δ < κ regular),
and u =

⋃
α<δ sα, we must show that if Uu 6= ∅ then Uu contains an element

of Q.
To begin, we know that for each α < δ, since sα ∈ S, there is some

x ∈ Q with sα ⊂ x. Let tα ∈ T be minimal such that sα ⊂ xtα . Passing to a
subsequence if necessary, we can assume that sβ 6⊂ xtα whenever α < β < δ.

Claim 6.3. tα ( tβ whenever α < β < δ.

Proof. Let γ = sup{δ < κ | tα�δ = tβ�δ} and t = tα�γ = tβ�γ. Let ζ =
sup{δ < κ | xtα�δ = xtβ�δ}. Then xt ⊃ xtα�ζ = xtβ�ζ by the construction.
Since sα ⊂ xtα and sα ⊂ xtβ , this implies that sα ⊂ xt. Since tα is minimal
with sα ⊂ xtα , this shows that tα = t. Thus tα ⊂ tβ, and since xtα 6= xtβ we
must have tα ( tβ. //

Claim 6.4. u =
⋃
α<δ sα =

⋃
α<δ rtα =

⋃
α<δ stα.

Proof. We have sα ⊂ rtβ ⊂ stβ and rtα ⊂ stα ⊂ sβ for all α < β < δ by
the construction of T . //



246 S. Coskey and P. Schlicht

Now, let v =
⋃
α<δ tα. Then by the construction, if Uu 6= ∅ we will have

v ∈ T and xv ∈ Uu. This concludes the proof that Q is spherically <κ-closed
in Y .

Finally, we show that Q is spherically κ-closed in Y . Suppose that
(sα)α<κ is strictly increasing in S, and as before let tα ∈ T be minimal
such that sα ⊂ xtα . Again assume that sβ 6⊂ xtα for all α < β < κ. Then by
the proof of Claim 6.3, tα ( tβ if α < β < κ. And by the proof of Claim 6.4,
we have sα ⊂ rtβ ⊂ stβ and rtα ⊂ stα ⊂ sβ for all α < β < κ. Since (rtα)α<κ
is in accordance with a run of the winning strategy σ for player I, we have⋃
α<κ sα =

⋃
α<κ rtα /∈ Y . This concludes the proof that Q is spherically

κ-closed in Y .

The next result shows that for κ > ω there are many different possible
spaces Q ⊂ κ2 which can arise in Theorem 6.2(b). In particular, any space Q
as constructed in the next proposition has size κ, has no κ-isolated points,
and is (trivially) spherically closed in X = Q. This contrasts with the case
κ = ω, when of course any such Q is homeomorphic to Q.

Proposition 6.5. There is a sequence (Xα)α<2κ of subsets of κ2 of size
κ without κ-isolated points such that, for all α, β < 2κ with α 6= β, Xα is
not homeomorphic to a spherically closed subset of Xβ.

Proof. Suppose that A ⊂ κ. Let XA denote the set of x ∈ κ2 such that
x is the characteristic function of a set sx ⊂ κ and lim(sx) ∩ A = ∅, where
lim(sx) denotes the set of limit points of elements of sx. If A is stationary
in κ, then sx is bounded for all x ∈ XA, so |XA| = κ by our assumption
that κ<κ = κ.

Suppose that A,B are disjoint stationary subsets of κ. We claim that for
all s0 ∈ <κκ with XA ∩ Ns0 6= ∅, there is no function f : XA ∩ Ns0 → XB

which embeds XA ∩ Ns0 homeomorphically as a spherically closed subset
of XB. Indeed, if there were such a function f , we will construct strictly
increasing continuous sequences (sα)α<κ and (tα)α<κ in <κκ such that for
all α < κ:

(a) f [XA ∩Nsα+1 ] ⊂ Ntα ,
(b) XA ∩Nsα 6= ∅,
(c) Dom(sα+1) > Dom(tα),
(d) sα+1(β) = 1 for some β ∈ Dom(sα+1) r Dom(sα),

and symmetrically:

(e) f−1[XA ∩Ntα+1 ] ⊂ Nsα+1 ,
(f) f [XA ∩Ns0 ] ∩Ntα 6= ∅,
(g) Dom(tα+1) > Dom(sα+1),
(h) tα+1(β) = 1 for some β ∈ Dom(tα+1) r Dom(tα).
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We choose an arbitrary t0 ∈ <κκ with f [Ns0 ]∩Nt0 6= 0. The construction can
be carried out in successor steps since f and f−1 are continuous. Suppose
that γ < κ is a limit and we have constructed (sα, tα)α<γ . Let sγ =

⋃
α<γ sα

and tγ =
⋃
α<γ tα. Then

Dom(sγ) = Dom(tγ) and f [XA ∩Nsγ ] = f [XA ∩Ns0 ] ∩Ntγ .

We claim that one of the sets XA∩Nsγ and f [XA∩Ns0 ]∩Ntγ , and therefore
both, are nonempty. First suppose that γ /∈ A. Since XA ∩ Nsα 6= ∅ for all
α < γ, we have XA ∩ Nsγ 6= ∅. If on the other hand γ ∈ A, then γ /∈ B,
because A,B are disjoint. Since f [XA ∩ Ns0 ] ∩ Ntα 6= ∅ for all α < γ, and
since f [XA∩Ns0 ] is spherically closed in XB, we have f [XA∩Ns0 ]∩Ntγ 6= ∅.
Therefore the construction can be continued for κ steps.

We have thus constructed x =
⋃
α<κ sα ∈ XA and y =

⋃
α<κ tα ∈ XB

with f(x) = y. Suppose that x is the characteristic function of sx ⊂ κ. Then
lim(sx) is a club and hence lim(sx) ∩ A 6= ∅, contradicting the fact that
x ∈ XA.

Finally, suppose that (Cα)α<2κ is a sequence of subsets of κ with Cα 6⊂ Cβ
for all α, β < 2κ with α 6= β. Suppose that (Aα)α<κ is a sequence of pairwise
disjoint stationary subsets of κ. Let XC =

⊔
α∈C XAα for C ⊂ κ.

We claim that XCα cannot be embedded as a spherically closed subset
of XCβ for all α, β < 2κ with α 6= β, and that f : XCα → XCβ is such an
embedding, and that γ ∈ CαrCβ and δ ∈ Cβ with f [XAγ ]∩XAδ 6= ∅. Since
f is a homeomorphism, we can find some s, t ∈ <κ2 such that Ns ∩XAγ 6= ∅
and f [Ns ∩ XAγ ] = Nt ∩ XAδ . However, we have seen that XAγ does not
embed as a spherically closed subset of XAδ .
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