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Local cohomological properties of
homogeneous ANR compacta

by

V. Valov (North Bay, ON)

Abstract. In accordance with the Bing–Borsuk conjecture, we show that if X is an
n-dimensional homogeneous metric ANR continuum and x ∈ X, then there is a local basis
at x consisting of connected open sets U such that the cohomological properties of U and
bdU are similar to the properties of the closed ball Bn ⊂ Rn and its boundary Sn−1. We
also prove that a metric ANR compactum X of dimension n is dimensionally full-valued
if and only if the group Hn(X,X \ x;Z) is not trivial for some x ∈ X. This implies that
every 3-dimensional homogeneous metric ANR compactum is dimensionally full-valued.

1. Introduction. The Bing–Borsuk conjecture [2] asserts that a homo-
geneous Euclidean neighborhood retract is a topological manifold. In accor-
dance with that conjecture, we show that the local cohomological struc-
ture of any n-dimensional homogeneous metric ANR continuum is simi-
lar to the local structure of Rn (see Theorem 1.1 below). We also estab-
lish conditions for a metric ANR compactum X to satisfy the equality
dim(X × Y ) = dimX + dimY for all compact metric spaces Y (any such
X is said to be dimensionally full-valued). It follows from these conditions
that every 3-dimensional homogeneous ANR compactum is dimensionally
full-valued (Corollary 1.5), thus providing a partial answer to one of the
problems accompanying the Bing–Borsuk conjecture (whether homogeneous
metric ANRs are dimensionally full-valued).

Everywhere in this paper by a space we mean a homogeneous metric ANR
continuum X with dimGX = n, where n ≥ 2 and G is a fixed countable
abelian group or a principal ideal domain (PID) with unity. Reduced Čech
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homology groups Hn(X;G) and cohomology groups Hn(X;G) with coeffi-
cient from G are considered everywhere below. Let us recall that for any
abelian group G the cohomology groups Hn(X;G), n ≥ 2, are isomorphic
to the groups [X,K(G,n)] of pointed homotopy classes of maps from X to
K(G,n), where K(G,n) is the Eilenberg–MacLane space of type (G,n) (see
[22]). The cohomological dimension dimGX is the largest integer m such
that there exists a closed set A ⊂ X with Hm(X,A;G) 6= 0. Equivalently,
dimGX ≤ n iff every map f : A → K(G,n) can be extended to a map
f̃ : X → K(G,n).

Suppose (K,A) is a pair of closed subsets of a space X with A ⊂ K.
Following [2], we say that K is an n-homology membrane spanned on A for
an element γ ∈ Hn(A;G) provided γ is homologous to zero in K, but not
homologous to zero in any proper closed subset of K containing A. Similarly,
K is said to be an n-cohomology membrane spanned on A for an element γ ∈
Hn(A;G) if γ is not extendable overK, but it is extendable over every proper
closed subset of K containing A. Here, γ ∈ Hn(A;G) is not extendable
over K means that γ is not contained in the image jnK,A(H

n(K;G)), where
jnK,A : Hn(K;G)→ Hn(A;G) is the homomorphism induced by the inclusion
A ↪→ K.

We note the following simple fact, which will be used in this paper and
follows from Zorn’s lemma and the continuity of Čech cohomology [22]: If
A is a closed subset of a compact space X and γ is an element of Hn(A;G)
not extendable over X, then there exists an n-cohomology membrane for γ
spanned on A.

We also say that a closed set A ⊂ X is a cohomological carrier of a non-
zero element α ∈ Hn(A;G) if jnA,B(α) = 0 for every proper closed subset
B ⊂ A. If Hn(A;G) 6= 0, but Hn(B;G) = 0 for every closed proper subset
B ⊂ A, then A is called an (n,G)-bubble.

Theorem 1.1. Let X be a homogeneous metric ANR continuum with
dimGX = n, where G is a countable PID with unity and n ≥ 2. Then every
point x of X has a basis Bx of open sets U ⊂ X satisfying the following
conditions:

(1) intU = U and the complement of bdU has two components, one of
which is U ;

(2) Hn−1(U ;G) = 0 and U is an (n− 1)-cohomology membrane spanned
on bdU for any non-zero γ ∈ Hn−1(bdU ;G);

(3) bdU is an (n−1, G)-bubble and Hn−1(bdU ;G) is a finitely generated
G-module.

The restriction n ≥ 2 in Theorem 1.1 is needed because of Lemma 2.7,
which is used in the proof.
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Remark. Condition (1) from Theorem 1.1 implies that dimG bdU =
n− 1 (see [13]).

Theorem 1.2. Let X be as in Theorem 1.1 and G be a countable group. If
a closed subset K ⊂ X is an (n−1)-cohomology membrane spanned on A for
some closed set A ⊂ K and some γ ∈ Hn−1(A;G), then (K\A)∩X \K = ∅.

Corollary 1.3. In the setting of Theorem 1.2, if U ⊂ X is open and
f : U → X is an injective map, then f(U) is open in X.

We already mentioned that a compactum X is dimensionally full-valued
if dim(X × Y ) = dimX + dimY for any compact metric space Y , or equiv-
alently, dimGX = dimZX for any abelian group G. Recent work of Bryant
[5] was believed to provide a positive answer to the question whether any ho-
mogeneous metric ANR is dimensionally full-valued, but Bryant discovered
a gap in the proof of one of the theorems from [5]. The question whether
dim(X × Y ) = dimX + dimY if both X and Y are homogeneous compact
ANRs was raised in [6] and [10]. Theorem 1.4 below provides some necessary
and sufficient conditions for ANR spaces to be dimensionally full-valued.

Theorem 1.4. The following conditions are equivalent for any metric
ANR compactum X of dimension dimX = n:

(1) X is dimensionally full-valued.
(2) There is a point x ∈ X with Hn(X,X \ x;Z) 6= 0.
(3) dimS1 X = n.

Corollary 1.5. Every homogeneous metric ANR compactum X with
dimX = 3 is dimensionally full-valued.

2. Some preliminary results. In this section, if not stated otherwise,
G is a countable abelian group and X denotes a homogeneous metric ANR
continuum with dimGX = n, n ≥ 2. If Hn(X;G) 6= 0, then Hn(B;G) =
0 for all proper closed subsets B of X (see [23]). Obviously, this is true
when Hn(X;G) = 0. Therefore, all proper closed subsets of X have trivial
n-cohomology groups.

We begin with the following analogue of Theorem 8.1 from [2] (it is here
that the countability of G is used).

Proposition 2.1. Theorem 1.2 holds under the additional assumption
that K is contractible in a proper subset of X.

Proof. According to the duality between homology and cohomology for
countable groups [12, viii 4G)], for any compact metric space Y the groups
Hn−1(Y,G

∗) and Hn−1(Y ;G)∗ are isomorphic, where G∗ and Hn−1(Y ;G)∗

denote the character groups of G and Hn−1(Y ;G), respectively. Here both
Hn−1(Y ;G) and G are considered as discrete groups. Using this duality, we
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can show thatK is an (n−1)-homology membrane for some β ∈ Hn−1(A,G
∗)

spanned on A.
Indeed, consider the homomorphism jn−1K,A : Hn−1(K;G)→ Hn−1(A;G).

Since γ is not extendable over K, we have γ 6∈ GA = jn−1K,A(H
n−1(K;G)).

Considering Hn−1(A;G) as a discrete group, we can find a character
β : Hn−1(A;G) → S1 such that β(γ) 6= e and β(GA) = e, where e is
the unit of S1. On the other hand, γ is extendable over every proper closed
subset B of K which contains A. Therefore, γ is contained in the image of
jn−1B,A : Hn−1(B;G) → Hn−1(A;G) for any such B. Then jn−1K,A ◦ β is the
trivial character of Hn−1(K;G), while jn−1B,A ◦ β is non-trivial for any proper
closed subset B of K containing A. So, β is homologous to zero in K, but not
homologous to zero in any proper closed subset of K containing A. Hence,
K is an (n− 1)-homology membrane for β spanned on A.

Now, assume that (K \A)∩X \K 6= ∅. Then following [3, proof of The-
orem 16.1] (see also [2, Theorem 8.1]), we can find a proper closed subset Γ
of X and a non-zero element α ∈ Hn(Γ,G

∗). This means that Hn(Γ ;G) 6= 0,
a contradiction.

Since the Bing–Borsuk result used in the proof of Proposition 2.1 was
established for locally homogeneous spaces, Proposition 2.1 remains valid for
locally homogeneous spaces X such that Hn(A;G) is trivial for any proper
closed subset A ⊂ X.

Corollary 2.2. Let A ⊂ X be a closed subset and K an (n − 1)-
cohomology membrane for some γ ∈ Hn−1(A;G) spanned on A. Then K \A
is connected. If, in addition, K is contractible in a proper subset of X, then
K \A is an open subset of X.

Proof. Suppose K \ A is the union of two non-empty, disjoint open sets
U and V . Then K \ U and K \ V are closed proper subsets of K such that
(K \ U) ∩ (K \ V ) ⊂ A. Hence, γ is extendable over each of these sets and,
because A contains their common part, γ is extendable over K. The last
conclusion contradicts the fact that K is an (n− 1)-cohomology membrane
for γ.

If K is contractible in a proper subset of X, then (K \ A) ∩X \K = ∅
(see Proposition 2.1). Hence, K \A is open in X.

Corollary 2.3. For any closed set Z ⊂ X one has dimG Z = n if and
only if Z has a non-empty interior in X.

Proof. This was established by Seidel [19] for the covering dimension.
His arguments can be modified for dimG. If dimG Z = n, we may assume
that Z is contractible in a proper subset of X (this can be done because X
is locally contractible and dimG satisfies the countable sum theorem). Since
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dimG Z = n, there exists a closed set A ⊂ Z such that Hn(Z,A;G) 6= 0.
On the other hand, Hn(Z;G) = 0 (as a proper closed subset of X). So,
according to the exact sequence

Hn−1(Z;G)
jn−1
Z,A−−−→ Hn−1(A;G)

δ−→ Hn(Z,A;G)→ 0

there exists γ ∈ Hn−1(A;G) not extendable over Z. Hence, as noted above,
we can find a closed subset K of Z such that K is an (n− 1)-cohomological
membrane for γ spanned on A. So, K \ A is open in X (by Corollary 2.2)
and K \A ⊂ Z.

If Z has a non-empty interior, then it contains an open set U in X with
dimG U = n. So, dimG Z = n.

Lemma 2.4. Let a closed set F ⊂ X with Hn−1(F ;G) 6= 0 be contractible
in an open set U ⊂ X. If U is contractible in a proper subset of X, then F
separates W for any open set W ⊂ X containing U .

Proof. Indeed, there is a closed set P in X such that P ⊂ U and F
is contractible in P . Then any non-zero element γ ∈ Hn−1(F ;G) is not
extendable over P (otherwise γ, considered as a map from F to K(G,n−1),
would be homotopic to a constant because F is contractible in P ). This yields
the existence of an (n − 1)-cohomology membrane Kγ ⊂ P for γ spanned
on F . Because U is contractible in a proper subset of X, so is Kγ . Hence,
by Proposition 2.1, (Kγ \F )∩X \Kγ = ∅. The last equality implies that F
separates any W such that W ⊂ X is open and contains U .

Lemma 2.5. Suppose U ⊂X is open and P (X is closed such that U (P
and Hn−1(bdU ;G) contains elements not extendable over U . Then there
exists γ ∈ Hn−1(bdU ;G)\L extendable over P \V , where V = intU and L =
jn−1
U,bdU

(Hn−1(U ;G)). Moreover, if L = 0, then every γ ∈ Hn−1(bdU ;G) is
extendable over P \ V .

Proof. Since Hn−1(bdU ;G) contains elements not extendable over U ,
L is a proper subgroup of Hn−1(bdU ;G). Consider the homomorphism
jn−1P\V,bdU : Hn−1(P \ V ;G) → Hn−1(bdU ;G). It suffices to show that the
image of Hn−1(P \ V ;G) under jn−1P\V,bdU is not contained in L.

Indeed, suppose otherwise. Consider the Mayer–Vietoris exact sequence,
where A=P \V and ϕ(γ1, γ2)= jn−1A,bdU (γ2)−j

n−1
U,bdU

(γ1) for γ1∈Hn−1(U ;G)

and γ2 ∈ Hn−1(A;G):

Hn−1(U ;G)⊕Hn−1(A;G)
ϕ−→ Hn−1(bdU ;G)

4−→ Hn(P ;G)→ · · · .

Obviously, LU = ϕ(Hn−1(U ;G) ⊕ Hn−1(A;G)) ⊂ L. Consequently, any
γ ∈ Hn−1(bdU ;G) \ L is not contained in LU . Hence, 4(γ) 6= 0 for all
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γ ∈ Hn−1(bdU ;G) \ L. So, Hn(P ;G) 6= 0, a contradiction (recall that the
nth cohomology groups of all proper closed sets in X are trivial).

If L = 0, then jn−1
U,bdU

(γ1) = 0 for all γ1 ∈ Hn−1(U ;G), so ϕ(γ1, γ2) =

jn−1A,bdU (γ2). Since 4(Hn−1(bdU ;G)) = 0, we find that for any element γ
in Hn−1(bdU ;G) there exist γ1 ∈ Hn−1(U ;G) and γ2 ∈ Hn−1(A;G) such
that ϕ(γ1, γ2) = γ. Hence, γ = jn−1A,bdU (γ2), which means that γ is extendable
over A. This completes the proof.

Lemma 2.6. If U ⊂ X is a connected open set and U is contractible in
a proper subset of X, then U is an (n − 1)-cohomology membrane spanned
on bdU for every γ ∈ Hn−1(bdU ;G) not extendable over U .

Proof. Observe first that U is dense in V = int(U), so V is also connected.
Let γ be an element of Hn−1(bdU ;G) not extendable over U . Then there
exists a closed subsetK ⊂ U such thatK is an (n−1)-cohomology membrane
for γ spanned on bdU . Since K is contractible in a proper subset of X (as a
subset of U), by Proposition 2.1, (K \ bdU) ∩X \K = ∅. Hence, K \ bdU
is open in X. This implies that K = U , otherwise V would be the union of
the non-empty disjoint open sets V \K and (K \ bdU)∩ V . Therefore, U is
an (n− 1)-cohomology membrane spanned on bdU for γ.

The last two statements of this section (Lemmas 2.7 and 2.8) hold for an
arbitrary compactum X.

Lemma 2.7. Let X be an arbitrary compactum and A ⊂ X be a carrier
for a non-zero element γ ∈ Hn−1(A;G) with dimGA ≤ n− 1, n ≥ 2. Then
A is connected.

Proof. SupposeA is not connected, soA is the union of two closed disjoint
non-empty sets A1 and A2. Then Hn−1(A;G) is isomorphic to the direct sum
Hn−1(A1;G)⊕Hn−1(A2;G) and γ is identified with the pair (γ1, γ2), where
γi = jn−1A,Ai

(γ), i = 1, 2. Because A is a carrier of γ and Ai are proper closed
non-empty subsets of A, γ1 = γ2 = 0. So, γ = 0, a contradiction.

Since dimGA = 0 is equivalent to dimA = 0, Lemma 2.7 is not valid for
n = 1. For example, if A consists of two different points, then there exists a
non-trivial element of γ ∈ H0(A;Z) such that A is a carrier of γ.

Suppose G is a group (resp., a ring). Let F ⊂ Z ⊂ X be compact sets. We
say that F is an (n − 1, G)-bubble with respect to a subgroup (resp., a sub-
module) L ⊂ Hn−1(Z;G) if the group (resp., the submodule) jn−1Z,F (L) ⊂
Hn−1(F ;G) is non-trivial, but jn−1Z,B (L) ⊂ Hn−1(B;G) is trivial for any
closed proper subset B ⊂ F .

Lemma 2.8. Let G be a group (resp., a ring). If Z is a closed subset of
an arbitrary compactum X and L ⊂ Hn−1(Z;G) is a non-trivial and finitely
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generated subgroup (resp., a submodule), then Z contains a non-empty closed
subset F such that F is an (n− 1, G)-bubble with respect to L.

Proof. If L has one generator γ, we just take a closed set F ⊂ Z which
is a carrier for γ. Then β = jn−1Z,F (γ) and βB = jn−1Z,B (γ) are generators,
respectively, of jn−1Z,F (L) ⊂ Hn−1(F ;G) and jn−1Z,B (L) ⊂ Hn−1(B;G) for any
closed set B ⊂ Z. So, jn−1Z,B (L) = 0 for every proper closed subset B of F
because jn−1Z,B (γ) = jn−1F,B (β) = 0. Hence, F is an (n − 1, G)-bubble with
respect to L.

Suppose our lemma is true for any such set Z and a subgroup (resp.,
a submodule) L ⊂ Hn−1(Z;G) with ≤ k generators. In case L has k + 1
generators γ1, . . . , γk+1, we first take a closed non-empty set F1 ⊂ Z which
is a carrier for γ1. So, jn−1Z,B (γ1) = 0 for any proper closed subset B of F1. If
Hn−1(B;G) = 0 for all closed B ( F1, then F1 is as required. If jn−1Z,B∗(L) 6= 0

for some closed proper set B∗ ⊂ F1, then jn−1Z,B∗(L) is generated by the set
{jn−1Z,B∗(γi) : i = 2, . . . , k + 1}. According to our inductive assumption, there
exists a closed non-empty set F ⊂ B∗ which is an (n − 1, G)-bubble in B∗
with respect to jn−1Z,B∗(L). Then F is an (n− 1, G)-bubble in Z with respect
to L.

3. Proof of Theorems 1.1, 1.2 and Corollary 1.3. In this section,
X continues to be as in Section 2, but G is assumed to be a countable PID
(the last condition is used in the proof of Claim 1).

Proof of Theorem 1.1. As in the proof of Proposition 2.1, we may suppose
that X is connected and Hn(C;G) = 0 for any closed proper subset C of X.
Moreover, we equip X with a convex metric d generating its topology (such
a metric exists, see [1]). According to [16, Theorem 2], there exists a closed
subset Y ⊂ X with dimG Y = n and a dense open subset D of Y satisfying
the following property: any y ∈ D has sufficiently small neighborhoods Uy
in Y such that the homomorphism jn−1

Uy ,bdY Uy
is not surjective (here bdY Uy

denotes the boundary of Uy in Y ). Because Y has a non-empty interior in X
(by Corollary 2.3), there exists a point x ∈ int(Y ) ∩ D, a connected open
neighborhood Wx of x in X, and an element αx ∈ Hn−1(bdW x;G) such
that αx is not extendable over W x. We can suppose that W x is contractible
in a proper subset of X. So, by Lemma 2.6, W x is an (n − 1)-cohomology
membrane for αx spanned on bdW x. Because X is homogeneous, it suffices
to construct the required base Bx at that particular point x. We define B′x
to be the family of all open connected subsets U ⊂ X containing x such that
U = int(U) and U is contractible in Wx. Then B′x is a local base at x and
bdU = bdU for all U ∈ B′x.
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Claim 1. Every U ∈ B′x has the following properties:

(i) U is an (n−1)-cohomology membrane for some element of the group
Hn−1(bdU ;G);

(ii) the module LU = jn−1
Wx\U,bdU

(Hn−1(W x \ U ;G)) ⊂ Hn−1(bdU ;G)

is non-trivial and finitely generated;
(iii) the module Hn−1(bdU ;G) is finitely generated provided the homo-

morphism jn−1
U,bdU

is trivial.

We fix U ∈ B′x and a non-zero element αx ∈ Hn−1(bdW x;G) such that
W x is an (n−1)-cohomology membrane for αx spanned on bdW x. Then αx is
not extendable over W x but it is extendable over every closed proper subset
of W x. Next, extend αx to an element α̃x ∈ Hn−1(W x \ U ;G). Obviously,
bdU ⊂ W x \ U . Hence, the element γU = jn−1

Wx\U,bdU
(α̃x) ∈ Hn−1(bdU ;G)

is not extendable over U (otherwise αx would be extendable over W x), in
particular γU 6= 0. Since U is connected, by Lemma 2.6, U is an (n − 1)-
cohomology membrane for γU spanned on bdU .

To prove (ii), let U0 be an open subset of X with U0 ⊂ U . Since γU ∈ LU
and γU 6= 0, we have LU 6= 0. For any γ ∈ LU there are two possibilities:
either γ is extendable over U or it is not extendable over U . In both cases γ is
extendable over the set U \ U0. Indeed, this is clear if γ is extendable on U .
If γ is not extendable over U , then U is an (n − 1)-cohomology membrane
for γ spanned on bdU (Lemma 2.6). Consequently, γ is extendable over
U \ U0 because U \ U0 is a proper subset of U containing bdU . Hence,
every γ ∈ LU is extendable over the set W x \ U0, which is closed in X and
contains bdU in its interior. Therefore, by [4, Theorem 17.4 and Corollary
17.5, p. 127], LU is finitely generated. If jn−1

U,bdU
(Hn−1(U ;G)) = 0, then every

γ ∈ Hn−1(bdU ;G) is extendable over W x \ U (see Lemma 2.5). Hence,
Hn−1(bdU ;G) ⊂ LU , and item (ii) yields (iii).

Let B′′x be the family of all U ∈ B′x satisfying the following condition: bdU
contains a continuum FU such that X \FU has exactly two components and
FU is an (n− 1, G)-bubble with respect to the module LU .

Claim 2. B′′x is a local base at x.

We fixW0 ∈ B′x, and for every δ > 0 denote by B(x, δ) the open ball in X
with center x and radius δ. There exists εx > 0 such that B(x, δ) ⊂W0 for all
δ ≤ εx. Since d is a convex metric, each B(x, δ) is a connected open set such
that intB(x, δ) = B(x, δ). Because W 0 is contractible in Wx, so is B(x, δ).
Hence, all Uδ = B(x, δ), δ ≤ εx, belong to B′x. Consequently, by Claim 1,
the modules Lδ = jn−1

Wx\Uδ,bdUδ
(Hn−1(W x \ Uδ;G)) are finitely generated.

Then, by Lemma 2.8, there exists a closed non-empty set Fδ ⊂ bdUδ with
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Fδ being an (n− 1;G)-bubble with respect to Lδ. Because Fδ is a carrier for
any γ ∈ Lδ, Lemma 2.7 implies that each Fδ is a continuum.

Let us show that the family {Fδ : δ ≤ εx} is uncountable. Since the
function f : X → R, f(y) = d(x, y), is continuous and W0 is connected,
f(W0) is an interval containing [0, εx] and f−1([0, εx)) = B(x, εx) ⊂W0. So,
f−1(δ) = bdUδ 6= ∅ for all δ ≤ εx. Hence, the family {Fδ : δ ≤ εx} is indeed
uncountable and consists of disjoint continua.

Moreover,Hn−1(Fδ;G) 6=0 and, according to Lemma 2.4, Fδ separatesX.
So, each X \Fδ has at least two components. Then, by [7, Theorem 8], there
exists δ0 ≤ εx such that X \ Fδ0 has exactly two components. Therefore,
Uδ0 = B(x, δ0) ∈ B′′x and it is contained in W0. This completes the proof of
Claim 2.

Now, let Bx be the subfamily of all U ∈ B′′x such that Hn−1(bdU ;G) 6= 0
and both U and X \ U are connected.

Claim 3. Bx is a local base at x.

We take an arbitrary neighborhood U0 of x such that U0 is contractible
in Wx and shall construct a member of Bx contained in U0. To this end
let ε = d(x,X \ U0). According to Effros’ theorem [9], there is η > 0 such
that if y, z ∈ X with d(y, z) < η, then h(y) = z for some homeomorphism
h : X → X, which is ε/2-close to the identity on X. Now, choose a connected
neighborhood W of x with W ⊂ B(x, ε/2) and diam(W ) < η. Finally, take
U ∈ B′′x such that U is contractible in W . There exists a continuum FU ⊂
bdU such that X \FU has exactly two components and FU is an (n− 1, G)-
bubble with respect to the module LU = jn−1

Wx\U,bdU
(Hn−1(W x \U ;G)) (see

Claim 2). If FU = bdU we are done, for U is the desired member of Bx.
Suppose that FU is a proper subset of bdU . Because FU is an (n−1, G)-

bubble with respect to LU , it follows that jn−1bdU,FU
(LU ) 6= 0. Hence, there

exists γ ∈ LU such that β = jn−1bdU,FU
(γ) 6= 0. Because FU (as a subset of U)

is contractible in W and W (as a subset of W x) is contractible in a proper
subset of X, we can apply Lemma 2.4 to conclude that FU separates W . So,
W \ FU = V1 ∪ V2 for some open, non-empty disjoint subsets V1, V2 ⊂ W .
Since U is a connected subset of W \ FU , U is contained in one of the sets
V1, V2, say U ⊂ V1. Hence, FU ∪V 2 ⊂W x\U . Observe that γ ∈ LU implies γ
is extendable overW x\U . Consequently, β is also extendable overW x\U , in
particular β is extendable over FU ∪V 2. On the other hand, FU (as a subset
of U) is contractible inW , so β is not extendable overW (otherwise β would
be zero). Thus, since (FU ∪ V 1) ∩ (FU ∪ V 2) = FU , β is not extendable over
FU ∪ V 1. Let β′ = jn−1FU ,F ′

(β), where F ′ = V 1 ∩ FU (observe that F ′ 6= ∅
because W is connected).
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If F ′ is a proper subset of FU , then β′ = 0 (recall that jn−1bdU,F ′(γ) = β′

and FU being a carrier for any non-trivial element of jn−1bdU,FU
(LU ) yields

jn−1bdU,Q(LU ) = 0 for any proper closed subset Q of FU ). So, β′ would be ex-
tendable over V 1, which yields β is extendable over FU ∪V 1, a contradiction.

Therefore, F ′ = FU ⊂ V 1 and β is not extendable over V 1. Consequently,
there exists an (n−1)-cohomology membrane Pβ ⊂ V 1 for β spanned on FU .
By Corollary 2.2, V = Pβ \FU is a connected open set in X whose boundary,
according to Proposition 2.1, is the set F ′′ = X \ Pβ ∩ Pβ \ FU ⊂ FU (we
can apply Proposition 2.1 and Corollary 2.2 because Pβ , as a subset of W x,
is contractible in a proper subset of X). As above, using the fact that β is
not extendable over Pβ and jn−1bdU,Q(LU ) = 0 for any proper closed subset
Q ⊂ FU , we can show that F ′′ = FU and bdV = FU .

Summarizing the properties of V , we see that V is contractible in Wx

(because so is U0), V = intV (because FU = bdV ) and V is connected.
Moreover, since X \ FU is the union of the open disjoint non-empty sets V
and X\Pβ such that V is connected and X\FU has exactly two components,
X\V is also connected. Because FU is an (n−1, G)-bubble with respect to the
non-trivial module LU , we have Hn−1(bdV ;G) 6= 0. Thus, if V contains x,
then V is the desired member of Bx.

If V does not contain x, we take a point y ∈ V and a homeomorphism
h on X such that h(y) = x and d(z, h(z)) < ε for all z ∈ X. Such a
homeomorphism exists because diam(W )<η and x, y ∈W . Then h(V )⊂U0

(from the choice of ε and the fact that h is ε-close to the identity on X).
So, h(V ) is contractible in Wx. Since the remaining properties from the
definition of Bx are invariant under homeomorphisms, h(V ) is the desired
member of Bx, which completes the proof of Claim 3.

The sets U ∈ Bx satisfy condition (1) from Theorem 1.1 (according to
the definition of Bx). The next claim completes the proof of Theorem 1.1.

Claim 4. Every U ∈ Bx satisfies conditions (2), (3) from Theorem 1.1.

Recall that each U is contractible in Wx, and W x is contractible in a
proper subset of X. Then, by Lemma 2.4, Hn−1(U ;G) = 0 because U does
not separate X. Therefore, every non-trivial element γ ∈ Hn−1(bdU ;G)
is non-extendable over U . Consequently, according to Lemma 2.6, U is an
(n− 1)-cohomology membrane for γ spanned on bdU . So, U satisfies (2).

Since Hn−1(U ;G) = 0, the homomorphism jn−1
U,bdU

is trivial. Thus, Lem-

ma 2.5 yields Hn−1(bdU ;G) = jn−1
Wx\U,bdU

(Hn−1(W x \U ;G)) and, by Claim

1(iii), Hn−1(bdU ;G) is finitely generated. Suppose there exists a proper
closed subset F ⊂ bdU and a non-trivial element α ∈ Hn−1(F ;G). Observe
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that α is not extendable over U because Hn−1(U ;G) = 0. Hence, there is
an (n − 1)-cohomology membrane Kα ⊂ U for α spanned on F . Because
U \ F is connected (recall that U is a dense connected subset of U \ F ) and
K \F is both open and closed in U \F (by Corollary 2.2), we have Kα = U .
Finally, according to Proposition 2.1, (Kα \ F ) ∩X \Kα = ∅. On the other
hand, any point from bdU \F belongs to (Kα\F )∩X \Kα, a contradiction.
Therefore, bdU is an (n− 1, G)-bubble and U satisfies condition (3).

Proof of Theorem 1.2. If K = X, the conclusion of Theorem 1.2 is obvi-
ously true. Suppose K is a proper closed subset of X, which is an (n − 1)-
cohomology membrane spanned on A for some γ ∈ Hn−1(A;G), but there
exists a point a ∈ (K \ A) ∩ X \K. Take a neighborhood U ∈ Ba such
that U ∩ A = ∅. Since K \ U is a closed proper subset of K containing A,
γ is extendable over K \ U . So, there exists β ∈ Hn−1(K \ U ;G) with
jn−1K\U,A(β) = γ. Since K \A is connected (see Corollary 2.2), bdU ∩K 6= ∅.
Then β1 = jn−1K\U,bdU∩K(β) is a non-zero element of Hn−1(bdU ∩ K;G)

(otherwise β1 would be extendable over U ∩K, and hence, γ would be ex-
tendable over K). Since dimG bdU ≤ n− 1, β1 is extendable to an element
β̃1 ∈ Hn−1(bdU ;G). So, β̃1 is a non-zero element of Hn−1(bdU ;G) and,
by Theorem 1.1(2), U is an (n − 1)-cohomology membrane for β̃1 spanned
on bdU . Then U ∩K 6= U would imply that β̃1 is extendable over U ∩K.
Hence, γ would be extendable over K, a contradiction. Thus, U ⊂ K \ A,
which contradicts a ∈ X \K. Therefore, (K \A) ∩X \K = ∅.

Proof of Corollary 1.3. It was shown in [17] and [19] that the cohomology
membranes’ property from Theorem 1.2 implies the invariance of domain
for homogeneous or locally homogeneous ANR spaces X with dimX = n.
Similar arguments provide the proof when dimGX = n. Take a point y
in V = f(U) and let x = f−1(y). Choose a connected open set W ∈ Bx
such that W ⊂ U . Then W is an (n − 1)-cohomology membrane for some
γ ∈ Hn−1(bdW ;G) spanned on bdW . Since f(W ) is homeomorphic to W ,
it is an (n − 1)-cohomology membrane for (f∗)−1(γ) ∈ Hn−1(f(bdW );G)
spanned on f(bdW ). Then, by Theorem 1.2, f(W ) \ f(bdW ) does not
intersect X \ f(W ). This means that f(W ) \ f(bdW ) is an open set in X
which contains y and is contained in V . So, V is also open.

4. Proof of Theorem 1.4 and Corollary 1.5. Let Ĥ∗ be the exact
homology (see [18], [20]). It is well known that for locally compact metric
spaces the exact homology is isomorphic to the Steenrod homology. For any
abelian group G the homological dimension hdimG Y of a compactum Y is
the greatest integer m such that Ĥm(Y,A;G) 6= 0 for some closed A ⊂ Y (if
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there is no such m, then hdimG Y =∞). It follows from the exact sequence

0→ Ext(Hm+1(Y,A), G)→ Ĥm(Y,A;G)→ Hom(Hm(Y,A), G)→ 0

that hdimG Y ≤ dimY . Moreover, by [21], hdimGX is the greatest m such
that the local homology group Ĥm(X,X \ x;G) = lim−→x∈U Ĥm(X,X \ U ;G)
is not trivial for some x ∈ X.

Proof of Theorem 1.4. (1)⇒(2). Suppose X is dimensionally full-valued.
Then, according to [11], hdimZX = dimZX = n. Hence, Ĥn(X,X \ x) 6= 0
for some x ∈ X (the coefficient group Z in all homology and cohomology
groups is suppressed). Because dimX = n, the groups Ĥn(X,X \ x) and
Hn(X,X \ x) are isomorphic (see [20, Theorem 4]). So, Hn(X,X \ x) 6= 0.

(2)⇒(3). Let Hn(X,X \x) 6= 0 for some x ∈ X. Then Hn(X,X \U) 6= 0
for sufficiently small neighborhoods U of x inX. Since by [20, Theorem 4] the
groups Hn(X,X \ U) and Ĥn(X,X \ U) are isomorphic, Ĥn(X,X \ V ) 6= 0
for some neighborhood V of x. On the other hand, dimX = n implies
Hn+1(X,X \ V ) = 0. Hence, it follows from the exact sequence

Ext(Hn+1(X,X \ V ),Z)→ Ĥn(X,X \ V )→ Hom(Hn(X,X \ V ),Z)→ 0

that there exists a non-trivial homomorphism from Hn(X,X \ V ) into Z.
This implies that Hn(X,X \ V ) contains elements of infinite order. Thus,
we have Hn(X,X \ V ) ⊗ Q 6= 0 and, by the universal coefficients formula,
Hn(X,X \ V ;Q) 6= 0. So, dimQX = n. Because X is an ANR, we have
dimQX ≤ dimS1 X ≤ dimX (see [8, Example 1.3(1) and Theorem 12.3(2)].
Therefore, dimS1 X = n.

(3)⇒(1). Assume dimS1 X = n. The exact sequence

0→ Z→ R→ S1 → 0

implies that dimS1X≤max{dimRX,dimX−1} (see [8]). Hence,dimRX= n.
According to [11], both the homological and the cohomological dimensions
with respect to any field coincide, so hdimRX = dimRX = n. Thus, there
exist x ∈ X and a neighborhood U of x in X such that Ĥn(X,X \ U ;R)
6= 0. As in the proof of the implication (2)⇒(3), considering the short exact
sequence

Ext(Hn+1(X,X \ U),Z)→ Ĥn(X,X \ U)→ Hom(Hn(X,X \ U),Z)→ 0,

we can show that dimQX = n. This implies that X is dimensionally full-
valued.

Proof of Corollary 1.5. LetX be a metric homogeneous ANR compactum
with dimX = 3. According to [14, Corollary 2.7], we have H3(X,X \x) 6= 0,
whereH3(X,X\x) denotes the singular homology group. On the other hand,
by [15, Lemma 4], the groups H3(X,X \x) and H3(X,X \x) are isomorphic.
Then Theorem 1.4 shows that X is dimensionally full-valued.
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