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D sets and IP rich sets in Z

by

Randall McCutcheon and Jee Zhou (Memphis, TN)

Abstract. We give combinatorial characterizations of IP rich sets (IP sets that re-
main IP upon removal of any set of zero upper Banach density) and D sets (members of
idempotent ultrafilters, all of whose members have positive upper Banach density) in Z.
We then show that the family of IP rich sets strictly contains the family of D sets.

1. Introduction. In this paper we will be dealing with the space of
ultrafilters on Z, endowed with its usual algebraic structure and topology.
A standard background reference is [HS].

A filter on Z is a non-empty set p of subsets of Z that is closed under
finite intersections and supersets and does not contain ∅. An ultrafilter is a
maximal filter, that is, a filter not properly contained in another filter. We
denote the set of ultrafilters on Z by βZ, and endow βZ with the topology
generated by the (closed, as well as open) sets Â = {p ∈ βZ : A ∈ p}. With
this topology, βZ becomes a compact Hausdorff space.

Identifying z ∈ Z with the principal ultrafilter e(z) = {A ⊂ Z : z ∈ A},
βZ becomes a representation of the Stone–Čech compactification of Z. Now
there is a unique associative extension to βZ of the operation + on Z having
the property that for every q ∈ βZ the function p 7→ p+q is continuous (thus
making (βZ,+) a compact right topological semigroup). There are several
ways to describe this extension; we will content ourselves with the classical
one, i.e.

A ∈ p+ q ⇔ {x ∈ Z : A− x ∈ q} ∈ p.

According to a theorem of Ellis [E], any compact right topological semi-
group has idempotents. It is easy to see that if p ∈ βZ is idempotent (that
is, if p = p+p) then any member of p is an IP set , that is, a set that contains
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the set of finite sums of some sequence:

FS(〈xi〉∞i=1) = {xi1 + · · ·+ xik : i1 < · · · < ik}.
Conversely, any IP set is a member of some idempotent ultrafilter. A set
A ⊂ Z is said to be IP∗ if it belongs to every idempotent ultrafilter p.
(Equivalently, Ac fails to be IP.) Note that as {0} is an IP set, every IP∗

set contains {0}. Some authors require that IP sets be infinite. We shall call
infinite IP sets non-trivial .

Recall that the upper Banach density of a set A ⊂ Z is defined as

d∗(A) = lim sup
N−M→∞

|A ∩ {M,M + 1, . . . , N − 1}|
N −M

.

We will be concerned here with two density-related strengthenings of the
IP set notion. The first, that of D set , was introduced in [BD].

Definition 1.1. An ultrafilter p∈βZ having the property that d∗(A)>0
for every A ∈ p is said to be essential. If p is an essential idempotent and
A ∈ p, we say that A is a D set. If Bc is not a D set (equivalently, if B
belongs to every essential idempotent), we say that B is a D∗ set.

The second notion, that of IP rich set , was recently developed by V. Ber-
gelson and A. Leibman, who have proved (unpublished) that certain return
times intersect all such sets.

Definition 1.2. A set A ⊂ Z is IP r ich, or an AIP set, if A \ E is an
IP set for every E ⊂ Z with d∗(E) = 0. If Bc ⊂ Z is not IP rich (equivalently,
if B ∪ E is IP∗ for some E with d∗(E) = 0) we say that B is AIP∗.

As AIP∗ is supposed to stand for almost IP∗, we prefer IP rich to AIP .
IP∗ sets are AIP∗ and D∗. Since there are zero density IP sets, not every

IP set is a D set, from which it follows that not every D∗ set is IP∗. It is
also clear that not every AIP∗ set is IP∗, and routine that every AIP∗ set
is D∗. (If B is AIP∗ then B ∪ E is a member of every idempotent for some
zero density E. As E does not belong to any essential idempotent, B must
belong to all of them.)

V. Bergelson (personal communication) asked whether every D∗ set
is AIP∗. In this paper we give a negative answer to this question. That
is, we prove

Theorem 1.3. There are D∗ subsets of Z that are not AIP∗.

This yields the following proper containments:

IP∗ ( AIP∗ ( D∗, or IP ) AIP ) D.

The proof, carried out in Section 3, proceeds via construction of an IP
rich set that is not a D set. Workable characterizations of D sets and IP rich
sets, which are of independent interest, are given in Section 2. Our equivalent
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condition for IP richness, which we call FS tree richness, already appears in
the literature. In [HS, Theorem 20.17] it is shown to be a necessary property
of D sets (making its non-sufficiency potentially interesting to a different
crowd), while in [T] it is proved by elementary means to be a partition regular
property. Our equivalent condition for D sets, meanwhile, is inspired by and
comparable to a combinatorial characterization of central sets given in [HMS].

2. Tree structure characterizations of IP rich sets and D sets.
In this section we give characterizations of D sets and IP rich sets. These
are modeled on an elementary characterization of so-called central sets by
Hindman, Maleki and Strauss [HMS]. We begin with several definitions.

Definition 2.1. Let Ω be the set of finite sequences of integers, includ-
ing the empty sequence.

Sometimes, we will want to include zero in our finite sums sets.

Definition 2.2. FS0(〈xi〉) = FS(〈xi〉) ∪ {0}.
The following definition will be instrumental in the inductive process

whereby we construct IP rich sets.

Definition 2.3. If A ⊂ Z and f = (x1, . . . , xk) ∈ Ω, we say that A
is IP rich over f if for every E ⊂ Z \FS(〈x1, . . . , xk〉) with d∗(E) = 0 there
exist non-zero xk+1, xk+2, . . . ∈ Z such that FS(〈xi〉∞i=1) ⊂ A \ E.

Here is a related notion. Recall that a non-trivial IP set is just an infinite
IP set.

Definition 2.4. Let F ⊂ Z be a finite set. An IPF set is a set R + F ,
where R is a non-trivial IP set. A set J ⊂ Z is IP∗F if J intersects every IPF

set non-trivially.

The following lemma is a generalization of the fact that for any IP∗ set
B and any n ∈ Z, the set nZ ∩B is again IP∗.

Lemma 2.5. Let F ⊂ Z be a finite set. If J ⊂ Z is an IP∗F set and
n ∈ N then (nZ + F ) ∩ J is IP∗F as well.

Proof. For every non-trivial IP set R,

R+ F 6⊂ Jc ⇒ R 6⊂
⋂
f∈F

(Jc − f).

Therefore
{0} ∪

⋃
f∈F

(J − f) = {0} ∪
(⋂
f∈F

(Jc − f)
)c

is IP∗, which implies that

{0} ∪
(
nZ ∩

⋃
f∈F

(J − f)
)
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is IP∗. So, for every non-trivial IP set R there exist r ∈ R, f ∈ F , z ∈ Z
and j ∈ J such that r = nz = j − f , so that r + f = nz + f = j, whence
(R+ F ) ∩ ((nZ + F ) ∩ J) 6= ∅.

We now move to our characterization of IP rich sets.

Definition 2.6. A set A ⊂ Z is FS tree rich if there is a subset T ⊂ Ω
having the following properties:

I1. () ∈ T .
I2. If f ∈ T then d∗(Bf ) > 0, where

B(x1,...,xk) = {x ∈ Z : (x1, . . . , xk, x) ∈ T}.
I3. If (x1, . . . , xk) ∈ T then FS(〈x1, . . . , xk〉) ⊂ A.

As mentioned in the introduction, Hindman and Strauss have shown
(see [HS, Theorem 20.17]) that FS tree richness is necessary for D sets.
We establish now that FS tree richness is necessary (and sufficient) for IP
richness.

Theorem 2.7. Let A ⊂ Z. Then A is IP rich if and only if it is FS tree
rich.

Proof. We start with

Claim. If A is IP rich over (x1, . . . , xk) then

(2.1) B = {x ∈ Z \ FS(〈x1, . . . , xk〉) : A is IP rich over (x1, . . . , xk, x)}
has positive upper Banach density.

Suppose the Claim is false. Pick recalcitrant (x1, . . . , xk) and let

F = FS0(〈x1, . . . , xk〉).
We will construct a set

E ⊂ Z \ FS(〈x1, . . . , xk〉)
with d∗(E) = 0 such that Ac ∪ E is IP∗F , which will yield a contradiction.

Let

K = {x ∈ Z \ FS(〈x1, . . . , xk〉) : FS(〈x1, . . . , xk, x〉) ⊂ A}.
Let ≺ be a well-order on Z. We will construct sequences (kx)x∈K\B and
(E′x)x∈K\B (of numbers tending to ∞ and sets, respectively) satisfying the
following:

(a) For every x ∈ K \B and every interval I with |I| ≥ kx,∣∣∣I ∩ ⋃
y∈K\B, y≺x

E′y

∣∣∣ ≤ |I|
|x|+ 1

.

(b) For every x ∈ K \B, d∗(E′x) = 0.
(c) For every x ∈ K \B, E′x ⊂ kxZ.
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(d) If x, y ∈ K \B with y ≺ x then ky | kx.
(e) For every x ∈ K \B, ⋂

y∈Fx

((A \ E′x)− y) \ {0}

is not IP, where Fx = FS0(〈x1, . . . , xk, x〉).
(f) For every x ∈ K \B, E′x ⊂ Z \ FS(〈x1, . . . , xk〉).

Supposing that this construction has been carried out, let

E = B ∪
⋃

x∈K\B

E′x.

By (2.1) and (f), E ⊂ Z \ FS(〈x1, . . . , xk〉). Also d∗(E) = 0. To see this,
note that if Ix are intervals with |Ix| = kx then by (c) and (d) at most one
member of

⋃
y∈K\B, y 6≺xE

′
y can belong to Ix, whereas by (a) and the fact

that d∗(B) = 0 one has∣∣∣Ix ∩ ⋃
y∈K\B, y≺x

E′y

∣∣∣+ |Ix ∩B| = |Ix|o(1).

Moreover Ac ∪ E is IP∗F as desired. For if its complement A \ E contains
R+ F for some (non-trivial) IP set R then picking x ∈ R and an IP set R′

not having 0 as a member such that R′ + {0, x} ⊂ R one will have

R′ ⊂
⋂

y∈Fx

((A \ E)− y) \ {0}.

The latter set is therefore IP, but x ∈ K \ B (x ∈ K by definition and
x 6∈ E ⊃ B) and E′x ⊂ E, so by (e) it is not IP.

It remains to show that one can carry out the construction. Suppose
x ∈ K \ B and ky, E′y have been determined for all y ∈ K \ B with y ≺ x.
Since x 6∈ B, A is not IP rich over (x1, . . . , xk, x), so there is a set

Ex ⊂ Z \ FS(〈x1, . . . , xk, x〉)
with d∗(Ex) = 0 such that A \ Ex contains no set of the form FS(〈xi〉∞i=1)
with xk+1 = x and xi non-zero for i ≥ k + 2. In particular,⋂

y∈Fx

((A \ Ex)− y) \ {0}

is not IP.
It is clear that we may choose kx in conformity with (a) and (d). Now

set
E′x =

(
kxZ ∩

⋃
y∈Fx

(Ex − y)
)
\ {0}.

Note that (b) and (c) are satisfied, and since 0 6∈ E′x, (f) is as well provided
kx is large enough, which we may require. We now establish (e).
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We know that
⋂

y∈Fx
((A \ Ex)− y) \ {0} is not IP, so its complement

{0} ∪
⋃

y∈Fx

((Ac ∪ Ex)− y)

is IP∗. Thus
kxZ ∩

(
{0} ∪

⋃
y∈Fx

((Ac − y) ∪ (Ex − y))
)

is IP∗, so that the potentially larger

{0} ∪
⋃

y∈Fx

(Ac − y) ∪
(
kxZ ∩

⋃
y∈Fx

(Ex − y)
)

= {0} ∪
⋃

y∈Fx

(Ac − y) ∪ E′x

is IP∗ as well. Since 0 ∈ Fx, this set is however contained in

{0} ∪
⋃

y∈Fx

((Ac ∪ E′x)− y),

which is therefore IP∗, implying that its complement⋂
y∈Fx

((A \ E′x)− y) \ {0}

is not IP, yielding (e) and establishing the Claim.
In light of the Claim, it is now easy to check that

T = {f ∈ Ω : A is IP rich over f}
satisfies I1–I3 above.

Conversely, suppose that T satisfies I1–I3 and let E ⊂ Z with d∗(E) = 0.
We must show that A \ E contains an IP set. Since () ∈ T ,

d∗({x ∈ Z : (x) ∈ T}) > 0,

and for all x in this set, x ∈ A. So we may choose x1 such that (x1) ∈ T
and x1 6∈ E. Next we have

d∗({x ∈ Z : (x1, x) ∈ T}) > 0,

and for every x in this set, {x, x+ x1} ⊂ A. Since

d∗(E ∪ (E − x1)) = 0,

we may choose x2 such that (x1, x2) ∈ T and x2 6∈ E ∪ (E − x1). Note now
that

FS({x1, x2}) ⊂ A \ E.
It is clear that this process can be continued and will yield a sequence 〈xi〉∞i=1

for which FS(〈xi〉∞i=1) ⊂ A \ E.

We next move to our elementary characterization of D sets. One will
immediately see that it is similar to the FS tree richness condition, but
ostensibly stronger, in that the intersection of the successor sets of any
finite family of nodes must have positive upper Banach density.
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Theorem 2.8. Let A ⊂ Z. Then A is a D set if and only if there is a
subset T ⊂ Ω having the following properties:

D1. () ∈ T .
D2. If f1, . . . , ft ∈ T then d∗(Bf1 ∩ · · · ∩Bft) > 0, where

B(x1,...,xk) = {x ∈ Z : (x1, . . . , xk, x) ∈ T}.
D3. If (x1, . . . , xk) ∈ T then FS(〈x1, . . . , xk〉) ⊂ A.

Proof. We will be using the standard fact that if p is idempotent and
A ∈ p then A ∈ p + p, i.e. {m : A − m ∈ p} ∈ p. Let p be an essential
idempotent with A ∈ p. Let

A() = A ∩ {m : A−m ∈ p}.
For x ∈ A(), let

A(x) = A ∩ (A− x) ∩ {m : (A ∩ (A− x))−m ∈ p} ∈ p.
Note that for any x ∈ A(), one has x ∈ A. Now for y ∈ A(x), let

A(x,y) = A ∩ (A− x) ∩ (A− y) ∩ (A− x− y)

∩
{
m :

(
A ∩ (A− x) ∩ (A− y) ∩ (A− x− y)

)
−m ∈ p

}
∈ p.

Note that for any x ∈ A() and y ∈ A(x), FS(〈x, y〉) ⊂ A. Now for z ∈ A(x,y)

one defines A(x,y,z) ∈ p, etc. Continuing in this fashion, one defines p-sets
{Af : f ∈ T} for some set T ⊂ Ω. Letting

B(x1,...,xk) = {x ∈ Z : (x1, . . . , xk, x) ∈ T}
one gets B(x1,...,xk) = A(x1,...,xk), and D1–D3 above are satisfied.

Conversely, suppose that T satisfies D1–D3. By expanding T if necessary,
we can assume that T satisfies

D4. If (x1, . . . , xk) ∈ T and L1, . . . , Lr are consecutive blocks of natural
numbers whose union is {1, . . . , k} then, letting yi =

∑
j∈Li

xj , one
has (y1, . . . , yr) ∈ T .

To see this, note that once we include every such (y1, . . . , yr) for
(x1, . . . , xk) originally in T , D4 will be already satisfied, and that after doing
so

B(x1,...,xk) ⊂ B(y1,...,yr);

that is, every set of successors is a superset of an original set of successors,
so D2 (and obviously D3) will still be satisfied.

Now let
S =

⋂
f∈T,E⊂Z
d∗(E)=0

Bf \ E.

As the sets Bf \E have the finite intersection property, S is non-empty and
of course closed. Moreover, if p ∈ S and C ∈ p then d∗(C) > 0, as otherwise
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(B() \ C) ∈ p, a contradiction. Also, A ∈ p for all p ∈ S. We claim that
S is a semigroup and thus contains idempotents; such idempotents will be
essential and will contain A, and this will complete the proof.

Let p, q ∈ S. We need to show that p+q ∈ S. Let C ∈ p+q be arbitrary.
It suffices to find r ∈ S with C ∈ r. (If p + q were not a member of the
closed set S, one could find a basic neighborhood C = {r : C ∈ r} of p+ q
disjoint from S.)

It suffices to show that d∗(
⋂h

i=1Bfi ∩C) > 0 for every f1, . . . , fh ∈ T , as
then we can choose

r ∈
⋂

f∈T,E⊂Z
d∗(E)=0

(Bf ∩ C) \ E.

One has {x ∈ Z : C − x ∈ q} ∈ p, so since p ∈ S, for every f1, . . . , fh ∈ T ,

d∗
({
x ∈

h⋂
i=1

Bfi : C − x ∈ q
})

> 0.

Fix fi = (x
(i)
1 , . . . , x

(i)
ki

) ∈ T , 1 ≤ i ≤ h. We may choose x ∈
⋂h

i=1Bfi with
C − x ∈ q. Since q ∈ S, we have

d∗
({
n ∈

h⋂
i=1

B
(x

(i)
1 ,...,x

(i)
ki

,x)
: n ∈ C − x

})
= d∗

( h⋂
i=1

B
(x

(i)
1 ,...,x

(i)
ki

,x)
∩ (C − x)

)
> 0.

Put another way,

d∗
({
n ∈

h⋂
i=1

B
(x

(i)
1 ,...,x

(i)
ki

,x)
: n+ x ∈ C

})
> 0.

Observe now that (by D4)

x+
{
n ∈

h⋂
i=1

B
(x

(i)
1 ,...,x

(i)
ki

,x)
: n+ x ∈ C

}
⊂

h⋂
i=1

Bfi ∩ C.

As mentioned in the introduction, Towsner [T] has shown by an elemen-
tary argument that for any finite partition of Z, some cell is FS tree rich.
In light of the example given in the next section, it is natural to pose the
following

Problem 2.9. Give an elementary argument that for any finite partition
of Z, some cell A supports a tree T satisfying D1–D3 above, i.e. is a D set.

3. An IP rich set that is not a D set. With characterizations in
place, we move to our primary task.
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Theorem 3.1. There exists a set A ⊂ Z such that A is IP rich and A
is not a D set.

Proof. Recall that a subset of Z is thick if it contains arbitrarily long
intervals. It is an exercise that there exists a countable pairwise disjoint
family {Si : i ∈ N} of thick subsets of N. We will be constructing countably
many sets Af of positive upper Banach density in this proof. Each of these
will be assumed to be contained in a separate member of such a family. By
an n-spaced subset of some Si we mean a set B ⊂ Si ∩ [n,∞) having the
property that if x ∈ B and 0 < |x− y| < n then y ∈ Si \B.

Let A() ⊂ S1 be a set of odd numbers with d∗(A()) > 0. Let x1 be
the least member of A(). Choose m1 with 2m1 > x1 and let A(x1) be a

2m1+2-spaced subset of S2 consisting of numbers equal to 2m1 (mod 2m1+1)
with d∗(A(x1)) > 0. Now pick the least member x2 of A()∪A(x1) not already
used (i.e. not x1). Suppose that x2 comes from A(x1). Choose m2 > m1 with

2m2 > x1 + x2 and let A(x1,x2) be a 2m2+2-spaced subset of S3 consisting

of numbers equal to 2m2 (mod 2m2+1) with d∗(A(x1,x2)) > 0. Let x3 be
the least member of A() ∪ A(x1) ∪ A(x1,x2) not already used. Say it comes
from A(). Choose m3 > m2 with 2m3 > x1 + x2 + x3 and let A(x3) be a

2m3+2-spaced subset of S4 consisting of numbers equal to 2m3 (mod 2m3+1)
with d∗(A(x3)) > 0.

Continue in this fashion; at the stage where we are ready to create a
set within Sk+1, we let xk be the least member of any of the sets con-
structed in the previous stages that was not already used. Say it comes
from a set A(a1,...,at). Choose mk > mk−1 with 2mk > x1 + · · · + xk and let

A(a1,...,at,xk) be a 2mk+2-spaced subset of Sk+1 consisting of numbers equal

to 2mk (mod 2mk+1) with d∗(A(a1,...,at,xk)) > 0.
We note that:

A. A(a1,...,at,xk) + FS0(〈a1, . . . , at, xk〉) + {0, 1, . . . , 2mk} ⊂ Sk+1.
B. Every member of A(a1,...,at,xk) is divisible by 2mk .

C. No member of A(a1,...,at,xk)+FS0(〈a1, . . . , at, xk〉) is divisible by 2mk+1.

Let T be the set of (a1, . . . , ak) ∈ Ω used as subscripts for sets A(·) in
this construction.

D. Letting B(a1,...,ak) = {x ∈ Z : (a1, . . . , ak, x) ∈ T}, one has B(a1,...,ak)

= A(a1,...,ak).

Next set

A =
⋃

(a1,...,ak)∈T

(
A(a1,...,ak)+FS0(〈a1, . . . , ak〉)

)
=

⋃
(a1,...,ak)∈T

FS(〈a1, . . . , ak〉).

Then I1–I3 above are plainly satisfied, so A is IP rich. We now turn to
showing that A is not a D set.
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E. If (a1, . . . , at) ∈ T and m ∈ N then:

(1) 4ai ≤ ai+1, 1 ≤ i < t.
(2) If at ≡ 2m (mod 2m+1) then ai 6≡ 0 (mod 2m), 1 ≤ i < t.
(3) If for some 1 ≤ i1 < i2 < · · · < ik ≤ t one has (ai1 +· · ·+aik) ≡ 0

(mod 2m) then ai1 ≡ 0 (mod 2m). (Hence aij ≡ 0 (mod 2m),
1 ≤ j ≤ k.)

Property (1) follows from the fact that A(a1,...,aj ,xk) is 4(x1 + · · · + xk)-
spaced. (Recall that (a1, . . . , aj) is a subsequence of (x1, . . . , xk−1).)

For (2), note that for some i1 < · · · < it, (a1, . . . , at) = (xi1 , . . . , xit).
Since xit ∈ A(xi1

,...,xit−1
), we have xit ≡ 2mit−1 (mod 2mit−1

+1). This implies

that m = mit−1 . Now use the fact that the sequence mj increases with j.
For (3), assume the negation and choose a shortest (i.e. minimum k, but

note k ≥ 2) counterexample. Then obviously aik 6≡ 0 (mod 2m). Choose r
such that aik ≡ 2r (mod 2r+1). Then

ai1 + · · ·+ aik−1
≡ 0 (mod 2r)

but ai1 6≡ 0 (mod 2r) (again, since mj increases with j). So this is a shorter
counterexample, which is a contradiction.

F. If 〈ai〉∞i=1 is a sequence having the property that (a1, . . . , at) ∈ T for
every t ∈ N then d∗(FS(〈ai〉∞i=1)) = 0.

This follows from E(1). For let t ∈ N and let I be any interval of length 4t.
Since at+1 ≥ 4t, I contains at most one member of x + FS(〈ai〉∞i=t+1) for
any x ∈ FS(〈ai〉ti=1). Therefore, I contains no more than 2t members of
FS(〈ai〉∞i=1).

G. For all x, y ∈ A, if there exists an IP set R ⊂ N such that

R ∪ (R+ x) ∪ (R+ y) ⊂ A
then there exists some (a1, . . . , ak)∈ T with {x, y}⊂FS(〈a1, . . . , ak〉).

To see this, pick m such that 2m is greater than max{x, y}. Under the
hypothesis about R, A must contain a configuration of the form

{h2m, h2m + x, h2m + y}.
By definition of A, h2m is a member of some set

A(a1,...,at,xk) + FS0(〈a1, . . . , at, xk〉).

By C, no member of that set is divisible by 2mk+1. This implies thatm ≤ mk,
so that max{x, y} < 2mk . Then by A,

{h2m, h2m + x, h2m + y} ⊂ Sk+1,

which implies that in fact

{h2m, h2m + x, h2m + y} ⊂ A ∩ Sk+1 = A(a1,...,at,xk) + FS0(〈a1, . . . , at, xk〉).
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But A(a1,...,at,xk) is 2mk+2-spaced, 2mk > x1 + · · ·+xk and max{x, y} < 2mk ,
so for some xj ∈ A(a1,...,at,xk) one actually has

{h2m, h2m + x, h2m + y} ⊂ {xj}+ FS0(〈a1, . . . , at, xk〉)
⊂ FS(〈a1, . . . , at, xk, xj〉).

Write (xi1 , . . . , xiz) = (a1, . . . , at, xk, xj) and suppose that xi1 , . . . , xiq
are not divisible by 2m while xiq+1 , . . . , xiz are; this is possible by E(2). By
E(3), no member of FS(〈xi1 , . . . , xiq〉) is divisible by 2m, so

h2m ∈ FS(〈xiq+1 , . . . , xiz〉).
Now, every member of FS(〈xiq+1 , . . . , xiz〉) is divisible by 2miq . On the other

hand, by C, xiq+1 is not divisible by 2miq+1. Therefore miq ≥ m, whence

max{x, y} < 2miq . It is also the case (by stipulation; see the construction)
that xi1 + · · · + xiq < 2miq . Now since M + x′ = h2m + x for some M ∈
FS(〈xiq+1 , . . . , xiz〉) and x′ ∈ FS(〈xi1 , . . . , xiq〉), we have

2miq | (h2m −M) = (x′ − x).

So x = x′ ∈ FS(〈xi1 , . . . , xiq〉). As a similar argument applies to y, we have
{x, y} ⊂ FS(〈xi1 , . . . , xiq〉).

H. Suppose that (xi1 , . . . , xik), (xj1 , . . . , xjt) ∈ T . If(
FS(〈xi1 , . . . , xik〉) \ FS(〈xi1 , . . . , xik−1

〉)
)

∩
(
FS(〈xj1 , . . . , xjt〉) \ FS(〈xj1 , . . . , xjt−1〉)

)
is non-empty then k = t and is = js, 1 ≤ s ≤ t.

Note that, by construction, (a1, . . . , aj) ∈ T is uniquely determined by aj .
(If aj ∈ Sk+1 then aj−1 = xk. Now use induction.) So by symmetry we may
assume that if there is a counterexample to H then there is a counterex-
ample with xik < xjt . But since xik ∈ A(xi1

,...,xik−1
), it has distance at

least 4(x1 + · · ·+ xik−1
) from any other xi. It follows that every member of

FS(〈xi1 , . . . , xik〉) is less than xjt , a contradiction.
Suppose now that A is a D set. Then there is a tree T ′ ⊂ Ω which,

together with its successor sets B′f , satisfies D1–D3 above. In particular, for

any y, z ∈ B′() there is some IP set R ⊂ N with

R ∪ (R+ y) ∪ (R+ z) ⊂ A.
By G, then, for every y, z ∈ B′() there exists some (a1, . . . , ak) ∈ T such that

{y, z} ⊂ FS(〈a1, . . . , ak〉).
Consider now the map from B′() to T that sends x ∈ B′() to the unique

(by H) π(x) = (a1, . . . ak) ∈ T having the property that x = ak + y for
some y ∈ FS0(〈a1, . . . , ak−1〉). What G tells us is that for every y, z ∈ B′(),
either π(y) is an initial segment of π(z) or vice-versa. Since for any fixed y
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there can be only finitely many z ∈ B′() such that π(z) is an initial seg-

ment of π(y), the length of π(y) as y ranges over the infinite set B′() is

unbounded and there exists at least one infinite sequence (a1, a2, . . .) in the
closure of π(B′()) (topology of pointwise convergence). So π(y) is an initial

segment of (a1, a2, . . .) for every y ∈ B′() (otherwise we could find z ∈ B′()
such that neither of π(y), π(z) was an initial segment of the other). There-
fore B′() ⊂ FS(〈ai〉∞i=1), and since by E(1), 4ai ≤ ai+1 for every i, one has

d∗(FS(〈ai〉∞i=1)) = 0 by F, which contradicts d∗(B′()) > 0.

Proof of Theorem 1.3. Let A be the set constructed in the previous
theorem. Then Z \A is D∗ but not AIP∗.

Acknowledgments. We are indebted to Vitaly Bergelson for suggest-
ing the problem and to Neil Hindman for helpful comments on an early
version.
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