
FUNDAMENTA

MATHEMATICAE

234 (2016)

Virtual Legendrian isotopy

by

Vladimir Chernov (Hanover, NH) and
Rustam Sadykov (Manhattan, KS)

Abstract. An elementary stabilization of a Legendrian knot L in the spherical cotan-
gent bundle ST ∗M of a surface M is a surgery that results in attaching a handle to M
along two discs away from the image in M of the projection of the knot L. A virtual Legen-
drian isotopy is a composition of stabilizations, destabilizations and Legendrian isotopies.
A class of virtual Legendrian isotopy is called a virtual Legendrian knot.

In contrast to Legendrian knots, virtual Legendrian knots enjoy the property that
there is a bijective correspondence between the virtual Legendrian knots and the equiva-
lence classes of Gauss diagrams.

We study virtual Legendrian knots and show that every such class contains a unique
irreducible representative. In particular we get a solution to the following conjecture of
Cahn, Levi and the first author: two Legendrian knots in ST ∗S2 that are isotopic as
virtual Legendrian knots must be Legendrian isotopic in ST ∗S2.

1. Introduction. Let M be a closed oriented surface, possibly non-
connected, and L a Legendrian link in the total space of the spherical cotan-
gent bundle π : ST ∗M → M of M . An elementary stabilization of L is a
surgery that results in cutting out from M two discs away from the image
πL of the projection of L to M , and attaching a handle to M along the cre-
ated boundary components. The converse operation is called an elementary
destabilization. More precisely, let A be a simple connected closed curve in
M in the complement to πL. The elementary destabilization of L along A
consists of cutting M open along A and then capping the resulting boundary
circles.

An elementary destabilization of a link is trivial if it chops off a sphere
containing no components of L. We say that a Legendrian link is irreducible
if it does not allow non-trivial destabilizations.

2010 Mathematics Subject Classification: Primary 53D10, 57R17; Secondry 57M27.
Key words and phrases: Legendrian links, stable isotopy, virtual Legendrian links.
Received 14 October 2014; revised 22 September 2015.
Published online 24 February 2016.

DOI: 10.4064/fm969-10-2015 [127] c© Instytut Matematyczny PAN, 2016



128 V. Chernov and R. Sadykov

A virtual Legendrian isotopy [1] is a composition of elementary stabi-
lizations, destabilizations, and Legendrian isotopies. A virtual Legendrian
isotopy class of a Legendrian link (respectively Legendrian knot) is called
a virtual Legendrian link (respectively virtual Legendrian knot). In contrast
to Legendrian knots, virtual Legendrian knots enjoy the property [1] that
there is a bijective correspondence between the virtual Legendrian knots
and equivalence classes of Gauss diagrams (1).

R2

πL

Fig. 1. An elementary stabilization of a Legendrian curve in the spherical cotangent
bundle of R2

Our main result is Theorem 1.1, which should be compared to the Ku-
perberg Theorem on virtual links [3, Theorem 1]. Note that the proof of
Kuperberg’s results does not seem to generalize to the category of virtual
Legendrian knots.

Theorem 1.1. Every virtual isotopy class of Legendrian links contains
a unique irreducible representative. The irreducible representative can be ob-
tained from any representative of the virtual Legendrian isotopy class by a
composition of destabilizations and isotopies.

The second assertion of Theorem 1.1 is immediate from the first one.
Indeed, each destabilization increases the Euler characteristic of the surface
by two. On the other hand, if we disregard surface components with no
components of the link projection, then the number of components of the
surface is bounded by the number of link components. And therefore, the
Euler characteristic of the surface is bounded by twice the number of link
components. Thus, for any Legendrian link in the given virtual Legendrian

(1) Similar to Kauffman’s [2] theory of ordinary virtual knots, the theory of virtual
Legendrian knots can be reformulated in three equivalent ways:

(1) As the theory of Legendrian knots in ST ∗M modulo stabilization, destabilization
and Legendrian isotopy.

(2) As the theory of virtual front diagrams on R2 modulo the standard front moves
and the virtual front moves (see [1, Sections 2 and 7]).

(3) As the theory of front Gauss diagrams modulo the modifications of Gauss dia-
grams (see [1, Sections 4 and 7]). Note that not every Gauss diagram corresponds
to an ordinary Legendrian knot.
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isotopy class, only finitely many consecutive non-trivial destabilizations are
possible. Thus, after finitely many destabilizations we obtain an irreducible
representative. It is the unique irreducible representative claimed in the first
assertion of Theorem 1.1.

The main consequence of Theorem 1.1 is Corollary 1.2.

Corollary 1.2. Virtual Legendrian isotopy classes of irreducible Le-
gendrian links in ST ∗M of a surface M are in bijective correspondence with
isotopy classes of irreducible Legendrian links in ST ∗M .

Note that, in general, virtual Legendrian isotopy classes of (reducible)
links are not in bijective correspondence with Legendrian isotopy classes of
links.

In view of Corollary 1.2, we get the solutions to the following two Con-
jectures 1.3 and 1.4 formulated by P. Cahn, A. Levi and the first author
[1, Conjectures 1.5 and 1.4].

Conjecture 1.3. Let K1 and K2 be two Legendrian knots in ST ∗M
that are isotopic as virtual Legendrian knots, and suppose that M is the
surface of smallest genus realizing knots in the virtual Legendrian isotopy
class of K1 and K2. Then, possibly after a contactomorphism of ST ∗M , K1

and K2 are Legendrian isotopic in ST ∗M.

Conjecture 1.4. Two Legendrian knots in ST ∗S2 that are isotopic as
virtual Legendrian knots must be Legendrian isotopic in ST ∗S2.

In [1, Conjecture 1.4 and p. 25] a similar fact is also conjectured for
virtual Legendrian knots in ST ∗Sn, n ≥ 3, and ST ∗Rn, n ≥ 2. These con-
jectures are still open.

In view of [1], another immediate corollary of Theorem 1.1 is Corol-
lary 1.5.

Corollary 1.5. Every Gauss diagram can be represented by a unique
irreducible Legendrian knot in ST ∗M for some surface M .

The proof of Theorem 1.1 consists of several steps, and besides the gen-
eral case there are two exceptional ones that do not fit the general setting. In
Section 3 we deal with the exceptional cases. In Section 4 we list the steps;
these are Lemmas 4.1–4.3. Lemma 4.3 is proved in Section 4, while Lem-
mas 4.1 and 4.2 are postponed until Section 5 after we present a necessary
auxiliary construction.

2. A reformulation of Theorem 1.1. We say that two links L1 in
ST ∗M1 and L2 in ST ∗M2 are descent-equivalent if after a composition of
destabilizations and isotopies of L1 and L2 they become the same.
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Suppose that, contrary to the statement of Theorem 1.1, there is a Legen-
drian link L in ST ∗M that has two different irreducible descendants. Among
all such pairs (L,M) we may choose a pair such that

• the surface M has no naked sphere components, and
• the genus of M is minimal.

In particular, every link obtained from L by an elementary non-trivial desta-
bilization (or a composition of elementary non-trivial destabilizations) has
a unique descendant.

Then there are two Legendrian links L1 and L2 in ST ∗M , both isotopic
to L, and two simple closed connected curves A1 and A2 in M such that

• each Ai is disjoint from πLi, and
• the elementary destabilizations of L1 along A1 and of L2 along A2 are

not descent-equivalent.

Note that the second condition implies that both destabilizations are non-
trivial.

Theorem 1.1 is equivalent to the statement that a tuple (M,L1, L2, A1, A2)
as above does not exist. In the following sections we will assume that such
an exceptional tuple exists and arrive at a contradiction.

3. Exceptional cases. We will often require that the manifold M is
distinct from a sphere, and that neither A1 nor A2 bounds a disc; our general
argument does not work in these exceptional cases, see Remark 5.6 below.

In this section we show that the assumptions that M 6= S2 and that A1

and A2 are non-contractible are not restrictive (Lemmas 3.1 and 3.2).

Lemma 3.1. Suppose that A1 bounds a disc. Then the destabilization
of L1 along A1 is descent-equivalent to the destabilization of L2 along A2.

Proof. We will show that we can assume that the intersection of A1

and A2 is empty and hence the destabilizations along A1 and A2 are descent-
equivalent. In more detail, we assume that πL1 is located close to the center
of the disk D bounded by A1; the case where πL1 is located outside D
is entirely similar. If A1 and A2 intersect, take a pair of curves with the
minimal number of intersection points among those pairs of curves such
that the destabilizations along them are not descent-equivalent.

We show that the number of intersection points may be further de-
creased, yielding a contradiction. The curve A2 subdivides the disk D into
regions; by induction at least two of these regions are bigons and one of them
does not contain the center of D (with πL1 in its small neighborhood). The
latter bigon is bounded by an arc α2 of A2 and α1 of A1 (see Figure 2). Since
this bigon does not contain any components of πL1, we can compress the
arc α2 along this bigon in such a way that during the compression it does
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A1 A2

πL1
πL2

α1α2

Fig. 2. The bigon bounded by the arcs α1 and α2

not intersect πL1. If this bigon contains curves of πL2 they will be pushed
out through α1 during the compression.

Lemma 3.2 below immediately follows from Lemma 3.1 since every con-
nected simple closed curve on a sphere bounds a disc.

Lemma 3.2. There exists no exceptional tuple with M = S2, i.e., the
statement of Theorem 1.1 is true for links in the spherical cotangent bundle
of a sphere.

4. Proof of Theorem 1.1. In view of Lemmas 3.2 and 3.1, we may (and
will) assume that A1 and A2 are not contractible, and that the surface M
is not homeomorphic to a sphere.

Proof of Theorem 1.1. Recall that each πLi is disjoint from Ai. The
following lemma essentially asserts that we may also assume that πL1 is
disjoint from both A1 and A2. The proof is postponed till Section 5.

Lemma 4.1. Suppose that A1, A2 are not null-homotopic and that the
surface M is distinct from a sphere. Then there is an isotopy of L1 whose
projection does not intersect A1 and that takes L1 to a curve whose projec-
tion is disjoint from A2.

Next, we show that not only can we assume that L1 is disjoint from A1

and A2, but that, in fact, L1 = L2. The proof will also be given in Section 5.

Lemma 4.2. Let (M,L1, L2, A1, A2) be an exceptional tuple, and sup-
pose that M 6= S2 and A1, A2 are not null-homotopic. If πL1 does not in-
tersect A2, then (M,L1, L1, A1, A2) is also an exceptional tuple.

The next lemma completes the proof of Theorem 1.1 since its conclusion
contradicts the minimality of the genus of M .

Lemma 4.3. If L1 = L2 = L, then the genus of M is not minimal.
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Proof. The argument is similar to that by Greg Kuperberg. Namely,
assume, contrary to the statement, that L1 = L2 and the genus of M is
minimal.

It follows that the intersection A1∩A2 is non-empty; otherwise the desta-
bilizations of L along A1 and A2 are descent-equivalent. Without loss of
generality we may assume that A1 and A2 intersect in the minimal num-
ber of points among pairs of simple connected closed curves such that the
destabilizations along them are not descent-equivalent.

If the two curves A1 and A2 intersect at only one point, then take the
boundary A3 of a neighborhood of A1 ∪ A2. Note that the destabilization
along A3 is not trivial: it chops off a naked torus. The destabilizations along
A1 and A3 are descent-equivalent since the curves are disjoint. Similarly
for A2 and A3. Therefore the destabilizations along A1 and A2 are descent-
equivalent, contrary to the assumption.

Finally, suppose that A1 and A2 have at least two common points. Let
D1 be an interval in A1 bounded by two intersection points and containing
no other points of A2. Compress A2 along D1, i.e., remove small arcs of A2

intersecting A1, and then join the two pairs of boundary points of A2 by
two new arcs parallel to D1. Then A2 turns into two new connected curves
A′2 and A′′2 in M (see Figure 3). A destabilization along at least one of these
components, say A′2, is non-trivial. Observe that the destabilizations of L2

along A2 and A′2 are equivalent since both are disjoint from πL2 and have
no common points (after a small displacement of one of them along a vector
field orthogonal to the curve). On the other hand, the curve A′2 has fewer
intersection points with A1. Therefore the destabilizations along A1, A

′
2 and

A2 are descent-equivalent.

A1 A1A′′2

A2
A′2

Fig. 3. Compression of A2 along an arc

This completes the proof of Theorem 1.1 assuming Lemmas 4.1 and 4.2.

5. Proof of Lemmas 4.1 and 4.2. The main tool here is Theorem 5.2.
To motivate its proof let us prove Lemma 5.1. We will not use the lemma
in what follows. However, this short Lemma 5.1 explains well the counter-
intuitive phenomenon that stable Legendrian isotopy in certain cases reduces
to Legendrian isotopy.
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Lemma 5.1. Let M be a hyperbolic surface. Let L1 and L2 be two Legen-
drian links in ST ∗M whose projections belong to an open disc D ⊂M . Then
L1 and L2 are isotopic in ST ∗M if and only if they are isotopic in ST ∗D.

Proof. Clearly, if L1 and L2 are isotopic in ST ∗D, then they are isotopic
in ST ∗M . Let us prove the converse implication.

Let p : R2 →M denote the universal covering of M . There exist lifts L′1
and L′2 of L1 and L2 respectively such that the isotopy of L1 to L2 lifts to
an isotopy of L′1 to L′2 in ST ∗R2. Choose an arbitrary diffeomorphism ϕ :
R2 → D2. It lifts to a contactomorphism ϕ̃ of spherical cotangent bundles.
Thus, we obtain a Legendrian isotopy of ϕ̃(L′1) to ϕ̃(L′2). It remains to show
that L1 admits a Legendrian isotopy to ϕ̃(L′1), and L2 admits a Legendrian
isotopy to ϕ̃(L′2).

We may assume that both L1 and L2 are links whose images with respect
to π are located in a small neighborhood U of a point in D. Furthermore,
we may choose ϕ so that the composition of a lift of D and ϕ is the identity
map on U so that ϕ̃(Li) = Li, i = 1, 2. Then it remains to show that, for
any link L in ST ∗D and any lifts L′ and L′′ in ST ∗R2, the link ϕ̃(L′) admits
a Legendrian isotopy to ϕ̃(L′′). Choose a Legendrian isotopy γ from L′ to
L′′ in ST ∗R2. The desired Legendrian isotopy is ϕ̃(γ).

Theorem 5.2. Let L1 and L2 be isotopic Legendrian links in the spher-
ical cotangent bundle ST ∗M of a connected closed surface M 6= S2, and let
A1 and A2 = A be simple, connected, not null-homotopic, closed curves in
M such that (M,L1, L2, A1, A2) is an exceptional tuple. Suppose that A is
disjoint from πL1 and πL2. If A breaks M into two surfaces, suppose that
πL1 and πL2 belong to the same path component of M \A. Then the tuple
(M,L1, L1, A1, A2) is also exceptional.

Before proving Theorem 5.2, let us construct an (in general, non-regular)
covering of M by a surface M̃ homeomorphic to the connected component of
M \A which contains π(L1) and π(L2). In fact we will give three equivalent
definitions; each has its advantage.

Definition 5.3 (First definition). Choose a base point in M in the path
component of M \ A that contains πL1 and πL2. We say that an element
in the fundamental group π1M avoids A if it admits a representing curve
that does not intersect A. The subset of elements in π1M avoiding A forms
a subgroup. Let M̃ →M be the covering corresponding to the subgroup of
π1M of elements avoiding A.

Definition 5.4 (Second definition). Since M is distinct from a sphere,
it admits a universal covering u : R2 → M . We choose a base point in R2

that projects to the base point in M . Then every point x in the universal
covering space can be identified with the pair of a point y = u(x) and the
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homotopy class of the projection in M of the curve in R2 from the base point
to x. The manifold M̃ is the quotient of R2 by the relation that identifies
(y, γ1) with (y, γ2) whenever γ1γ

−1
2 contains a loop that does not intersect A.

Definition 5.5 (Third definition). Suppose thatA does not separateM .
Since M is either a torus or hyperbolic, there is an infinite covering H→M
(or R2 → M), and we may assume that a lift Ã of A is a geodesic (every
simple non-contractible curve on M is isotopic to a unique simple geodesic).
There is a monodromy action Z on H (or on R2) corresponding to the
loop A; namely, we know that M is the quotient of H (or of R2) by the
action of π1M , and the above-mentioned monodromy action is the action
by the subgroup generated by A. It acts on the geodesic Ã by translations.
Attach (H \ Ã)/Z (or (R2 \ Ã)/Z) to M \ A so that the projections of the

two cylinders (H \ Ã)/Z (or of (R2 \ Ã)/Z) and of the manifold M \A to M
form an infinite covering M̃ →M ; this is the desired covering.

Suppose now that A separates M into two components M1 and M2,
where M1 is the component containing the images of the projections of
L1 and L2 to M . Again, take a covering H → M (respectively R2 → M)
and cut H (respectively R2) along a lift Ã of A. Attach one component of
(H \ Ã)/Z (respectively of (R2 \ Ã)/Z) to M1 so that their projections to M
form the desired covering M̃ →M .

Remark 5.6. If A bounds a disc, which is the case that we exclude
from consideration, then the first and the second definitions result in the
one-sheet covering, while the third definition makes no sense since a lift of
a contractible curve A is not a geodesic.

Let M,A be as in Theorem 5.2 and M̃ → M be the covering from
Definitions 5.3–5.5. If A does not separate M , let M1 denote M \ A. If A
does separate M , let M1 denote the connected component of M \ A that
contains the projections of L1, L2.

Lemma 5.7. The surface M̃ is homeomorphic to M1.

Proof. This immediately follows from Definition 5.5. Indeed, the mani-
fold M̃ is obtained from M1 by attaching one or two cylinders depending
on whether M1 has one or two ends.

To summarize, we have constructed a covering M̃ → M by a surface
homeomorphic to M1.

Proof of Theorem 5.2. Since πL1 is disjoint from A, it lifts to a simple
(not connected if L1 is a link) closed Legendrian curve L′1 in ST ∗M1 ⊂
ST ∗M̃ . Furthermore, the Legendrian isotopy of L1 to L2 lifts to a Legendrian
isotopy of L′1 to L′2 in ST ∗M̃ .
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Let U be a thin neighborhood of ∂M1 in M disjoint from πL1 and πL2.
Suppose that L′2 belongs to the leaf ST ∗M1 ⊂ ST ∗M̃ . Then there is an
isotopy of the identity map of ST ∗M̃ relative to ST ∗(M1 \ U) to a map
with image in ST ∗M1 and that brings the isotopy of L′1 to L′2 into ST ∗M1.
This isotopy of idST ∗M̃ comes from a deformation retraction M̃ →M1 fixing
points in M1 \ U .

M̃ L′1

M

L′2

M \A

A
L2

L1

Fig. 4. Lifts of L1 and L2 to the covering

Suppose now that L′2 belongs to a leaf of the covering ST ∗M̃ → ST ∗M
distinct from the leaf ST ∗M1. In this case, a deformation retraction of M̃
to M1 moves L′2, and therefore the above argument does not work. During
the isotopy of L′1 to L′2 we find that at a certain moment L′1 leaves ST ∗M1

and, in view of the deformation retraction, in this case we may assume that
the projection of L1 to M belongs to the interior of U ∩M1. (Here U is a
thin neighborhood of ∂M1.) Similarly, by exchanging the roles of L1 and L2,
we may assume that the projection of L2 to M belongs to the interior of
U ∩M1. Furthermore, we may suppose that the projection of the isotopy
from L1 to L2 is in U .

Let L′′2 be a link obtained from L2 by a translation such that πL′′2 be-
longs to the same path component of U \ A that contains πL1. Then the
destabilization of L′′2 along A is descent-equivalent to the destabilization of
L2 along A. Indeed, after the destabilization along A2 both πL2 and πL′′2
are curves in a neighborhood of a point, and hence both links are descent-
equivalent to the same link in ST ∗S2. Therefore we may replace L2 with
L′′2. On the other hand, L′′2 is isotopic to L1 in π−1(M1 ∩ U).

Proof of Lemma 4.2. To simplify notation let us assume that L is a
Legendrian knot; the case where L is a link is similar. If L1 and L2 belong
to the same component of M \ A2, then the required Legendrian isotopy
exists by Theorem 5.2.
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Suppose now that A2 separates the surface into two components, and
that L1 and L2 belong to different path components of M \A2. In this case
the argument in the proof of Theorem 5.2 shows that we may assume that
πL2 belongs to a neighborhood of A2.

Let L′2 be the link obtained from L2 by a translation such that πL′2
belongs to the same path component of M \A2 that contains L1. Then the
destabilization of L′2 along A2 is descent-equivalent to the destabilization
of L2 along A2.

Thus, we may assume that L1 and L2 belong to the same path component
of M \A2; this case has been considered above.

Proof of Lemma 4.1. Recall that we assumed that M is not a sphere and
there is a Legendrian link L represented by links L1 and L2, and there are
two simple closed connected curves A1 and A2 that are not null-homotopic
such that the destabilization of L1 along A1 is not descent-equivalent to the
destabilization of L2 along A2. Furthermore, we may assume that A1 and A2

are geodesics. Indeed, there exists an ambient isotopy ϕt, with t ∈ [0, 1], of
the surface M that takes A1 into a geodesic. The ambient isotopy of the sur-
face lifts to an isotopy ϕ̃t of the spherical cotangent bundle of M . Clearly, the
destabilization of the Legendrian link ϕ̃1L1 along ϕ1A1 is descent-equivalent
to the destabilization of L1 along A1. Thus we may assume that A1 is a
geodesic. Similarly, we may find an isotopy ψt and its lift ψ̃t such that ψ1A2

is a geodesic, and the destabilization of L2 along A2 is descent-equivalent to
the destabilization of ψ̃1A2 along ψ1A2. If we now replace the original pairs
(L1, A1) and (L2, A2) with the new pairs (ϕ̃1L1, ϕA1) and (ψ̃1L2, ψ1A2),
then we obtain an example as the original one but with the additional prop-
erty that the destabilizations are performed along geodesics.

As in the proof of Theorem 5.2, consider a covering M̃ → M by a sur-
face M̃ homeomorphic to M1. Take the lift of an isotopy from L1 to L2 to a
covering isotopy from L′1 to L′2 in ST ∗M̃ . A crucial observation is that the
inverse image A′2 of A2 in M̃ consists of disjoint geodesics. The parts of these
geodesics over cylinders attached to M1 are easy to visualize. There is an iso-
topy of M̃ to M1 that at each time takes the geodesics of A′2 to themselves.
This isotopy takes L1 to a curve disjoint both from A1 and from A2.

6. Final remarks. It would be interesting to know the relation be-
tween the Legendrian isotopy and the virtual Legendrian isotopy in higher
dimensions.

Question 6.1. What is the relation between the Legendrian isotopy
and the virtual Legendrian isotopy in higher dimensions?

Two Legendrian knots in respectively ST ∗M1 and ST ∗M2 are virtually
Legendrian isotopic if one can be obtained from the other by a sequence of
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Legendrian isotopies and modifications of contact manifolds ST ∗M corre-
sponding to surgeries of the manifold M away from the projection of the
knot. The following conjecture formulated by Cahn and Levi [1] is still open.

Conjecture 6.2. Two Legendrian knots in ST ∗Rm or ST ∗Sm are vir-
tual Legendrian isotopic if and only if they are Legendrian isotopic.
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