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On countable cofinality and decomposition of
definable thin orderings

by

Vladimir Kanovei and Vassily Lyubetsky (Moscow)

Abstract. We prove that in some cases definable thin sets (including chains) of
Borel partial orderings are necessarily countably cofinal. This includes the following cases:
analytic thin sets, ROD thin sets in the Solovay model, and Σ1

2 thin sets under the
assumption that ω

L[x]
1 < ω1 for all reals x. We also prove that definable thin wellorderings

admit partitions into definable chains in the Solovay model.

1. Introduction. Studies of maximal chains in partially ordered sets
go back to as early as Hausdorff [7], where this issue appeared in connection
with Du Bois Reymond’s investigations of orders of infinity. Using the axiom
of choice, Hausdorff proved the existence of maximal chains (which he called
pantachies) in any partial ordering. On the other hand, Hausdorff clearly
understood the difference between such a pure existence proof and an actual
construction of a maximal chain—see e.g. [7, p. 110] or comments in [3]—
which we would now describe as the existence of definable maximal chains.

The following theorem presents three cases in which all linear suborders
(that is, chains), and even thin suborders (those containing no perfect pair-
wise incompatible subsets) of Borel PQOs are necessarily countably cofinal.

Theorem 1. If 4 is a Borel PQO on a (Borel) set D = dom(4) ⊆ ωω,
X∗ ⊆ D, and 4�X∗ is a thin quasi-ordering then 〈X∗;4〉 is countably
cofinal in each of the following cases:

(A) X∗ is a Σ1
1 set,

(B) X∗ is a ROD (real-ordinal definable) set in the Solovay model,

(C) X∗ is a Σ1
2 set, and ω

L[r]
1 < ω1 for every real r.
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Therefore, if, in addition, it is known that every countable set in 〈D;≤〉 has
an upper bound, then in all three cases X∗ has an upper bound.

Moreover, if X∗ is a Σ1
1 set (= Case (A)) then there are no 4-chains

(not necessarily cofinal chains) in X∗ of uncountable cofinality.

The additional condition in the theorem, of bounding of countable sub-
sets, applies to many partial orders of interest, e.g., the eventual domination
order or the rate of growth order on Rω (see a review in [12]). Needless to
say, chains, gaps, and similar structures related to these or similar orderings
have been subject of extensive studies, of which we mention [1, 2, 15, 19]
where the definability aspect is considered.

Part (A) of Theorem 1 (together with the “moreover” claim at the end
of the theorem) is proved in Section 3 by reduction to a result (Theorem 3)
extending a theorem of [5] to the case of Σ1

1 suborders of a background Borel
PQO as in (A). Part (B) is already known from [13] in the subcase of linear
ROD suborders; we present an essentially simplified proof in Section 6.
Part (C) is proved in Section 7 by reference to part (B) via a sequence of
absoluteness arguments.

It is a challenging question to figure out whether claims (B) and (C) of
Theorem 1 remain true in stronger forms similar to the “moreover” form of
claim (A). The answer is pretty simple in the affirmative provided we con-
sider only accordingly definable (but not necessarily cofinal) ω1-sequences
in the given set X∗—that is, ROD in claim (B) and Σ1

2 in claim (C).
The next theorem (our second main result) extends a classical decom-

position theorem of [5] to the case of definable sets in the Solovay model.

Theorem 2 (in the Solovay model). If 4 is an OD PQO on ωω then
any OD 4-thin set X∗ ⊆ ωω is covered by the union of all OD 4-chains.
The same is true for any definability class OD(x), where x is a real.

Note that conversely, in the Solovay model, any set covered by the union
of all OD 4-chains C ⊆ ωω is thin, as otherwise a perfect set X which
witnesses the non-thinness would admit an OD wellordering, which is known
to be impossible in the Solovay model.

The proof of Theorem 2 as given in Section 12 has a certain resemblance
to the proof of Theorem 5.1 in [5], as regards its general combinatorial
structure. Yet some modifications are necessary since OD sets in the Solovay
model only partially resemble sets in ∆1

1 and Σ1
1 . In particular we have to

establish some properties of the OD forcing in Sections 8–11 rather different
from the properties of the Gandy–Harrington forcing in [5], and also we
prove a tricky compression lemma (Lemma 19).

2. Notation. We will mostly consider non-strict orderings. We list basic
notation and terminology:
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• PQO, partial quasi-order : reflexive (x ≤ x) and transitive in the do-
main;

• LQO, linear quasi-order : PQO and x ≤ y ∨ y ≤ x in the domain;
• LO, linear order : LQO and x ≤ y ∧ y ≤ x⇒ x = y;
• associated equivalence relation: x ≈ y iff x ≤ y ∧ y ≤ x;
• associated strict order : x < y iff x ≤ y ∧ y 6≤ x.
• LR (left-right), resp. RL (right-left), order preserving map: any map
f : 〈X;≤〉 → 〈X ′;≤′〉 such that x ≤ y ⇒ f(x) ≤′ f(y), resp. x ≤ y ⇐
f(x) ≤′ f(y), for all x, y ∈ dom f ;
• suborder : a restriction of the given PQO to a subset of its domain;
• <lex, 6lex: the lexicographical LOs on sets of the form 2α, α ∈ Ord,

resp. strict and non-strict.

Let 〈P ;≤〉 be a background PQO. A subset Q ⊆ P is:

• cofinal in P iff ∀p ∈ P ∃q ∈ Q (p ≤ q);
• countably cofinal (in itself ) iff there is a countable Q′⊆Q cofinal in Q;
• a chain iff it consists of pairwise ≤-comparable elements, i.e., LQO;
• an antichain in P iff it consists of pairwise ≤-incomparable elements;
• a thin set iff it contains no perfect ≤-antichains.

If E is an equivalence relation then let

[x]E = {y ∈ dom E : x E y} (the E-class of an element x ∈ dom E),

[X]E =
⋃
x∈X

[x]E (the E-saturation of a set X ⊆ dom E).

3. Analytic thin subsets. We prove Theorem 1(A) (including the
“moreover” claim) by reference to the following background result:

Theorem 3 (see Section 13). Let 4 be a ∆1
1 PQO on ωω, ≈ be the

associated equivalence relation, and X∗ ⊆ ωω be a Σ1
1 4-thin set. Then

(I) there is an ordinal α < ωCK
1 and a ∆1

1 LR order preserving map F :
〈ωω;4〉 → 〈2α;6lex〉 satisfying the following additional requirement:
if x, y ∈ X∗ then x 6≈ y implies F (x) 6= F (y);

(II) X∗ is covered by the (countable) union of all ∆1
1 4-chains C ⊆ ωω.

LR order preserving maps F satisfying the extra requirement of non-
glued ≈-classes as in (I) were called linearization maps in [9].

Any map F as in (I) sends any two 4-incomparable reals x, y ∈ ωω onto
a <lex-comparable pair of F (x), F (y), that is, either F (x) <lex F (y) or
F (y) <lex F (x). On the other hand, if the background set X∗ is already
a 4-chain then F has to be RL order preserving too, that is, x 4 y iff
F (x) 6lex F (y) for all x, y ∈ X∗.
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Proof of claim (A) of Theorem 1 modulo Theorem 3. First of all, assume
that the given Borel order 4 is in fact lightface ∆1

1, and the given set X∗

is Σ1
1 . The case of ∆1

1(p) and Σ1
1(p) with any fixed real parameter p is

accordingly reducible to a corresponding version of Theorem 3.

Let, by Theorem 3(II), X∗ ⊆
⋃
nCn, where each Cn is a ∆1

1 4-chain,
and let F and α be given by Theorem 3(I). To check that X∗ is countably
cofinal, it suffices to show that so is every set Xn = X∗ ∩ Cn. But Xn is a
chain, so if it is not countably cofinal then there is a strictly ≺-increasing
sequence {xα}α<ω1 of elements xα ∈ Xn. Then {F (xα)}α<ω1 is a strictly
<lex-increasing sequence in 2α, which is impossible.

Finally, if there is a4-chain inX∗ of uncountable cofinality then a similar
argument leads to such a chain in 〈2α;6lex〉, with the same contradiction.

4. Remarks and corollaries. Claim (I) of Theorem 3 can be strength-
ened as follows:

(I′) if there is no continuous 1-1 LR order preserving map F : 〈2ω;≤0〉 →
〈X∗;4〉 such that a 6E0 b implies that F (a) and F (b) are 4-incomp-
arable, then there is an ordinal α < ωCK

1 and a ∆1
1 LR order preserv-

ing map F : 〈ωω;4〉 → 〈2α;6lex〉 satisfying the following additional
requirement: if x, y ∈ X∗ then x 6≈ y implies F (x) 6= F (y).

Here ≤0 is the PQO on 2ω defined by: x ≤0 y iff x E0 y and either x = y
or x(k) < y(k), where k is the largest number with x(k) 6= y(k) (1). The
“if” premise in (I′) is an immediate consequence of the 4-thinness of X∗ as
in (I), and hence (I′) really strengthens (I) of Theorem 3.

Claim (I′) is an extension of [9, Theorem 3]; the latter corresponds to
the case of ∆1

1 sets X∗.

In the category of chains (rather than thin sets), the case of Σ1
1 sets X∗

in Theorem 1(A) is reducible to the case of ∆1
1 sets simply because any Σ1

1

chain X can be covered by a ∆1
1 chain Y . We find such a set Y by means

of the following two-step procedure (2). The set C of all elements that are
4-comparable with every element x ∈ X is Π1

1 , and X ⊆ C (as X is a chain).
By the separation theorem, there is a ∆1

1 set B such that X ⊆ B ⊆ C. Now,
the set U of all elements in B that are comparable with every element in B
is Π1

1 , and X ⊆ B. Once again, by separation, there is a ∆1
1 set Y such that

X ⊆ Y ⊆ U . By construction, U and Y are chains, as required.

Recall in passing the following well-known earlier result, originally due
to H. Friedman, as mentioned in [6].

(1) <0 orders each E0-class similarly to the (positive and negative) integers, except
for the class [ω×{0}]E0 ordered as ω and the class [ω×{1}]E0 ordered as the inverse of ω.

(2) For a different argument, based on a reflection principle, see [5, Corollary 1.5].
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Corollary 4 (of Theorem 1(A)). Every Borel LQO ≤ is countably
cofinal, and moreover there are no strictly increasing ω1-sequences.

The next immediate corollary says that maximal chains cannot be ana-
lytic if they are not countably cofinal.

Corollary 5. If 4 is a Borel PQO, and every countable set D ⊆
dom(4) has a strict upper bound, then there are no Σ1

1 maximal 4-chains.

Corollary 6 (Harrington and Shelah [6, 16]). If 4 is a Π1
1 LQO on

a Borel set then there are no strictly increasing ω1-chains in 4.

Proof. This result was first obtained by a direct and rather complicated
argument. But fortunately there is a reduction to the Borel case.

Indeed, let x ≺ y iff y 64 x, so in fact R0 = ≺ is just the strict LQO
associated with 4. As R0 ⊆ 4, by separation there is a Borel set B0 with
R0 ⊆ B0 ⊆ 4. Let B′0 be the relation of B0-incomparability, and let R1 be
the PQO-hull of B0 ∪B′0. Thus R1 is a LQO and R0 ⊆ B0 ⊆ R1 ⊆ 4.

Once again, let B1 be a Borel set such that R1 ⊆ B1 ⊆ 4. Define sets
B′1 and R2 as above. And so on.

Finally, after ω steps, the union R =
⋃
nBn =

⋃
nRn is a Borel LQO

and ≺ ⊆ R ⊆ 4. Any strictly 4-increasing chain is strictly R-increasing as
well. It remains to apply Corollary 4.

5. Near-counterexamples for chains. The following examples show
that, even in the particular case of chains instead of thin orderings, Theorem
1(A) is not true any more for different extensions of the domain of Σ1

1 subor-
ders of Borel partial quasi-orders, such as 1) Σ1

1 and Π1
1 linear quasi-orders

(not necessarily suborders of Borel orderings), or 2) ∆1
2 and Π1

1 suborders
of Borel orderings. In each of these classes, a counterexample of cofinality
ω1 will be defined.

Example 1 (Σ1
1 LQO). Consider a recursive coding of sets of rationals

by reals. Let Qx be the set coded by a real x. Let Xα be the set of all reals
x such that the maximal well-ordered initial segment of Qx has the order
type α. We define x ≤ y iff ∃α ∃β (x ∈ Xα ∧ y ∈ Xβ ∧ α ≤ β). Then ≤
is a Σ1

1 LQO on ωω of cofinality ω1. Note that the associated strict order,
x < y iff x ≤ y but not y ≤ x, is then more complicated than just Σ1

1, so
this example does not contradict Corollary 6.

Example 2 (Π1
1 LQO). Let D ⊆ ωω be the Π1

1 set of codes of (count-
able) ordinals. Then the relation “x ≤ y iff x, y ∈ D ∧ |x| ≤ |y|” is a Π1

1

LQO of cofinality ω1. Note that ≤ is defined on a non-Borel Π1
1 set D, and

there is no Π1
1 LQO of cofinality ω1 but defined on a Borel set—by exactly

the same argument as in Remark 6.
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Example 3 (Π1
1 LO). To sharpen Example 2, define x ≤ y iff x, y ∈ D

and
(
|x| < |y| ∨ (|x| = |y| ∧ x <lex y)

)
; this is a Π1

1 LO of cofinality ω1.

Example 4 (∆1
2 suborders). Let ≤ be the eventual domination order

on ωω. Assuming the axiom of constructibility V = L, one can define a
strictly ≤-increasing ∆1

2 ω1-sequence {xα}α<ω1 in ωω.

Example 5 (Π1
1 suborders). Define a PQO ≤ on (ω r {0})ω so that

x ≤ y iff either x = y or limn→∞ y(n)/x(n) = ∞; the “or” option defines
the associated strict order <. Assuming V = L, define a strictly increasing
∆1

2 ω1-sequence {xα}α<ω1 in ωω. By the Π1
1 uniformization theorem, there

is a Π1
1 set {〈xα, yα〉}α<ω1 ⊆ ωω × 2ω. Let zα(n) = 3xα(n) · 2yα(n) for all n.

Then the ω1-sequence {zα}α<ω1 is Π1
1 and strictly increasing: indeed, factors

of the form 2yα(n) are equal to 1 or 2 whenever α ∈ 2ω.

6. Definable thin suborders in the Solovay model

Proof of Theorem 1(B). Arguing in the Solovay model (a model of ZFC
defined in [17], in which all ROD sets of reals are Lebesgue measurable), we
assume that 4 is a Borel PQO on a Borel set D ⊆ ωω, X∗ ⊆ D is a ROD
(real-ordinal definable) set, and the set X∗ is 4-thin.

Let ρ < ω1 be such that 4 is a relation in the Borel class Σ0
ρ.

We will prove that the restricted ordering 〈X∗;4〉 is countably cofinal,
i.e., contains a countable cofinal subset (not necessarily a chain).

It is known that, in the Solovay model, any ROD set in ωω is a union
of a ROD ω1-sequence of analytic sets. Thus there is a ⊆-increasing ROD
sequence {Xα}α<ω1 of Σ1

1 sets Xα such that X∗ =
⋃
α<ω1

Xα. Let r ∈ ωω
be a real parameter such that in fact the sequence {Xα}α<ω1 is OD(r).

As the sets Xα are countably 4-cofinal by claim (A) of Theorem 1, it
suffices to prove that one of the sets Xα is cofinal in X∗.

Suppose otherwise. Then the sets Dα = {z ∈ D : ∃x ∈ Xα (z 4 x)} con-
tain ℵ1 different sets and form an OD(r) sequence. We claim that ev-
ery set Dα belongs to the same class Σ0

ρ as the given Borel order 4. In-
deed, let {xn : n ∈ ω} be any countable cofinal set in Xα. Then the set
Dα = {z ∈ D : ∃n (z 4 xn)} is Σ0

ρ for obvious reasons, and hence the Borel

class Σ0
ρ contains ℵ1 pairwise different sets in OD(r) for one and the same

r ∈ ωω. But this contradicts a result of Stern [18].

7. Σ1
2 thin suborders of Borel PQOs

Proof of Theorem 1(C). Assume that ω
L[r]
1 < ω1 for every real r, 4 is a

Borel PQO on a Borel set D ⊆ ωω, and X∗ ⊆ D is a 4-thin Σ1
2 set.

We will prove that the ordering 〈X∗;4〉 is countably cofinal.
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Pick a real r such that X∗ is Σ1
2(r) and 4 is ∆1

1(r). To prepare for an
absoluteness argument, fix canonical formulas,

ϕ(·, ·) of type Σ1
2 , σ(·, ·, ·) of type Σ1

1 , π(·, ·, ·) of type Π1
1 ,

which define X∗ and 4 in the set universe V, so that it is true in V that

x 4 y ⇔ σ(r, x, y) ⇔ π(r, x, y) and x ∈ X∗ ⇔ ϕ(r, x)

for all x, y ∈ ωω. We let Xϕ = {x ∈ ωω : ϕ(r, x)} and

x ≤σπ y ⇔ σ(r, x, y) ⇔ π(r, x, y),

so that Xϕ = X∗ and ≤σπ is 4 in V, but Xϕ and ≤σπ can be defined in
any transitive universe containing r and containing all ordinals (to preserve
the equivalence of the formulas σ and π).

Let WO be the canonical Π1
1 set of codes of (countable) ordinals, and

for w ∈WO let |w| < ω1 be the ordinal coded by w.
Let Xϕ =

⋃
α<ω1

Xϕ(α) be a usual representation of Xϕ as an increasing

union of Σ1
1 sets. Thus to define Xϕ(α) fix a Π1

1 (r) set P ⊆ (ωω)2 with
X∗ = {x : ∃y P (x, y)}, fix a canonical Π1

1 (r) norm f : P → ω1, and let

Pα = {〈x, y〉 : f(x, y) < α} and Xϕ(α) = {x : ∃y (〈x, y〉 ∈ Pα)}.
Under our assumptions, the ordinal Ω = ω1 is inaccessible in L[r]. Let

P = Coll(<Ω,ω) ∈ L[r] be the corresponding Levy collapse forcing. Con-
sider a P-generic extension V[G] of the universe. Then L[r][G] is a Solovay-
model generic extension of L[r]. The plan is to compare the models V and
L[r][G]. Note that L[r] is their common part, V[G] is their common exten-

sion, and the three models have the same cardinal ωV
1 = ω

L[r][G]
1 = ω

V[G]
1 =

Ω > ω
L[r]
1 .

Lemma 7. It is true both in V[G] and L[r][G] that if α < Ω then the
set Xϕ(α) is ≤σπ-thin (3).

Proof. The thinness of Xϕ(α) is a Π1
3 statement with parameters r and

any real which codes α. This makes the step V[G] → L[r][G] trivial by
Shoenfield absoluteness, and allows us to concentrate on V[G].

Suppose towards a contradiction that there is a perfect tree T ∈ V[G]
with T ⊆ ω<ω such that the perfect set [T ] = {x ∈ ωω : ∀n (x�n ∈ T )}
satisfies

(1) [T ] ⊆ Xϕ(α) and [T ] is a ≤σπ-antichain

in V[G]. There exist an ordinal γ < Ω and a Coll(ω, γ)-generic map F ∈
V[G] such that already T ∈ V[F ], so that T = t[F ], where t ∈ V with
t ⊆ Coll(ω, γ)× ω<ω is a Coll(ω, γ)-name.

(3) The absolutenes of the thinness of the whole set Xϕ =
⋃
α<Ω Xϕ(α) is not asserted!
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Note that (1) is still true in V[F ] ⊆ V[G] by Shoenfield absoluteness,
and moreover (1) is true in L[z][F ], where a real z ∈ ωω ∩ V codes all of
α, γ, r, t. Therefore there is a condition s ⊂ F (a finite string of ordinals
ξ < γ) which Coll(ω, γ)-forces (1) (with T replaced by the name t) over
L[z].

By the assumptions of Theorem 1(C), there is a map F ′ ∈ V, Coll(ω, γ)-
generic over L[z] and satisfying s ⊂ F ′. Then the tree T ′ = t[F ′] belongs to
L[z][F ′] ⊆ V and satisfies (1) in L[z][F ′], hence in V as well by Shoenfield
absoluteness. But this contradicts the choice of X∗ = Xϕ.

We continue the proof of Theorem 1(C). It follows from the lemma
that all orderings 〈Xϕ(α);≤σπ〉, α < Ω, are countably cofinal in L[r][G] by
Theorem 1(A). However, L[r][G] is a Solovay-model type extension of L[r].
Therefore (see the argument in Section 6) it is true in L[r][G] that the
whole ordering 〈Xϕ;≤σπ〉 is countably cofinal, hence there is an ordinal

α < Ω = ω
L[r][G]
1 such that the sentence

(2) the subset Xϕ(α) is ≤σπ-cofinal in the whole set Xϕ

is true in L[r][G]. However, (2) can be expressed by a Π1
2 formula with r

and an arbitrary code w ∈ WO ∩ L[r][G] such that |w| = α as the only
parameters. It follows, by Shoenfield absoluteness, that (2) is true in V[G]
as well.

Then by exactly the same absoluteness argument, (2) is true in V, too.
Thus it is true in V thatXϕ(α), a Σ1

1 set, is cofinal in the whole setX∗ = Xϕ.
But Xϕ(α) itself is countably cofinal by Theorem 1(A).

8. The Solovay model and OD forcing. Here we begin the proof of
Theorem 2. We emulate the proof in [5, Theorem 5.1], changing the Gandy–
Harrington forcing P to the OD forcing P. There is only a partial similarity
between the two forcing notions, so we will both enjoy some simplifications
and suffer from some complications.

We start with a brief review of the Solovay model. Let Ω be an ordinal.
Let Ω-SM be the following hypothesis:

Ω-SM: Ω = ω1, Ω is strongly inaccessible in L, the constructible universe,
and the whole universe V is a generic extension of L via the Levy
collapse forcing Coll(ω,<Ω), as in [17].

Assuming Ω-SM, let P be the set of all non-empty OD sets Y ⊆ ωω. We
consider P as a forcing notion (smaller sets are stronger). A set D ⊆ P is
dense iff for every Y ∈ P there exists Z ∈ D with Z ⊆ Y , and open dense iff
in addition Y ∈ D ⇒ X ∈ D holds whenever the sets Y ⊆ X belong to P.

A set G ⊆ P is P-generic iff 1) if X,Y ∈ G then there is a set Z ∈ G
with Z ⊆ X ∩ Y , and 2) if D ⊆ P is OD and dense then G ∩D 6= ∅.
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Given an OD equivalence relation E on ωω, a reduced product forcing
notion P ×E P consists of all sets of the form X × Y, where X,Y ∈ P and
[X]E ∩ [Y ]E 6= ∅. For instance X × X belongs to P ×E P whenever X ∈ P.
The notions of sets dense and open dense in P×E P, and of (P×E P)-generic
sets, are similar to the case of P.

This version of genericity can be viewed as genericity over OD. We will
see below that sets generic in this sense do exist under Ω-SM.

A condition X × Y in P ×E P is saturated iff [X]E = [Y ]E. To prove the
next lemma let X ′ = X ∩ [Y ]E and Y ′ = Y ∩ [X]E.

Lemma 8. If X × Y is a condition in P ×E P then there is a stronger
saturated subcondition X ′ × Y ′ in P×E P.

Proposition 9 ([8, Lemmas 14, 16]). Assume Ω-SM. If a set G ⊆ P is
P-generic then the intersection

⋂
G = {x[G]} consists of a single real x[G],

called P-generic—its name will be ẋ.
Given an OD equivalence relation E on ωω, if G ⊆ P×E P is (P×E P)-

generic then the intersection
⋂
G = {〈xle[G], xri[G]〉} consists of a single

pair of reals xle[G] , xri[G], called an (P×E P)-generic pair—their names
will be ẋle , ẋri; either of xle[G] , xri[G] is separately P-generic.

As the set P is definitely uncountable, the existence of P-generic sets
does not immediately follow from Ω-SM by a cardinality argument. Yet
fortunately P is locally countable, in a sense.

Definition 10 (assuming Ω-SM). A set X ∈ OD is OD-1st-countable if
the set POD(X) = P(X)∩OD of all OD subsets of X is at most countable.
(But we do not require POD(X) to be necessarily OD-countable.)

For instance, assuming Ω-SM, the set X = ωω ∩OD = ωω ∩L of all OD
reals is OD-1st-countable. Indeed POD(X) = P(X)∩L, and hence POD(X)
admits an OD bijection onto the ordinal ωL

2 < ω1 = Ω.

Lemma 11 (assuming Ω-SM). If a set X ∈ OD is OD-1st-countable then
the set POD(X) is OD-1st-countable.

Proof. There is an ordinal λ < ω1 = Ω and an OD bijection b : λ →
POD(X). Any OD set Y ⊆ λ belongs to L, hence the OD power set POD(λ) =
P(λ) ∩ L belongs to L and card(POD(λ)) ≤ λ+ < Ω in L. We conclude
that POD(λ) is countable. It follows that POD(POD(X)) is countable, as
required.

Lemma 12 (assuming Ω-SM). If λ < Ω then the set Cohλ of all ele-
ments f ∈ λω that are Coll(ω, λ)-generic over L is OD-1st-countable.

Proof. If Y ⊆ Cohλ is OD and x ∈ Y then “x̌ ∈ Y̌ ” is Coll(ω, λ)-forced
over L. It follows that there is a set S ⊆ λ<ω = Coll(ω, λ) , S ∈ L, such
that Y = Cohλ∩

⋃
t∈S Nt, where Nt = {x ∈ λ<ω : t ⊂ x}, is a Baire interval
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in λ<ω. But the collection of all such sets S belongs to L and has cardinality
λ+ in L, hence is countable under Ω-SM.

Let P∗ be the set of all OD-1st-countable sets X ∈ P. We also define

P∗ ×E P∗ = {X × Y ∈ P×E P : X,Y ∈ P∗}.
Lemma 13 (assuming Ω-SM).

(i) The set P∗ is dense in P, that is, if X ∈ P then there is a condition
Y ∈ P∗ such that Y ⊆ X.

(ii) If E is an OD equivalence relation on ωω then the set P∗ ×E P∗ is
dense in P×E P and any X × Y in P∗ ×E P∗ is OD-1st-countable.

Proof. (i) Let x ∈ X ∈ P. It follows from Ω-SM that there is an ordinal
λ < ω1 = Ω, an element f ∈ Cohλ, and an OD map H : λω → ωω, such
that x = H(f). The set P = {f ′ ∈ Cohλ : H(f ′) ∈ X} is then OD and non-
empty (contains f), and hence so is its image Y = {H(f ′) : f ′ ∈ P} ⊆ X
(contains x). Finally, Y ∈ P∗ by Lemma 12.

(ii) Let X×Y be a condition in P×EP. By Lemma 8 there is a saturated
subcondition X ′ × Y ′ ⊆ X × Y . By (i), let X ′′ ⊆ X ′ be a condition in P∗,
and Y ′′ = Y ′ ∩ [X ′′]E. Similarly, let Y ′′′ ⊆ Y ′′ be a condition in P∗, and
X ′′′ = X ′′ ∩ [Y ′′′]E. Then X ′′′ × Y ′′′ belongs to P∗ ×E P∗.

Corollary 14 (assuming Ω-SM). If X ∈ P then there exists a P-
generic set G ⊆ P containing X. If X × Y is a condition in P ×E P then
there exists a (P×E P)-generic set G ⊆ P×E P containing X × Y .

Proof. By Lemma 13, assume that X ∈ P∗. Then the set P⊆X of stronger
conditions contains only countably many OD subsets by Lemma 11.

9. The OD forcing relation. The forcing notion P will play the same
role below as the Gandy–Harrington forcing in [5]. There is a notable tech-
nical difference: under Ω-SM, OD-generic sets exist in the ground Solovay-
model universe by Corollary 14. Another notable difference is connected
with the forcing relation.

Definition 15 (assuming Ω-SM). Let ϕ(x) be an Ord-formula, that is,
a formula with ordinals as parameters.

A condition X ∈ P is said to P-force ϕ(ẋ) if ϕ(x) is true (in the Solovay-
model set universe considered) for any P-generic real x.

If E is an OD equivalence relation on ωω then a condition X×Y in P×EP
is said to (P×EP)-force ϕ(ẋle, ẋri) if ϕ(x, y) is true for any (P×E P)-generic
pair 〈x, y〉.

Lemma 16 (assuming Ω-SM). Given an Ord-formula ϕ(x) and a P-
generic real x, if ϕ(x) is true (in the Solovay-model universe considered)
then there is a condition X ∈ P which contains x and P-forces ϕ(ẋ).
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Let E be an OD equivalence relation on ωω. Given an Ord-formula
ϕ(x, y) and a (P×E P)-generic pair 〈x, y〉, if ϕ(x, y) is true then there is a
condition in P×E P which contains 〈x, y〉 and (P×E P)-forces ϕ(ẋle, ẋri).

Proof. To prove the first claim, set X = {x′ ∈ ωω : ϕ(x′)}. But this
argument does not work for P×E P. To fix the problem, we propose a longer
argument which works in both cases—but we present it in the case of P,
which is slightly simpler.

Formally the forcing notion P does not belong to L. But it is order-
isomorphic to a certain forcing notion P ∈ L, namely, the set P of codes (4)
of OD sets in P. The order between the codes in P , which reflects the relation
⊆ between the OD sets themselves, is expressible in L, too. Furthermore,
dense OD sets in P correspond to dense sets in the coded forcing P in L.

Now, let x be P-generic and suppose ϕ(x) is true. It is a known property
of the Solovay model that there is an Ord-formula ψ(x) such that ϕ(x) iff
L[x] |= ψ(x). Let g ⊆ P be the set of all codes of conditions X ∈ P such
that x ∈ X. Then g is P -generic over L by the choice of x, and x is the
corresponding generic object, hence there is a condition p ∈ g which P -forces
ψ(ẋ) over L. Let X ∈ P be the OD set coded by p, so x ∈ X. To prove
that X OD-forces ϕ(ẋ), let x′ ∈ X be a P-generic real. Let g′ ⊆ P be
the P -generic set of all codes of conditions Y ∈ P such that x′ ∈ Y . Then
p ∈ g′, hence ψ(x′) holds in L[x′], by the choice of p. Then ϕ(x′) holds (in
the Solovay-model set universe) by the choice of ψ, as required.

Corollary 17 (assuming Ω-SM). Given an Ord-formula ϕ(x), if X∈P
does not P-force ϕ(ẋ) then there is a condition Y ∈ P with Y ⊆ X, which
P-forces ¬ ϕ(ẋ), and similarly for P×E P.

10. Adding a perfect antichain. The next result will be pretty im-
portant.

Lemma 18 (assuming Ω-SM). Let 4 be an OD PQO on ωω, and ER be
an OD equivalence relation on ωω for any R ∈ P such that if R ⊆ R′ then
x ER y implies x ER′ y. Suppose that X∗ ∈ P, and if R ∈ P with R ⊆ X∗

then R × R does not (P×ER P)-force that ẋle and ẋri are 4-comparable.
Then X∗ is not 4-thin.

Proof (follows [5, 2.9]). Let T be the set of all finite trees t ⊆ 2<ω. If
t ∈ T then let M(t) be the set of all ⊂-maximal elements of t.

Let Φ be the set of systems ϕ = {Xu}u∈t of sets Xu ∈ P∗ such that t ∈ T
and the following conditions are satisfied:

(i) XΛ ⊆ X∗ (where Λ is the empty string);

(4) A code of an OD set X is a finite sequence of logical symbols and ordinals which
correspond to a definition in the form X = {x ∈ Vα : Vα |= ϕ(x)}.
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(ii) if u ⊂ v ∈ t then Xv ⊆ Xu;
(iii) if u∧0 and u∧1 belong to t then Xu∧0×Xu∧1 belongs to P∗ ×EXu

P∗
and (P×EXu

P)-forces that ẋle is 4-incomparable to ẋri;
(iv) compatibility: there is a sequence {xu}u∈M(t) of points xu ∈ Xu

such that if u, v ∈M(t) then xu EXu∧v xv, where u∧v is the largest
string w ∈ 2<ω such that w ⊂ u and w ⊂ v—it easily follows that
then Xu ×Xv is a condition in P×EXu∧v

P.

Say that a system {Xu}u∈t ∈ Φ is saturated if in addition

(v) for any v ∈ M(t) and x ∈ Xv there is a sequence {xu}u∈M(t) as
in (iv) such that xv = x.

Say that a system {X ′u}u∈t′ ∈ Φ: 1) weakly extends another system ϕ =
{Xu}u∈t if t ⊆ t′, Xu = X ′u for all u ∈ t r M(t), and X ′u ⊆ Xu for all
u ∈ M(t); and 2) properly extends {Xu}u∈t if t ⊆ t′ and Xu = X ′u for all
u ∈ t. Thus a weak extension not just adds new sets to a given system ϕ
but also shrinks old sets of the top layer ϕ = {Xu}u∈M(t) of ϕ.

Claim 18.1. For any system ϕ = {Xu}u∈t ∈ Φ there is a saturated
system {X ′u}u∈t in Φ (with the same domain t) which weakly extends ϕ.

Proof. If u ∈ M(t) then simply let X ′u be the set of all points x ∈ Xu

such that x = xu for some sequence {xu}u∈M(t) as in (iv).

Claim 18.2. For any saturated system ϕ = {Xu}u∈t ∈ Φ, if u ∈ M(t)
then there are sets Xu∧0 , Xu∧1 such that the system ϕ extended by those
sets still belongs to Φ and properly extends ϕ.

Proof. As Xu ∈ P and Xu ⊆ X∗, the condition Xu × Xu does not
(P×EXu

P)-force that ẋle, ẋri are 4-comparable. By Corollary 17, pick a
stronger condition U × V ⊆ Xu ×Xu in P×EXu

P which (P×EXu
P)-forces

that ẋle, ẋri are 4-incomparable. By Lemmas 13 and 8 we may assume that
U×V belongs to P∗ ×EXu

P∗ and is EXu-saturated, so that [U ]EXu = [V ]EXu .
We assert that the sets Xu∧0 = U and Xu∧1 = V prove the claim. It is
enough to check (iv) for the extended system.

Fix any x ∈ Xu∧0 = U . Then x ∈ Xu, hence, as the given system is
saturated, there is a sequence {xv}v∈M(t) of points xv ∈ Xv as in (iv) such
that xu = x. On the other hand, as [U ]EXu = [V ]EXu , there is a point
y ∈ V = Xu∧1 such that x EXu y. Set xu∧0 = x and xu∧1 = y.

If E is an OD equivalence relation and X × Y ∈ P∗ ×E P∗ then the set
D(E, X, Y ) of all sets, open dense in P×E P below X × Y (5), is countable
by Lemma 13; fix an enumeration D(E, X, Y ) = {Dn(E, X, Y ) : n ∈ ω} such
that Dn(E, X, Y ) ⊆ Dm(E, X, Y ) whenever m < n.

(5) That is, open dense subsets of the restricted forcing (P ×E P)⊆X×Y =
{X ′ × Y ′ ∈ P×E P : X ′ ⊆ X ∧ Y ′ ⊆ Y }.
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Claim 18.3. Let n ∈ ω and ϕ = {Xu}u∈2≤n ∈ Φ. Then there is a system
ϕ′ = {X ′u}u∈2≤n+1 ∈ Φ which weakly extends ϕ and satisfies the following
additional genericity requirement:

(∗) if strings u 6= v belong to 2n+1 and w = u ∧ v (defined as in (iv)) then
the condition Xu ×Xv belongs to Dn(EXw , Xw∧0, Xw∧1).

Proof. We first extend ϕ by one layer of sets X ′u∧i, u ∈ 2n and i = 0, 1,
obtained by consecutive 2n splitting operations as in Claim 18.2, followed
by the saturating reduction as in Claim 18.1. This way we get a saturated
system η = {Yu}u∈2≤n+1 ∈ Φ which weakly extends ϕ.

To fulfill (∗), let us shrink the sets in the top layer {Yu}u∈2n+1 of η.

Consider any pair of strings u 6= v in 2n+1. Let w = u ∧ u, so that
k = domw < n, w ⊂ u, w ⊂ v, and u(k) 6= v(k); let, say, u(k) = 0, v(k) = 1.
The condition Yw∧0 × Yw∧1 belongs to P∗ ×EYw

P∗ by (iii), while Yu × Yv
belongs to P×EYw

P by (iv) and satisfies Yu ⊆ Yw∧0 and Yv ⊆ Yw∧1 by (ii).
By density, there is a subcondition Zu×Zv ⊆ Yu×Yv inDn(EYw , Yw∧0, Yw∧1);
in particular, Zu×Zv still belongs to P×EYw

P. In addition to Zu and Zv, we

let Zs = Ys for any s ∈ 2n+1r{u, v}. Then ψ = {Zs}s∈2≤n+1 is still a system
in Φ. By Claim 18.1, there is a saturated system ψ′ = {Z ′s}s∈2≤n+1 ∈ Φ such
that Z ′s = Zs = Ys for all u ∈ 2≤n, and Z ′s ⊆ Zs for all s ∈ 2n+1. Then
Z ′u ⊆ Zu and Z ′v ⊆ Zv—so that Z ′u × Z ′v ∈ Dn(EYw , Yw∧0, Yw∧1).

Iterating this shrinking construction 2n(2n − 1) times (the number of
pairs s 6= t in 2n), we get a required system ϕ′.

Claim 18.3 allows us to define, by induction, sets Xu ⊆ X ′u ⊆ X∗ in P∗
(u ∈ 2<ω) and systems ϕn = {Xu}u∈2<n ∪ {X ′u}u∈2n , such that, for any n:

(1) ϕn is a saturated system in Φ, weakly extended by ϕn+1, and
(2) condition (∗) of Claim 18.3 holds.

We will show that this leads to a required perfect set. Let a 6= b be reals in 2ω,
and w = a∧ b, so that w ⊂ a, w ⊂ b, and a(k) 6= b(k), where k = domw; let,
say, a(k) = 0, b(k) = 1. Then the sequence of sets Xa�m ×Xb�m, m > k, is
(P×EXw

P)-generic by (10), so that
⋂
m>k(Xa�m×Xb�m) consists of a single

pair of reals 〈xa, xb〉 by Proposition 9. Moreover, xa , xb are 4-incomparable
by (iii). Finally the diameters of Xn uniformly converge to 0 as n → ∞
by (10), and hence the map a 7→ xa is continuous. Thus P = {xa : a ∈ 2ω}
is a perfect 4-antichain in X∗. Lemma 18

11. Compression lemma. Let Θ = Ω+, the cardinal successor of Ω in
both L, the ground model, and its Coll(ω,<Ω)-generic extension postulated
by Ω-SM to be the set universe; in the latter, Ω = ω1 and Θ = ω2.
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Lemma 19 (Compression lemma). Assume that Ω ≤ ϑ ≤ Θ and X ⊆
2Θ is the image of ωω via an OD map. Then there is an OD antichain
A(X) ⊆ 2<Ω and an OD isomorphism f : 〈X;6lex〉 → 〈A(X);6lex〉 (6).

Proof. If ϑ = Θ then, as cardX ≤ cardωω = Ω, there is ϑ < Θ such
that x�ϑ 6= y�ϑ whenever x 6= y belong to X—this reduces the case ϑ = Θ
to the case Ω ≤ ϑ < Θ. We prove the latter by induction on ϑ.

The non-trivial step is when cofλ = Ω, so let ϑ =
⋃
α<Ω ϑα for an

increasing OD sequence of ordinals ϑα. Let Iα = [ϑα, ϑα+1). Then, by the
induction hypothesis, for any α < Ω the set Xα = {S�Iα : S ∈ X} ⊆ 2Iα is
<lex-order-isomorphic to an antichain Aα ⊆ 2<Ω via an OD isomorphism iα,
and the map which sends α to Aα and iα is OD. It follows that the map
which sends each S ∈ X to the concatenation of all sequences iα(x�Iα) is an
OD <lex-order isomorphism X onto an antichain in 2Ω. Therefore it suffices
to prove the lemma for ϑ = Ω. Thus let X ⊆ 2Ω.

First of all, note that each sequence S ∈ X is ROD. Lemma 7 in [8]
shows that, in this case, we have S ∈ L[S�η] for an ordinal η < Ω. Let η(S)
be the least such ordinal, and h(S) = S�η(S), so that h(S) is a countable
initial segment of S and S ∈ L[h(S)]. Note that h is still OD.

Consider the set U = ranh = {h(S) : S ∈ X} ⊆ 2<Ω. We can assume
that every sequence u ∈ U has a limit length. Then U =

⋃
γ<Ω Uγ , where

Uγ = U ∩ 2ωγ (ωγ is the the γth limit ordinal). For u ∈ Uγ , let γu = γ.

If u ∈ U then by construction the set Xu = {S ∈ X : h(S) = u} is OD(u)
and satisfies Xu ⊆ L[u]. Therefore, it follows from the known properties of
the Solovay model that Xu belongs to L[u] and is of cardinality ≤ Ω in L[u].
Fix an enumeration Xu = {Su(α) : γu ≤ α < Ω} for all u ∈ U . We can
assume that the map α, u 7→ Su(α) is OD. If u ∈ U and γu ≤ α < Ω, then
define a shorter sequence, su(α) ∈ 3ωα+1, as follows:

(i) su(α)(ξ + 1) = Su(α)(ξ) for any ξ < ωα.
(ii) su(α)(ωα) = 1.

(iii) Let δ < α. If Su(α)�ωδ = Sv(δ)�ωδ for some v ∈ U (equal to or
different from u) then su(α)(ωδ) = 0 whenever Su(α) <lex Sv(δ),
and su(α)(ωδ) = 2 whenever Sv(δ) <lex Su(α).

(iv) Otherwise (i.e., if there is no such v), su(α)(ωδ) = 1.

To demonstrate that (iii) is consistent, we show that Su′(δ)�ωδ = Su′′(δ)�ωδ
implies u′ = u′′. Indeed, as by definition u′ ⊂ Su′(δ) and u′′ ⊂ Su′′(δ),
u′ and u′′ must be ⊆-compatible, say u′ ⊆ u′′. Now, by definition, Su′′(δ)
is in L[u′′], therefore in L[Su′(δ)] because u′′ ⊆ Su′′(δ)�ωδ = Su′(δ)�ωδ, and
finally in L[u′], which shows that u′ = u′′ as Su′′(δ) ∈ Xu′′ .

(6) Proved in [10, Theorem 31]. We present a slightly simplified proof to make the
exposition self-contained. Note that any antichain A ⊆ 2<Ω is linearly ordered by 6lex!
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We are going to prove that the map Su(α) 7→ su(α) is a <lex-order
isomorphism, so that Sv(β) <lex Su(α) implies sv(β) <lex su(α).

We first observe that sv(β) and su(α) are ⊆-incomparable. Indeed, as-
sume that β < α. If Su(α)�ωβ 6= Sv(β)�ωβ then clearly sv(β) 6⊆ su(α)
by (i). If Su(α)�ωβ = Sv(β)�ωβ then su(α)(ωβ) = 0 or 2 by (iii), while
sv(β)(ωβ)=1 by (ii). Thus all su(α) are mutually ⊆-incomparable, so that
it suffices to show that conversely sv(β) <lex su(α) implies Sv(β) <lex Su(α).
Let ζ be the least ordinal such that sv(β)(ζ) < su(α)(ζ); then su(α)�ζ =
sv(β)�ζ and ζ ≤ min{ωα, ωβ}.

The case when ζ = ξ + 1 is clear: then by definition Su(α)�ξ = Sv(β)�ξ
while Sv(β)(ξ) < Su(α)(ξ), so suppose that ζ = ωδ, where δ ≤ min{α, β}.
Then obviously Su(α)�ωδ = Sv(β)�ωδ. Assume that one of the ordinals α, β
is equal to δ, say β = δ. Then sv(β)(ωδ) = 1 while su(α)(ωδ) is computed
by (iii). Now, as sv(β)(ωδ) < su(α)(ωδ), we conclude that su(α)(ωδ) = 2,
hence Sv(β) <lex Su(α), as required. Assume now that δ < min{α, β}. Then
clearly α and β appear in one and the same class (iii) or (i) with respect
to δ. However this cannot be (iv) because sv(β)(ωδ) 6= su(α)(ωδ). Hence we
are in (iii), so that, for some (unique) w ∈ U ,

0 = Sv(β) <lex Sw(δ) <lex Su(α) = 2,
as required.

This ends the proof of the lemma, except for the fact that the sequences
su(α) belong to 3<Ω, but improvement to 2<Ω is easy.

12. Decomposing thin OD sets in the Solovay model

Proof of Theorem 2. Let 4 be an OD PQO on ωω, ≈ be the associated
equivalence relation, and X∗ ⊆ ωω be an OD 4-thin set. Assume towards a
contradiction that the OD set U of all reals x ∈ X∗ which do not belong to
any OD 4-chain is non-empty.

Let F consist of all LR order preserving (Section 2) OD maps F :
〈ωω;4〉 → 〈A;6lex〉, where A ⊆ 2<Ω is an antichain. If R ⊆ ωω then
let FR consist of all maps F ∈ F, antichain-collapsing on R in the sense that

if x, y ∈ R are 4-incomparable then F (x) = F (y),

or equivalently F (x) <lex F (y)⇒ x ≺ y for all x, y ∈ R. Any map F ∈ FR is
invariant with respect to the equivalence hull of the relation: x 6≺ y ∧ y 6≺ x.

Define an OD equivalence relation by x ER y iff ∀F ∈ FR (F (x) = F (y)).
If R ⊆ R′ then FR′ ⊆ FR, and hence x ER y implies x ER′ y.

Lemma 20. If R ⊆ ωω is OD and ER ⊆ S ⊆ ωω ×ωω, and if S is OD,
then there is a function F ∈ FR such that ∀x, y (F (x) = F (y)⇒ S(x, y)).

Proof. Clearly cardFR = Θ and FR admits an OD enumeration {Fξ :
ξ < Θ}. If x ∈ ωω then let f(x) = F0(x)∧F1(x)∧ . . . ∧Fξ(x)∧ . . . , the con-
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catenation of all sequences Fξ(x). Then f : 〈ωω;4〉 → 〈W ;6lex〉 is an LR
order preserving OD map, where W = ran f = {f(r) : r ∈ ωω} ⊆ 2Θ,
and f(x) = f(y) ⇒ S(x, y) by construction. By Lemma 19 there is an OD
isomorphism g : 〈W ;6lex〉 → 〈A;6lex〉 onto an antichain A ⊆ 2<Ω. The
superposition F (x) = g(f(x)) proves the lemma.

Lemma 21. If R ⊆ ωω is OD then P×ER P forces ẋle ER ẋri.

Proof. Otherwise by Lemma 16 there is a function F ∈ FR, an ordinal
ξ < Ω, and a saturated condition X × Y in P×ER P which (P×ER P)-forces
F (ẋle)(ξ) = 0 6= 1 = F (ẋri)(ξ) (or forces F (ẋle)(ξ) = 1 6= 0 = F (ẋri)(ξ)).
Then F (x)(ξ) = 0 6= 1 = F (y)(ξ) for any pair 〈x, y〉 ∈ X × Y , so that we
have F (x) 6= F (y) and hence ¬(x ER y) whenever 〈x, y〉 ∈ X × Y . This
contradicts the choice of X × Y in P×ER P.

Lemma 22. If ∅ 6= R ⊆ U is OD then R×R (P×ER P)-forces ẋle 6≈ ẋri.

Proof. Otherwise there is a condition X × Y in P×ER P with X,Y ⊆ R
which forces ẋle ≈ ẋri. Let W = {〈x, x′〉 ∈ X ×X : x ER x′ ∧ x′ 6≈ x}.
We claim that W = ∅. Indeed, otherwise the forcing P(W ) = {P ⊆W :
∅ 6= P ∈ OD} 6= ∅ is just a 2-dimensional version of P with the same basic
properties. In particular P(W ) adds pairs 〈xle, xri〉 ∈ W with xle ER xri
and xle 6≈ xri. If P ∈ P(W ) then obviously [domP ]ER = [ranP ]ER .

Consider the forcing notion P = P(W ) ×ER P(Y ) of all pairs P × Y ′,
where P ∈ P(W ), Y ′ ∈ P, Y ′ ⊆ Y , and [domP ]ER ∩ [Y ′]ER 6= ∅. For instance,
W ×Y ∈P. Then P adds a pair 〈xle, xri〉 ∈W and a real x ∈ Y such that
the pairs 〈xle, x〉 and 〈xri, x〉 belong to X × Y and are (P×ER P)-generic,
hence xle ≈ x ≈ xri by the choice of X × Y . On the other hand, xle 6≈ xri
as 〈xle, xri〉 ∈W , which is a contradiction.

Thus W = ∅. Then X is a 4-chain: if x, y ∈ X are 4-incomparable
then by definition x ER y, hence x ≈ y, a contradiction. Thus X is an OD
4-chain with ∅ 6= X ⊆ U, contrary to the definition of U.

Lemma 23. Let R ⊆ U be a non-empty OD set. Then R × R does not
(P×ER P)-force that ẋle, ẋri are 4-comparable.

Proof. Suppose to the contrary that R × R forces the comparability.
Then by Corollary 17 and Lemma 22 there is a condition X ×Y in P×ER P
with X,Y ⊆ R which (P×ER P)-forces ẋle ≺ ẋri. (For if it forces ẋri ≺ ẋle

then replace X × Y by Y ×X.)

Claim 24. If x ∈ X, y ∈ Y , and x ER y then x ≺ y.

Proof. Otherwise the OD set W = {〈x, y〉 ∈ X × Y : x ER y ∧ x 6≺ y}
is non-empty. Let X ′ = domW . As X ′ ⊆ R, there is a condition A × B in
P×ER P with A∪B ⊆ X ′ which forces ẋle ≺ ẋri. (See the choice of X×Y.)
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Let Z = {〈x, y〉 ∈W : x ∈ A} and consider the forcing notion P =
P(Z)×ER P(B) of all non-empty OD sets P ×B′, where P ⊆ Z, B′ ⊆ B, and
[B′]ER ∩ [domP ]ER 6= ∅ (equivalently, [B′]ER ∩ [ranP ]ER 6= ∅). For instance,
Z × B ∈ P. It adds a pair 〈xle, xri〉 ∈ Z and a separate real x ∈ B such
that both pairs 〈xle, x〉 and 〈xri, x〉 are (P×ER P)-generic. It follows that
P forces both ẋle ≺ ẋ (as this pair belongs to A × B) and ẋ ≺ ẋri (this
one belongs to X × Y ), hence it forces ẋle ≺ ẋri. Yet P forces ẋle 6≺ ẋri

(as this pair belongs to Z ⊆W ), a contradiction.

Corollary 25. The OD set C = {x′ : ∃x ∈ X (x ER x′ ∧ x′ 4 x)} is
downwards 4-closed in each ER-class, X ⊆ C, and Y ∩ C = ∅.

Claim 26. If x ∈ C ∩R, y ∈ Rr C, and y ER x, then x ≺ y.

Proof. Otherwise the setH0 = {y ∈ RrC : ∃x∈C ∩R (x ER y ∧ x 6≺ y)}
in OD is non-∅. As above (the choice of X,Y ), there is a condition H ×H ′
in P×ER P with H ∪H ′ ⊆ H0 which forces ẋle ≺ ẋri. Similarly to Claim 24,
if 〈y, y′〉 ∈ H ×H ′ and y ER y′ then y ≺ y′. Then the set

C1 = {x ∈ C ∩R : ∃y′ ∈ H ′ (x ER y′ ∧ x 6≺ y′)}

satisfies [C1]ER = [H]ER = [H ′]ER by construction, hence C1×H belongs to
P×ER P. Let 〈x1, y〉 ∈ C1×H be any (P×ER P)-generic pair. Then x1 ER y
and x1 ≺ y or y ≺ x1 by Lemmas 21 and 22. But y ≺ x1 fails by Claim 24.
Thus in fact x1 ≺ y. Hence if y′ ∈ H ′ and x1 ER y′ then x1 ≺ y ≺ y′, which
contradicts x1 ∈ C1.

Claim 27. [X]ER ∩ [Y ]ER = ∅.

Proof. By Corollary 25, Claim 26, and Lemma 20, there is a function
F ∈ FR such that if x ∈ C, y 6∈ C, and F (x) = F (y) then y 64 x, and if in
addition x, y ∈ R then even x ≺ y. We will prove that the derived function

G(x) =

{
F (x)∧0 whenever x ∈ C,
F (x)∧1 whenever x ∈ ωω r C,

belongs to FR. Let x 4 y. Then F (x) 6lex F (y) as F ∈ FR, and moreover
G(x) 6lex G(y), since if F (x) = F (y) then y ∈ C ∧ x 6∈ C is impossible
by the choice of F, x, y. Now suppose that x, y ∈ R and G(x) <lex G(y).
Then either F (x) <lex F (y)—then immediately x ≺ y since F ∈ FR, or
F (x) = F (y)—then x ∈ C and y 6∈ C by the definition of G, hence x ≺ y by
the choice of F . Thus G ∈ FR. Now if x ∈ X, y ∈ Y then x ∈ C and y 6∈ C,
hence G(y) 6= G(x), and x ER y fails as G ∈ FR.

But [X]ER ∩ [Y ]ER 6= ∅ as X × Y belongs to P×ER P. Lemma 23

Lemmas 23 and 18 imply Theorem 2. Theorem 2
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13. The theorem on analytic thin subsets. Here we begin the proof
of Theorem 3. The theorem is essentially established in [5, Theorems 3.1 and
5.1]. Literally, only the case of ∆1

1 subsets X∗ is considered in [5], but the
case of Σ1

1 sets X∗ can be obtained by a rather straightforward modification
of the arguments in [5]. See also [9] as regards the additional requirement
in claim (II) of the theorem, which is also presented in [5] implicitly. Nev-
ertheless, following a referee’s advice, we decided to incorporate a sketch
of the proof of Theorem 3, just to make the text self-contained and more
reader-friendly, and to make the proof of Theorem 1(A) complete.

The proof presented here will largely follow the arguments in [5], but of
necessity we modify them here and there in order to distinguish some key
ingredients of the proof, in some cases mixed in [5] in the general flow of
arguments. In particular, we give more attention to the details of coding of
∆1

1 maps, presented in [5] with extreme brevity.
On the other hand, we skip the proof of the non-thinness lemma (Lemma

34), with a reference to both [5] and our Lemma 18 (with a very similar
proof). We also replace reflection arguments in [5] with more transparent
constructions, beginning with the following:

Lemma 28 (Kreisel selection). Let D be the set of all ∆1
1 points in ωω.

If P ⊆ ωω ×D is a Π1
1 set, and X ⊆ domP is Σ1

1 , then there is a ∆1
1 set

Y ⊆ domP and a ∆1
1 function F : Y → D such that X ⊆ Y and F ⊆ P .

Proof. The set X0 = domP is Π1
1 since Π1

1 is closed under ∃y ∈ ∆1
1.

Therefore by separation there is a ∆1
1 set Y such that X ⊆ Y ⊆ X0. By Π1

1

uniformization, there is a Π1
1 set F ⊆ P such that domF = Y and Y is a

function. To show that F is in fact ∆1
1, note that F (x) = y iff x ∈ Y and

∀y′ ∈ D (y 6= y′ ⇒ 〈x, n′〉 6∈ F ), which leads to a Σ1
1 definition.

14. Ingredient 1: coding ∆1
1 functions. Let 4 be a ∆1

1 PQO on ωω

and ≈ be the associated equivalence relation.
Recall that ωCK

1 is the least non-recursive (= the least non-∆1
1) ordinal.

If α < ωCK
1 then let F(α) be the set of all LR order preserving (Section 2)

∆1
1 maps F : 〈ωω;4〉 → 〈2α;6lex〉. Let F =

⋃
α<ωCK

1
F(α).

If R ⊆ ωω then let FR consist of all maps F ∈ F antichain-collapsing
on R in the sense of Section 12. We define

x EF y iff ∀F ∈ F (F (x) = F (y)),

x ER y iff ∀F ∈ FR (F (x) = F (y)); EF = E∅.

Lemma 29. Let R ⊆ ωω be a Σ1
1 set. Then both EF and ER are Σ1

1

equivalence relations, and ≈ ⊆ EF ⊆ ER.
If EF ⊆ S ⊆ ωω × ωω and S is Π1

1 then there is F ∈ F such that
∀x, y (F (x) = F (y)⇒ S(x, y)). The same is true for ER, with F ∈ FR.
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Proof. This looks similar to Lemma 20, yet the proof is quite different.
We focus on EF; the case of ER does not differ much. We begin with a
coding of functions in F, based on a standard coding system for ∆1

1 sets.

(I) (see, e.g., [11, 2.8.1].) There is a Π1
1 set of codes Code ⊆ ω, and for

any k ∈ Code a ∆1
1 set Bk ⊆ ωω×ωω, and two Π1

1 sets W,W ′ ⊆ ω×ωω×ωω
such that, first, {Bk : k ∈ Code} is exactly the family of all ∆1

1 sets B ⊆
ωω × ωω, and second, if k ∈ Code and x, y ∈ ωω then

〈x, y〉 ∈ Bk ⇔ W (k, x, y) ⇔ ¬W ′(k, x, y).

(II) We define CF = {k ∈ Code : Bk is a total map ωω → ωω}, the set
of codes of all ∆1

1 functions F : ωω → ωω; this is still a Π1
1 set because the

key condition domBk = ωω can be expressed by ∀x ∃y ∈ ∆1
1(x) W (k, x, y),

where the quantifier ∃y ∈ ∆1
1(x) is known to preserve the type Π1

1 .

(III) If ε ∈ ωω then let ≤ε = {〈i, j〉 : ε(2i · 3j) = 0}. Let WO consist
of all ε such that ≤ε is a (non-strict) wellordering of the set dom(≤ε). If
ε ∈ WO then we let |ε| = otp(ε) < ω1 be the order type of ≤ε, let βε :
dom(≤ε) → |ε| be the order-preserving bijection, and let Hε : ωω → (ωω)|ε|

be the induced homeomorphism. If in addition k ∈ CF then let F εk be the

∆1
1 map ωω → (ωω)|ε| defined by F εk (x) = Hε(Bk(x)) for all x ∈ ωω.

(V) Let Π be the set of all pairs 〈ε, k〉 such that ε ∈WO is ∆1
1, k ∈ CF,

and F εk ∈ F. If R ⊆ ωω is Σ1
1 then let Π(R) = {〈ε, k〉 ∈ Π : F εk ∈ FR}.

Claim 30 (routine). Π ⊆ ωω×ω is a countable Π1
1 set of ∆1

1 elements,
and F = {F εk : 〈ε, k〉 ∈ Π}. If R ⊆ ωω is a Σ1

1 set then Π(R) ⊆ ωω × ω is a
countable Π1

1 set of ∆1
1 elements, and FR = {F εk : 〈ε, k〉 ∈ Π(R)}.

It follows that EF is Σ1
1 , since x EF y is equivalent to either of the

formulas ∀〈ε, k〉 ∈ Π (F εk (x) = F εk (y)) and ∀〈ε, k〉 ∈ Π (Bk(x) = Bk(y)).

We will prove the claim of Lemma 29 related to S. We rewrite the as-
sumption as ∀x, y (¬S(x, y)⇒ ¬(x EF y)), or equivalently by Claim 30 as

∀x, y
(
¬S(x, y) ⇒ ∃〈ε, k〉 ∈ ∆1

1 (〈ε, k〉 ∈ Π ∧ F εk (x) 6= F εk (y))︸ ︷︷ ︸
P (x,y; ε,k)

)
.

The relation P is Π1
1 by means of (I) and Claim 30. Lemma 28 yields a ∆1

1

set W ⊆ ωω × ωω satisfying ¬S(x, y) ⇒ W (x, y), and a ∆1
1 map Φ(x, y) =

〈ε(x, y), k(x, y)〉 : W → Π with F
ε(x,y)
k(x,y) (x) 6= F

ε(x,y)
k(x,y) (y) for all 〈x, y〉 ∈ W

—then, in particular, for all x, y with ¬S(x, y).

Then Z = {Φ(x, y) : 〈x, y〉 ∈W} is a Σ1
1 subset of the Π1

1 set Π. By
separation, there is a ∆1

1 set D such that Z ⊆ D ⊆ Π. As a countable
∆1

1 set, it admits a ∆1
1 enumeration D = {〈εn, kn〉 : n ∈ N}, and by con-

struction ∀n (F εnkn (x) = F εnkn (y)) implies S(x, y). Then the map F (x) =
F ε0k0 (x)∧F ε1k1 (x)∧ belongs to F and satisfies F (x) = F (y)⇒ S(x, y). Lemma29
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15. Ingredient 2: invariant separation. Under the assumptions of
Theorem 3, let E be a Σ1

1 equivalence relation. A set X ⊆ ωω is downwards,
resp., upwards 4-closed in each E-class iff x ∈ X ⇒ y ∈ X whenever x E y
and y 4 x, resp. x 4 y.

Lemma 31. Let E be a Σ1
1 equivalence relation containing ≈, and let

X,Y be Σ1
1 sets such that y 64 x whenever x ∈ X ∧ y ∈ Y ∧ x E y. Then

there is a ∆1
1 set Z that is downwards 4-closed in each E-class and satisfies

X ⊆ Z and Y ∩ Z = ∅.
Proof. Let Y ′ = {y′ : ∃y ∈ Y (y 4 y′)}; still Y ′ ∩ X = ∅ and Y ′ is Σ1

1 .
Using separation, define an increasing sequence of sets

X = X0 ⊆ A0 ⊆ X1 ⊆ A1 ⊆ · · · ⊆ Xn ⊆ An ⊆ · · · ⊆ ωω r Y ′

so that An ∈ ∆1
1 and Xn+1 = {x′ ∈ ωω : ∃x ∈ An (x′ E x ∧ x′ 4 x)} for

all n. If An ∩ Y ′ = ∅ then Xn+1 ∩ Y ′ = ∅ as well since Y ′ is upwards closed,
which justifies the inductive construction. Furthermore, a proper execution
of the construction yields the final set Z =

⋃
nAn =

⋃
nXn in ∆1

1. (We refer
to the proof of an “invariant” effective separation theorem 5.1 in [4] or a
similar construction in [11, Lemma 10.4.2].) Note that by definition X ⊆ Z,
but Z ∩ Y = ∅, and Z is downwards 4-closed in each E-class.

Coming back to the relations introduced in Section 14, we prove

Corollary 32.

(i) If X,Y ⊆ ωω are Σ1
1 sets, and y 64 x whenever x ∈ X, y ∈ Y and

x EF y, then [X]EF
∩ [Y ]EF

= ∅.
(ii) If X,Y ⊆ R ⊆ ωω are Σ1

1 sets, and x ≺ y whenever x ∈ X, y ∈ Y
and x ER y, then [X]ER ∩ [Y ]ER = ∅.

Proof. Otherwise by Lemma 31 there is a ∆1
1 set C such that X ⊆ C,

Y ∩ C = ∅, and C is downwards 4-closed in each EF-class. By Lemma 29,
there is a map F ∈ F, resp. F ∈ FR in case (ii), such that if F (x) = F (y)
and x 4 y then y ∈ C ⇒ x ∈ C. Then the derived function

G(x) =

F (x)∧0 whenever x ∈ C,

F (x)∧1 whenever x ∈ ωω r C,

belongs to F, resp. FR in case (ii) (see the proof of Claim 27).
Now if x ∈ X and y ∈ Y, then x ∈ Z and y 6∈ Z, hence G(x) 6= G(y) and

¬(x EF y), resp. ¬(x ER y) in case (ii), which is a contradiction.

16. Ingredient 3: the Gandy–Harrington forcing. The Gandy–
Harrington forcing notion P is the set of all Σ1

1 sets ∅ 6= X ⊆ ωω ordered so
that smaller sets are stronger conditions. It is known that P adds a point
of ωω, whose name will be ẋ.
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If E is a Σ1
1 equivalence relation on ωω then a related forcing P ×E P

defined in [5] consists of all sets of the form X × Y, where X, Y ∈ P and
[X]E ∩ [Y ]E 6= ∅. A condition X × Y in P×E P is saturated iff [X]E = [Y ]E.
Similarly to Lemma 8, if X × Y is a condition in P ×E P then there is a
stronger saturated subcondition X ′ × Y ′ ⊆ X × Y in P×E P.

The forcings P and P×EP will be used below as forcing notions over the
ground set universe V. Given a Σ1

1 (or Π1
1 ) set X in the ground universe V,

we denote by the same letter X the extended set (i.e., defined by the same
formula) in any generic extension of V. This does not lead to ambiguities
by Shoenfield absoluteness (see [14, 2.4] for more details).

Lemma 33 ([11, A.5.4]). If X ∈ P then X P-forces that ẋ ∈ X. There-
fore if Φ(x) is a Π1

2 formula and Φ(x) holds for all x ∈ X then X P-forces
Φ(ẋ). The same is true for forcing notions of the form P×E P, where E is
a Σ1

1 equivalence relation.

The next two important results are similar to (and are direct prototypes
of) our Lemma 18, resp. Lemma 21, hence we skip the proofs.

Lemma 34 ([5, 2.9]). Suppose that 4 is a ∆1
1 PQO on ωω, and, for any

R ∈ P, ER is a Σ1
1 equivalence relation on ωω such that if R ⊆ R′ then

x ER y implies x ER′ y. Assume that X∗ ∈ P, and if R ∈ P and R ⊆ X∗

then R×R does not (P×ER P)-force that ẋle, ẋri are 4-comparable. Then
X∗ is not 4-thin.

Lemma 35 ([5, 2.7]). If R ⊆ ωω is Σ1
1 then the forcing P×ER P forces

ẋle ER ẋri. In particular, as E∅ = EF, P×E P forces ẋle E ẋri.

17. Bounding thin analytic partial orderings

Proof of Theorem 3(I). So let 4 be a ∆1
1 PQO on ωω, ≈ be the associated

equivalence, and X∗ ⊆ ωω be a Σ1
1 4-thin set. Then ≈ is a subrelation of the

Σ1
1 equivalence relation E = EF by Lemma 29. We claim that the relations
≈ and E coincide on X∗, in particular x E y ⇔ x ≈ y for x, y ∈ X∗. Then
by Lemma 29, there is a function F ∈ F such that F (x) = F (y) implies
x ≈ y for all x, y ∈ X∗. This yields (I) of Theorem 3.

Assume towards a contradiction that ≈ is a proper subrelation of E on
X∗; then V = {x ∈ X∗ : ∃y ∈ X∗ (x 6≈ y ∧ x E y)}, a Σ1

1 set, is non-empty.

Lemma 36 ([5, Section 3, Claims 2 and 3]). The condition V×V(P×E P)-
forces that ẋle and ẋri are 4-incomparable.

Proof. Suppose to the contrary that a subcondition X × Y either forces
ẋle ≈ ẋri or forces ẋle ≺ ẋri. We will get a contradiction in both cases.
Note that X,Y ⊆ V are non-empty Σ1

1 sets and [X]E ∩ [Y ]E 6= ∅.
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Case A: X × Y forces ẋle ≈ ẋri. Similarly to the proof of Lemma 22,
the Σ1

1 set W = {〈x, x′〉 ∈ X ×X : x E x′ ∧ x′ 6≈ x} is empty, so that E and
≈ coincide on X. Then, as X ⊆ V, at least one of the Σ1

1 sets

B = {x′ : ∃x∈X (x E x′ ∧ x′ 64 x)}, B′= {x′ : ∃x∈X (x E x′ ∧ x 64 x′)}
is non-empty, let say B 6= ∅. Consider the Σ1

1 set

A = {x′ : ∃x ∈ X (x E x′ ∧ x′ 4 x)};
then X ⊆ A. We have A∩B = ∅, A is downwards closed while B is upwards
closed in each E-class, therefore y 64 x whenever x ∈ A, y ∈ B, and x E y.
Then [A]E ∩ [B]E = ∅ by Corollary 32(i). Yet by definition [X]E ∩ [B]E 6= ∅
and X ⊆ A, which is a contradiction.

Case B: X × Y forces ẋle ≺ ẋri. We claim that the Σ1
1 set W =

{〈x, y〉 ∈ X × Y : x E y ∧ y 4 x} is empty. Indeed, suppose that W 6= ∅. Let
P(W ) contain all non-empty Σ1

1 sets P ⊆W ; if P ∈ P(W ) then [domP ]E =
[ranP ]E. Let P(W ) ×E P(W ) contain all products P × Q, where P,Q ∈
P(W ) and [domP ]E ∩ [domQ]E 6= ∅; then W ×W ∈ P(W )×E P(W ).

Let 〈x, y;x′, y′〉 be a P(W )×E P(W )-generic quadruple in W ×W , so
that both 〈x, y〉 ∈ W and 〈x′, y′〉 ∈ W are P(W )-generic pairs in W , and
both y 4 x and y′ 4 x′ hold by the definition of W . On the other hand,
an easy argument shows that both criss-cross pairs 〈x, y′〉 ∈ X × Y and
〈x′, y〉 ∈ X × Y are P×E P-generic, hence x ≺ y′ and x′ ≺ y by the choice
of X × Y . Altogether y 4 x ≺ y′ 4 x′ ≺ y, which is a contradiction.

Thus W = ∅. Then the Σ1
1 sets

X0 = {x′ : ∃x ∈ X (x E x′ ∧ x′ 4 x)}, Y0 = {y′ : ∃y ∈ Y (y E y′ ∧ y 4 y′)}
are disjoint and 4-closed, resp. downwards and upwards, in each E-class,
hence [X0]E∩ [Y0]E = ∅ by Corollary 32(i). However [X]E∩ [Y ]E 6= ∅, which
is a contradiction as X ⊆ X0 and Y ⊆ Y0.

By Lemmas 36 and 34 (ER = E for all R), the set V, and hence the
bigger set X∗ as well, are not 4-thin, contrary to our assumptions.

18. Decomposing thin analytic partial orderings

Proof of Theorem 3(II). Let U be the set of all reals x ∈ X∗ such
that there is no ∆1

1 4-chain C containing x. Note that U is Σ1
1 . Indeed,

x ∈ U iff x ∈ X∗ and ∀C ∈ ∆1
1, if x ∈ C then C is not a chain, i.e.,

∃y, z ∈ C (z 64 y ∧ y 64 z). And ∀C ∈ ∆1
1 preserves Σ1

1 .
We assume to the contrary that U 6= ∅.
Here we will use equivalence relations of the form ER (Section 14).

Lemma 37 ([5, Section 5, Claims 1–3]). Let ∅ 6= R ⊆ U be Σ1
1 . Then

R×R does not (P×ER P)-force that ẋle and ẋri are 4-comparable.
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Proof. Suppose to the contrary that R×R forces the comparability. Then
there is a subcondition X × Y which forces either ẋle ≈ ẋri or ẋle ≺ ẋri;
X,Y ⊆ R are non-empty Σ1

1 sets and [X]ER ∩ [Y ]ER 6= ∅.
Case A: X × Y forces ẋle ≈ ẋri. Similarly to the proof of Lemma 22,

the Σ1
1 set W = {〈x, x′〉 ∈ X ×X : x ER x

′ ∧ x′ 6≈ x} is empty, and hence X
is a 4-chain by Lemma 35. To cover X by a ∆1

1 chain, make use of a typical
trick. Let C be the Π1

1 set of all reals 4-comparable with each x ∈ X; then
X ⊆ C. By separation there is a ∆1

1 set D with X ⊆ D ⊆ C. Let C ′ be
the Π1

1 set of all reals in D that are 4-comparable with each d ∈ D; then
X ⊆ C ′ ⊆ D. Take any ∆1

1 set B with X ⊆ B ⊆ C ′. By construction B is a
∆1

1 4-chain with ∅ 6= X ⊆ B, contrary to the definition of U.

Case B: X×Y forces ẋle ≺ ẋri. Similarly to the proof of Claim 24, the
Σ1

1 set W = {〈x, y〉 ∈ X × Y : x ER y ∧ x 6≺ y} is empty, so that if x ∈ X,
y ∈ Y and x ER y then x ≺ y. Thus [X]ER ∩ [Y ]ER = ∅ by Corollary 32(ii),
which contradicts the choice of X × Y in P×ER P.

Lemmas 37 and 34 imply claim (II) of Theorem 3. Theorem 3
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