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Analytic joint spectral radius in a
solvable Lie algebra of operators

by

Daniel Beltiţă (Bucureşti)

Abstract. We introduce the concept of analytic spectral radius for a family of oper-
ators indexed by some finite measure space. This spectral radius is compared with the al-
gebraic and geometric spectral radii when the operators belong to some finite-dimensional
solvable Lie algebra. We describe several situations when the three spectral radii coincide.
These results extend well known facts concerning commuting n-tuples of operators.

1. Introduction. The joint spectral radius ([17]) has recently proved its
usefulness in the solution of an important open problem concerning invariant
subspaces (cf. [24]; see also [20], [21]). The importance of that concept is also
revealed by Theorem 4 of [10], which characterizes the existence of functional
calculus with “holomorphic functions” on a polydisk corresponding to a basis
in a nilpotent Lie algebra; this extends the natural calculus with polynomials
in several non-commuting variables.

Recall that if X is a complex Banach space and T ∈ B(X ) is a bounded
linear operator on X , then we have the spectral radius formula

(∗) r(T ) := sup{|z| | z ∈ σ(T )} = lim
k→∞

‖T k‖1/k.

Several multidimensional variants of this equality have been studied.
Namely, for arbitrary T = (T1, . . . , Tn) ∈ B(X )n and p ∈ [1,∞], in [4],
[13] the algebraic spectral radius %p(T ) was defined generalizing the right
hand side of (∗) (see Definition 2.7 below). The middle term of (∗) can be
directly extended to commuting tuples using the Taylor spectrum or, more
generally, to tuples generating a nilpotent Lie algebra, by means of the spec-
trum introduced in [12]. In this way one gets the geometric spectral radius
rp(T ) and we have

(∗∗) rp(T ) ≤ %p(T )
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whenever rp(T ) makes sense (see [4], [16], [13], [7]). Moreover in [7] it is
proved that rp(T ) = %p(T ) if dimX < ∞. See [14], [4], [23], [13] and [10]
for several situations when we have equality in (∗∗) on infinite-dimensional
spaces, thus generalizing (∗).

On the other hand, a natural spectrum for finite-dimensional solvable Lie
algebras of operators was introduced in [1]. (See [2] for a comparison between
this spectrum and the one used in [5], [6] and [15]. Cf. also the monograph [3]
for further details.) This allows us to define the geometric spectral radius
rp(T ) for an n-tuple T ∈ B(X )n generating a finite-dimensional solvable
Lie subalgebra of B(X ) (see Definition 3.10 below). One of the aims of the
present paper is to prove that, under these conditions, we have the following
improvement of (∗∗):

(∗∗∗) rp(T ) ≤ lim sup
w∈Cn, ‖w‖q→∞

log ‖exp(w · T )‖
‖w‖q

≤ %p(T ),

where q ∈ [1,∞], 1/p + 1/q = 1 and w · T = w1T1 + . . . + wnTn for w =
(w1, . . . , wn) ∈ Cn (see Corollary 3.11). The middle term of (∗∗∗) will be
called the analytic spectral radius of T (see Definition 1.1) and another aim
of the present paper is to describe situations when the geometric, analytic
and algebraic spectral radii of T coincide (see Theorem 4.1). In particular,
we prove generalizations of the following improvement of (∗):

∀S ∈ B(X ), sup{|z| | z ∈ σ(S)} = lim sup
|w|→∞

log ‖exp(wS)‖
|w| = lim

k→∞
‖Sk‖1/k

(see Lemma 3.8).
It is worth noting that (as suggested by [22]) we shall not work actu-

ally with finite systems of operators. Instead we study families of operators
indexed by some finite measure space (T , µ). More precisely, we shall be
working with a function

θ : T → B(X )

having (at least) the properties that supt∈T ‖θ(t)‖ <∞ and for every x ∈ X
the X -valued function θ(·)x is Bochner measurable on (T , µ). (These as-
sumptions are obvious in the case of n-tuples, i.e. when T = {1, . . . , n} and
µ is the counting measure on T .) Under these conditions it is easily seen
that for every ϕ ∈ L1(T , µ) and every x ∈ X the function t 7→ ϕ(t)θ(t)x is
Bochner integrable on (T , µ). Moreover there exists Tϕ ∈ B(X ) such that

(1) ∀x ∈ X , Tϕx =
�

T
ϕ(t)θ(t)x dµ(t).

It is convenient to write

(2) Tϕ =:
�

T
ϕθ dµ,
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but we emphasize that this is not intended to mean automatically that
ϕθ : T → B(X ) is a Bochner integrable B(X )-valued function. We introduce
the following:

1.1. Definition. For p ∈ [1,∞], the analytic spectral radius of θ, de-
noted by rp(θ), is defined by

rp(θ) := lim sup
ϕ∈Lq(T ,µ), ‖ϕ‖q→∞

log ‖exp( � T ϕθ dµ)‖
‖ϕ‖q

,

where q ∈ [1,∞], 1/p+ 1/q = 1. Similarly, the local analytic spectral radius
of θ at x ∈ X is defined by

rp(θ, x) := lim sup
ϕ∈Lq(T ,µ), ‖ϕ‖q→∞

log ‖(exp( � T ϕθ dµ))x‖
‖ϕ‖q

.

Obviously the analytic spectral radius reduces to the middle term of (∗∗∗)
when T = {1, . . . , n}, µ is the counting measure on T and θ(j) = Tj for
j = 1, . . . , n.

Now we can outline the structure of the present paper. In Section 2 we
compare the analytic spectral radius with the algebraic one. In Section 3 we
define the Cartan–Taylor spectrum and the geometric spectral radius for a
function θ as above which takes values in some finite-dimensional solvable
Lie algebra of operators. Then we compare the three spectral radii: the
algebraic, analytic and geometric one (Theorem 3.9). Finally, in Section 4 we
describe some situations when these spectral radii coincide (Theorem 4.1).
Except for some notations introduced in [1], we use the familiar notation
from operator theory.

Finally, I should like to express many thanks to A. A. Dosiev and
Yu. V. Turovskĭı for sending me the preprints of [10], [20] and [21]. Theirs
is also the idea to call the spectrum introduced in [1] “Cartan–Taylor”
(cf. [25]).

2. Analytic vs. algebraic spectral radius. Throughout this section
we denote by (T , µ) a finite measure space. For every positive integer k and
every ϕ ∈ L1(T , µ) we define

ϕ[k] := ϕ⊗ . . .⊗ ϕ︸ ︷︷ ︸
k times

∈ L1(T × . . .× T , µ⊗ . . .⊗ µ),

so ϕ[k](t1, . . . , tk) = ϕ(t1) . . . ϕ(tk) almost everywhere on T × . . . × T with
respect to µ⊗ . . .⊗µ. Let X be a complex Banach space. In this section we
assume that θ : T → B(X ) is a function with the following properties:

(i) θ is bounded, i.e. sup{‖θ(t)‖ | t ∈ T } <∞.
(ii) For every x ∈ X , the function θ(·)x : T → X is Bochner measurable.
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Then it easily follows from [19] that for every positive integer k and every
x ∈ X , the function

θ[k](·)x : T × . . .× T → X
is Bochner integrable with respect to µ⊗ . . .⊗ µ, where

θ[k] : T × . . .× T → B(X ), (t1, . . . , tk) 7→ θ(t1) . . . θ(tk).

2.1. Remark. For θ to have the properties (i) and (ii) it suffices that
one of the following conditions is satisfied:

1o T is a finite set and µ is the counting measure on T .
2o There exists a finite-dimensional subspace U of B(X ) such that

θ(t) ∈ U for every t ∈ T , and θ is a bounded measurable (U-valued) function
on (T , µ).

3o T is a compact separable topological space, µ is a Radon measure
on T and θ : T → B(X ) is continuous with respect to the norm operator
topology on B(X ).

Now let us return to the general situation when θ has the properties (i)
and (ii). Then it is easily seen that for every k ≥ 1, x ∈ X and ϕ ∈ L1(T , µ),
the X -valued function ϕ[k](·)θ[k](·)x is Bochner integrable on T × . . . × T
with respect to µ⊗ . . .⊗µ. Moreover, by the Fubini theorem, for every k ≥ 1
we have

(Tϕ)kx =
�

T ×...×T
ϕ[k](t1, . . . , tk)θ[k](t1, . . . , tk)x d(µ⊗ . . .⊗ µ)(t1, . . . , tk)

for every x ∈ X , where Tϕ ∈ B(X ) is the one from (1). This allows us to
introduce the following notation generalizing (2):

(3) ∀k ≥ 1, (Tϕ)k =:
�

T ×...×T
ϕ[k]θ[k] d(µ⊗ . . .⊗ µ).

Now the following fact follows immediately from (2) and (3).

2.2. Lemma. For every ϕ ∈ L1(T , µ) we have

exp
( �

T
ϕθ dµ

)
=
∞∑

k=0

1
k!

�

T ×...×T
ϕ[k]θ[k] d(µ⊗ . . .⊗ µ),

where the series is norm convergent in B(X ). (The first term of the series
equals 1 by definition.)

Now let us remark that the properties (i) and (ii) together with the
finiteness of the measure µ imply that for every k ≥ 1, x ∈ X and p ∈ [1,∞]
we have

‖θ[k](·)x‖ ∈ Lp(T × . . .× T , µ⊗ . . .⊗ µ).

We denote by ‖θ[k](·)x‖p the Lp-norm of ‖θ[k](·)x‖. Then we can introduce
the following concept.
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2.3. Definition. For p ∈ [1,∞] we define the algebraic spectral radius
of θ by

%p(θ) := lim sup
k→∞

( sup
‖x‖=1

‖θ[k](·)x‖p)1/k,

and the local algebraic spectral radius of θ at x ∈ X by

%p(θ, x) := lim sup
k→∞

‖θ[k](·)x‖1/kp .

2.4. Remark. (a) If T = {1, . . . , n} and µ is the counting measure on T
then %p(θ) coincides with the algebraic spectral radius %p(T ) of the n-tuple
T = (θ(1), . . . , θ(n)) as defined in [4] (see also [7] and Definition 2.7 below).

(b) If p = ∞, T is an arbitrary set, µ is the counting (i.e. cardinal)
measure on T and θ : T → B(X ) has only the property (i) then %∞(θ) and
%∞(θ, x) can also be defined by the above formulas. In this situation the
algebraic spectral radius was used in [24], [20], [21], [10] etc. In the same
situation, the local algebraic spectral radius was used in [11] and [21].

For the sake of completeness we state the following auxiliary fact.

2.5. Lemma. Let p, q ∈ [1,∞], 1/p + 1/q = 1. If (S, ν) is a measure
space, ϕ ∈ Lp(S, ν) and y : S → X is a Bochner integrable function such
that ‖y(·)‖ ∈ Lq(S, ν) then ϕy is a Bochner integrable X -valued function
and ‖ϕy‖1 ≤ ‖ϕ‖p · ‖y‖q.

The main result of this section is the following.

2.6. Proposition. Let (T , µ) be a finite measure space and θ : T →
B(X ) be a function with the properties (i) and (ii) above. Then for every
p ∈ [1,∞] we have

rp(θ) ≤ %p(θ),
and

rp(θ, x) ≤ %p(θ, x) for every x ∈ X .

Proof. First note that for the second inequality it suffices to consider the
case ‖x‖ = 1. We prove both inequalities simultaneously and denote by R
(respectively L) the right (respectively left) hand side of one of them. So we
have to prove L ≤ R.

For every k ≥ 1 set Mk := sup‖x‖=1 ‖θ[k](·)x‖p for the first inequality,
and Mk := ‖θ[k](·)x‖p for the second. Then

R = lim sup
k→∞

M
1/k
k .

Hence for each ε > 0 there exists a constant C ≥ 1 such that

(4) ∀k ≥ 1, Mk ≤ C(R+ ε)k.
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Now let ϕ ∈ Lq(T , µ), ϕ 6≡ 0, and x ∈ X , ‖x‖ = 1 (where q ∈ [1,∞],
1/p+ 1/q = 1). By Lemma 2.2 we obviously have
∥∥∥
(

exp
( �

T
ϕθ dµ

))
x
∥∥∥ =

∥∥∥∥
∞∑

k=0

1
k!

�

T ×...×T
ϕ[k](·)θ[k](·)x d(µ⊗ . . .⊗ µ)

∥∥∥∥

≤
∞∑

k=0

1
k!
‖ϕ[k](·)θ[k](·)x‖1.

By Lemma 2.5 and the definition of Mk, we get
∥∥∥
(

exp
( �

T
ϕθ dµ

))
x
∥∥∥ ≤

∞∑

k=0

1
k!
‖ϕ[k](·)‖q‖θ[k](·)x‖p ≤

∞∑

k=0

1
k!
‖ϕ[k](·)‖q ·Mk.

But obviously ‖ϕ[k](·)‖q = ‖ϕ‖kq for each k. Hence by (4) one gets

∥∥∥
(

exp
( �

T
ϕθ dµ

))
x
∥∥∥ ≤

∞∑

k=0

1
k!
‖ϕ‖kq · C(R+ ε)k = C exp(‖ϕ‖q(R+ ε)),

so
log ‖(exp( � T ϕθ dµ))x‖

‖ϕ‖q
≤ logC
‖ϕ‖q

+R+ ε.

In view of the definition of L, the above inequality implies L ≤ R+ ε. Since
ε > 0 was arbitrary, we get L ≤ R, as desired.

In order to state a corollary of Proposition 2.6 we need the following
special case of Definition 2.3 (see Remark 2.4(a)). For a finite family (ai)i∈I
of complex numbers we define as usual

‖(ai)i∈I‖p =





max
i∈I
|ai| if p =∞,

(∑

i∈I
|ai|p

)1/p
if 1 ≤ p <∞.

Moreover for any positive integers k and n we denote by F (k, n) the set of
all functions ι : {1, . . . , k} → {1, . . . , n}.

2.7. Definition. Let T = (T1, . . . , Tn) ∈ B(X )n. Then for p ∈ [1,∞] we
define the algebraic spectral radius ([4], [13]) of T by

%p(T ) := lim sup
k→∞

( sup
‖x‖=1

‖(‖Tι(1) . . . Tι(k)x‖)ι∈F (k,n)‖p)1/k,

and the local algebraic spectral radius of T at x ∈ X by

%p(T, x) := lim sup
k→∞

(‖(‖Tι(1) . . . Tι(k)x‖)ι∈F (k,n)‖p)1/k.

Now we can state:



Analytic joint spectral radius 159

2.8. Corollary. Let T ∈ B(X )n and p, q ∈ [1,∞], 1/p+1/q = 1. Then

rp(T ) = lim sup
w∈Cn, ‖w‖q→∞

log ‖exp(w · T )‖
‖w‖q

≤ %p(T )

and

rp(T, x) = lim sup
w∈Cn, ‖w‖q→∞

log ‖(exp(w · T ))x‖
‖w‖q

≤ %p(T, x)

for every x ∈ X .

Proof. Apply Proposition 2.6 for T = {1, . . . , n}, µ the counting measure
on T and θ : T → B(X ), θ(j) = Tj for j = 1, . . . , n.

3. Geometric vs. analytic spectral radius. In this section we are
working in a framework which is a special case of the one from Section 2.
Namely we use the following objects throughout the present section:

(j) G is a complex finite-dimensional solvable Lie subalgebra of B(X );
(jj) (T , µ) is a finite measure space;

(jjj) θ is a bounded measurable G-valued function on (T , µ).

We assume moreover that the Banach space X is non-zero. By Re-
mark 2.1(2o), the function θ also has the properties (i) and (ii) from the
beginning of Section 2. In particular, Proposition 2.6 holds in the present
framework described by (j)–(jjj).

First of all we define the spectrum and the geometric spectral radius of θ.
To this end we use the notations of [1]. The following definition is suggested
by Corollary 2.7 of [1].

3.1. Definition. The Cartan–Taylor spectrum of θ is defined by

σ(θ) := {λ ◦ θ | λ ∈ Σ(G)}.
3.2. Remark. The definition of σ(θ) does not depend on G in the sense

that, if G1 is another finite-dimensional solvable Lie subalgebra of B(X ) such
that θ(t) ∈ G1 for each t ∈ T , then

(5) {λ ◦ θ | λ ∈ Σ(G1)} = {λ ◦ θ | λ ∈ Σ(G)}.
Indeed, we have {θ(t) | t ∈ T } ⊆ G1 ∩ G and Σ(G1 ∩ G) = Σ(G1)|G1∩G =
Σ(G)|G1∩G by Theorem 2.6 of [1]. So both sides of (5) equal {λ ◦ θ | λ ∈
Σ(G1 ∩ G)}.

3.3. Remark. For each p ∈ [1,∞], σ(θ) is a compact non-empty subset
of Lp(T , µ). Indeed, σ(θ) ⊆ Lp(T , µ) by the property (jjj) of θ since ‖λ‖ ≤ 1
for λ ∈ Σ(G) (see Corollary 4 of §27 in the monograph [3]) and the measure µ
is finite. Moreover Σ(G) is a compact non-empty subset of Ĝ by Corollary 2.8
of [1] and σ(θ) is the image of Σ(G) under the linear map λ 7→ λ ◦ θ defined
on the finite-dimensional vector space Ĝ.
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The above remark allows us to introduce the following concept.

3.4. Definition. For p ∈ [1,∞] we define the geometric spectral radius
of θ by

rp(θ) := sup{‖ζ‖p | ζ ∈ σ(θ)}
(where ‖ · ‖p denotes the norm of Lp(T , µ)).

Now we can prove an auxiliary fact which can be viewed as a kind of
spectral mapping theorem.

3.5. Lemma. (a) For θ as above and ψ ∈ L1(T , µ) we have

σ
( �

T
ψθ dµ

)
=
{ �

T
ψζ dµ

∣∣∣ ζ ∈ σ(θ)
}
.

(b) Let E be a finite-dimensional nilpotent Lie algebra and V a finite-
dimensional subspace of the enveloping algebra U(E). Let ω be a V-valued
measurable function on (T , µ) which is bounded (with respect to any norm
on V). Then for every representation % : E → B(X ) (naturally extended to
a morphism U(E)→ B(X ) denoted also by %) we have

σ
( �

T
% ◦ ω dµ

)
=
{ �

T
λ ◦ ω dµ

∣∣∣λ ∈ σ(%)
}
.

Proof. (a) Recall that � T ψθ dµ is an element of G, so we can compute
its spectrum by Corollary 2.7 of [1]:

σ
( �

T
ψθ dµ

)
=
{
λ
( �

T
ψθ dµ

) ∣∣∣λ ∈ Σ(G)
}

=
{ �

T
ψ · (λ ◦ θ) dµ

∣∣∣λ ∈ Σ(G)
}
.

Now the desired equality follows from Definition 3.1.
(b) As above, note that e := � T ω dµ is an element of V and

T :=
�

T
% ◦ ω dµ = %

( �

T
ω dµ

)
= %(e).

Now the spectrum of T = %(e) can be computed by the results of [12] (see
either Corollary 0.2 of [1] or Corollary 2.6.7 in [15]):

σ(T ) = {λ(e) | λ ∈ σ(%)} =
{
λ
( �

T
ω dµ

) ∣∣∣λ ∈ σ(%)
}

=
{ �

T
λ ◦ ω dµ

∣∣∣λ ∈ σ(%)
}
.

The following auxiliary result is suggested by Lemma 2 of [9].

3.6. Lemma. Let p, q ∈ [1,∞], 1/p + 1/q = 1. For every ε > 0 there
exists ψ ∈ Lq(T , µ) such that ‖ψ‖q = 1 and

rp(θ)− ε ≤ r
( �

T
ψθ dµ

)
≤ rp(θ).
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Proof. Since σ(θ) is a compact non-empty subset of Lp(T , µ) (see Re-
mark 3.3), there exists γ ∈ σ(θ) such that ‖γ‖p = rp(θ). Then choose
ψ ∈ Lq(T , µ) such that

(6) ‖ψ‖q = 1 and ‖γ‖p − ε ≤
∣∣∣

�

T
ψγ dµ

∣∣∣ ≤ ‖γ‖p.

By Lemma 3.5(a) we have

(7) σ
( �

T
ψθ dµ

)
=
{ �

T
ψζ dµ

∣∣∣ ζ ∈ σ(θ)
}
.

In particular � T ψγ dµ ∈ σ( � T ψθ dµ), so by (6) we get r( � T ψθ dµ)≥‖γ‖p−ε
= rp(θ)− ε.

On the other hand, by (7) and Hölder’s inequality we have

r
( �

T
ψθ dµ

)
= sup

{∣∣∣
�

T
ψζ dµ

∣∣∣
∣∣∣ ζ ∈ σ(θ)

}

≤ sup{‖ψ‖q‖ζ‖p | ζ ∈ σ(θ)} = rp(θ),

where the last equality follows from Definition 3.4 because ‖ψ‖q = 1.

3.7. Remark. The conclusion of the above lemma also holds for ε = 0
if we have the natural isometric isomorphism (Lp(T , µ))∗ ∼= Lq(T , µ). (This
happens e.g. if p < ∞ or if T is a finite set and µ is the counting measure
on T .)

For the sake of completeness we also prove the following fact (see also
Corollary 9 of §3 in the monograph [8]).

3.8. Lemma. For every S ∈ B(X ) we have

r(S) = lim sup
|z|→∞

log ‖exp(zS)‖
|z| = lim

k→∞
‖Sk‖1/k.

Proof. In view of the well known spectral radius formula (see (∗) in the
Introduction), it suffices to prove the following inequalities:

(8) r(S) ≤ lim sup
|z|→∞

log ‖exp(zS)‖
|z| ≤ lim

k→∞
‖Sk‖1/k.

The second inequality follows from Corollary 2.8 for n = 1. The first in-
equality can be deduced from the following well known fact:

(9) ∀R ∈ B(X ), sup{Rew | w ∈ σ(R)} = lim sup
0<t→∞

log ‖exp(tR)‖
t

.

Indeed, choose β ∈ σ(S) with |β| = r(S). Moreover let u ∈ C be such that
|β| = uβ and |u| = 1. Then |β| ∈ σ(uS) and r(uS) = r(S) = |β|, because
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|u| = 1. So sup{Rew | w ∈ σ(uS)} = r(uS) (= r(S)) and by (9) we get

r(uS) = lim sup
0<t→∞

log ‖exp(t(uS))‖
t

≤ lim sup
z∈C, |z|→∞

log ‖exp(zuS)‖
|z| .

This implies the first inequality of (8), since |u| = 1 and r(uS) = r(S).

Now we can prove the main result of this section.

3.9. Theorem. As above, let G be a complex finite-dimensional solvable
Lie subalgebra of B(X ), (T , µ) be a finite measure space and θ be a bounded
measurable G-valued function on (T , µ). For every p ∈ [1,∞] we have

rp(θ) ≤ rp(θ) ≤ %p(θ).
Proof. We have rp(θ) ≤ %p(θ) by Proposition 2.6 and Remark 2.1(2o).

To prove rp(θ) ≤ rp(θ), let q ∈ [1,∞], 1/p+ 1/q = 1. Let ε > 0 be arbitrary
and choose ψ ∈ Lq(T , µ) as in Lemma 3.6 above. Then by Lemma 3.8 we
get

rp(θ)− ε ≤ r
( �

T
ψθ dµ

)
= lim sup
|z|→∞

log ‖exp(z � T ψθ dµ)‖
|z|

= lim sup
|z|→∞

log ‖exp( � T zψθ dµ)‖
‖zψ‖q

,

because ‖ψ‖q = 1. Consequently,

rp(θ)− ε ≤ lim sup
ϕ∈Lq(T ,µ), ‖ϕ‖q→∞

log ‖exp( � T ϕθ dµ)‖
‖ϕ‖q

(= rp(θ)),

and the desired inequality rp(θ) ≤ rp(θ) follows at once since ε > 0 was
arbitrary.

Now we can obtain the inequalities (∗∗∗) from the Introduction. To this
end we specialize Definitions 3.1 and 3.4 in the following way.

3.10. Definition. Let T = (T1, . . . , Tn) ∈ B(X )n be a system of opera-
tors generating a finite-dimensional solvable Lie subalgebra L of B(X ). We
define the Cartan–Taylor joint spectrum of T by

σ(T ) := {(λ(T1), . . . , λ(Tn)) | λ ∈ Σ(L)} (⊂ Cn),

where Σ(L) is the spectrum of L (cf. [1]). Moreover, for p ∈ [1,∞], we define
the geometric spectral radius of T by

rp(T ) := sup{‖z‖p | z ∈ σ(T )},
where ‖ · ‖p is the usual lp-norm on Cn.

Obviously Definition 3.1 reduces to Definition 3.10 when T = {1, . . . , n},
µ is the counting measure on T and θ(j) = Tj for j = 1, . . . , n. The same
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special case of Theorem 3.9 coincides with the inequalities (∗∗∗) from the
Introduction. More precisely we have:

3.11. Corollary. If T ∈ B(X )n is a system of operators generating a
finite-dimensional solvable Lie subalgebra of B(X ), then for every p ∈ [1,∞]
we have

rp(T ) ≤ rp(T ) ≤ %p(T ).

4. Situations when the three spectral radii coincide. We are going
to prove the following result describing situations when, in the framework of
Theorem 3.9, the geometric, analytic and algebraic spectral radii coincide.

4.1. Theorem. Let (T , µ) be a finite measure space and θ : T → B(X )
be a bounded function such that there exists a finite-dimensional solvable
Lie subalgebra G of B(X ) with {θ(t) | t ∈ T } ⊂ G. Suppose that one of the
following conditions is fulfilled :

1o T is a finite set , µ is the counting measure on T , 1 ≤ p ≤ ∞ and
either

(a) G can be chosen nilpotent and dimX <∞, or
(b) G can be chosen abelian (i.e., the values of θ are mutually commu-

ting),

2o T is a compact separable topological space, µ is a positive Radon
measure on T , θ is continuous with respect to the norm operator topology
on B(X ), θ(t) ∈ B(X ) is a compact operator for every t ∈ T and p =∞,

3o X is a Hilbert space, G can be chosen nilpotent , θ is measurable and
p = 2.

Then
rp(θ) = rp(θ) = %p(θ).

Proof. In view of Theorem 3.9, it suffices to prove that rp(θ) = %p(θ)
under each of the hypotheses 1o–3o.

If 1o holds then rp(θ) = %p(θ) by either the main result of [7] (in the
case (a)), or Theorem 4 of [13] (in the case (b)).

Now assume that 2o holds. Replacing G by the Lie algebra generated by
{θ(t) | t ∈ T }, we may assume that G is a finite-dimensional solvable Lie
algebra of compact operators. Then G is triangularizable by Theorem 7′ of
[18] (see also Lemma 3.10 in [1]). Since θ is continuous and T is a compact
space, {θ(t) | t ∈ T } is a compact subset of G. Hence it is a compact set of
simultaneously triangularizable compact operators and by Corollary 4.8 of
[21] we get

(10) %∞(θ) = sup
t∈T

r(θ(t)).
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On the other hand, by Definitions 3.1 and 3.4 we have

r∞(θ) = sup
λ∈Σ(G)

‖λ ◦ θ‖∞.

But λ ◦ θ : T → C is a continuous function for every λ ∈ Σ(G) (since both
λ and θ are continuous), so

r∞(θ) = sup
λ∈Σ(G)

sup
t∈T
|(λ ◦ θ)(t)|.

Consequently,

(11) r∞(θ) = sup
t∈T

sup
λ∈Σ(G)

|λ(θ(t))| = sup
t∈T

sup
z∈σ(θ(t))

|z|,

since σ(θ(t)) = {λ(θ(t)) | λ ∈ Σ(G)} by Corollary 2.7 of [1]. (Recall that
θ(t) ∈ G for t ∈ T .) Now (10) and (11) together imply r∞(θ) = %∞(θ).

Finally, assume that 3o holds. For A ∈ B(X ) fixed for the moment, let VA
(⊆ B(X )) be the complex vector space spanned by the operators G∗AH with
G,H ∈ G. Obviously dimVA ≤ 2 dimG < ∞ and the VA-valued function
t 7→ (θ(t))∗Aθ(t) is bounded and measurable on the measure space (T , µ).
Define

M(A) :=
�

T
(θ(t))∗Aθ(t) dµ(t).

Obviously M : B(X ) → B(X ), A 7→ M(A), is a bounded linear operator.
Moreover it is easy to check that M is a completely positive map. More
generally, for every positive integer k and every A ∈ B(X ), the values of
the function t 7→ (θ[k](t))∗Aθ[k](t) are contained in some finite-dimensional
vector subspace of B(X ) and this function is bounded and measurable on
the measure space (T × . . . × T , µ ⊗ . . . ⊗ µ) (see the notations from the
beginning of Section 2). It is easily seen that

Mk(A) =
�

T ×...×T
(θ[k](·))∗Aθ[k](·) d(µ⊗ . . .⊗ µ), A ∈ B(X ),

and Mk : B(X )→ B(X ) is a completely positive map. Hence

‖Mk‖ = ‖Mk(IX )‖ =
∥∥∥

�

T ×...×T
(θ[k](·))∗θ[k](·) d(µ⊗ . . .⊗ µ)

∥∥∥,

where IX is the identity operator on X . Since the last integral defines a
positive operator Bk (as is easily checked), we have

(12) ‖Bk‖ = sup
‖x‖=1

〈Bkx, x〉 = sup
‖x‖=1

�

T ×...×T
‖θ[k](·)x‖2 d(µ⊗ . . .⊗ µ)

= sup
‖x‖=1

‖θ[k](·)x‖22.
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Hence we can compute the spectral radius of M as follows:

(13) r(M) = lim
k→∞

‖Mk‖1/k = lim
k→∞

‖Bk‖1/k = (%2(θ))2,

by (12) and Definition 2.3.
On the other hand, we have

(14) σ(M) = {‖ζ‖22 | ζ ∈ σ(θ)},
so r(M) = (r2(θ))2 by Definition 3.4. Then by (13) we get r2(θ) = %2(θ), as
desired.

Now, to prove (14) one uses Lemma 3.5. To this end denote by Gop the
opposite Lie algebra of G (i.e. Gop coincides with G as a vector space and
has the bracket [·, ·]op defined by [T, S]op := −[T, S]). Set Z := B(X ) and
consider the representation

% : Gop × Gop → B(Z), (T, S) 7→ LT ∗ +RS ,

where LT ∗(A) = T ∗A, RS(A) = AS for T, S ∈ Gop and A ∈ B(X ). For the
spectrum of this representation ([15]) we have

(15) σ(%) = {λ⊗ λ | λ ∈ σ(idG)},
where (λ ⊗ λ)(T, S) = λ(T ) + λ(S) for T, S ∈ Gop and λ ∈ σ(idG) (see
[5], [6] and Theorem 3.6.7 of [15]). Here, of course, we denote by idG the
natural inclusion map of the vector space G in B(X ), which can be viewed
as a representation of G. Let E := Gop × Gop and

ω : T → U(E) = U(Gop)⊗ U(Gop), t 7→ θ(t)⊗ θ(t).
Then the values of ω belong to the finite-dimensional subspace Gop⊗Gop of
U(E) and it is easily seen that

M =
�

T
% ◦ ω dµ.

Hence by Lemma 3.5(b) we have

σ(M) =
{ �

T
λ̃ ◦ ω

∣∣∣ λ̃ ∈ σ(%)
}

(15)
=
{ �

T
(λ ◦ θ) · (λ ◦ θ) dµ

∣∣∣λ ∈ σ(idG)
}
,

so
σ(M) =

{ �

T
|λ ◦ θ|2

∣∣∣λ ∈ Σ(G)
}
.

(Recall that Σ(G) = σ(idG) since G is nilpotent; see [1].) Now (14) follows
from Definition 3.1.

4.2. Remark. The proof in case 2o is suggested by the proof of Corollary
1.3 of [10], and the proof in case 3o extends the proof of Theorem 2 of [4].
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[20] V. S. Shul’man and Yu. V. Turovskĭı, Joint spectral radius and invariant subspaces,

Funktsional. Anal. i Prilozhen. 34 (2000), no. 2, 91–94 (in Russian); English transl.:
Funct. Anal. Appl. 34 (2000), 156–158.

[21] —, —, Joint spectral radius, operator semigroups, and a problem of W. Wojtyński ,
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