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Feller semigroups and degenerate elliptic operators with
Wentzell boundary conditions

by

Kazuaki Taira (Tsukuba), Angelo Favini (Bologna) and
Silvia Romanelli (Bari)

Abstract. This paper is devoted to the functional analytic approach to the problem
of construction of Feller semigroups with Wentzell boundary conditions in the charac-
teristic case. Our results may be stated as follows: We can construct Feller semigroups
corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffu-
sion along the boundary and jump at each point of the boundary.

1. Introduction and results. Let D be a bounded domain in Eu-
clidean space RN , N ≥ 2, with smooth boundary ∂D; its closureD = D∪∂D
is an N -dimensional, compact smooth manifold with boundary (see Fig-
ure 1.1).
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Fig. 1.1

Let C(D) be the space of all continuous real-valued functions on D.
We equip the space C(D) with the topology of uniform convergence on the
whole D; hence it is a Banach space with the maximum norm

‖f‖∞ = max
x∈D
|f(x)|, f ∈ C(D).
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A strongly continuous semigroup {Tt}t≥0 on C(D) is called a Feller semi-
group on D if it is non-negative and contractive on C(D):

f ∈ C(D), 0 ≤ f(x) ≤ 1 on D ⇒ 0 ≤ Ttf(x) ≤ 1 on D.

It is known (see [5], [16]) that if Tt is a Feller semigroup on D, then there
exists a unique Markov transition function pt(x, ·) on D such that

Ttf(x) =
�

D

pt(x, dy)f(y), f ∈ C(D).

Furthermore it can be shown that the function pt(x, ·) is the transition
function of some strong Markov process; hence the value pt(x,E) expresses
the transition probability that a Markovian particle starting at position x
will be found in the set E at time t.

Let A be a second-order, degenerate elliptic differential operator with
real coefficients such that

Au(x) =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

N∑

i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x),

where:

(1) aij ∈ C∞(RN ), aij(x) = aji(x) and

N∑

i,j=1

aij(x)ξiξj ≥ 0, x ∈ RN , ξ ∈ RN .

(2) bi ∈ C∞(RN ).
(3) c ∈ C∞(RN ) and c(x) ≤ 0 on D.

The functions aij(x), bi(x) and c(x) are called the diffusion coefficients,
the drift coefficients and the termination coefficient , respectively.

In this paper we study the case where the operator A is characteristic
with respect to the boundary ∂D, which we formulate precisely.

Following Fichera [8], we introduce a function b(x′) on the boundary ∂D
by the formula

b(x′) =
N∑

i=1

(
bi(x′)−

N∑

j=1

∂aij

∂xj
(x′)

)
ni, x′ ∈ ∂D,

where n = (n1, . . . , nN ) is the unit interior normal to ∂D at x′ (see Fig-
ure 1.1). The function b(x′) will be called the Fichera function for the oper-
ator A. We divide the boundary ∂D into the following four disjoint subsets



Feller semigroups 19

(see [8], [13], [15]):

Σ3 =
{
x′ ∈ ∂D :

N∑

i,j=1

aij(x′)ninj > 0
}
,

Σ2 =
{
x′ ∈ ∂D :

N∑

i,j=1

aij(x′)ninj = 0, b(x′) < 0
}
,

Σ1 =
{
x′ ∈ ∂D :

N∑

i,j=1

aij(x′)ninj = 0, b(x′) > 0
}
,

Σ0 =
{
x′ ∈ ∂D :

N∑

i,j

aij(x′)ninj = 0, b(x′) = 0
}
.

It is worth pointing out (see [13], [15]) that one may impose a boundary
condition only on the set Σ2 ∪ Σ3, since a Markovian particle reaches the
boundary ∂D by means of the diffusion vector fields

±Xi(x) = ±
N∑

j=1

aij(x)
∂

∂xj
, 1 ≤ i ≤ N,

and the drift vector field

X0(x′) =
N∑

i=1

(
bi(x′)−

N∑

j=1

∂aij

∂xj
(x′)

)
∂

∂xi
,

and
b(x′) = 〈X0(x′),n〉.

Moreover, in the one-dimensional case (N = 1) the four sets Σ3, Σ2, Σ1 and
Σ0 are supposed to correspond to a regular boundary, an exit boundary, an
entrance boundary and a natural boundary, respectively (see [6]).

The fundamental hypothesis for A is the following (see Figure 1.2):

(H) ∂D = Σ0 ∪ Σ1 ∪ Σ2 and each set Σi (i = 0, 1, 2) consists of a finite
number of connected hypersurfaces.
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Example. Let D be the unit open disk in R2 (N = 2). Assume that,
in terms of polar coordinates (r, θ), the differential operator A is written in
the form

A = ϕ(r)∆+
∂

∂r
= ϕ(r)

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
+

∂

∂r
,

where ϕ(r) is a smooth function defined by the formula

ϕ(r) =
{

exp [−1/(1− r2)] for r < 1,
0 for r ≥ 1.

Then it is easy to see that Σ3 = ∅, b = −1 on ∂D, and thus ∂D = Σ2.

Let L be a second-order boundary condition such that, in local coordi-
nates (x1, . . . , xN−1) on Σ2,

Lu(x′) =
N−1∑

i,j=1

αij(x′)
∂2u

∂xi∂xj
(x′) +

N−1∑

i=1

βi(x′)
∂u

∂xi
(x′)

+ γ(x′)u(x′) + µ(x′)
∂u

∂n
(x′)− δ(x′)Au(x′)

+
�

Σ2

r(x′, y′)
[
u(y′)− u(x′)−

N−1∑

j=1

(yj − xj)
∂u

∂xj
(x′)

]
dy′,

where:

(1) The αij are the components of a smooth symmetric contravariant
tensor of type

( 2
0

)
on Σ2 and

N−1∑

i,j=1

αij(x′)ηiηj ≥ 0, x′ ∈ Σ2, η =
N−1∑

j=1

ηjdxj ∈ T ∗x′(Σ2).

Here T ∗x′(Σ2) is the cotangent space of Σ2 at x′.
(2) βi ∈ C∞(Σ2).
(3) γ ∈ C∞(Σ2) and γ(x′) ≤ 0 on Σ2.
(4) µ ∈ C∞(Σ2) and µ(x′) ≥ 0 on Σ2.
(5) δ ∈ C∞(Σ2) and δ(x′) ≥ 0 on Σ2.
(6) n = (n1, . . . , nN ) is the unit interior normal to Σ2.
(7) The integrand kernel r(x′, y′) is the distribution kernel of a properly

supported pseudo-differential operator R ∈ L2−k
1,0 (Σ2), k > 0, and it is non-

negative off the diagonal ∆Σ2 = {(x′, x′) : x′ ∈ Σ2} in Σ2×Σ2. The density
dy′ is a strictly positive density on Σ2.
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The boundary condition L is called a second-order Wentzell boundary
condition (see [22]). The five terms of L

N−1∑

i,j=1

αij(x′)
∂2u

∂xi∂xj
(x′) +

N−1∑

i=1

βi(x′)
∂u

∂xi
(x′),

γ(x′)u(x′), µ(x′)
∂u

∂n
(x′), δ(x′)Au(x′),

�

Σ2

r(x′, y′)
[
u(y′)− u(x′)−

N−1∑

j=1

(yj − xj)
∂u

∂xj
(x′)

]
dy′

are supposed to correspond to diffusion along Σ2, absorption, reflection,
viscosity and jump on Σ2, respectively (see Figures 1.3, 1.4 and 1.5).
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Fig. 1.3
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Fig. 1.4
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Fig. 1.5

We say that the boundary condition L is transversal on the set Σ2 if it
satisfies the condition

(T) µ(x′) + δ(x′) > 0, x′ ∈ Σ2.
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Intuitively, the transversality condition implies that either reflection or vis-
cosity occurs on Σ2. Probabilistically, this means that every Markov process
on Σ2 is the “trace” on Σ2 of trajectories of some Markov process on the
closure D = D ∪ ∂D (see Figure 1.6).

D

Σ2

..............................................
.....................................................

..........
............

...........
........
........
........
.......
..........
...........
....................

...................................
...........

.......

.... ..........................................................................................................................................................
...............

........
.........
.............

............
..........

.........
.

...............
........................................

..........
............................................................................................................................................................

.......................
..................

..........
..........

..........
...........
..........
..........
.............
...............

.............
..........

.............................................
...................................................

..........................

....................
.......................

.................................

...................................

........................
.....................

...................
..................

...............
..................
...............
................
................
................
.....

Fig. 1.6

It is known (see [1], [14], [16], [22]) that the infinitesimal generator A of
a Feller semigroup {Tt}t≥0 is described analytically by a degenerate elliptic
operator A and a Wentzell boundary condition L.

This paper is devoted to the functional analytic approach to the prob-
lem of construction of Feller semigroups with Wentzell boundary condi-
tions. More precisely we prove that there exists a Feller semigroup on D
corresponding to a diffusion phenomenon including absorption, reflection,
viscosity, diffusion along Σ2 and jump on Σ2, both in the transversal and
non-transversal cases.

First we consider the transversal case:

Theorem 1.1. Assume that the operator A satisfies hypothesis (H) and
that the boundary condition L is transversal on Σ2. Then there exists a
Feller semigroup {Tt}t≥0 on D whose infinitesimal generator A is defined
by Au = Au for u ∈ D(A), where

D(A) = {u ∈ C(D) : Au ∈ C(D), Lu = 0 on Σ2}.
Here Au and Lu are taken in the sense of distributions. Furthermore the
generator A coincides with the minimal closed extension in C(D) of the
restriction of A to the space {u ∈ C∞(D) : Lu = 0 on Σ2}.

We remark that Taira [18] proved Theorem 1.1 assuming that the trans-
versal condition holds on the set Σ2∪Σ3, but L does not contain an integral
term corresponding to the jump phenomenon on Σ2, while Cattiaux [3]
obtained a probabilistic version of Theorem 1.1 in the non-characteristic
case: ∂D = Σ3.

Next we generalize Theorem 1.1 to the non-transversal case. To this end,
we assume that there exists a second order Wentzell boundary condition Lν
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such that

(A) Lu(x′) = m(x′)Lνu(x′) + γ(x′)u(x′) on Σ2,

where

(A1) m ∈ C∞(Σ2) and m(x′) ≥ 0 on Σ2

and the boundary condition Lν is given, in local coordinates (x1, . . . , xN−1)
on Σ2, by the formula

(A2) Lνu(x′) :=
N−1∑

i,j=1

αij(x′)
∂2u

∂xi∂xj
(x′) +

N−1∑

i=1

β
i
(x′)

∂u

∂xi
(x′)

+ µ(x′)
∂u

∂n
(x′)− δ(x′)Au(x′)

+
�

Σ2

r(x′, y′)
[
u(y′)− u(x′)−

N−1∑

j=1

(yj − xj)
∂u

∂xj
(x′)

]
dy′

and satisfies the transversality condition

(T) µ(x′) + δ(x′) > 0 on Σ2.

Observe that, since

µ(x′) = m(x′)µ(x′) and δ(x′) = m(x′)δ(x′),

the boundary condition L is not transversal on Σ2. Moreover we assume
that

(B) m(x′)− γ(x′) > 0 on Σ2.

The intuitive meaning of conditions (A) and (B) is that a Markovian particle
does not stay on Σ2 for any period of time until it “dies” when reaching the
set

M = {x′ ∈ Σ2 : m(x′) = 0},
where the particle is definitively absorbed.

Now we introduce a subspace of C(D) which is associated with the
boundary condition L. By (B), the boundary condition

Lu(x′) = m(x′)Lνu(x′) + γ(x′)u(x′) = 0 on Σ2

includes the condition
u(x′) = 0 on M.

With this fact in mind, we let

C0(D \M) = {u ∈ C(D) : u(x′) = 0 on M}.
This is a closed subspace of C(D); hence it is a Banach space.
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A strongly continuous semigroup {Ut}t≥0 on the space C0(D \ M) is
called a Feller semigroup on D \M if it is non-negative and contractive on
C0(D \M):

f ∈ C0(D \M), 0 ≤ f(x) ≤ 1 on D \M ⇒ 0 ≤ Utf(x) ≤ 1 on D \M.

The next theorem is a generalization of Theorem 1.1 to the non-trans-
versal case:

Theorem 1.2. Assume that the differential operator A satisfies condi-
tion (H) and the boundary operator L satisfies conditions (A), (A1), (A2),
(T) and (B). Define a linear operator A0 : C0(D \M) → C0(D \M) as
follows: A0u = Au for u ∈ D(A0), where

D(A0) = {u ∈ C0(D \M) : Au ∈ C0(D \M), Lu = 0 on Σ2}.
Then the operator A0 generates a Feller semigroup {Ut}t≥0 on C0(D \M).

Theorem 1.2 asserts that there exists a Feller semigroup on D\M corre-
sponding to the following diffusion phenomenon: a Markovian particle moves
both by jumps and continuously in the state space D \M until it “dies”
when reaching the set M where it is definitively absorbed.

The rest of this paper is organized as follows.
In Section 2 we present a brief description of the basic definitions and re-

sults about a class of semigroups (Feller semigroups) associated with Markov
processes in probability theory, which forms a functional analytic back-
ground for the proof of Theorems 1.1 and 1.2.

Section 3 provides a review of the basic concepts and results of the the-
ory of pseudo-differential operators which will be used in the subsequent
sections. In particular we give an existence and uniqueness theorem for a
class of pseudo-differential operators (Theorem 3.1), essentially due to Can-
celier [2], which enters naturally in the construction of Feller semigroups.

In Section 4 we prove a general existence theorem for Feller semigroups
in terms of boundary value problems (Theorem 4.13), generalizing the work
of Bony–Courrège–Priouret [1], Sato–Ueno [14] and Taira [16] to the de-
generate case. To do that, we consider the Dirichlet problem for differential
operators which satisfy condition (H) in the framework of Hölder spaces,
following Olĕınik–Radkevich [13] and Taira [17].

In Section 5 we prove an existence theorem for degenerate elliptic bound-
ary value problems in the framework of Hölder spaces (Theorem 5.1) which
plays an important role in the proof of Theorems 1.1.

Finally, Sections 6 and 7 are devoted to the proof of Theorem 1.1 and
Theorem 1.2, respectively.

2. Theory of Feller semigroups. This section provides a brief de-
scription of the basic definitions and results about a class of semigroups
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associated with Markov processes. The semigroup approach to Markov pro-
cesses can be traced back to the work of Kolmogorov [10]. It was substan-
tially developed in the early 1950s, with Feller [6], [7] doing the pioneering
work. Our presentation follows Dynkin [5], Lamperti [12] and Taira [16].

2.1. Markov transition functions and Feller semigroups. First we give
the precise definition of a transition function which is adapted to our anal-
ysis. Let (K, %) be a locally compact, separable metric space and B the
σ-algebra of all Borel sets in K. A function pt(x,E), defined for all t ≥ 0,
x ∈ K and E ∈ B, is called a (temporally homogeneous) Markov transition
function on K if it satisfies the following four conditions:

(a) pt(x, ·) is a non-negative measure on B and pt(x,K) ≤ 1 for each
t ≥ 0 and x ∈ K.

(b) pt(·, E) is a Borel measurable function for each t ≥ 0 and E ∈ B.
(c) p0(x, {x}) = 1 for each x ∈ K.
(d) (The Chapman–Kolmogorov equation) For any t, s ≥ 0, x ∈ K and

E ∈ B, we have

pt+s(x,E) =
�

K

pt(x, dy)ps(y,E).

We add a point ∂ to K as the point at infinity if K is not compact, and
as an isolated point if K is compact; so the space K∂ = K ∪{∂} is compact.

Let C(K) be the space of real-valued, bounded continuous functions
on K. It is a Banach space with the supremum norm

‖f‖∞ = sup
x∈K
|f(x)|.

We say that a function f in C(K) converges to zero as x → ∂ if, for
each ε > 0, there exists a compact subset E of K such that |f(x)| < ε for
x ∈ K \E; we write limx→∂ f(x) = 0. We let

C0(K) = {f ∈ C(K) : lim
x→∂

f(x) = 0}.

Note that C0(K) may be identified with C(K) if K is compact.
If we introduce a useful convention that

• any real-valued function f on K is extended to the space K∂ = K∪{∂}
by setting f(∂) = 0,

then
C0(K) = {f ∈ C(K∂) : f(∂) = 0}.

Furthermore we can extend a Markov transition function pt(x, ·) on K to a
Markov transition function p′t(x, ·) on K∂ as follows:
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


p′t(x,E) = pt(x,E), x ∈ K, E ∈ B;
p′t(x, {∂}) = 1− pt(x,K), x ∈ K;
p′t(∂,K) = 0, p′t(∂, {∂}) = 1.

Intuitively, this means that a Markovian particle moves in K until it “dies”
when reaching the point ∂; hence ∂ is called the terminal point .

Now we introduce some conditions on the measures pt(x, ·) related to
continuity in x ∈ K, for fixed t ≥ 0.

A Markov transition function pt(x, ·) is called a Feller function if the
function

Ttf(x) =
�

K

pt(x, dy)f(y)

is continuous in x ∈ K whenever f is in C(K). We say that pt(x, ·) is a
C0-function if

f ∈ C0(K) ⇒ Ttf ∈ C0(K).

A Markov transition function pt(x, ·) on K is said to be uniformly stoch-
astically continuous on K if for each ε > 0 and each compact E ⊂ K, we
have

lim
t↓0

sup
x∈E

[1− pt(x,Uε(x))] = 0,

where Uε(x) = {y ∈ K : %(x, y) < ε} is the ε-neighborhood of x.
Then we have the following (see [16, Theorem 9.2.3]):

Theorem 2.1. Let pt(x, ·) be a C0-transition function on K. Then the
operators {Tt}t≥0 defined by

(2.1) Ttf(x) =
�

K

pt(x, dy)f(y), f ∈ C0(K),

is strongly continuous in t on C0(K) if and only if pt(x, ·) is uniformly
stochastically continuous on K and satisfies

(L) lim
x→∂

sup
0≤t≤s

pt(x,E) = 0

for each s > 0 and each compact E ⊂ K.

A family {Tt}t≥0 of bounded linear operators acting on C0(K) is called
a Feller semigroup on K if it satisfies the following three conditions:

(i) Tt+s = TtTs, t, s ≥ 0; T0 = I.
(ii) The family {Tt} is strongly continuous in t for t ≥ 0:

lim
s↓0
‖Tt+sf − Ttf‖∞ = 0, f ∈ C0(K).

(iii) The family {Tt} is non-negative and contractive on C0(K):

f ∈ C0(K), 0 ≤ f(x) ≤ 1 on K ⇒ 0 ≤ Ttf(x) ≤ 1 on K.
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The next theorem gives a characterization of Feller semigroups in terms
of Markov transition functions (see [16, Theorem 9.2.6]):

Theorem 2.2. If pt(x, ·) is a uniformly stochastically continuous C0-
transition function on K and satisfies condition (L), then the associated
operators {Tt}t≥0 form a Feller semigroup on K. Conversely , if {Tt}t≥0 is
a Feller semigroup on K, then there exists a uniformly stochastically contin-
uous C0-transition pt(x, ·) on K, satisfying condition (L), such that formula
(2.1) holds.

2.2. Generation theorems for Feller semigroups. If {Tt}t≥0 is a Feller
semigroup on K, we define its infinitesimal generator A from C0(K) into
itself defined by the formula

(2.2) Au = lim
t↓0

Ttu− u
t

, u ∈ D(A),

where
D(A) = {u ∈ C0(K) : the limit (2.2) exists in C0(K)}.

The next theorem is a version of the Hille–Yosida theorem adapted to
the present context (see [16, Theorem 9.3.1 and Corollary 9.3.2]):

Theorem 2.3. (i) Let {Tt}t≥0 be a Feller semigroup on K and A its
infinitesimal generator. Then we have the following :

(a) The domain D(A) is dense in the space C0(K).
(b) For each α > 0, the equation (αI−A)u = f has a unique solution

u in D(A) for any f ∈ C0(K). Hence, for each α > 0, the Green
operator (αI − A)−1 : C0(K) → C0(K) can be defined by the
formula

u = (αI − A)−1f, f ∈ C0(K).

(c) For each α > 0, the operator (αI − A)−1 is non-negative on
C0(K):

f ∈ C0(K), f(x) ≥ 0 on K ⇒ (αI − A)−1f(x) ≥ 0 on K.

(d) For each α > 0, the operator (αI − A)−1 is bounded on C0(K)
with norm

‖(αI − A)−1‖ ≤ 1/α.

(ii) Conversely , if A is a linear operator from C0(K) into itself satisfying
condition (a) and if there is a constant α0 ≥ 0 such that , for all α > α0,
conditions (b) through (d) are satisfied , then A is the infinitesimal generator
of some Feller semigroup {Tt}t≥0 on K.

Corollary 2.4. Let K be a compact metric space and let A be the in-
finitesimal generator of a Feller semigroup on K. Assume that the constant
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function 1 belongs to D(A) and that for some constant c we have

A1(x) ≤ −c on K.

Then the operator A′ = A + cI is the infinitesimal generator of some Feller
semigroup on K.

Although Theorem 2.3 tells us precisely when a linear operator A is the
infinitesimal generator of some Feller semigroup, it is usually difficult to
verify conditions (b) through (d). So we give useful criteria in terms of the
maximum principle (see [1, Théorème de Hille–Yosida–Ray]; [16, Theorem
9.3.3 and Corollary 9.3.4]):

Theorem 2.5. Let K be a compact metric space. Then we have the fol-
lowing assertions:

(i) Let B be a linear operator from C(K) = C0(K) into itself , and
assume that :

(α) The domain D(B) is dense in C(K).
(β) There exists an open and dense subset K0 of K such that if

u ∈ D(B) takes a positive maximum at a point x0 of K0, then

Bu(x0) ≤ 0.

Then the operator B is closable in C(K).

(ii) Let B be as in part (i), and further assume that

(β′) If u ∈ D(B) takes a positive maximum at a point x′0 of K, then

Bu(x′0) ≤ 0.

(γ) For some α0 ≥ 0, the range R(α0I −B) is dense in C(K).

Then the minimal closed extension B of B is the infinitesimal generator of
some Feller semigroup on K.

3. Theory of pseudo-differential operators. In this section we pre-
sent a brief description of the basic concepts and results of the Hölder space
theory of pseudo-differential operators which will be used in subsequent sec-
tions. In particular we recall an existence and uniqueness theorem for a class
of pseudo-differential operators which enters naturally in the construction
of Feller semigroups. For detailed studies of pseudo-differential operators,
the reader is referred to Chazarain–Piriou [4], Hörmander [9], Kumano-go
[11] and Taylor [20].

3.1. Function spaces. Let Ω be an open subset of Rn. If m is a non-
negative integer, we let Hm,∞(Ω) be the space of equivalence classes of
functions u ∈ L∞(Ω) all of whose derivatives ∂αu, |α| ≤ m, in the sense of
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distributions are in L∞(Ω). It is a Banach space with the norm

‖u‖m,∞ =
∑

|α|≤m
‖∂αu‖∞ =

∑

|α|≤m
ess sup
x∈Ω

|∂αu(x)|.

Here and in the following we use the shorthand

∂j =
∂

∂xj
, 1 ≤ j ≤ n, ∂α = ∂α1

1 ∂α2
2 . . . ∂αnn , α = (α1, α2, . . . , αn),

for derivatives on Rn.
Now let Ω be a bounded open subset of Rn and 0 < θ < 1. If m is a

non-negative integer, we let Cm+θ(Ω) be the space of functions in Cm(Ω)
all of whose mth order derivatives are Hölder continuous with exponent θ
on Ω. It is a Banach space with the norm

‖u‖Cm+θ(Ω) = ‖u‖Cm(Ω) + max
|α|=m

[∂αu]θ;Ω

=
∑

|α|≤m
max
x∈Ω

|∂αu(x)|+ max
|α|=m

sup
x,y∈Ω
x6=y

|∂αu(x)− ∂αu(y)|
|x− y|θ .

If M is an n-dimensional compact smooth manifold without boundary,
then the spaces Hm,∞(M) and Cm+θ(M) are defined respectively to be
locally the spaces Hm,∞(Rn) and Cm+θ(Rn), upon using local coordinate
systems flattening out M , together with a partition of unity. The norms
of the spaces Hm,∞(M) and Cm+θ(M) will be denoted by ‖ · ‖m,∞ and
‖ · ‖Cm+θ(M), respectively.

We recall the following results (see Triebel [21]):

(I) If k is a positive integer, then

Hk,∞(M) =
{
ϕ ∈ Ck−1(M) : max

|α|≤k−1
sup
x,y∈M
x6=y

|∂αϕ(x)− ∂αϕ(y)|
|x− y| <∞

}
,

where |x− y| is the geodesic distance between x and y with respect to the
Riemannian metric of M .

(II) The space Ck+θ(M) is a real interpolation space between Hk,∞(M)
and Hk+1,∞(M). More precisely we have

Ck+θ(M) = (Hk,∞(M),Hk+1,∞(M))θ,∞

= {u ∈ Hk,∞(M) : sup
t>0

K(t, u)/tθ <∞},

where

K(t, u) = inf{‖u0‖k,∞ + t‖u1‖k+1,∞ : u = u0 + u1,

u0 ∈ Hk,∞(M), u1 ∈ Hk+1,∞(M)}.
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3.2. Pseudo-differential operators. Let Ω be an open subset of Rn. If
m ∈ R and 0 ≤ δ < % ≤ 1, we let Sm%,δ(Ω × RN ) be the set of all functions
a ∈ C∞(Ω × RN ) with the property that, for any compact K ⊂ Ω and
multi-indices α, β, there exists a constant CK,α,β > 0 such that for all
x ∈ K and θ ∈ RN we have

|∂αθ ∂βxa(x, θ)| ≤ CK,α,β(1 + |θ|)m−%|α|+δ|β|.
The elements of Sm%,δ(Ω × RN ) are called symbols of order m.

We set
S−∞(Ω × RN ) =

⋂

m∈R
Sm%,δ(Ω × RN ).

If aj ∈ Smj%,δ (Ω×RN ) is a sequence of symbols of decreasing orders, then
there exists a symbol a ∈ Sm0

%,δ (Ω × RN ), unique modulo S−∞(Ω × RN ),
such that for all k > 0 we have

a−
k−1∑

j=0

aj ∈ Smk%,δ (Ω × RN ).

In this case, we write a ∼∑∞j=0 aj .

A symbol a(x, θ) ∈ Sm1,0(Ω × RN ) is said to be classical if there exist
smooth functions aj(x, θ), positively homogeneous of degree m− j in θ for
|θ| ≥ 1, such that a ∼∑∞j=0 aj . We let Smcl (Ω×RN ) be the set of all classical
symbols of order m.

Let Ω be an open subset of Rn and m ∈ R. A pseudo-differential operator
of order m on Ω is a Fourier integral operator of the form

Au(x) =
� �

Ω×Rn
ei(x−y)·ξa(x, y, ξ)u(y) dy dξ, u ∈ C∞0 (Ω),

with some a ∈ Sm%,δ(Ω × Ω × Rn). Here the integral is taken in the sense
of oscillatory integrals. We let Lm%,δ(Ω) be the set of all pseudo-differential
operators of order m on Ω, and set

L−∞(Ω) =
⋂

m∈R
Lm%,δ(Ω).

If A ∈ Lm%,δ(Ω), one can choose a properly supported operator A0 ∈
Lm%,δ(Ω) such that A−A0 ∈ L−∞(Ω), and define σ(A) to be the equivalence
class of the complete symbol of A0 in Sm%,δ(Ω × Rn)/S−∞(Ω × Rn). The
equivalence class σ(A) does not depend on the operator A0 chosen, and is
called the complete symbol of A. We often identify the complete symbol σ(A)
with a representative in the class Sm%,δ(Ω × Rn) for notational convenience,
and call any member of σ(A) a complete symbol of A.
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A pseudo-differential operator A ∈ Lm1,0(Ω) is said to be classical if its
complete symbol σ(A) has a representative in Smcl (Ω × Rn). We let Lmcl (Ω)
be the set of all classical pseudo-differential operators of order m on Ω.

Now we define the concept of a pseudo-differential operator on a mani-
fold, and transfer all the machinery of pseudo-differential operators to man-
ifolds.

LetM be an n-dimensional, compact smooth manifold without boundary
and 1−% ≤ δ < % ≤ 1. A continuous linear operator A : C∞(M)→ C∞(M)
is called a pseudo-differential operator of order m ∈ R if it satisfies the
following two conditions:

(i) The distribution kernel of A is smooth off the diagonal ∆M = {(x, x) :
x ∈M} in M ×M .

(ii) For any chart (U,χ) on M , the mapping

Aχ : C∞0 (χ(U))→ C∞(χ(U)), u 7→ A(u ◦ χ) ◦ χ−1,

belongs to the class Lm%,δ(χ(U)).

We let Lm%,δ(M) be the set of all pseudo-differential operators of order m
on M , and set

L−∞(M) =
⋂

m∈R
Lm%,δ(M).

Some results about pseudo-differential operators on Rn are also true for
pseudo-differential operators on M , since pseudo-differential operators on
M are defined to be locally pseudo-differential operators on Rn.

For example we have the following results:

(1) A pseudo-differential operator A extends to a continuous linear op-
erator A : D′(M)→ D′(M).

(2) sing suppAu ⊂ sing suppu, u ∈ D′(M).
(3) A continuous linear operator A : C∞(M) → D′(M) is a regularizer

if and only if it is in L−∞(M).
(4) The class Lm%,δ(M), 1−% ≤ δ < % ≤ 1, is stable under the operations of

composition of operators and taking the transpose or adjoint of an operator.
(5) A pseudo-differential operator A ∈ Lm1,0(M) extends to a continuous

linear operator A : Ck+θ(M)→ Ck−m+θ(M) for any integer k ≥ m.

A pseudo-differential operator A ∈ Lm1,0(M) is said to be classical if,
for any chart (U,χ) on M , the mapping Aχ : C∞0 (χ(U)) → C∞(χ(U))
belongs to the class Lmcl (χ(U)). We let Lmcl (M) be the set of all classical
pseudo-differential operators of order m on M . We observe that

L−∞(M) =
⋂

m∈R
Lmcl (M).
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3.3. Unique solvability theorem for pseudo-differential operators. The
next result will play an essential role in the construction of Feller semigroups
in Sections 5–7 (see [2, Théorème 4.5], [19, Theorem 2.1]):

Theorem 3.1. Let T be a classical pseudo-differential operator of second
order on a compact smooth manifold M without boundary such that

T = P + S,

where:

(a) The operator P is a second-order degenerate elliptic differential op-
erator on M with non-positive principal symbol , and P1 ≤ 0 on M .

(b) The operator S is a classical pseudo-differential operator of order
2−κ, κ > 0, on M and its distribution kernel s(x, y) is non-negative off the
diagonal ∆M = {(x, x) : x ∈M} in M ×M .

(c) T1 = P1 + S1 ≤ 0 on M .

Then, for each integer k ≥ 1, there exists a constant λ = λ(k) > 0 such that
for any f ∈ Ck+θ(M) one can find a function ϕ ∈ Ck+θ(M) satisfying the
equation

(T − λ)ϕ = f on M

and the estimate
‖ϕ‖Ck+θ(M) ≤ C‖f‖Ck+θ(M).

Here C > 0 is a constant independent of f .

4. Feller semigroups and boundary value problems. The purpose
of this section is to give a general existence theorem for Feller semigroups in
terms of boundary value problems, generalizing the work of Bony–Courrège–
Priouret [1], Sato–Ueno [14] and Taira [16] to the degenerate case. To do
that, we consider a differential operator A which satisfies condition (H),
and study the Dirichlet problem in the framework of Hölder spaces. For
more thorough treatments of this subject, the reader is referred to Olĕınik–
Radkevich [13] and Taira [17].

4.1. The Dirichlet problem. First we consider the following Dirichlet
problem: Given functions f(x) and ϕ(x′) defined in D and on Σ2, respec-
tively, find a function u(x) in D such that

(D)
{

(α− A)u = f in D,
u|Σ2 = ϕ on Σ2,

where α is a positive parameter.
The next result states an existence and uniqueness theorem for prob-

lem (D) in the framework of Hölder spaces (see [13, Theorem 1.8.2], [17,
Theorem 2]):



Feller semigroups 33

Theorem 4.1. Assume that hypothesis (H) is satisfied. Then for each
integer m ≥ 2 one can find a constant α = α(m) > 0 such that for any
f ∈ C2m+2+2θ(D) and any ϕ ∈ C2m+4+2θ(Σ2) with 0 < θ < 1 there exists
a unique solution u ∈ Cm+θ(D) of problem (D).

Now, if we take m = 2 in Theorem 4.1 and let

α ≥ α(2),

then we can introduce two linear operators

G0
α : C6+2θ(D)→ C2+θ(D), Hα : C8+2θ(Σ2)→ C2+θ(D)

as follows.

(a) For any f ∈ C6+2θ(D), the function G0
αf ∈ C2+θ(D) is the unique

solution of the problem

(4.1)
{

(α− A)G0
αf = f in D,

G0
αf |Σ2 = 0 on Σ2.

(b) For any ϕ ∈ C8+2θ(Σ2), the function Hαϕ ∈ C2+θ(D) is the unique
solution of the problem

(4.2)
{

(α− A)Hαϕ = 0 in D,
Hαϕ|Σ2 = ϕ on Σ2.

The operator G0
α is called the Green operator , and Hα is called the harmonic

operator , respectively.
Then we have the following results (see [19, Lemmas 4.2 and 4.3]):

Lemma 4.2. The operator G0
α, considered from C(D) into itself , is non-

negative and continuous with norm

‖G0
α‖ = ‖G0

α1‖∞ = max
x∈D

G0
α1(x).

Lemma 4.3. The operator Hα, considered from C(Σ2) into C(D), is
non-negative and continuous with norm

‖Hα‖ = ‖Hα1‖∞ = max
x∈D

Hα1(x).

More precisely we have the following (see [19, Theorem 4.4]):

Theorem 4.4.

(i) (a) The operator G0
α can be uniquely extended to a non-negative,

bounded linear operator on C(D) into itself , denoted again by
G0
α, with norm

(4.3) ‖G0
α‖ = ‖G0

α1‖∞ ≤ 1/α.

(b) For any f ∈ C(D), we have G0
αf |Σ2 = 0 on Σ2.
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(c) For all α, β, the resolvent equation holds:

(4.4) G0
αf −G0

βf + (α− β)G0
αG

0
βf = 0, f ∈ C(D).

(d) For any f ∈ C(D), we have

(4.5) lim
α→+∞

αG0
αf(x) = f(x), x ∈ D.

Furthermore, if f |Σ2 = 0, then this convergence is uniform in
x ∈ D, that is,

(4.5′) lim
α→+∞

αG0
αf = f in C(D).

(ii) (a′) The operator Hα can be uniquely extended to a non-negative,
bounded linear operator on C(Σ2) into C(D), denoted again by
Hα, with norm ‖Hα‖ = 1.

(b′) For any ϕ ∈ C(Σ2), we have Hαϕ|Σ2 = ϕ on Σ2.
(c′) For all α, β, we have

(4.6) Hαϕ−Hβϕ+ (α− β)G0
αHβϕ = 0, ϕ ∈ C(Σ2).

4.2. Existence theorem for Feller semigroups. It is known (see [1], [14],
[16], [22]) that the infinitesimal generator A of a Feller semigroup {Tt}t≥0

is described analytically by a second-order differential operator A and a
Wentzell boundary condition L.

We are interested in the following:

Problem. Conversely , given analytic data (A,L), can we construct a
Feller semigroup {Tt}t≥0 on D whose infinitesimal generator A is charac-
terized by (A,L)?

Now we consider the following boundary value problem (∗) in the frame-
work of spaces of continuous functions:

(∗)
{

(α− A)u = f in D,
Lu = ϕ on Σ2.

To this end, we introduce three operators associated with problem (∗).
(I) First we introduce a linear operator A : C(D)→ C(D) by

Au =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x)
∂u

∂xi
+ c(x)u, u ∈ D(A),

where D(A) = C2(D).

Then we have the following (see [19, Lemma 4.5]):

Lemma 4.5. The operator A has minimal closed extension A in the space
C(D).



Feller semigroups 35

The extended operators G0
α : C(D) → C(D) and Hα : C(Σ2) → C(D)

still satisfy formulas (4.1) and (4.2) respectively in the following sense (see
[19, Lemma 4.7]):

Lemma 4.6. (i) For any f ∈ C(D), we have
{
G0
αf ∈ D(A),

(αI − A)G0
αf = f in D.

(ii) For any ϕ ∈ C(Σ2), we have
{
Hαϕ ∈ D(A),
(αI − A)Hαϕ = 0 in D.

Here D(A) is the domain of the closed extension A.

Furthermore we have the following (see [19, Corollary 4.8]):

Corollary 4.7. Every function u ∈ D(A) can be written in the follow-
ing form:

(4.7) u = G0
α((αI − A)u) +Hα(u|Σ2).

(II) Secondly we introduce a linear operator

LG0
α : C(D)→ C(Σ2)

by
LG0

αf = L(G0
αf), f ∈ D(LG0

α) = C6+2θ(D).

Then we have the following (see [19, Lemma 4.9]):

Lemma 4.8. The operator LG0
α can be uniquely extended to a non-neg-

ative, bounded linear operator LG0
α : C(D)→ C(Σ2).

The next lemma states a fundamental relationship between the operators
LG0

α and LG0
β (see [19, Lemma 4.10]):

Lemma 4.9. For any f ∈ C(D), we have

(4.8) LG0
αf − LG0

βf + (α− β)LG0
αG

0
βf = 0.

(III) Finally we introduce a linear operator

LHα : C(Σ2)→ C(Σ2)

by
LHαψ = L(Hαψ), ψ ∈ D(LHα) = C8+2θ(Σ2).

Then we have the following:

Lemma 4.10. The operator LHα has a minimal closed extension LHα

in the space C(Σ2).
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Proof. We apply Theorem 2.5(i) with K := K0 = Σ2 to the operator
B := LHα. To do that, it suffices to show that the operator LHα satisfies
condition (β) of the theorem.

The next claim is an essential step in the proof:

Claim 4.11. If (x1, . . . , xN−1) are local coordinates on Σ2, then the
function (∂/∂n)(Hαϕ), ϕ ∈ C∞(Σ2), is given by the formula

(4.9)
∂

∂n
(Hαϕ)

= − 1
b(x′)

( N−1∑

i,j=1

aij(x′)
∂2ϕ

∂xi∂xj
+
N−1∑

i=1

bi(x′)
∂ϕ

∂xi
+ (c(x′)− α)ϕ

)
,

where b(x′) is the Fichera function for the operator A.

Proof. Let x′0 ∈ Σ2. We choose a local coordinate system (x1, . . . , xN )

D = {xN > 0}
Σ2 = {xN = 0}

x′0
•

xN

.......

.......

.......

.......

.......

...............

............

.............................................................................................................................................................................................................................................................................................................
....................................

...........................
......................

...................
...............

Fig. 4.1

in a neighborhood of x′0 such that (see Figure 4.1)

x′0 = 0, D = {xN > 0}, Σ2 = {xN = 0},
and assume that, in this coordinate system,

Au = aNN (x)
∂2u

∂x2
N

+ bN (x)
∂u

∂xN

+
N−1∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+
N−1∑

i=1

bi(x)
∂u

∂xi
+ c(x)u.

We remark that:

• aNN (0) = 0 and bN (0) = b(0) < 0, since x′0 = 0 ∈ Σ2.
• aij ∈ C∞(RN ), aij(x) = aji(x) and

N∑

i,j=1

aij(x)ξiξj ≥ 0, x ∈ RN , ξ ∈ RN .

Since {
(A− α)Hαϕ = 0 in D,
Hαϕ = ϕ on Σ2,

it follows that
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0 = αϕ(0)−
(
aNN (0)

∂2

∂x2
N

(Hαϕ)(0) + bN (0)
∂

∂xN
(Hαϕ)(0)

+
N−1∑

i,j=1

aij(0)
∂2ϕ

∂xi∂xj
(0) +

N−1∑

i=1

bi(0)
∂ϕ

∂xi
(0) + c(0)ϕ(0)

)

= αϕ(0)−
(
bN (0)

∂

∂xN
(Hαϕ)(0) +

N−1∑

i,j=1

aij(0)
∂2ϕ

∂xi∂xj
(0)

+
N−1∑

i=1

bi(0)
∂ϕ

∂xi
(0) + c(0)ϕ(0)

)
.

This proves that
∂

∂n
(Hαϕ)(x′0) =

∂

∂xN
(Hαϕ)(0)

= − 1
bN (0)

( N−1∑

i,j=1

aij(0)
∂2ϕ

∂xi∂xj
(0) +

N−1∑

i=1

bi(0)
∂ϕ

∂xi
(0) + (c(0)− α)ϕ(0)

)

= − 1
b(x′0)

×
( N−1∑

i,j=1

aij(x′0)
∂2ϕ

∂xi∂xj
(x′0) +

N−1∑

i=1

bi(x′0)
∂ϕ

∂xi
(x′0) + (c(x′0)− α)ϕ(x′0)

)
.

The proof of Claim 4.11 is complete.

Now assume that a function ψ in D(LHα) = C8+2θ(Σ2) takes its positive
maximum at some point x′0 of Σ2. Since Hαψ is in C2+θ(D) and satisfies

{
(A− α)Hαψ = 0 in D,
Hαψ|Σ2 = ψ on Σ2,

applying [19, Theorem 7.1 (the weak maximum principle)] we find that Hαψ
takes its positive maximum ψ(x′0) at x′0 ∈ Σ2.

Hence, by formula (4.9) with ϕ := ψ,

LHαψ(x′0) =
N−1∑

i,j=1

αij(x′0)
∂2ψ

∂xi∂xj
(x′0) + (γ(x′0)− αδ(x′0))ψ(x′0)

+
(
−µ(x′0)
b(x′0)

)[ N−1∑

i,j=1

aij(x′0)
∂2ψ

∂xi∂xj
(x′0) + (c(x′0)− α)ψ(x′0)

]

+
�

Σ2

r(x′0, y
′)(ψ(y′)− ψ(x′0)) dy′ ≤ 0.

This verifies condition (β) of Theorem 2.5.
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Therefore Lemma 4.10 follows from an application of Theorem 2.5.

The next lemma states a fundamental relationship between the operators
LHα and LHβ (see [19, Lemma 4.13]):

Lemma 4.12. The domain D(LHα) does not depend on α; denote it
by D. Then

(4.10) LHαψ − LHβψ + (α− β)LG0
αHβψ = 0, ψ ∈ D.

Now we can give a general existence theorem for Feller semigroups on
Σ2 in terms of the boundary value problem (∗). The next theorem asserts
that LHα is the infinitesimal generator of some Feller semigroup on Σ2 if
and only if problem (∗) is solvable for sufficiently many ϕ in C(Σ2):

Theorem 4.13. (i) If the operator LHα is the infinitesimal generator of
a Feller semigroup on Σ2, then, for each constant λ > 0, the boundary value
problem

(∗∗)0

{
(α− A)u = 0 in D,
(λ− L)u = ϕ on Σ2,

has a solution u ∈ C2+θ(D) for any ϕ in some dense subset of C(Σ2).
(ii) Conversely , if , for some constant λ ≥ 0, problem (∗∗)0 has a solution

u ∈ C8+2θ(D) for any ϕ in some dense subset of C(Σ2), then LHα is the
infinitesimal generator of some Feller semigroup on Σ2.

Proof. (i) If LHα generates a Feller semigroup on Σ2, then applying
Theorem 2.3(i) with K := Σ2 to the operator A := LHα we obtain, for each
λ > 0,

R(λI − LHα) = C(Σ2).

This implies that R(λI − LHα) is dense in C(Σ2) for each λ > 0. If ϕ ∈
C(Σ2) is in R(λI − LHα), that is, ϕ = (λI − LHα)ψ with ψ ∈ C8+2θ(Σ2),
then u = Hαψ ∈ C2+θ(D) is a solution of (∗∗)0.

(ii) We apply Theorem 2.5(ii) with K := Σ2 to the operator LHα. To
do that, it suffices to show that LHα satisfies condition (γ) of the theorem,
since it satisfies condition (β′), as is shown in the proof of Lemma 4.10.

By the uniqueness theorem for problem (D) (Theorem 4.1), any function
u ∈ C8+2θ(D) which satisfies the equation (α−A)u = 0 in D can be written
in the form

u = Hα(u|Σ2), u|Σ2 ∈ C8+2θ(Σ2) = D(LHα).

Thus if there exists a solution u ∈ C8+2θ(D) of (∗∗)0 for a function ϕ ∈
C(Σ2), then

(λI − LHα)(u|Σ2) = ϕ,

and so ϕ ∈ R(λI − LHα). Therefore, if, for some constant λ ≥ 0, problem
(∗∗)0 has a solution u ∈ C8+2θ(D) for any ϕ in some dense subset of C(Σ2),
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then R(λI−LHα) is dense in C(Σ2). This verifies condition (γ) of Theorem
2.5 with α0 := λ and completes the proof.

We conclude this section by giving a precise meaning to the boundary
conditions Lu for functions u ∈ D(A).

We let
D(L) = {u ∈ D(A) : u|Σ2 ∈ D},

where D is the common domain of the operators LHα. We remark that D(L)
contains C8+2θ(D), since C8+2θ(Σ2) = D(LHα) ⊂ D. Corollary 4.7 tells us
that every function u in D(L) ⊂ D(A) can be written in the form (4.7).
Then we define

(4.11) Lu = LG0
α((αI − A)u) + LHα(u|Σ2).

The next lemma justifies this definition (see [19, Lemma 4.15]):

Lemma 4.14. The right-hand side of formula (4.11) depends only on u,
not on the choice of expression (4.7).

5. Degenerate elliptic boundary value problems. In this section
we prove an existence theorem for degenerate elliptic boundary value prob-
lems in the framework of Hölder spaces, which will play an important role
in the proof of Theorem 1.1 in Section 6.

5.1. Existence theorem for degenerate elliptic boundary value problems.
Now we can state our existence theorem for degenerate elliptic boundary
value problems in the framework of Hölder spaces:

Theorem 5.1. Assume that the operator A satisfies hypotheses (H) and
(T). Then, for each α ≥ α(10), there exists a constant λ = λ(α) > 0 such
that the boundary value problem

(∗∗)
{

(α− A)u = f in D,
(λ− L)u = ϕ on Σ2,

has a solution u ∈ C2+θ(D) for any f ∈ C6+2θ(D) and ϕ ∈ C8+2θ(Σ2)
with 0 < θ < 1. Here α(10) is the constant appearing in Theorem 4.1 with
m = 10.

5.2. Proof of Theorem 5.1. We divide the proof into three steps.

(I) First we reduce the study of problem (∗∗) to that of an operator on
the boundary Σ2.

Assume that the following condition is satisfied:

(5.1) If λ > 0 is sufficiently large, then the operator

λI − LHα : C8+2θ(Σ2)→ C8+2θ(Σ2)

is surjective.
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If f ∈ C22+2θ(D) and ϕ ∈ C8+2θ(Σ2), then G0
αf ∈ C10+θ(D) by Theorem

4.1 with m = 10, and

LG0
αf = µ

∂

∂n
(G0

αf) + δf ∈ C9+θ(Σ2) ⊂ C8+2θ(Σ2).

Hence, by condition (5.1) one can find ψ ∈ C8+2θ(Σ2) such that

(λ− LHα)ψ = ϕ+ LG0
αf on Σ2.

If we let
u = G0

αf +Hαψ ∈ C2+θ(D),

then {
(α− A)u = f in D,
(λ− L)u = −LG0

αf + (λ− LHα)ψ = ϕ on Σ2.

This proves that u = G0
αf +Hαψ is a solution of problem (∗∗).

Therefore we are reduced to the study of the operator λI −LHα on Σ2.
(II) Secondly we show that LHα is a classical pseudo-differential operator

of second order which is the sum of a second-order degenerate elliptic dif-
ferential operator and a classical pseudo-differential operator of order 2−κ,
κ > 0, on the set Σ2.

From (4.9), we find that

LHαϕ = Pαϕ+Qαϕ+ Sϕ+Rϕ,

where

Pαϕ :=
N−1∑

i,j=1

αij(x′)
∂2ϕ

∂xi∂xj
+
N−1∑

i=1

βi(x′)
∂ϕ

∂xi
+ (γ(x′)− αδ(x′))ϕ,

Qαϕ :=
(
− µ(x′)
b(x′)

)[ N−1∑

i,j=1

aij(x′)
∂2ϕ

∂xi∂xj
+
N−1∑

i=1

bi(x′)
∂ϕ

∂xi
+ (c(x′)− α)ϕ

]
,

Sϕ := −
( �

Σ2

r(x′, y′) dy′
)
ϕ−

N−1∑

j=1

( �

Σ2

r(x′, y′)(yj − xj) dy′
) ∂ϕ
∂xj

,

Rϕ :=
�

Σ2

r(x′, y′)ϕ(y′) dy′.

Moreover the operators Pα, Qα, S, R satisfy the following conditions (i)
through (iv):

(i) Pα is a second-order, degenerate elliptic differential operator on Σ2

with non-positive principal symbol and

Pα1(x′) = γ(x′)− αδ(x′) ≤ 0 on Σ2.
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(ii) Qα is a second-order, degenerate elliptic differential operator on Σ2

with non-positive principal symbol and

Qα1(x′) = −µ(x′)
b(x′)

(c(x′)− α) ≤ 0 on Σ2.

(iii) R is in L2−k
1,0 (Σ2) and r(x′, y′) ≥ 0 off the diagonal ∆Σ2 and so

R1(x′) =
�

Σ2

r(x′, y′) dy′ ≥ 0 on Σ2.

(iv) S is a first-order differential operator on Σ2 and

S1(x′) = −
�

Σ2

r(x′, y′) dy′ ≤ 0 on Σ2.

(III) Since

LHα1(x′) = Pα1(x′) +Qα1(x′) + S1(x′) +R1(x′)

= γ(x′)− αδ(x′)− µ(x′)
b(x′)

(c(x′)− α) ≤ 0 on Σ2,

we can apply Theorem 3.1 with P := Pα + Qα + S and S := R to deduce
that the operator

λI − LHα : C8+2θ(Σ2)→ C8+2θ(Σ2)

is surjective for λ > 0 sufficiently large, that is, assertion (5.1) is proved.
The proof of Theorem 5.1 is now complete.

6. Proof of Theorem 1.1. First we reduce the problem of construction
of Feller semigroups to the problem of unique solvability for the boundary
value problem (∗∗)0, and then prove existence theorems for Feller semi-
groups. The proof is divided into seven steps.

(I) First we prove that

(6.1) the operator LHα generates a Feller semigroup on Σ2 for any α > 0.

By Theorem 5.1, for each α ≥ α(10) one can find a constant λ = λ(α) > 0
such that the boundary value problem (∗∗)0 has a solution u ∈ C2+θ(D) for
any ϕ ∈ C8+2θ(Σ2). Therefore (6.1) follows from Theorem 4.13.

(II) Next we prove that

(6.2) the equation LHαψ = ϕ has a unique solution ψ ∈ D(LHα) for any
ϕ ∈ C(Σ2); hence the inverse LHα

−1
can be defined on the whole

C(Σ2). Moreover it is non-negative and bounded on C(Σ2).

By (4.9) with ϕ := 1, it follows that

(6.3)
∂

∂n
(Hα1)(x′) = −c(x

′)− α
b(x′)

< 0 on Σ2.



42 K. Taira et al.

Thus transversality condition (T) implies that

LHα1(x′) = µ(x′)
∂

∂n
(Hα1)(x′) + γ(x′)− αδ(x′) < 0 on Σ2,

and so
`α = − max

x′∈Σ2

LHα1(x′) > 0.

Furthermore, using Corollary 2.4 with K := Σ2, A := LHα and c := `α we
find that LHα + `αI is the infinitesimal generator of a Feller semigroup on
Σ2. Therefore, since `α > 0, an application of Theorem 2.3(i) with A :=
LHα + `αI shows that the equation

−LHαψ = (`αI − (LHα + `αI))ψ = ϕ

has a unique solution ψ ∈ D(LHα) for any ϕ ∈ C(Σ2), and the operator
−LHα

−1
= (`αI − (LHα + `αI))−1 is non-negative and bounded on C(Σ2)

with norm

‖−LHα
−1‖ = ‖(`αI − (LHα + `αI))−1‖ ≤ 1/`α.

(III) By (6.2), we can define, for all α > 0,

(6.4) Gαf = G0
αf −Hα(LHα

−1
(LG0

αf)), f ∈ C(D).

Now we prove that

(6.5) Gα = (αI − A)−1.

In view of Lemmas 4.6 and 4.12,



Gαf = G0
αf −Hα(LHα

−1
(LG0

αf)) ∈ D(A),
Gαf |Σ2 = −LHα

−1
(LG0

αf) ∈ D(LHα) = D,
LGαf = LG0

αf − LHα(LHα
−1

(LG0
αf)) = 0,

and
(αI − A)Gαf = f.

That is, for any f ∈ C(D),
{
Gαf ∈ D(A),
(αI − A)Gαf = f,

so that
(αI − A)Gα = I on C(D).

Therefore, in order to prove (6.5) it suffices to show the injectivity of αI−A.
Assume that u ∈ D(A) and (αI − A)u = 0. Then, by Corollary 4.7,

u = Hα(u|Σ2), u|Σ2 ∈ D = D(LHα).

Thus LHα(u|Σ2) = Lu = 0. In view of (6.2), this implies that u|Σ2 = 0, so
that u = Hα(u|Σ2) = 0 in D.
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(IV) The non-negativity of Gα follows immediately from formula (6.4),
since the operators G0

α, Hα, −LHα
−1

and LG0
α are all non-negative.

(V) We prove that Gα is bounded on C(D) with norm

(6.6) ‖Gα‖ ≤ 1/α.

It suffices to show that

(6.6′) Gα1 ≤ 1/α on D,

since Gα is non-negative on C(D).
From the uniqueness theorem for problem (D) (Theorem 4.1) it follows

that

(6.7) αG0
α1(x) +Hα1(x) = 1 +G0

αc(x) on D.

Indeed, both sides have the same boundary value 1 on Σ2 and satisfy the
same equation: (αI − A)u = α in D.

Applying the operator L to both sides of (6.7), we obtain

−LHα1(x′) = −L1(x′)− LG0
αc(x

′) + αLG0
α1(x′)

= −µ(x′)
∂

∂n
(G0

αc)(x
′) + αLG0

α1(x′)− γ(x′)

≥ αLG0
α1(x′) on Σ2,

since G0
αc(x

′) = 0 and G0
αc(x) ≤ 0 on D. Hence, by the non-negativity of

−LHα
−1

,

(6.8) −LHα
−1

(LG0
α1) ≤ 1/α on Σ2.

Using (6.4) with f := 1, (6.8) and (6.7), we find that

Gα1 = G0
α1 +Hα(−LHα

−1
(LG0

α1)) ≤ G0
α1 +

1
α
Hα1

=
1
α

+
1
α
G0
αc ≤

1
α

on D,

since the operators Hα and G0
α are non-negative and c(x) ≤ 0 on D.

(VI) Finally we prove that

(6.9) the domain D(A) is dense in C(D).

(VI-1) Before the proof, we need some lemmas on the behavior of the
operators G0

α, Hα and −LHα
−1

as α→ +∞:

Lemma 6.1. For all f ∈ C(D), we have

(6.10) lim
α→+∞

[αG0
αf +Hα(f |Σ2)] = f in C(D).

Proof. Choose a constant β > 0 and let

g = f −Hβ(f |Σ2).
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Then, using (4.6) with ϕ := f |Σ2 , we obtain

(6.11) αG0
αg − g = [αG0

αf +Hα(f |Σ2)− f ]− βG0
αHβ(f |Σ2).

However we have, by estimate (4.3),

lim
α→+∞

G0
αHβ(f |Σ2) = 0 in C(D),

and by (4.5′),
lim

α→+∞
αG0

αg = g in C(D),

since g|Σ2 = 0. Therefore (6.10) follows by letting α→ +∞ in (6.11).

Lemma 6.2. limα→+∞ ‖−LHα
−1‖ = 0.

Proof. Since µ(x′) + δ(x′) > 0 on Σ2, we find from (4.9) with ϕ := 1
that the function

LHα1(x′) = µ(x′)
∂

∂n

(
Hα1

)
(x′) + γ(x′)− αδ(x′)

= µ(x′)
[
− 1
b(x′)

(c(x′)− α)
]

+ γ(x′)− αδ(x′)

= −α
(
µ(x′)
−b(x′) + δ(x′)

)
+ γ(x′)− µ(x′)c(x′)

b(x′)

diverges to −∞ monotonically as α→ +∞. By Dini’s theorem, this conver-
gence is uniform in x′ ∈ Σ2. Hence 1/LHα1(x′) → 0 uniformly in x′ ∈ Σ2

as α→ +∞. This implies that

‖−LHα
−1‖ = ‖−LHα

−1
1‖∞ ≤

∥∥∥∥
1

LHα1

∥∥∥∥
∞
→ 0 as α→ +∞.

(VI-2) Proof of assertion (6.9). In view of (6.5) and (6.6), it suffices to
prove that

(6.12) lim
α→+∞

‖αGαf − f‖∞ = 0, f ∈ C∞(D),

since C∞(D) is dense in C(D).
First we remark that

‖αGαf − f‖∞ = ‖αG0
αf − αHα(LHα

−1
(LG0

αf))− f‖∞
≤ ‖αG0

αf +Hα(f |Σ2)− f‖∞
+ ‖−αHα(LHα

−1
(LG0

αf))−Hα(f |Σ2)‖∞
≤ ‖αG0

αf +Hα(f |Σ2)− f‖∞
+ ‖−αLHα

−1
(LG0

αf)− f |Σ2‖∞.
Thus, in view of (6.10) it suffices to show that

(6.13) lim
α→+∞

[αLHα
−1
LG0

αf + f |Σ2 ] = 0 in C(Σ2).
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Take a constant β such that 0 < β < α, and write

f = G0
βg +Hβϕ,

where (see formula (4.7))
{
g = (β − A)f ∈ C∞(D),
ϕ = f |Σ2 ∈ C∞(Σ2).

Then, using (4.4) (with f := g) and (4.6) we obtain

G0
αf = G0

αG
0
βg +G0

αHβϕ =
1

α− β (G0
βg −G0

αg +Hβϕ−Hαϕ).

Hence

‖−αLHα
−1

(LG0
αf)− f |Σ2‖∞

=
∥∥∥∥

α

α− β (−LHα
−1

)(LG0
βg − LG0

αg + LHβϕ) +
α

α− β ϕ− ϕ
∥∥∥∥
∞

≤ α

α− β ‖−LHα
−1‖ · ‖LG0

βg + LHβϕ‖∞

+
α

α− β ‖−LHα
−1‖ · ‖LG0

α‖ · ‖g‖∞ +
β

α− β ‖ϕ‖∞.

By Lemma 6.2, the first term on the right-hand side converges to zero as
α → +∞. For the second term, using (4.4) with f := 1 and the non-
negativity of G0

β and LG0
α we find that

‖LG0
α‖ = ‖LG0

α1‖∞ = ‖LG0
β1− (α− β)LG0

αG
0
β1‖∞ ≤ ‖LG0

β1‖∞.
Hence the second term also converges to zero as α → +∞, and it is clear
that so does the third term. This completes the proof of (6.13) and hence
of (6.12).

(VII) Summing up, we have proved that the operator A of Theorem 1.1
satisfies conditions (a) through (d) of Theorem 2.3. Hence A is the infinites-
imal generator of some Feller semigroup on D.

The proof of Theorem 1.1 is now complete.

7. Proof of Theorem 1.2. First we show that if condition (B) of
Section 1 is satisfied, then the operator LHα is bijective in Hölder spaces.
This is proved by applying Theorem 2.3 just as in the proof of Theorem
1.1. Therefore the unique solution u of the boundary value problem (∗) with
ϕ = 0 can be expressed in the form

u = Gαf = Gναf −Hα(LHα
−1

(LGναf)).

This formula allows us to verify all the conditions of the generation theorems
for Feller semigroups discussed in Subsection 2.2.
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First we simplify the boundary condition

Lu(x′) = 0 on Σ2.

By conditions (A) and (B), one may assume that

(7.1) Lu(x′) = m(x′)Lνu(x′) + (m(x′)− 1)u(x′),

with
0 ≤ m(x′) ≤ 1 on Σ2.

Indeed, it suffices to note that the boundary condition

Lu(x′) = m(x′)Lνu(x′) + γ(x′)u(x′) = 0 on Σ2

is equivalent to the condition
(

m(x′)
m(x′)− γ(x′)

)
Lνu(x′) +

(
γ(x′)

m(x′)− γ(x′)

)
u(x′) = 0 on Σ2.

Furthermore we remark that

LG0
αf(x′) = m(x′)LνG0

αf(x′)

and
LHαϕ(x′) = m(x′)LνHαϕ(x′) + (m(x′)− 1)ϕ(x′).

Hence, in view of definition (4.11) it follows that

(7.1′) Lu(x′) = m(x′)Lνu(x′) + (m(x′)− 1)u(x′), u ∈ D(L).

Therefore the next theorem proves Theorem 1.2:

Theorem 7.1. Define a linear operator

A0 : C0(D \M)→ C0(D \M)

by setting

(7.2) D(A0) = {u ∈ C0(D \M) : Au ∈ C0(D \M),

Lu = mLνu+ (m− 1)(u|Σ2) = 0},
and

(7.3) A0u = Au, u ∈ D(A0).

Assume that

(A′) 0 ≤ m(x′) ≤ 1 on Σ2.

Then the operator A0 generates some Feller semigroup {Ut}t≥0 on D \M
and the Green operator Gα = (αI − A0)−1, α > 0, is given by the formula

(7.4) Gαf = Gναf −Hα(LHα
−1

(LGναf)), f ∈ C0(D \M).

Here Gνα is the Green operator for the boundary condition Lν given by (6.4):

Gναf = G0
αf −Hα(LνHα

−1
(LνG0

αf)), f ∈ C(D).
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Proof. We apply Theorem 2.3(ii) to the operator A0 defined by (7.2) and
(7.3), just as in the proof of Theorem 1.1. The proof consists of five steps.

(I) First we prove that, for all α > 0, the operator LHα generates a
Feller semigroup on Σ2.

To this end, we remark (cf. Claim 4.11) that

LHαϕ(x′) = m(x′)LνHαϕ(x′) + (m(x′)− 1)ϕ(x′)

= m(x′)
( N−1∑

i,j=1

αij
∂2ϕ

∂xi∂xj
(x′) +

N−1∑

i=1

β
i
(x′)

∂ϕ

∂xi
(x′)

)

+ ((m(x′)− 1)− αm(x′)δ(x′))ϕ(x′) +m(x′)µ(x′)
∂

∂n
(Hαϕ)(x′)

+m(x′)
�

Σ2

r(x′, y′)
[
ϕ(y′)− ϕ(x′)−

N−1∑

j=1

(yj − xj)
∂ϕ

∂xj
(x′)

]
dy′.

Furthermore, as in inequality (6.3), we have

(7.5)
∂

∂n
(Hα1)(x′) < 0 on Σ2.

By conditions (A′) and (T), this implies that

LHα1(x′) = m(x′)LνHα1(x′) + (m(x′)− 1)

= m(x′)(µ(x′)
∂

∂n
(Hα1)(x′)− αδ(x′)) + (m(x′)− 1)

< 0 on Σ2.

Then, applying Theorem 3.1 to the operator LHα (see the proof of (5.1)),
we find that if λ > 0 is sufficiently large, then R(λI − LHα) ⊃ C8+2θ(Σ2).
In particular, R(λI − LHα) is dense in C(Σ2).

Therefore, Theorem 2.5(ii) applied to L shows that LHα is the infinites-
imal generator of a Feller semigroup on Σ2, for all α > 0.

(II) Now we prove that if condition (A′) is satisfied, then

(7.6) the equation LHα ψ = ϕ has a unique solution ψ ∈ D(LHα) for any
ϕ ∈ C(Σ2); hence the inverse LHα

−1
can be defined on the whole

space C(Σ2). Moreover it is non-negative and bounded on C(Σ2).

Since by (7.5) and conditions (A′) and (T) we have

LHα1(x′) = m(x′)LνHα1(x′) + (m(x′)− 1)

= m(x′)
(
µ(x′)

∂

∂n
(Hα1)(x′)− αδ(x′)

)
+ (m(x′)− 1)

< 0 on Σ2,
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it follows that
kα = − max

x′∈Σ2

LHα1(x′) > 0.

Here we remark that the constants kα are increasing in α > 0:

α ≥ β > 0 ⇒ kα ≥ kβ .
Moreover, using Corollary 2.4 with K := Σ2, A := LHα and c := kα, we
see that the operator LHα + kαI is the infinitesimal generator of a Feller
semigroup on Σ2. Therefore, since kα > 0, an application of Theorem 2.3(i)
with A := LHα + kαI shows that the equation

−LHαψ = (kαI − (LHα + kαI))ψ = ϕ

has a unique solution ψ ∈ D(LHα) for any ϕ ∈ C(Σ2) and further that the
operator

−LHα
−1

= (kαI − (LHα + kαI))−1

is non-negative and bounded on C(Σ2) with norm

(7.7) ‖−LHα
−1‖ = ‖(kαI − (LHα + kαI))−1‖ ≤ 1/kα.

(III) By (7.6), we can define the operator Gα by (7.4). We prove that

(7.8) Gα = (αI − A0)−1, α > 0.

By Lemma 4.6 and (6.4), it follows that, for all f ∈ C0(D \M),

Gαf ∈ D(A) and AGαf = αGαf − f.
Further we have

(7.9) LGαf = LGναf − LHα(LHα
−1

(LGναf)) = 0 on Σ2.

However we recall that

Lu = mLνu+ (m− 1)(u|Σ2), u ∈ D(L).

This implies that

Gαf(x′) = 0 on M = {x′ ∈ Σ2 : m(x′) = 0}
and so

AGαf(x′) = αGαf(x′)− f(x′) = 0 on M.

Summing up, we have proved that Gαf ∈ D(A0), and (αI−A0)Gαf = f .
This implies that

(αI − A0)Gα = I on C0(D \M).

Therefore, in order to prove (7.8) it suffices to show the injectivity of
αI − A0 for α > 0.

Assume that u ∈ D(A0) and (αI − A0)u = 0. Then, by Corollary 4.7,

u = Hα(u|Σ2), u|Σ2 ∈ D(LHα).
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Thus we have LHα(u|Σ2) = Lu = 0 on Σ2. By (7.6), this implies that
u|Σ2 = 0, so that u = Hα(u|Σ2) = 0 in D.

Now we prove the following three assertions:

(i) The operator Gα is non-negative on C0(D \M):

f ∈ C0(D \M), f(x) ≥ 0 on D \M ⇒ Gαf(x) ≥ 0 on D \M.

(ii) The operator Gα is bounded on C0(D \M) with norm

‖Gα‖ ≤ 1/α, α > 0.

(iii) The domain D(A0) is dense in the space C0(D \M).

(i) First we show the non-negativity of Gα on C(D):

f ∈ C(D), f(x) ≥ 0 on D ⇒ Gαf(x) ≥ 0 on D.

Recall that the Dirichlet problem

(D′)
{

(αI − A)u = f in D,
u|Σ2 = ϕ on Σ2,

is uniquely solvable. Hence

(7.10) Gναf = Hα(Gναf |Σ2) +G0
αf on D,

since both sides have the same boundary values and satisfy the same equa-
tion (αI − A)u = f in D. Thus, applying L to both sides of (7.10) we
obtain

LGναf = LHα(Gναf |Σ2) + LG0
αf.

Since the operators −LHα
−1

and LG0
α are non-negative, it follows that

(−LHα
−1

(LGναf)) = −Gναf |Σ2 + (−LHα
−1

(LG0
αf)) ≥ −Gναf |Σ2 on Σ2.

Therefore, by the non-negativity of Hα and G0
α we find that

Gαf = Gναf +Hα(−LHα
−1

(LGναf)) ≥ Gναf −Hα(Gναf |Σ2)

= G0
αf ≥ 0 on D.

(ii) Next we prove the boundedness of Gα on C0(D \M) with

(7.11) ‖Gα‖ ≤ 1/α, α > 0.

To this end, it suffices to show that

(7.11′) f ∈ C0(D \M), f(x) ≥ 0 on D ⇒ αGαf(x) ≤ max
D

f on D,

since Gα is non-negative on C(D).
We remark (cf. (7.1′)) that

LGναf(x′) = m(x′)LνGναf(x′) + (m(x′)− 1)Gναf(x′)

= (m(x′)− 1)Gναf(x′), x′ ∈ Σ2,
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so that

Gαf = Gναf +Hα(−LHα
−1

(LGναf))(7.12)

= Gνα +Hα(−LHα
−1

((m− 1)Gναf |Σ2)).

Therefore, by the non-negativity of Hα and −LHα
−1

it follows that

Gαf = Gναf +Hα(−LHα
−1

((m− 1)Gναf |Σ2)) ≤ Gναf

≤ 1
α

max
D

f on D,

since (m(x′) − 1)Gναf(x′) ≤ 0 on Σ2 and ‖Gνα‖ ≤ 1/α. This proves (7.11′)
and hence (7.12).

(iii) Finally we prove the density of D(A0) in C0(D\M). In view of (7.8),
it suffices to show that

(7.13) lim
α→+∞

‖αGαf − f‖∞ = 0, f ∈ C0(D \M) ∩ C∞(D).

We recall (cf. (7.4)) that

αGαf − f = αGναf − f − αHα(LHα
−1

(LGναf))(7.14)

= (αGναf − f) +Hα(LHα
−1

(α(1−m)Gναf |Σ2)).

Now we estimate each term on the right of (7.14).
(iii-1) First, applying Theorem 1.1 to the boundary condition Lν we find

from (6.13) that the first term on the right of (7.14) tends to 0:

lim
α→+∞

‖αGναf − f‖∞ = 0.

(iii-2) To estimate the second term, we remark that

Hα(LHα
−1

(α(1−m)Gναf |Σ2)) = Hα(LHα
−1

((1−m)f |Σ2))

+Hα(LHα
−1

((1−m)(αGναf − f)|Σ2)).

However, by (7.7) we have

(7.15) ‖Hα(LHα
−1

((1−m)(αGναf − f)|Σ2))‖∞
≤ ‖−LHα

−1‖ · ‖(1−m)(αGναf − f)|Σ2‖∞

≤ 1
kα
‖(1−m)(αGναf − f)|Σ2‖∞

≤ 1
k1
‖αGναf − f‖∞ → 0 as α→ +∞.

Here we have used the fact that

k1 = − max
x′∈Σ2

LH11(x′) ≤ kα = − max
x′∈Σ2

LHα1(x′) for all α ≥ 1.
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Thus we are reduced to the study of the term

Hα(LHα
−1

((1−m)f |Σ2)).

Now, for any given ε > 0, one can find a function h ∈ C∞(Σ2) such that
h(x′) = 0 near M and ‖(1−m)f |Σ2 − h‖∞ < ε. Then for all α ≥ 1 we have

(7.16) ‖Hα(LHα
−1

((1−m)f |Σ2))−Hα(LHα
−1
h)‖∞

≤ ‖−LHα
−1‖ · ‖(1−m)f |Σ2 − h‖∞ ≤ ε/kα ≤ ε/k1.

Furthermore one can find a function θ ∈ C∞0 (Σ2) such that θ(x′) = 1 near
M and (1− θ(x′))h(x′) = h(x′) on Σ2. Then

h(x′) = (1− θ(x′))h(x′) = (−LHα1(x′))
(

1− θ(x′)
−LHα1(x′)

)
h(x′)

≤
[

max
x′∈Σ2

(
1− θ(x′)
−LHα1(x′)

)]
‖h‖∞(−LHα1(x′)).

Since the operator −LHα
−1

is non-negative on C(Σ2), it follows that

−LHα
−1
h ≤ max

x′∈Σ2

(
1− θ(x′)
−LHα1(x′)

)
‖h‖∞ on Σ2,

so that

(7.17) ‖Hα(LHα
−1
h)‖∞ ≤ ‖−LHα

−1
h‖∞ ≤ max

x′∈Σ2

(
1− θ(x′)
−LHα1(x′)

)
‖h‖∞.

However there exists a constant c0 > 0 such that

0 ≤ 1− θ(x′)
m(x′)

≤ c0, x′ ∈ Σ2.

Hence
1− θ(x′)
−LHα1(x′)

≤ 1− θ(x′)
m(x′)(−LνHα1(x′)) + (1−m(x′))

≤ c0
∥∥∥∥

1
−LνHα1

∥∥∥∥
∞
.

In view of Lemma 6.2, this implies that

lim
α→+∞

[
max
x′∈Σ2

(
1− θ(x′)
−LHα1(x′)

)]
= 0.

By (7.16) and (7.17), it follows that

lim sup
α→+∞

‖Hα(LHα
−1

((1−m)f |Σ2))‖∞

≤ lim sup
α→+∞

‖Hα(LHα
−1
h)‖∞

+ ‖Hα(LHα
−1

((1−m)f |Σ2))−Hα(LHα
−1
h)‖∞

≤ lim
α→+∞

[
max
x′∈Σ2

(
1− θ(x′)
−LHα1(x′)

)]
‖h‖∞ +

ε

k1
≤ ε

k1
.



52 K. Taira et al.

Since ε is arbitrary, this proves that

(7.18) lim
α→+∞

‖Hα(LHα
−1

((1−m)f |Σ2))‖∞ = 0

Combining (7.15) and (7.18) we find that the second term on the right
of (7.14) also tends to zero:

lim
α→+∞

‖Hα(LHα
−1

(α(1−m)Gναf |Σ2))‖∞ = 0.

This completes the proof of (7.13) and hence of assertion (iii).
(V) Summing up, we have proved that the operator A0 defined by (7.2)

and (7.3) satisfies conditions (a) through (d) of Theorem 2.3. Hence, by
(7.1′), A0 is the infinitesimal generator of a Feller semigroup {Ut}t≥0

on D \M .
The proof of Theorem 7.1 and hence of Theorem 1.2 is now complete.
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maximum, Comm. Partial Differential Equations 11 (1986), 1677–1726.

[3] P. Cattiaux, Stochastic calculus and degenerate boundary value problems, Ann. Inst.
Fourier (Grenoble) 42 (1992), 541–624.

[4] J. Chazarain et A. Piriou, Introduction à la théorie des équations aux dérivées
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