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Extendibility of polynomials and analytic functions on `p

by

Daniel Carando (Buenos Aires)

Abstract. We prove that extendible 2-homogeneous polynomials on spaces with co-
type 2 are integral. This allows us to find examples of approximable non-extendible poly-
nomials on `p (1 ≤ p <∞) of any degree. We also exhibit non-nuclear extendible polyno-
mials for 4 < p < ∞. We study the extendibility of analytic functions on Banach spaces
and show the existence of functions of infinite radius of convergence whose coefficients are
finite type polynomials but which fail to be extendible.

Introduction. The aim of this note is to study the extendibility of
polynomials and analytic functions on `p. This will allow us to show simple
examples of non-extendible polynomials and analytic functions. Recall [12]
that a k-homogeneous polynomial P : E → F is said to be extendible if for
any Banach space G containing E there exists a polynomial P̃ : G → F
extending P . The Hahn–Banach extension theorem gives the extendibility
of all linear functionals but, even in the scalar-valued case (F = R or C),
this cannot be generalized to polynomials of degree 2 or more. For example,
`2 is contained in C[0, 1] but the polynomial P (x) =

∑
k x

2
k on `2 cannot be

extended to C[0, 1] (this last space has the Dunford–Pettis property and con-
sequently any polynomial on C[0, 1] is weakly sequentially continuous [16]).

The question arises about the existence of weakly sequentially contin-
uous polynomials which fail to be extendible (this question was posed by
I. Zalduendo in personal communications). Kirwan and Ryan [12] showed
that extendible polynomials on Hilbert spaces are nuclear. In consequence,
the polynomial

P (x) =
∞∑

j=1

x2
j

j

is approximable (and therefore weakly sequentially continuous) but not ex-
tendible on `2 (see [17]). We show that this polynomial is not extendible on
any `p with p ≥ 2 but it is nuclear (and therefore extendible) for 1 ≤ p < 2.
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In the first section, we prove that 2-homogeneous extendible polynomials
on `p are integral for p = 1 and nuclear for 1 < p ≤ 2. We give examples
of non-nuclear extendible polynomials for p > 4. In the second section, we
give a characterization, for degree 2, of diagonal nuclear polynomials and
prove that diagonal extendible polynomials are nuclear (1 < p <∞). These
results allow us to find examples of non-extendible approximable polynomi-
als of any degree (greater than 1) on `p for 1 ≤ p < ∞. In the last section
we define extendible analytic functions and show the existence of analytic
functions that are not extendible even though all their coefficients are finite
type polynomials.

Throughout, E, F and G are Banach spaces. Although definitions and
proofs are given for complex Banach spaces, slight modifications lead to
analogous results for the real case.

We recall some definitions. The space of finite type polynomials Pf(kE;F )
is the subspace of P(kE;F ) (the space of all continuous polynomials from
E to F ) spanned by the monomials γ(·)ky for all γ ∈ E′, y ∈ F . The
approximable polynomials are those which can be approximated by finite
type polynomials uniformly on the unit ball of E.

A polynomial P ∈ P(kE;F ) is said to be nuclear if it can be written as

P (x) =
∞∑

i=1

γi(x)kyi ∀x ∈ E

where γi ∈ E′ and yi ∈ F for all i ∈ N and
∑∞
i=1 ‖γi‖k ‖yi‖ < ∞. The

infimum of these sums over all the representations of P is the nuclear norm
‖P‖N.

A polynomial P ∈ P(kE;F ) is said to be integral if there exists a regu-
lar countably additive F -valued Borel measure µ, of bounded variation on
(BE′ , w∗), such that

P (x) =
�

BE′

γ(x)k dµ(γ) ∀x ∈ E.

The integral norm ‖P‖I is the infimum of the norms of all the measures µ
that represent P as above.

Finally, for an extendible polynomial P ∈ P(kE;F ), its extendible norm
is defined as

‖P‖e = inf{‖Q‖ : Q ∈ P(k`∞(BE′);F ) is an extension of P}.
We refer to [10] and [14] for notation and results regarding polynomials.
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for its hospitality, and Nacho Zalduendo and Nacho Villanueva for helpful
conversations.
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1. Extendibility of polynomials on `p. Pisier (see [15]) showed the
existence of spaces X for which the projective and injective tensor products
⊗2
s,πX and ⊗2

s,εX are isometrically isomorphic. This means that every
2-homogeneous polynomial on X is integral and in particular extendible
[5]. Note that, since X is not an L∞-space, polynomials on X cannot be
extended in a linear and continuous way (see [13, 17]).

Pisier spaces will be useful to exhibit spaces where only integral polyno-
mials are extendible (this result was also obtained independently in [6]):

Proposition 1.1. Let E be a Banach space with cotype 2. Then ex-
tendible 2-homogeneous polynomials are integral (and the extendible and in-
tegral norms coincide).

Proof. If E has cotype 2, E can be isometrically embedded in a Pisier
space X (see [15]). If P is an extendible polynomial on E, it can be extended
to a polynomial P̃ on X with ‖P̃‖ ≤ ‖P‖e. Since ⊗2

s,πX and ⊗2
s,εX are

isometrically isomorphic, P̃ is integral and ‖P̃‖I = ‖P̃‖. But the restriction
of an integral polynomial is integral and also ‖P‖I ≤ ‖P̃‖I ≤ ‖P‖e. The
reverse inequality always holds.

If 1 ≤ p ≤ 2 and X is an Lp-space, then X has cotype 2 and every ex-
tendible 2-homogeneous polynomial is integral. Moreover, if 1 < p ≤ 2 and µ
is a measure, since Lp(µ) is reflexive, its dual has the Radon–Nikodym prop-
erty and every integral polynomial is nuclear [1]. Consequently, extendible
2-homogeneous polynomials on Lp(µ) are nuclear (for p = 2 this was proved
by Kirwan and Ryan [12]). In particular, we have the following:

Corollary 1.2. For 1 < p ≤ 2, a 2-homogeneous polynomial on `p is
extendible if and only if it is nuclear.

Corollary 1.2 is not true for 4 < p < ∞. We show, for any p ∈ (4,∞),
an example of an extendible polynomial which fails to be nuclear (we have
no example of such a polynomial for 2 < p ≤ 4). We follow the idea of [7,
10.4].

Example 1.3. Consider the bilinear form An on `n∞ given by the
“Fourier matrix”

An(x, y) =
1√
n

n∑

k,l=1

e2πikl/nxkyl

which has norm ‖An‖ ≤ n but nuclear norm ‖An‖N = n3/2 [7, Ex. 4.3].
Therefore, the nuclear norm of the polynomial Pn(x) = An(x, x) is at least
n3/2 on `n∞. If we consider it on `np , since the identity map `n∞ → `np has
norm n1/p, we have

‖Pn‖N,`n∞ ≤ n2/p‖Pn‖N,`np
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and then

‖Pn‖N,`np ≥
n3/2

n2/p
= n3/2−2/p.

Fix 1 < d < 21/2−2/p <
√

2 and define Qm = (2d)−mP2m . Identifying c0
with c0((`2

m

∞ )m), it is easy to see that the polynomial Q =
⊕

mQm is well
defined and continuous on c0. Let ip : `p → c0 be the canonical inclusion.
Since every polynomial on c0 is extendible, Q is extendible and consequently
so is Q◦ip (cf. [4]). Let us see that Q◦ip is not nuclear. If it were, identifying
`p with `p((`2

m

p )m) we would have

‖Qm‖N,`2mp ≤ ‖Q ◦ ip‖N,`p .

But what we do have is

‖Qm‖N,`2mp ≥ 2m(3/2−2/p)

(2d)m
=
(

21/2−2/p

d

)m
,

which goes to infinity with m. Therefore, Q◦ ip is extendible but not nuclear
on `p for 4 < p <∞.

We end this section with some comments about L1-spaces. We know that
integral polynomials are extendible and that a 2-homogeneous extendible
polynomial has an absolutely 2-summing differential [12]. Kirwan and Ryan
also showed that, for L1-spaces, this last condition is sufficient for a polyno-
mial to be extendible. Since L1-spaces have cotype 2, Proposition 1.1 implies
that extendible polynomials are integral. Therefore we have:

Corollary 1.4. If P is a 2-homogeneous polynomial on an L1-space,
the following are equivalent :

(a) P is integral.
(b) P is extendible.
(c) The differential dP is absolutely 2-summing.

2. Examples of non-extendible polynomials. Throughout, p and
q will be such that 1/p + 1/q = 1. Corollary 1.2 affirms that extendible
2-homogeneous polynomials on `p are nuclear for 1 < p ≤ 2. Although this
is not true for all p (as shown above), we will see that extendible “diagonal”
polynomials are nuclear. Therefore, a way to detect non-nuclear polynomials
on `p will be helpful. The following lemma is our first step.

Lemma 2.1. Let P be a nuclear 2-homogeneous polynomial on `p.

(1) If 1 < p < 2, then (P (en))n ∈ `q/2.
(2) If 2 ≤ p <∞, then (P (en))n ∈ `1.
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Proof. (1) If P is nuclear then it is continuous for the injective norm.
Then, if (αk)k is a finite sequence, we have

∣∣∣
∑

k

P (αkek)
∣∣∣ ≤ C sup

b∈B`q

∣∣∣
∑

k

b(αkek)2
∣∣∣

= C sup
b∈B`q

∣∣∣
∑

k

b2kα
2
k

∣∣∣ = C sup
c∈B`q/2

∣∣∣
∑

k

ckα
2
k

∣∣∣.

Since |∑k α
2
kP (ek)| = |∑k P (αkek)| ≤ C supc∈B`q/2

|∑k ckα
2
k| for every

finite sequence (αk)k, we conclude that (P (en))n ∈ `q/2.
(2) P being nuclear, we can write

P (x) =
∑

k

(∑

j

bk,jxk

)2
with

∑

k

(∑

j

|bk,j |q
)2/q

<∞.

Since q < 2, we have
∑

n

|P (en)| =
∑

n

∣∣∣
∑

k

(bk,n)2
∣∣∣ ≤

∑

k

(∑

n

|bk,n|q
)2/q

<∞

and then (P (en))n ∈ `1.

We will now consider polynomials on `p of the form

P (x) =
∞∑

j=1

ajx
2
j ,

which we will call diagonal. It is clear that if
∑∞
j=1 |aj | < ∞, then P is

nuclear. Surprisingly enough, a diagonal polynomial can be nuclear even
though the coefficients (aj)j are not summable. The extreme case is `1,
where any null sequence (aj)j gives a nuclear polynomial. The following two
propositions clarify the situation:

Proposition 2.2. Let P (x)=
∑∞
j=1 ajx

2
j be a diagonal polynomial on `p.

(1) For 1 < p < 2, P is nuclear if and only if (ak)k ∈ `q/2.
(2) For 2 ≤ p <∞, P is nuclear if and only if (ak)k ∈ `1.

Proof. (1) It only remains to prove sufficiency. Suppose that (ak)k ∈ `q/2.
To see that P is nuclear, it is enough to show that the nuclear norm of the
polynomial

∑n+l
k=n akx

2
k can be made arbitrarily small by taking n∈N large

enough, independently of the size of l (since this means that P can be written
as the sum of a sequence of polynomials with summable nuclear norms). Con-
sider the operator T : `p → `l+1

1 given by T (x) = (a1/2
n xn, . . . , a

1/2
n+lxn+l).

The operator T has norm (
∑n+l
k=n |ak|q/2)1/q. If we show that the polynomial

Ql(y) =
∑l+1
k=1 y

2
k has unitary nuclear norm on `l+1

1 (see also [7]), the compo-
sition Ql ◦ T (x) =

∑n+l
k=n akx

2
k has nuclear norm at most (

∑n+l
k=n |ak|q/2)2/q
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on `np . Since (ak)k ∈ `q/2, we see that P is a nuclear polynomial. But Ql(y)
can be rewritten as

Ql(y) =
∑

ε1=±1,...,εl+1=±1

(ε1y1 + . . .+ εl+1yl+1

2(l+1)/2

)2

(note that if we expand the expression above, the product yiyj appears mul-
tiplied by 1 as many times as it appears multiplied by −1). Therefore, the
nuclear norm of Ql is not greater than

∑

ε1=±1,...,εl+1=±1

∥∥∥∥
1

2(l+1)/2
(ε1, . . . , εl+1)

∥∥∥∥
2

∞
=

∑

ε1=±1,...,εl+1=±1

1
2l+1 = 1.

Since ‖Ql‖N ≥ ‖Ql‖ = 1, we have ‖Ql‖N = 1.
(2) One implication follows from Lemma 2.1 and the other is clear.

Proposition 2.3. Let P (x) =
∑∞
j=1 ajx

2
j be a diagonal polynomial on

`1. The following are equivalent :

(a) P is nuclear.
(b) P is approximable.
(c) (aj)j is a null sequence.

Proof. It is clear that (a) implies (b). If P is approximable, then dP is
a compact operator [2]. For every j, we find that aje′j belongs to dP (B`1),
which is a compact subset of `∞. This forces (aj)j to be a null sequence.
Now suppose that (c) is true. First observe that the polynomial Q(x) =∑n
k=1 bkx

2
k on `n1 has nuclear norm maxk |bk|2 (independently of the size

of n). Then choose ki ∈ N such that maxki≤k<ki+1 |ak|2 ≤ 1/2i. Thus, P
can be written as the sum of a sequence of polynomials with summable
nuclear norms, which shows that P is nuclear.

We will now characterize the diagonal 2-homogeneous extendible poly-
nomials on `p, for 1 < p < ∞. Together with our characterization of nu-
clear polynomials, this will allow us to show the existence of approximable
non-extendible polynomials on every `p.

Proposition 2.4. If 1 < p < ∞, then diagonal extendible 2-homogen-
eous polynomials on `p are nuclear.

Proof. For 1 < p ≤ 2, Corollary 1.2 affirms that every extendible poly-
nomial is nuclear. For p > 2, let P ∈ Pe(2`p) be given by P (x) =

∑
k akx

2
k

and consider Q ∈ P(2`2) given by the same formula. Since Q = P ◦ i (where
i : `2 → `p is the natural inclusion),Q is extendible [4] and therefore nuclear.
As we have already seen, this means that

∑
k |ak| <∞ and consequently P

is also nuclear on `p.
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The previous result is not true for p = 1, since the polynomial P (x) =∑
k x

2
k on `1 is integral (and therefore extendible) but not nuclear. This

makes it harder to find approximable non-extendible polynomials on `1 than
on any other `p, where we can find diagonal polynomials satisfying our
requirements.

Corollary 2.5. There are approximable non-extendible 2-homogeneous
polynomials on every `p (1 ≤ p <∞).

Proof. For 1 < p ≤ 2, the polynomial P (x) =
∑
k akx

2
k is approximable

whenever ak is a null sequence, but is not extendible if we take (ak)k /∈ `q/2
(note that if p = 2, then q/2 = 1).

For p > 2, the polynomial P (x) =
∑
k akx

2
k is well defined and approx-

imable for (ak)k ∈ `r if r = 1 + 2/(p− 2). Taking (ak)k in `r but not in `1,
we get a non-nuclear diagonal polynomial which by Proposition 2.4 cannot
be extendible.

For p = 1, extendible polynomials are integral by Proposition 1.1, so
we have to see that there are approximable polynomials which are not in-
tegral. If every approximable polynomial is integral, by the closed graph
theorem, the inclusion PA(2`1) ↪→ PI(2`1) is continuous. Since we always
have ‖P‖ ≤ ‖P‖I, both norms turn out to be equivalent on PA(2`1). On
the other hand, the space PN(2`1) is dense in (PA(2`1), ‖ · ‖) and, by The-
orem VIII.3.10 of [8], closed in (PI(2`1), ‖ · ‖I). By the equivalence of the
norms, PN(2`1) and PA(2`1) coincide. Taking duals (see [11] and [9]), we
obtain P(2`∞) = PI(2`∞), and in particular, every 2-homogeneous polyno-
mial on c0 should be integral. Since this is false [5], we conclude that there
are approximable polynomials on `1 which are not integral and consequently
fail to be extendible.

Example 2.6. The polynomial

P (x) =
∑

k

x2
k

k

is approximable but not extendible on every `p, p ≥ 2 (but is nuclear, and
therefore extendible, for 1 ≤ p < 2). The polynomial

Q(x) =
∑

k

x2
k

ln(k + 1)

is approximable but not extendible for 1 < p ≤ 2 (observe that Q is nuclear
if we consider it on `1 and is not defined for p > 2).

We want to generalize Corollary 2.5 to polynomials of any degree. This
will be easy with the help of the following:
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Proposition 2.7. Let P be a k-homogeneous polynomial on a Banach
space E and γ ∈ E′, γ 6= 0. Then P is extendible if and only if the (k + 1)-
homogeneous polynomial γ(x)P (x) is extendible.

Proof. If P is extendible then it is clear that γP is extendible. Conversely,
letQ be an extension of γP to a Banach space F containing E, and φ ∈ F ′ an
extension of γ. If e ∈ E is such that γ(e) = 1, there exists a k-homogeneous
polynomial Q0 on F such that

Q(f)−Q(f − φ(f)e) = φ(f)Q0(f) for f ∈ F
(see [3]). For x ∈ E, we have

(γP )(x)− (γP )(x− γ(x)e) = γ(x)Q0(x),

γ(x)P (x) = γ(x)Q0(x)

and since γ is non-zero on a dense subset of E we see that Q0 extends P
to F .

Corollary 2.8. There are approximable non-extendible polynomials of
any degree k ≥ 2 on `p for 1 ≤ p <∞.

Proof. If P is an approximable non-extendible 2-homogeneous polyno-
mial, then for any γ ∈ `q, γ 6= 0, the polynomial γk−2P is approximable but
non-extendible.

Note that the previous results not only prove the existence of approx-
imable non-extendible polynomials of any degree, but also show a way to
find examples of them. Following the idea of Proposition 2.7 we find that the
product of linear functionals with the polynomial exhibited in Example 1.3
will give extendible non-nuclear polynomials of any degree.

Another consequence of Proposition 2.7 is:

Corollary 2.9. If every k-homogeneous polynomial on E is extendible,
so is every j-homogeneous polynomial for 1 ≤ j ≤ k.

3. Extendibility of analytic functions. Let U be an open subset of
E. We will say that an analytic function f : U → F is extendible at a ∈ U
if for any G ⊃ E there exists an open subset V of G containing a and an
analytic function f̃ : V → F which coincides with f on V ∩E. If such an f
has a Taylor expansion

f(x) =
∞∑

k=0

Pk(x− a)

where Pk ∈ P(kE,F ), from the uniqueness of these expansions we deduce
that every Pk must be extendible. We will see that the extendibility of the
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coefficients Pk is not enough to ensure the extendibility of f . First we define
the extendibility radius of f (at a) as

re =
1

lim sup
k→∞

‖Pk‖1/ke

if every Pk is extendible. Since ‖Pk‖ ≤ ‖Pk‖e for all k, the extendibility
radius is not greater than the radius of uniform convergence.

Proposition 3.1. Let f(x) =
∑∞
k=0 Pk(x − a) be an analytic function

from U ⊂ E to F . The following conditions are equivalent :

(a) f is extendible at a.
(b) Every Pk is extendible and the extendibility radius re is positive.

Moreover , if (a) and (b) occur , given G containing E we can extend
f to an analytic function on a ∈ G with radius of uniform convergence at
least re.

Proof. If f is extendible every Pk is extendible, as we observed above.
f being extendible, we extend it to an open subset of `∞(BE′) containing a
and call the coefficients of the extension Pk (which are extensions of Pk).
Therefore, ‖Pk‖ ≥ ‖Pk‖e and

re =
1

lim sup
k→∞

‖Pk‖1/ke

≥ 1
lim sup
k→∞

‖Pk‖1/k
,

which is positive since
∑
k P k(x−a) is analytic at a (and has positive radius

of convergence).
Conversely, suppose (b) is true and let G be a Banach space contain-

ing E. For any k we take εk > 0 such that

lim sup
k→∞

‖Pk‖1/ke = lim sup
k→∞

(‖Pk‖e + εk)1/k.

We also take for each k an extension P̃k of Pk to G such that ‖P̃k‖ ≤
‖Pk‖e + εk. If we define f̃(z) =

∑∞
k=0 P̃k(z − a) (for z ∈ F ) we have

1

lim sup
k→∞

‖P̃k‖1/k
≥ 1

lim sup
k→∞

(‖Pk‖e + εk)1/k
=

1

lim sup
k→∞

‖Pk‖1/ke

= re

This means that f̃ is analytic and has radius of uniform convergence (at a)
greater than or equal to re. In consequence, (a) is true, as is the statement
about the convergence radius of the extensions.

We have shown that there are approximable non-extendible polynomials
of any degree k ≥ 2 in every `p (1 ≤ p < ∞). For such a polynomial P ,
there exists a sequence of finite type polynomials which approximate it in
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norm. However, this sequence cannot approximate P in extendible norm,
since this would mean that P is extendible (because finite type polynomials
are extendible and the extendible norm is complete). So we conclude that
the usual norm and the extendible norm are not equivalent on the subspace
Pf(k`p) of finite type polynomials, for any k ≥ 2 and 1 ≤ p <∞. Therefore,
for each k ≥ 2 we can find a finite type polynomial Pk of degree k such that

‖Pk‖ ≤
1
kk

and ‖Pk‖e ≥ kk.
If we define f(x) =

∑
k Pk(x) on `p (with P0 and P1 arbitrary), then f

is an analytic function with infinite radius of uniform convergence. All its
coefficients are finite type polynomials (and therefore extendible) but f is
not extendible since its extendible radius is 0.

Note that the previous idea can be used for any space on which there is
an approximable non-extendible polynomial. If we only know that there ex-
ists a non-extendible polynomial, we make use of the following fact ([12], see
also [4]): the extendible norm is equivalent to the usual norm on Pe(kE) if
and only if every k-homogeneous polynomial is extendible. With this result,
Proposition 2.7 and a similar construction we can find a non-extendible an-
alytic function with infinite radius of convergence such that every coefficient
is extendible. We summarize all this in the following theorem:

Theorem 3.2. (1) On any space with an approximable non-extendible
polynomial there exists an analytic function (of infinite radius of conver-
gence) with finite type coefficients that is not extendible.

(2) On any space with a non-extendible polynomial there exists an ana-
lytic function (of infinite radius of convergence) with extendible coefficients
that is not extendible.
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[6] J. Castillo, R. Garćıa and J. Jaramillo, Extension of bilinear forms on Banach
spaces, preprint.

[7] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math.
Stud. 176, North-Holland, 1993.



Extendibility of polynomials and analytic functions on `p 73

[8] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[9] S. Dineen, Holomorphy types on Banach spaces, Studia Math. 39 (1971), 240–288.

[10] —, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57,
North-Holland, Amsterdam, 1981.

[11] C. Gupta, Malgrange theorem for nuclearly entire functions of bounded type on a
Banach space, Ph.D. thesis, Univ. of Rochester, 1966.

[12] P. Kirwan and R. Ryan, Extendibility of homogeneous polynomials on Banach
spaces, Proc. Amer. Math. Soc. 126 (1998), 1023–1029.

[13] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48
(1964).

[14] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120,
North-Holland, Amsterdam, 1986.

[15] G. Pisier, Counterexamples to a conjecture of Grothendieck , Acta Math. 151 (1983),
181–208.

[16] R. Ryan, Dunford–Pettis properties, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27
(1979), 373–379.

[17] I. Zalduendo, Extending polynomials—a survey , Publicaciones del Departamento
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