STUDIA MATHEMATICA 145 (1) (2001)

H*®™> functional calculus
in real interpolation spaces, I1

by

GIOVANNI DORE (Bologna)

Abstract. Let A be a linear closed one-to-one operator in a complex Banach space X,
having dense domain and dense range. If A is of type w (i.e. the spectrum of A is contained
in a sector of angle 2w, symmetric about the real positive axis, and [[A(A — A) Y| is
bounded outside every larger sector), then A has a bounded H®® functional calculus in
the real interpolation spaces between X and the intersection of the domain and the range
of the operator itself.

1. Introduction. In this paper we consider the H*° functional calcu-
lus on a sector for a closed, linear, one-to-one operator A on a complex
Banach space X, having dense domain and dense range, with resolvent set
that contains R™ and resolvent that decreases in a maximal way on R~
(i.e. [[MAI — A)~Y| is bounded). This is a sequel to [1], in which it was
proved that such an operator A has a bounded H*° functional calculus in
the real interpolation spaces between X and D(A), provided that 0 € o(A).
When 0 ¢ o(A) this theorem is not true, since in particular if A is bounded
(i.e. D(A) = X) then every real interpolation space between X and D(A)
coincides with X, but there are bounded operators without a bounded H*°
functional calculus on a sector.

In the present paper we consider the case 0 € p(A) and we prove that
A has a bounded H®° functional calculus in the real interpolation spaces
between X and D(A) NR(A).

We refer to [1] for notations and definitions, in particular for the defini-
tion of S, S°, H‘X’(Sg), L[/(SB), operator of type w, H°® functional calculus,
LE(R™), real interpolation space.

2. Preliminary results. Let A be a one-to-one operator of type w
(w € [0,7[). If z € C\ S, then also 2~ € C\ S, therefore it is easy to show
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that 2 € o(A™1) and
(2 —A Y= —2tA T - A

Thus if 6 € Jw, 7[ and My is such that ||(z] — A) 7| < My/|z| for z € C\ Sy
then
I(zI =A™ = e AT = A7
=z T =2 T+ A) (T - AT
My+1
<A <
z
Therefore A~! is an operator of type w.
We denote by D(A4; «, p) the real interpolation space (X, D(A))q,p (With
a €]0,1[ and p € [1, 00]); moreover, we denote by R(A; «, p) the real inter-
polation space (X, R(A))a,p (With [|z||pay = [|z| x +[|Az| x and ||z||ra) =
lzllx + |A™ ]| x).
The norm of z in D(A; «,p) is equivalent to

lzllx + It — t* AT + A) ™ | Ly sy

(see [2], Definition 1.1 and Theorem 3.1). We note that when 0 € p(A) the
term ||z||x can be disregarded, while if A has unbounded inverse this term
is essential.

Since D(A™!) = R(A) we have R(4;a,p) = D(A™;a,p), therefore an
equivalent norm on R(A; o, p) is |||/ x + ||t — t* A~ (I + A1) e e gy,
But

AT+ AT T = AT AT T AT = AT

therefore this norm is equivalent to |||/ x + ||t — t* =1 (¢~ T+ A) x| e gy
Let E and F be Banach spaces (embedded in the same vector space).
The space E N F is a Banach space if endowed with the norm ||z||gnr =
Izlz + 2] F-
From now on we will drop the subscript in the notation || - || x.

THEOREM 2.1. Let A be a one-to-one operator of type w with dense
domain and dense range. Let o € ]0,1] and p € [1,00]. Then the norm on
D(A; a,p) NR(A; a,p) is equivalent to

|t — t*A(tI + A) 'z

Loy + [t = 7@ + A) "

LE(R+)-

Proof. From the above observations it follows immediately that the norm
of D(A;a,p) N R(A; e, p) is equivalent to

]| + [t = ¢ AT + A) x|

Leey + [t 0 + A) "

LY (R*)>»

therefore in order to prove the theorem it is sufficient to show that there
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exists C' € R such that for every z € D(A;a,p) N R(A; «, p) we have
]| < C(|t = t*ART + A) " al| o @y + ([t = 170+ A) " e o @ey)-

If p < o0, then since
S (e~ llogtlyp dt _2
it t ap
and for every t € R, x € X,

x=AtI +A) e +t(tI+ A) e,

we have
_(ap —allogt| pdt e
]| = TR& le zll” =
1/p
= (% | llemetos AT+ A)~ af|? ﬂ)
2 Bt t
dt 1/17
+ (% | lemetostiy(er + A)~ a? —>
R+ t
1/p
ap a _ dt
< (7 | It A®r + A) lxup?)
R+
1/p
ap 11—« —1 dt
. t tI+ A p— .
+(4 J 1 a7t )
If p = oo, then

] < 1A +A) " al| + 17+ A) |
< sup [[t*A(] + A) x| + sup || + A) .
teRT teRT

This concludes the proof.

THEOREM 2.2. Let A be a one-to-one operator of type w. Let B be the
operator from D(A)NR(A) to X such that Bx = (2 + A+ A~')x. Then B
is a closed operator of type wo (for a suitable wg) and 0 € o(B). Moreover,
if A has dense domain and dense range then D(B) is dense.

Proof. Obviously, B = (I + A)2A~! but (I + A)? has bounded inverse
and A~! is closed, therefore B is closed and its inverse is A(I + A)~2, hence
0 € o(B).

For t € R put
t+24+ Vet A

2

Tt
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We have
(t+2 I+ A+ A Y P =n(nl+ A Y (nl+ AN
Indeed, t +2 = 7, + 7, ', thus for x € D(A) NR(A) we have
(el + A) Nl + A (@t +2) I+ A+ A Dz
= (il + ANl + A ) Y (e 4+ DI+ A+ A Dz
= (I +A) Nl + A N (R + DI+ 1A+ 1A Dz
= (I +A) Nl + A DY NI+ A )l + Ar =2
and analogously, for every x € X,
(t+2) T+ A+ A Y (rd + A) I+ A Y e = o
therefore R~ C o(B). Moreover, we have
It + B)~H | = Ime(md + A~ (rd + A7)

= [(rl + AT A(r T+ A) T <

therefore B is of type wq for some wy.

Suppose now that D(A) and R(A) are dense in X. Then for every zz € X
we have
LA + A~ T+ A) e — 2

<tAGRI+ ATt T+ A) e —t(tI 4+ A) e 4 t(tT + A) e — 2|

<A+ A)TH - JAETH + A) e — x| ([t + A) e — —0

t—
But
tARI 4+ A) "t T+ A) e € D(A)NR(A),

so z is a limit of elements of D(A) N R(A), therefore D(B) = D(A) NR(A)
is dense in X. This proves the theorem.

Note that
|zllosy = 2] + |Bz| = [lz] + (12 + A+ A™")z|
< 3l + [[Az]| + A7 2] = [|l2llx + lzllpeay + 2]l (a)
< lzllpcaynr(a)-
Therefore the vector spaces D(A) NR(A) and D(B) are equal and the first
space is continuously embedded in the second one; by the open mapping

theorem the reverse embedding is continuous and the two norms are equiv-
alent.

It follows that (X, D(A)NR(A))a,p = D(B;a,p) with equivalent norms.
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THEOREM 2.3. Let A be a one-to-one operator of type w with dense
domain and dense range. Let « € ]0,1[ and p € [1,00]. Then D(A;a,p) N
R(A;a,p) = (X, D(A) NR(A))a,p with equivalent norms.

Proof. Since D(A) N R(A) is continuously embedded in D(A) and in
R(A), by interpolation we deduce that (X, D(A)NR(A))q,p is continuously
embedded in D(A;a, p) and in R(A; a, p) and also in their intersection.

As we have already observed, D(A) N R(A) = D(B) (with B as in The-
orem 2.2); therefore, in order to prove the inverse embedding, it is sufficient
to prove that D(A4; a, p) NR(A; o, p) is continuously embedded in D(B; a, p).

Let 2 € D(A; a,p) N R(A; , p); we have
[t = t*B(tI + B) ™ || p(r)

<t @I+ A+ AT + B) x|

< [t = 220t + B) " x| Lo gy
+ ||t = t* AT + A) (L + A)(t] + B) 'l o (w)
= AT+ AT + ATH(H + B) | pp e

tOé
< CHt — |||
122 3
+ sup [[(tI + A)(tI + B) 7| - ||t = At + A) " x| e g
teRT
+sup [[(t1 +ATH(E + B) 7| - [t AT + AT Loy
teERT

For t € RT we have
|(tI + A)(tI + B)™ Y|
= ||(tT + A)A(I + A)2B(tI + B) Y|
<N+ AT+ A AT+ A - |BAI+B)~ | < C

since A and B are of type w and wqg respectively. In a similar way one can
estimate the term [|(t] + A=1)(¢tI + B)~!||; thus the second summand is less
than or equal to a constant times ||t — t*A(t] +A) ™'z rg+) and the third
one is less than or equal to a constant times [t — t* A~ (t1+ A1)z pr g+
We can conclude that if z € D(A;a,p) N R(A4; a,p) then

[t = t*B(tI + B) x| po@e) < Cl|a]| + ||t — t*A(t] + A) || 2w
+ ||t = t* AT + A2 e )

< C||$||D(A;a,p)ﬂR(A;a,p) < 0.

This proves that the space D(A; a, p) N R(A; e, p) is continuously embedded
in (X,D(A) NR(A))ap-
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We denote by A, , the part of the operator A in D(A;a, p) " R(A; o, p),
i.e. the operator such that
D(Anp) ={x € D(A)ND(A;a,p) "N R(A;a, p) :
Az € D(A;a,p) N R(A;a,p)}
={r € D(A) NR(A;a,p) : Az € D(A;a,p)},
Ay pr = Az
We note that if 0 € p(A) then D(A; o, p) N R(A; a, p) = D(A; , p) and this
definition of A, , coincides with the one in [1].

THEOREM 2.4. If A is a one-to-one operator of type w, then for a €10,1]
and p € [1,00], Aap s a one-to-one operator of type w in D(A;c,p) N
R(A;a,p). Moreover, if A has dense domain and dense range and p < oo
then Aqp has dense domain and dense range.

Proof. Obviously, A, is a closed operator and it is one-to-one. If A €
o(A) then (A — A)~! restricted to D(4;a,p) N R(A; a,p) is the inverse op-
erator of A — A, p, thus A € o(A,.p), therefore o(A, ) C S

Moreover, if z € D(A) NR(A) then (A — A)~tx € D(A) NR(A) and

I = ) allpanriay < CIBOL — A)~Lallx = ClIM — A)~ Ba|x
< Gl = A) Ml | Ballx
< Co||(M = A) Ml 1zl paynra
(with B as in Theorem 2.2); this proves that the restriction of (A\I — A)~! to
D(A) NR(A) belongs to L(D(A) NR(A)) and its norm in this space is less
than or equal to a constant times its norm in £(X). By interpolation, taking
into account Theorem 2.3, the same is true in £L(D(4;a,p) N R(A4;a,p)).
Since A is of type w we can conclude that A, , is of type w.

Suppose that p < co and that D(A) and R(A) are dense in X. In order to
prove the density of D(Aa,p) and R(A, ,) we shall prove that D(A%)NR(A?)
is dense in D(A; o, p) N R(A; o, p) and that it is included in D(A, ,) and
in R(Aap)-

By Theorem 2.2, D(B) is dense in X, therefore (see the proof of Theo-
rem 2.2 of [1]) D(B?) is dense in D(B;a, p). We have

r € D(B*) < x€D(B)and Bx € D(B)
& 2€D(A)NR(A) and (21 + A+ A1)z € D(A) NR(A)
& 2 €D(A)NR(A) and Az + A~z € D(A) NR(A)
& 7€ D(A)NR(A) and Az € D(A) and A~ 'x € R(A)
& 1 € D(A?) NR(A?),

thus D(B?) = D(A?)NR(A?); therefore D(A%)N'R(A?) is dense in the space
D(B;«a, p), that is, in D(A; a,p) N R(A; a,p).
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If x € D(A?2)NR(A?) then 2 € D(A) and = € R(A) C R(A;,p). Hence
r € D(A) N R(A;a,p), and Ar € D(A) C D(4;a,p), therefore D(A%) N
R(A?) C D(A,p). If we consider the operator A™! then the domain and
the range are mterchanged and A, , = (A7), p, therefore we also have
D(A%) NR(A?) C R(Aap).
In this way we have proved that D(A,,,) and R(A,,) are dense in
D(A;a,p) NR(A; ., p).

3. H*° functional calculus

THEOREM 3.1. Let A be a one-to-one operator of type w with dense do-
main and dense range. Let i € |w, n[, a € ]0,1[ and p € [1,00]. If f € W(S)
and x € D(4;a,p) N R(A;a,p), then f(A)x € D(A4;a,p) N R(A;a,p) and
there exists Cy, , € RT (independent of f and x) such that

1 (A)zlpasa.pnr(ai0p) < CallfllcollZlDasa.pnraiap):

Proof. First of all we consider the case p = co.
By the same argument of the proof of Theorem 3.1 of [1] we find that
there exists C,, € RT such that for x € D(4; , 00) we have

sup [[t*A(tI + A) 7' f(A)z]] < Callflloolz DAz ,00)-
teR+

Analogously, for z € R(A;a,00) and t € RT we have
[l + A)~ f(A)x|

tl—aiﬁ S SN — A)! d)\H

o€R

2mi 2 t+ A
1ot °‘||f|| 0
o 10 | (ei®T — A) 'z d
< 5r } T gow] Mo = A7 el do
1 t " flloo i -
— 07— A) gl d
7 | gyl = 4) el do
e 1 0 1
< —\ —d oo SU T eel —A)"
= 9or RS+ Qlfa’t + gew\ 0 HfH QGIRI?*' HQ <Q ) H
1 ti-e 1 .
+ 0= 7 do | fllsc sup o'~ (0”1 — A) x|
27 RS+ o= |t + oe~] ocR+
1 1 . .
==\ e Ao I fllee sup ot e (ol — e A) a|
27 R& ol=1 4 ge'?| oCR+
1 1 1 l—o 0 0 1
R . 0o « 7/ I 7, A .
+ 5 RS+ s T e 97 1 sup 1" e (e )~ a
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The operators A, —e?A and —e " A have the same range and for ev-
ery © € R(A) we have ||[A7'z| = ||[(—e?A)"lz| = |[(—e " A) 12| so
that the spaces R(A), R(—e?A) and R(—e " A) coincide and have equal
norms. Therefore R(A;a,00) = R(—e? A; o, 00) = R(—e 9 A;a,00) (with
equal norms). It follows that there exists a constant C' such that for
x € R(A; a,00) we have

sup (0% Ao — € A) x| < Cllzllr(asa.c0)»
0ERT

sup [[o%e P A(o — e7 " A) " ta|| < Ollzllr(asa,00):
0€ERT
therefore there exists C,, € RT such that for z € R(4;a, c0) we have
sup [[t' (¢ + A) 7 f(A)z]l < Callflloollzll (as0,00)-
teR+

In this way, taking into account Theorem 2.1, we have proved that for
x € D(A;a,00)NR(A; a, 00) we have f(A)z € D(A; a,00) NR(A; a, 00) and
there exists C, € RT (independent of f and ) such that

Hf(A)xHD(A;a,oo)ﬂR(A;apo) < CaHf”ooHxHD(A;a,oo)ﬂ'R(A;apo)'

If p < oo choose ag € ]0,af and a1 € ]a, 1[; then, as a consequence of
the reiteration theorem for real interpolation ([3], Theorem 1.10.2) and of
Theorem 2.3, we have

D(A;a,p) NR(A;0,p) = (X, D(A) NR(A))ap
= ((X, D(A) N R(A))ap,00, (X; D(A) NR(A))ar,00) (a—a0) /(a1 —a0)p

= (D(A; ap, 00) NR(A; ag, 00), D(A; a1, 00) NR(A; a1, 00)) (a—ag) /(a1 —axo) p

with equivalence of norms. Since we have proved that f(A) is a bounded
operator in D(A; ap,00) N R(A; ap,00) and in D(A; a1,00) N R(A; a1, 00),
with norm not greater than C,,||f||cc and Cy, || f|leco respectively, we can
conclude, by interpolation, that f(A) is a bounded operator in D(A; a, p) N
R(A; «, p) with norm less than or equal to a constant (depending only on «
and p) times || f||co-

THEOREM 3.2. Let A be a one-to-one operator of type w with dense
domain and dense range. Let p € |lw, [, @ € ]0,1[ and p € [1,00[. Then the
operator A, p has a bounded H‘X’(Sg) functional calculus.

Proof. By Theorem 2.4, A, ) is a one-to-one operator of type w with
dense domain and dense range. If f € ¥(S]) then f(Aq ) is the restriction
of f(A) to D(A4;a,p) N R(A; o, p). From Theorem 3.1 we deduce that

1f (Aap) | (DA R (As0p)) < Call flloo

and the conclusion follows from Theorem 2.1 of [1].
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As in [1], the following theorem is an immediate consequence of the
existence of a bounded H*° functional calculus.

THEOREM 3.3. Let A be a one-to-one operator of type w with dense
domain and dense range. Let o € ]0,1] and p € [1,00[. For every s € R
the operator Ay, is bounded in D(A; o, p) NR(A; i, p) and for every p > w

there exists C,, such that ||A% || < Cpetlsl.
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