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Subsequences of frames

by

R. Vershynin (Rehovot)

Abstract. Every frame in Hilbert space contains a subsequence equivalent to an
orthogonal basis. If a frame is n-dimensional then this subsequence has length (1 − ε)n.
On the other hand, there is a frame which does not contain bases with brackets.

1. Introduction. The notion of frame goes back to R. Duffin and
A. Schaeffer [D-S] and has been studied extensively since then with rela-
tion to nonharmonic Fourier analysis (see [He]). From the geometrical point
of view, a frame in a Hilbert space H is the image of an orthonormal basis in
a larger Hilbert space under an orthogonal projection onto H, up to equiv-
alence [Ho] (the equivalence constant is called the frame constant). Since
frames have nice representation properties (see [D-S], [A]), much attention
has been paid to their subsequences that inherit these properties. The most
interesting questions arise about subsequences equivalent to an orthogonal
basis [Ho], [S], [C1], [C-C1]. P. Casazza [C2] proved that, given an ε > 0, any
n-dimensional frame whose norms are well bounded below contains a sub-
sequence of length (1− ε)n equivalent to an orthogonal basis (the constant
of equivalence does not depend on n).

In the present paper this is proved for all frames, without restrictions
on norms of the elements. If a frame is n-dimensional then it contains a
subsequence of length (1−ε)n which is C-equivalent to an orthogonal basis.
Here C depends only on the frame constant and ε. To put the result in
other words, orthogonal projections in Hilbert space preserve orthogonal
structure in almost the whole range. Namely, the image of an orthogonal
basis under an orthogonal projection P contains a subset of cardinality
(1 − ε)rank(P ) which is C(ε)-equivalent to an orthogonal system. This is
proved in Section 2.
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An infinite-dimensional version of this result is considered in Section 3.
Every infinite-dimensional frame has an infinite subsequence equivalent to
an orthogonal basis. However, for some frames this subsequence cannot be
complete, as was shown by K. Seip [S] and P. Casazza and O. Christensen
[C-C2]. This result is generalized in Section 4 by constructing a frame which
does not contain bases with brackets. So our frame (xj) is “asymptotically
indecomposable” in the following sense: if (yj) is any complete subsequence
of (xj), then the distance from span(yj)j≤n to span(yj)j>n tends to zero as
n→∞.

In the rest of this section we recall standard definitions and simple known
facts about frames. In what follows, H will denote a separable Hilbert
space, finite- or infinite-dimensional. Absolute constants will be denoted
by c1, c2, . . . A sequence (xj) in H is called a frame if there exist positive
numbers A and B such that

A‖x‖2 ≤
∑

j

|〈x, xj〉|2 ≤ B‖x‖2 for x ∈ H.

The number (B/A)1/2 is called a constant of the frame. We call (xj) a tight
frame if A = B = 1.

Two sequences (xj) and (yj) in possibly different Banach spaces are
called equivalent if there is an isomorphism T : [xj ] → [yj ] such that Txj
= yj for all j. Here [xj ] denotes the closed linear span of (xj). Let c =
‖T‖ · ‖T−1‖; then the sequences (xj) and (yj) are called c-equivalent.

The next observation (see [Ho]) allows us to look at frames as at projec-
tions of the canonical vector basis (ej) in l2.

Proposition 1. Let (xn)mn=1 be a frame in H with constant c, where m
can be infinity. Then there is an orthogonal projection P in lm2 such that
(xn) is c-equivalent to (Pen). Conversely , if P is an orthogonal projection
in lm2 onto a subspace H, then (Pen)mn=1 is a tight frame in H.

Corollary 2. Let (xn) be a frame with constant c. Then (xn) is c-
equivalent to a tight frame.

Now we present another view on frames. We can regard them as columns
of a row-orthogonal matrix (either finite or infinite).

Lemma 3. Let n,m ∈ N∪∞ and A be an n×m matrix whose rows are
orthonormal. Then the columns of A form a tight frame in ln2 . Conversely ,
let (xj)mj=1 be a frame in H. Then there exists an n × m matrix A with
n = dimH whose rows are orthonormal and such that the columns form a
tight frame equivalent to (xj).

Proof. If A is as above then A∗ acts as an isometric embedding of ln2 into
lm2 . Then A acts as a quotient map in a Hilbert space, and we can regard it
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as an orthogonal projection. On the other hand, the columns of A are equal
to Aej . Proposition 1 finishes the proof of the first statement. The converse
can also be proved by this argument.

Lemma 4. Let (xj) be a tight frame in H. Then
∑
j ‖xj‖2 = dimH

(which is possibly infinite).

Proof. By Proposition 1 we may assume that H is a subspace of l2
and xj = Pej , where P is the orthogonal projection in l2 onto H. Then the
Hilbert–Schmidt norm ‖P‖HS is (

∑
j ‖xj‖2)1/2. On the other hand, ‖P‖HS =

(dimH)1/2.

2. Finite-dimensional frames. In this section we prove

Theorem 5. There is a function h : R+ → R+ such that the following
holds. Suppose (xj) is an n-dimensional frame with constant c. Then for
every ε > 0 there is a set σ of indices with |σ| > (1 − ε)n such that the
system (xj)j∈σ is C-equivalent to an orthogonal basis, where C = h(ε)c.

We will need a result of A. Lunin on norms of restrictions of operators
to coordinate subspaces ([L]; for improvements see [K-Tz]).

Theorem 6 (A. Lunin). Let T : lm2 → ln2 be a linear operator. Then
there is a set σ ⊂ {1, . . . ,m} with |σ| = n such that

‖T |Rσ‖ ≤ c1
√
n/m ‖T‖.

Given an h > 0, a system of vectors (xj) in a Hilbert space is called
h-Hilbertian if ∥∥∥

∑

j

ajxj

∥∥∥ ≤ h
(∑

j

|aj |2
)1/2

for all sequences (aj) of scalars. Then Theorem 6 can be reformulated as
follows. Suppose (xj)1≤j≤m is a 1-Hilbertian system in ln2 . Then there is a
set σ ⊂ {1, . . . ,m} with |σ| = n such that (

√
m/nxj)j∈σ is c1-Hilbertian.

Next, we will use a result of J. Bourgain and L. Tzafriri on invertibility
of large submatrices ([B-Tz], Theorem 1.2):

Theorem 7 (J. Bourgain, L. Tzafriri). Let T : ln2 → ln2 be a linear
operator such that ‖Tej‖ = 1 for all j. Then there is a set σ ⊂ {1, . . . , n}
with |σ| ≥ c2n/‖T‖2 such that

‖Tx‖ ≥ c2‖x‖ for every x ∈ Rσ.
Given a b > 0, a system of vectors (xj) in a Hilbert space is called

b-Besselian if

b
∥∥∥
∑

j

ajxj

∥∥∥ ≥
(∑

j

|aj |2
)1/2



188 R. Vershynin

for all sequences (aj) of scalars. Then Theorem 7 can be reformulated as
follows. Suppose (xj)1≤j≤n is an h-Hilbertian system in ln2 and ‖xj‖ ≥ α for
all 1 ≤ j ≤ n. Then there is a set σ ⊂ {1, . . . , n} with |σ| ≥ c2(α/h)2n such
that the system (α−1xj)j∈σ is c3-Besselian.

Clearly, every tight frame is 1-Hilbertian.

Lemma 8. Let (yj)1≤j≤m be a tight frame in ln2 with ‖yj‖ =
√
n/m for

all j. Let P be a k-dimensional orthogonal projection in ln2 . Then for δ > 0,

|{j : ‖(I − P )yj‖ ≥ δ
√
n/m}| ≥ (1− δ2 − k/n)m.

Proof. Let τ = {j : ‖(I − P )yj‖ ≥ δ
√
n/m}. Since ((I − P )yj)1≤j≤m is

a tight frame in the (n− k)-dimensional space (I − P )ln2 , Lemma 4 yields

n− k =
m∑

j=1

‖(I − P )yj‖2 ≤
∑

j∈τ
‖yj‖2 +

∑

j∈τc

‖(I − P )yj‖2

≤ |τ | · (n/m) +m · δ2(n/m) = (|τ |/m+ δ2)n.

The required estimate follows.

Now we proceed to the proof of Theorem 5. As in P. Casazza’s proof [C2],
the set σ will be constructed by an iteration procedure. Our proof consists
of several parts.

I. Splitting. By Corollary 2, we may assume that the frame (xj) ⊂ ln2
is tight and all of its terms are nonzero. First, we split (xj) to get almost
equal norms of the terms. Note that if we substitute any member xj of the
frame by k elements xj/

√
k, . . . , xj/

√
k, we still get a tight frame. Fix ν > 0.

Splitting each xj as above, we obtain a new tight frame (yj)1≤j≤m such that

(i) elements of (yj) are multiples of the ones from (xj);
(ii) there is a λ > 0 such that λ ≤ ‖yj‖ ≤ (1 + ν)λ for all j = 1, . . . ,m.

The constant λ can be evaluated using Lemma 4:

(1 + ν)−1
√
n/m ≤ ‖yj‖ ≤ (1 + ν)

√
n/m for j = 1, . . . ,m.

Clearly, it is enough to prove the theorem for (yj) instead of (xj). We can
choose the parameter ν = ν(ε) > 0 arbitrarily small. To make the proof
more readable, we simply assume that ν = 0. The reader will easily adjust
the argument to the general case. So we have

‖yj‖ =
√
n/m, j = 1, . . . ,m.

We can also assume that (ε/2)m ≥ n.
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II. Iterative construction. Let δ =
√
ε/2.

Step 1. Set τ0 = {1, . . . ,m}. The system (yj)j∈τ0 is 1-Hilbertian.
Lunin’s theorem yields the existence of a set σ′1 ⊂ τ0 with |σ′1| = n such
that

the system (
√
m/nyj)j∈σ′1 is c1-Hilbertian.

Note that ‖
√
m/nyj‖ = 1 for j ∈ σ′1. Then Bourgain–Tzafriri’s theorem

gives us a set σ1 ⊂ σ′1 with |σ1| ≥ (c2/c21)n such that

the system (
√
m/nyj)j∈σ1 is c3-Besselian.

So we have already found a subsequence (yj)j∈σ1 of length proportional to
n which is well equivalent to an orthogonal basis. If |σ1| ≥ (1− ε)n, then we
are done. Otherwise we proceed to the next step.

Step 2. Let P1 be the orthogonal projection in ln2 onto [yj ]j∈σ1 . Let

τ1 = {j : ‖(I − P1)yj‖ ≥ δ
√
n/m}.

Clearly, τ1 ⊂ σc
1. By Lemma 8,

|τ1| ≥ (1− δ2 − |σ1|/n)m.

As |σ1| < (1− ε)n, we obtain

|τ1| > (1− δ2 − (1− ε))m = (ε/2)m.

The system (yj)j∈τ1 is 1-Hilbertian and |τ1| ≥ n by the choice of m. Lunin’s
theorem yields the existence of a set σ′2 ⊂ τ1 with |σ′2| = n such that

the system (
√
|τ1|/n yj)j∈σ′2 is c1-Hilbertian.

Then the system (
√
|τ1|/n (I − P1)yj)j∈σ′2 is also c1-Hilbertian. By the def-

inition of τ1, it has not too small norms:∥∥∥
√
|τ1|/n (I − P1)yj

∥∥∥ ≥ δ
√
|τ1|/m, j ∈ σ′2.

Then Bourgain–Tzafriri’s theorem gives us a set σ2 ⊂ σ′2 with

|σ2| ≥ c2(δ2|τ1|/(mc21))n ≥ (c2/c21)δ2((1− δ2)n− |σ1|)
such that

the system (
√
m/n (I − P1)yj)j∈σ2 is (c3δ−1)-Besselian.

If |σ1| + |σ2| ≥ (1 − ε)n, then we stop. Otherwise we proceed to the next
step.

Step k+ 1. We assume that the sets σ1, . . . , σk are already constructed
and

(1)
k∑

i=1

|σi| < (1− ε)n.

Let Pk be the orthogonal projection in ln2 onto [yj ]j∈σ1∪...∪σk . Let
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τk = {j : ‖(I − Pk)yj‖ ≥ δ
√
n/m}.

Clearly, τk ⊂ (σ1 ∪ . . . ∪ σk)c. By Lemma 8,

|τk| ≥
(

1− δ2 −
k∑

i=1

|σi|/n
)
m.

By (1),

|τk| > (1− δ2 − (1− ε))m = (ε/2)m.

The system (yj)j∈τk is 1-Hilbertian and |τk| ≥ n by the choice of m. Lunin’s
theorem yields the existence of a set σ′k+1 ⊂ τk with |σ′k+1| = n such that

the system (
√
|τk|/n yj)j∈σ′k+1

is c1-Hilbertian.

Then the system (
√
|τk|/n (I − Pk)yj)j∈σ′k+1

is also c1-Hilbertian. By the
definition of τk, it has not too small norms:

‖
√
|τk|/n (I − Pk)yj‖ ≥ δ

√
|τk|/m, j ∈ σ′k+1.

Then Bourgain–Tzafriri’s theorem gives us a set σk+1 ⊂ σ′k+1 with

(2) |σk+1| ≥ c2(δ2|τk|/(mc21))n ≥ (c2/c21)δ2
(

(1− δ2)n−
k∑

i=1

|σi|
)

such that

the system (
√
m/n (I − Pk)yj)j∈σk+1 is (c3δ−1)-Besselian.

If
∑k+1
i=1 |σi| ≥ (1 − ε)n, then we stop. Otherwise we proceed to the next

step.

III. When we stop. Let k0 be the number of the last step, that is, the
smallest integer such that

k0∑

i=1

|σi| ≥ (1− ε)n.

We claim that k0 exists and there is a function K(ε) such that k0 ≤ K(ε).
Indeed, let K(ε) = [4c21c

−1
2 ε−2] + 2. If the claim were not true, then

k∑

i=1

|σi| < (1− ε)n for k = 1, . . . ,K(ε).

Then by (2) for all k = 2, . . . ,K(ε),

|σk| ≥ (c2/c21)δ2((1− δ2)− (1− ε))n = (c2/c21)(ε2/4)n.
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Thus
K(ε)∑

i=1

|σi| ≥ (K(ε)− 1) · (c2/c21)(ε2/4)n ≥ n.

This contradiction proves the claim.
Now set σ = σ1 ∪ . . . ∪ σk0 ; then |σ| > (1 − ε)n. To complete the proof

of the theorem, it remains to check that the system (
√
m/nyj)j∈σ is well

equivalent to an orthonormal basis.

IV. Equivalence to the orthogonal basis within blocks σk. Recall that for
every k < k0 the size of τk is comparable to m, namely |τk| ≥ (ε/2)m. Then
we conclude from the construction the existence of functions c1(ε) and c2(ε)
such that for every k = 1, . . . , k0,

(3) the system (
√
m/nyj)j∈σk is c1(ε)-Hilbertian,

(4) the system (
√
m/n (I − Pk−1)yj)j∈σk is c2(ε)-Besselian.

V. The system (
√
m/nyj)j∈σ is h-Hilbertian for some function h =

h(ε). Indeed, fix scalars (aj)j∈σ such that
∑
j∈σ |aj |2 = 1. Then

∥∥∥
∑

j∈σ
aj(
√
m/nyj)

∥∥∥ ≤
k0∑

k=1

∥∥∥
∑

j∈σk
aj(
√
m/nyj)

∥∥∥

≤
√
k0

( k0∑

k=1

∥∥∥
∑

j∈σk
aj(
√
m/nyj)

∥∥∥
2)1/2

≤
√
k0 c1(ε)

( k0∑

k=1

∑

j∈σk
|aj |2

)1/2
by (3)

=
√
K(ε) c1(ε).

VI. The system (
√
m/nyj)j∈σ is b-Besselian for some function b =

b(ε). We follow P. Casazza [C2]. Choose r = r(ε) > 2 large enough (to
be specified later). Let a = a(ε) > 0 be such that rk0+1a < 1. Fix scalars
(aj)j∈σ such that

∑
j∈σ |aj |2 = 1. Suppose

(5) 1 ≤ k′ ≤ k0 is the largest integer such that
( ∑

j∈σk′
|aj |2

)1/2
≥ rk0−k′a.

The k′ must exist, since otherwise
(∑

j∈σ
|aj |2

)1/2
≤

k0∑

k=1

( ∑

j∈σk
|aj |2

)1/2
≤

k0∑

k=1

rka ≤ rk0+1a < 1,

contradicting the choice of a. We have
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∥∥∥
∑

j∈σ
aj(
√
m/nyj)

∥∥∥

≥
∥∥∥

k′∑

k=1

∑

j∈σk
aj(
√
m/nyj)

∥∥∥−
k0∑

k=k′+1

∥∥∥
∑

j∈σk
aj(
√
m/nyj)

∥∥∥

≥
∥∥∥(I − Pk′−1)

k′∑

k=1

∑

j∈σk
aj(
√
m/nyj)

∥∥∥

− c1(ε)
k0∑

k=k′+1

( ∑

j∈σk
|aj |2

)1/2
by (3)

≥
∥∥∥
∑

j∈σk′
aj(
√
m/n (I − Pk′−1)yj)

∥∥∥− c1(ε)
k0∑

k=k′+1

rk0−ka by (5)

≥ c2(ε)−1
( ∑

j∈σk′
|aj |2

)1/2
− c1(ε)

rk0−k′

r − 1
a by (4)

≥ (c2(ε)−1 − c1(ε)(r − 1)−1)rk0−k′a by (5)

≥ (c2(ε)−1 − c1(ε)(r − 1)−1)a.

If r was chosen so that c2(ε)−1 − c1(ε)(r − 1)−1 > c2(ε)−1/2, we are done.
The proof is complete.

Remark 1. C tends to 1 as ε→ 1. This is a consequence of a restriction
theorem [K-Tz] which we use in the following special case (see also [B-Tz],
Theorem 1.6).

Theorem 9 (B. Kashin, L. Tzafriri). Let T be a linear operator in ln2
with 0’s on the diagonal and ‖T‖ = 1. Let 1/n ≤ δ < 1. Then there exists a
set σ ⊂ {1, . . . , n} with |σ| ≥ δn/4 for which

‖RσTRσ‖ ≤ c5δ1/2.

First, Theorem 5 gives us a set σ1 of indices with |σ1| ≥ n/2 such that
the system (xj/‖xj‖)j∈σ1 is c6c-equivalent to the canonical vector basis of
lσ1
2 . Let δ = 1− ε and zj = xj/‖xj‖ for j ∈ σ1. Consider the linear operator
T in lσ1

2 which sends ej to zj for j ∈ σ1. Then the operator T ∗T − I has 0’s
on the diagonal and is of norm at most 2c2

6c
2. Applying Theorem 9 we get a

set σ ⊂ σ1 with σ ≥ δ|σ1|/4 such that for any sequence (aj) of scalars with∑
j∈σ |aj |2 = 1,

∥∥∥
〈

(T ∗T − I)
∑

j∈σ
ajej ,

∑

j∈σ
ajej

〉∥∥∥ ≤ (2c26c
2)c5δ1/2 = c7c

2δ1/2.
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Thus ∣∣∣
〈∑

j∈σ
ajzj ,

∑

j∈σ
ajzj

〉
−
∑

j∈σ
|aj |2

∣∣∣ ≤ c7c2δ1/2.

Therefore the sequence (zj)j∈σ is g(δ)-equivalent to (ej)j∈σ for a function
g(δ) which tends to 1 as δ → 0. This proves Remark 1.

Remark 2. h(ε) tends to infinity as ε → 0. This is verified for the
following tight frame (xj)1≤j≤n+1, n ≥ 2, considered by P. Casazza and
O. Christensen in [C-C2]:

xj = ej − n−1
n∑

j=1

ej for j = 1, . . . , n;

xn+1 = n−1/2
n∑

j=1

ej .

Indeed, let σ ⊂ {1, . . . , n} be such that |σ| > (1 − ε)n and the system
(xj)j∈σ is M -equivalent to an orthogonal basis. By a change of coordinates,
the system (xj)1≤j≤|σ|−1 must be M -equivalent to an orthogonal basis as
well. However, ∥∥∥

|σ|−1∑

j=1

xj

∥∥∥
2
≤ 2(εn+ 1)

while ‖xj‖ ≥ 1/2 for all j. Therefore M cannot be bounded independently
of n as ε→ 0. This proves Remark 2.

3. Almost orthogonal subsequences of frames. In this section we
prove an infinite-dimensional version of Theorem 5.

Theorem 10. Given an ε > 0, every infinite-dimensional frame has a
subsequence (1− ε)-equivalent to an orthogonal basis of l2.

Given two sets A and B in H, we put by definition

θ(A,B) = sup
a∈A

dist(a,B) = sup
a∈A

inf{‖a− b‖ : b ∈ B}.

Lemma 11. Let (xj) be a frame in an infinite-dimensional H. Let A =
{xj/‖xj‖}. Then for any finite-dimensional subspace E ⊂ H,

θ(A,E) = 1.

Proof. Let zj = xj/‖xj‖ for all j. Assume that, on the contrary, there
is a δ < 1 such that

dist(zj , E) < δ for all j.

Let P be the orthogonal projection in H onto E. Then

‖Pzj‖ >
√

1− δ2 for all j,
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so that

(6) ‖Pxj‖ ≥
√

1− δ2 · ‖xj‖ for all j.

Since P is finite-dimensional, Lemma 4 yields that the sequence ‖Pxj‖ is
square summable. Then, by (6), ‖xj‖ must also be square summable. Thus,
from Lemma 4, (xj) is finite-dimensional. This contradiction completes the
proof.

Lemma 12. Let εj be a sequence of fast decreasing positive numbers
(2−j−1 will do). Let (zj) be a normalized sequence in H such that

〈zi, zj〉 < εj whenever i < j.

Then (zj) is equivalent to an orthonormal basis.

The proof is simple.

Proof of Theorem 10. First note that, given an ε > 0, every subsequence
equivalent to the canonical vector basis of l2 is weakly null, therefore has a
subsequence which is (1 − ε)-equivalent to the canonical vector basis of l2.
Hence by Corollary 2 we may assume that our given frame (xj) is tight. Let
zj = xj/‖xj‖ for all j. We will find a subsequence (zjk) equivalent to an
orthogonal basis by induction. Put j1 = 1. Let j1, . . . , jk−1 be defined and
let E = span(zj1 , . . . , zjk−1). Choose jk from Lemma 11 so that

dist(zjk , E) > 1− 2−2k.

Then it is easy to check that the constructed subsequence (zjk) satisfies the
assumption of Lemma 12. This finishes the proof.

4. A frame not containing bases with brackets

Definition 13. A sequence (xn)∞n=1 in a Banach space X is called a
basis with brackets if there are numbers 1 < n1 < n2 < . . . such that every
vector x ∈ X admits a unique representation of the form

x = lim
j

nj∑

n=1

anxn, an ∈ R.

Clearly, every basis is a basis with brackets. The difference between bases
and bases with brackets is that the latter require the convergence only of
some partial sums in the representation.

The following lemma is known [L-T].

Lemma 14. Let (xn)∞n=1 be a basis with brackets, and numbers 1 < n1 <
n2 < . . . be as in Definition 13. Consider the projection Pj onto [xn : n ≤ nj ]
parallel to [xn : n > nj ]. Then supj ‖Pj‖ <∞.

Clearly, the converse also holds: if supj ‖Pj‖ < ∞ for some sequence
1 < n1 < n2 < . . . , then (xn) is a basis with brackets.
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In this section we prove

Theorem 15. There exists a frame in l2 which does not contain bases
with brackets.

Moreover, this frame is tight and has norms bounded from below.

Lemma 16. There is an orthonormal basis (zj) in ln2 such that , given
any set J ⊂ {1, . . . , n} with |J | ≥ n− 2, one has

dist(e1, [zj : j ∈ J, j ≥ j0]) ≤ 4/
√
n for 1 ≤ j0 < n/2,

dist(en, [zj : j ∈ J, j < j0]) ≤ 4/
√
n for n/2 ≤ j0 ≤ n.

Proof. By rotation, it is enough to find normalized vectors v1, v2 in ln2
such that 〈v1, v2〉 = 0 and, given a set J as in the hypothesis,

dist(v1, [ej : j ∈ J, j ≥ j0]) ≤ 4/
√
n for 1 ≤ j0 < n/2,

dist(v2, [ej : j ∈ J, j < j0]) ≤ 4/
√
n for n/2 ≤ j0 ≤ n.

Clearly, one may take

v1 = dn/2e−1/2 · (1, . . . , 1︸ ︷︷ ︸
dn/2e

, 0, . . . , 0),

v2 = dn/2e−1/2 · (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
dn/2e

).

We will construct our frame (xj) by defining blocks (xj : j ∈ J(n)),
where

J(1) = {1}, J(2) = {2, 3}, J(3) = {4, 5, 6}, J(4) = {7, 8, 9, 10}, . . .
The supports of xj ’s from block J(n) will lie in an interval I(n), where

I(1) = {1}, I(2) = {1, 2}, I(3) = {2, 3, 4}, I(4) = {4, 5, 6, 7}, . . .
Let i(n) be the first element of I(n).

∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ · · ·
The columns of this infinite matrix form the frame elements xj , the

asterisks marking their supports. Consider the shift operator Tn : ln2 → l2
which sends (ei)ni=1 to (ei : i ∈ I(n)). Choose an orthonormal basis (zj : j ∈
J(n)) in ln2 satisfying the conclusion of Lemma 16, and define

xj = Tnzj for j ∈ J(n).
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Lemma 17. (xj) is a frame in l2.

Proof. Indeed, look at the rows in the picture, that is, the vectors yi =
(x1(i), x2(i), . . .). Since the vectors xj , j ∈ J(n), are orthonormal for fixed n,
the vectors yi are orthogonal. Moreover, their norms are either 2 (if i = i(n)
for some n) or 1 (otherwise). Now we pass again from the rows yi to the
columns xj . Lemma 3 yields that (xj) is a frame.

Let J be a set of positive integers such that the sequence (xj)j∈J is
complete in l2. We shall prove that it is not a basis with brackets.

Lemma 18. |J(n) ∩ J | ≥ n− 2 for every n.

Proof. Let P be the orthogonal projection onto those n− 2 coordinates
in I(n) which do not belong to the other blocks I(n1), i.e. onto [ei : i ∈
I(n) \ {i(n), i(n + 1)}]. Thus P sends to zero all xj with j 6∈ J(n). Hence
Im(P ) = P ([xj : j ∈ J(n)∩J ]). Since Im(P ) is an (n−2)-dimensional space,
the lemma follows.

In what follows we consider large blocks J(n), i.e. with n → ∞. Given
a vector v and a subspace L in l2 (both possibly depending on n), we say
that v is close to L if dist(x,L) ≤ c/

√
n. Here c is some absolute constant,

whose value may be different in different occurrences.

Lemma 19. (1) ei(n) is close to [xj : j ∈ J(n− 1) ∩ J ].
(2) ei(n+1) is close to [xj : j ∈ J(n+ 1) ∩ J ].
(3) For each j0 ∈ J(n), either ei(n) is close to [xj : j ∈ J(n)∩J, j ≥ j0],

or ei(n+1) is close to [xj : j ∈ J(n) ∩ J, j < j0].

Proof. Note that Tn sends e1 to ei(n) and en to ei(n+1). Then all three
statements of the lemma follow from Lemma 16.

The next (and last) lemma, in tandem with Lemma 14, completes the
proof of Theorem 15.

Lemma 20. For every j0 ∈ J(n) there is a normalized vector x in l2
which is close to both subspaces E = [xj : j∈J, j≥ j0] and F = [xj : j∈J,
j<j0].

Proof. We make use of Lemma 19. By (3), we take either x = ei(n) to
have x close to E, or x = ei(n+1) to have x close to F . In the first case x is
also close to F by (2), and in the second case x is close to E by (1). The
proof is complete.

A part of this work was accomplished when the author was visiting
Friedrich-Schiller-Universität Jena. The author is grateful to M. Rudelson
and P. Wojtaszczyk for helpful discussions, and to V. Kadets for his constant
encouragement.
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