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Spaces of operators and c0

by

Paul Lewis (Denton, TX)

Abstract. Bessaga and Pełczyński showed that if c0 embeds in the dual X∗ of a
Banach space X, then `1 embeds complementably in X, and `∞ embeds as a subspace of
X∗. In this note the Diestel–Faires theorem and techniques of Kalton are used to show
that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and
c0 embeds in L(X,Y ), then `∞ embeds in L(X,Y ), and `1 embeds complementably in
X ⊗γ Y ∗. Applications to embeddings of c0 in various spaces of operators are given.

All Banach spaces in this note are defined over the real field. If X and Y
are Banach spaces, then L(X,Y ) is the Banach space of all continuous linear
functions (= operators) fromX to Y equipped with the usual operator norm,
K(X,Y ) is the space of compact operators from X to Y , and X∗ is the dual
of X. We say that X embeds in Y if there is a linear homeomorphism from
X into Y , i.e. there is an isomorphic embedding T : X → Y . The canonical
unit vector basis of c0 is denoted by (en), and the canonical basis of `1 is
denoted by (e∗n). If A ⊆ X, then [A] denotes the closed linear span of A.
The greatest crossnorm tensor product completion of X and Y is denoted
by X⊗γ Y . We refer the reader to Lindenstrauss and Tzafriri [LT] or Diestel
[D] for undefined notation and terminology.

Numerous authors have noticed that if c0 embeds in K(X,Y ) and ei-
ther X or Y has a “nice” Schauder decomposition, then `∞ must embed in
L(X,Y ) (see e.g. Kalton [K], Feder [F1], [F2], and Emmanuele [E1], [E2]).
However, it does not seem to have been observed that the complete analogue
of the Bessaga–Pełczyński theorem [BP, Thm. 3] holds in the space L(X,Y )
for any infinite-dimensional Banach space X.

Theorem 1. If X is infinite-dimensional and c0 embeds in L(X,Y ), then
`∞ embeds in L(X,Y ) and `1 embeds complementably in X⊗γY ∗. Moreover ,
(T (en))→ 0 in the strong operator topology (of L(X,Y )) for each isomorphic
embedding T : c0 → L(X,Y ) if and only if c0 fails to embed in Y .
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Proof. We follow the lead of Kalton [K] and consider two cases: c0 em-
beds in Y and c0 does not embed in Y .

Suppose that T : c0 → Y is an isomorphic embedding. Use the Josefson–
Nissenzweig theorem [D, Chap. XIII], and choose a sequence (x∗n) in X∗

so that ‖x∗n‖ = 1 for each n and (x∗n) → 0 in the weak* topology. Define
J : `∞ → L(X, [T (en)]) by

J(bn)(x) =
∞∑

n=1

bnx
∗
n(x)T (en)

for x ∈ X. It is easy to check that J is continuous, linear, and injective.
Further, J−1 is continuous since (T (en)) ∼ (en).

Now suppose that c0 does not embed in Y , and let B : c0 → L(X,Y ) be
an isomorphic embedding. Certainly the weak unconditional convergence of∑
en guarantees that

∞∑

n=1

|〈B(en)(x), y∗〉| <∞

for each x ∈ X and y∗ ∈ Y ∗. Thus
∑
B(en)x is weakly unconditionally

convergent in Y . Since c0 does not embed in Y ,
∑
B(en)x is unconditionally

convergent in Y ([BP], [D, p. 45]). Therefore if A is a non-empty subset of N,
then

∑
n∈AB(en) converges unconditionally in the strong operator topology

of L(X,Y ). Further, an application of the Uniform Boundedness Principle
shows that{∑

n∈A
B(en) (strong operator topology) : A ⊆ N, A 6= ∅

}

is bounded. Define µ by µ(∅) = 0 and

µ(A) =
∑

n∈A
B(en) (strong operator topology)

for any non-empty subset A of N. It is straightforward to check that µ is
bounded and finitely additive on the σ-algebra Σ consisting of all subsets
of N. However, (µ(n)) 6→ 0, i.e. µ is not strongly additive. Hence, by the
σ-algebra version of the Diestel–Faires theorem ([DU, p. 20], [DF]), L(E,F )
contains an isomorphic copy of `∞.

Next suppose that (xn) is a bounded sequence inX and (y∗n) is a bounded
sequence in Y ∗ so that

∞∑

n=1

|〈B(en)xn, y∗n〉 − 1| <∞.

(Of course, one can easily arrange to have the preceding infinite series sum
to zero.) Note that L(X,Y ∗∗) is isometrically isomorphic to (X⊗γ Y ∗)∗ and
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that (xn ⊗ y∗n) is a bounded sequence in X ⊗γ Y ∗ [DU, Chap. VIII]. An
application of the main theorem of Lewis [L] shows that there is a sequence
(un) consisting of differences of terms of the sequence (xn ⊗ y∗n) so that
(un) ∼ (e∗n) and [un] is complemented in X ⊗γ Y ∗.

Now suppose that T : c0 → Y is an embedding and x∗ ∈ X∗, ‖x∗‖ = 1.
Define J : c0 → L(X,Y ) by J(u)(x) = x∗(x)T (u) for u ∈ c0 and x ∈ X. It
follows that J is an isomorphism and (J(en)) 6→ 0 in the strong operator
topology.

Conversely, if J : c0 → L(X,Y ) is any operator, x ∈ X, and (J(en)x)
6→ 0, then

∑
J(en)x is weakly unconditionally convergent and not uncondi-

tionally convergent in Y . Therefore c0 embeds in Y .

Of course, the converse of the classical Bessaga–Pełczyński theorem is not
difficult to verify. That is, if `1 embeds complementably in X, then certainly
c0 embeds in X∗. However, as we shall see, the converse implication in our
setting is false.

It is well known that if 1 < p < q < ∞, then L(`q, `p) is reflexive
and L(`p, `q) is not reflexive (see e.g. [K] or Theorem VIII.4.4 of Diestel
and Uhl [DU]). Moreover, Diestel and Uhl [DU, p. 249] pointed out that if
1 < p <∞, then `p⊗γ `p contains a complemented copy of `1. Consequently,
if X = `p, 2 < p < ∞, and Y = X∗, then `1 embeds complementably in
X ⊗γ Y ∗ = `p ⊗γ `p, but L(X,Y ) = L(`p, (`p)∗) is reflexive and thus does
not contain c0.

Now, again, if 1 < p < q < ∞, it follows from Theorem 6 of [K] that
L(`p, `q) contains a copy of `∞. Moreover, Kalton remarked in the intro-
duction to [K] that L(`2, `2) contains an isomorphic copy of `∞. In fact,
the techniques of the proof of Theorem 1 allow a more extensive statement.
Recall that a sequence (Xn)∞n=1 of closed linear subspaces of X is called an
unconditional Schauder decomposition of X [LT, pp. 47–48] if each x ∈ X
has an unconditional and unique expansion of the form x =

∑
xn, with

xn ∈ Xn for each n.

Theorem 2. If X has an unconditional Schauder decomposition, then
`∞ embeds in L(X,X) and `1 embeds complementably in X ⊗γ X∗.

Proof. Suppose that (Xn)∞n=1 is an unconditional Schauder decomposi-
tion of X, and let Qn be the natural projection of X into Xn. Let F be the
finite-cofinite algebra of subsets of N. Define µ(∅) to be 0. If A ∈ F , A 6= ∅,
and A is finite, set µ(A) =

∑
n∈AQn. If Ac is finite, set µ(A) = −µ(Ac).

Then µ is finitely additive and not strongly additive. Further, the uncondi-
tionality of the decomposition ensures that µ is bounded. An application of
the algebra version of the Diestel–Faires theorem guarantees that c0 embeds
in L(X,X). An application of Theorem 1 finishes the proof.
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The following result contrasts sharply with Theorem 2. The reader should
compare this theorem with Theorem 3 of Emmanuele [E2].

Theorem 3. If neither X nor Y contains a complemented copy of `1

and each operator from X to Y ∗ is compact , then (X⊗γY )∗ does not contain
c0, and , consequently , X⊗γ Y does not contain a complemented copy of `1.

Proof. Suppose that (X ⊗γ Y )∗ does contain c0. Since (X ⊗γ Y )∗ is
isometrically isomorphic to L(X,Y ∗), we use Theorem 1 and see that `∞

embeds in L(X,Y ∗). Since every operator from X to Y ∗ is compact, we
apply Theorem 4 of [K] and conclude that `∞ must embed in X∗ or in Y ∗.
However, either case contradicts our hypotheses.

In Theorem 1 of [E1], Emmanuele showed that if there is a non-compact
member of L(X,Y ), Y is complemented in a Banach space Z which has an
unconditional Schauder decomposition (Zn), and each operator from X to
Zn is compact for each n, then K(X,Y ) must contain a copy of c0. It is not
difficult to see that Emmanuele’s hypotheses produce a sequence (Tn) in
K(X,Y ) so that

∑∞
n=1 Tn(x) converges unconditionally for each x ∈ X but

(
∑k
n=1 Tn)∞k=1 is not Cauchy in L(X,Y ). As the next theorem shows, the

compactness of each Tn and the unconditional norm convergence of
∑
Tn(x)

are not crucial in the determination of the presence of c0. (Compactness does
play a crucial role in other implications in Emmanuele’s theorem.)

Theorem 4. Let I(X,Y ) be a norm closed operator ideal in L(X,Y ).
Then c0 embeds in I(X,Y ) if and only if there is a non-null sequence (Tn)
in I(X,Y ) so that

∑
Tn(x) is weakly unconditionally convergent in Y for

each x ∈ X.

Proof. Suppose that (Tn) is as in the statement of the theorem, and let
F be the collection of all finite subsets of N. By the Uniform Boundedness
Principle, {∑n∈A Tn : A ∈ F} is bounded in L(X,Y ). Use the finite-cofinite
algebra of subsets of N and the Diestel–Faires theorem as in Theorem 2 to
conclude that c0 embeds in I(X,Y ).

Conversely, suppose that T : c0 → I(X,Y ) is an isomorphism, and let
Tn = T (en), n ∈ N. Then

∑
Tn(x) is weakly unconditionally convergent for

each x ∈ X.

Remark. Theorems 1 and 4 make it clear that `∞ embeds isomorphi-
cally in L(X,Y ) if and only if there is a non-null sequence (Tn) in L(X,Y )
so that

∑
Tn(x) is weakly unconditionally convergent in Y for each x ∈ X.

Further, if S is any linear subspace of L(X,Y ) which is closed in the strong
operator topology and (Tn) is a non-null sequence from S so that

∑
Tn(x)

converges unconditionally for each x ∈ X, then `∞ embeds in S. See Feder
[F1], [F2] for a discussion of similar conditions.
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We conclude by giving a quick application of the preceding results in
this note to operators on abstract continuous function spaces and their rep-
resenting measures. We refer the reader to [BL] or [ABBL] for a complete
discussion of this setting. We do note that if T : C(H,X)→ Y is an operator
on an abstract continuous function space with representing vector measure
m, then T is said to be strongly bounded if (m̃(An)) → 0 on any pairwise
disjoint sequence of Borel subsets of the compact Hausdorff space H, where
m̃(A) denotes the semivariation of m on A.

Theorem 5. If c0 does not embed in K(X,Y ), then every operator T :
C(H,X)→ Y is strongly bounded. If , in addition, X is reflexive, then every
such operator is weakly compact.

Proof. Suppose that T : C(H,X) → Y is an operator which is not
strongly bounded. By results in Brooks and Lewis [BL] or Dobrakov [Do], T
is not unconditionally converging. Therefore T must be an isomorphism on
a copy of c0 ([BP], [D, p. 54]), and Y contains a copy of c0. Thus c0 actually
embeds in the rank one operators from X to Y , and we have established the
contrapositive of the first statement in the theorem.

Now suppose c0 does not embed in K(X,Y ) and that X is reflexive.
The preceding paragraph and Theorem 4.1 of [BL] directly show that every
operator T : C(H,X)→ Y is weakly compact.
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